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Abstract

While bank lending is an important financing channel for small firms, banks in the U.S.

have substantial market power. What are the efficiency implications and policy remedies to

bank concentration? We build a model of bank competition with endogenous interest rates,

loan size, and take-up. We estimate the model using the universe of loans made through the

Small Business Administration (SBA). Our novel identification strategy builds on and extends

the “bunching” literature that uses kinks and notches to identify key elasticities, utilizing a

discontinuity in SBA’s interest rate cap. We find banks capture at least 30% of the surplus

in a majority of lending markets. Imposing a uniform interest rate cap of 5% would increase

borrower welfare by 9%, but also cause substantial rationing. While the guarantee subsidy

program used by the SBA raises borrower surplus by 17%, we find that banks capture the

majority of increase in surplus.
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1 Introduction
Bank lending is an important financing channel for young and small firms and is therefore

critically important for the aggregate economy (Kaplan and Zingales (1997)). Yet, reliance on
geographic proximity between borrowers and lenders (Petersen and Rajan (1994)) can give banks
substantial market power and potentially cause under-provision of credit (Dreschler, Savov, and
Schnabl (2017)). Several federal programs in the United States exist to regulate pricing and en-
courage bank lending to small businesses. How does market power affects the terms of bank
lending? How to estimate market power in lending? What are the effects of the existing regu-
lations, and is there room for better policy? Despite broad academic and policy interests, these
remain open questions.

In this paper, we build and estimate a model of imperfect competition in bank lending with
endogenous interest rates, loan size, and take-up. In the model, a finite number of banks compete
for borrowers by offering loan contracts. Each contract specifies both the interest rate and the loan
size. Banks are differentially preferred by borrowers with idiosyncratic taste shocks over banking
services. Taste heterogeneity, together with the finiteness of competing banks, grants banks market
power.

The model generates a mapping from bank concentration to lending outcomes and clarifies the
implications of bank market power on both the intensive and extensive margins of bank lending.
Despite market power, the intensive margin of loan size is always efficient conditioning on loan
issuance, as banks choose the optimal loan size to maximize joint bank-firm surplus and only use
interest rates to optimally extract surplus. However, market power distorts the extensive margin
of lending, as high interest rates in concentrated local markets discourages firms from taking out
loans. Our model is highly tractable: it yields analytic solutions and is amenable to theoretical
normative policy analysis.

We estimate the model using the universe of small business loans made through a major federal
loan subsidy program in the United States—the Small Business Administration (SBA) Express
program. The SBA guarantees loans made by commercial lenders to in-need small businesses
that are otherwise rejected from all other sources of external financing. It therefore relies on the
existing banking infrastructure to pass the subsidy through to targeted firms.

Using a novel identification strategy that combines geographic variations in bank concentration
and discontinuities in the regulatory specifications of the SBA program, we quantify the impact
of market power on small business lending. We find quantitatively substantial market power and
inefficiencies: on average, banks capture 20-30% of surplus from lending relationships. We esti-
mate the efficacy of loan subsidy through the SBA program and perform a wide range of policy
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counterfactuals.

Our identification strategy builds on and extends the “bunching” literature that uses kinks and
notches to identify key elasticities (Kleven (2016)). Broadly speaking, this approach uses discon-
tinuities in economic agents’ choice set and the consequent distortions in the equilibrium outcome
distribution to infer structural parameters that govern economic behaviors. To the best of our
knowledge, existing papers study one-dimensional bunching, meaning they study environments
with distortions in a single choice variable.1

Figure 1: Loan-Size-Depedent Interest Rate Cap and the Empirical Distribution of Contracts

Our methodological contribution is to advance the bunching approach to multi-dimensional be-
havioral response. In our setting, loans made through the SBA are subject to a loan-size dependent
interest rate cap as shown in Figure 1: loans smaller or equal to $50,000 are capped at a rate of 6.5%
above a reference rate (the “Prime rate”), while loans larger than $50,000 are limited to Prime rate
+ 4.5%. Banks compete on two-dimensional loan contracts—loan size and interest rates; hence,
banks respond in both dimensions to the interest cap. Consider in Figure 1 a borrower who, in the
absence of the rate cap, would have been offered contract (?), which is infeasible under the rate
cap. When the rate cap is imposed, multiple contracts along the rate cap could have possibly been
offered to the borrower. Banks could lower the interest rate and stay unconstrained on loan size;
alternatively, banks can scale back loan size and, in exchange, charge a relatively higher interest
rate. These contracts generate different profits for the banks, as loan size affects the surplus gen-
erated by each loan, whereas the interest rate determines the division of that surplus between the
lender and the borrower.

1For example Best and Kleven (2018) study how the UK mortgage market responds to transaction taxes, and study
how labor supply responds to tax notches in Pakistan (Kleven and Waseem (2013) ) and tax rate kinks in the US Saez
(2010).
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How a profit-maximizing bank respond to the size-dependent interest rate cap is indicative of
their market power and the elasticity of lending surplus to loan size. For contract (?), reducing
the interest rate to the lower cap (Prime rate + 4.5%) significantly lowers the revenue-per-dollar-
lent that banks are able to extract and may have relatively small impact on the surplus of lending
because loan size remain unconstrained. In contrast, while reducing loan size down to $50,000
allows higher interest rates, doing so could significantly reduce the surplus of lending. We argue
that a bank with no market power will always choose to scale back loan size. This is because the
interest rate in (?) fully reflects lending cost, and interest rates that are any lower can only lead to
losses for the bank. The argument extends to non-competitive cases, that a bank with more market
power is more likely to lower rates and avoid the constraint on loan size.

Figure 2: Counterfactual Distribution of Contracts

Our two-dimensional bunching approach operationalizes the argument above to identify bank
market power. First, we start with the empirical joint distribution of loan size and interest rate, as
shown in Figure 1. Second, we use a statistical procedure to recover the counterfactual distribution
of contracts (i.e. the distribution that would have prevailed absent the rate cap), as shown in Figure
2. To do so, we assume that the distribution of contracts strictly below the policy cap is unaffected
by the policy, and we extrapolate the distribution above the cap using the empirical distribution
below. We compute the difference between the empirical and the counterfactual distributions of
contracts, and we repeat the procedure across markets. Lastly, based on the argument above, we
form moment conditions that identify two key model parameters, which respectively govern 1) the
elasticity of bank’s market power to market concentration and 2) the elasticity of lending surplus
to loan size.

We begin with an exposition of the model in section 2. Section 3 discusses the empirical setting,
data, and relevant policy variation, while section 4 discusses the identification strategy. Section 5
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describes the estimation procedure and empirical findings. Section 6 concludes.

2 Model
2.1 Setup

Consider a market with finite K banks and a continuum of borrowers of finite measure. Both
parties are risk neutral. Let k index for banks and i index for borrowers.

Investment Technology Each borrower i has a stochastic investment opportunity that produces
output f (L;ω) as a function of investment size L in state ω . The state realization ω ∈ W is
idiosyncratic across borrowers and is drawn from a borrower-specific distribution Gi (ω;L) which
may also depend on investment L. The expected output from investment i is

Ei [ f (L)]≡
∫

ω∈W
f (L;ω) dGi (ω;L) .

Loan Contract Borrowers may obtain investments from bank loans. A loan contract is a duplet
of interest rate and loan size, (r,L). If the contract (r,L) offered by bank k is accepted by borrower
i, it generates contractual value vi (r,L) to borrower i and expected profit πik (r,L) for bank k:

vi (r,L)≡
∫

ω∈W
max{ f (L;ω)− (1+ r)L,0} dGi (ω;L) , (1)

πik (r,L)≡
∫

ω∈W
min{(1+ r)L, f (L;ω)} dGi (ω;L) − ckL. (2)

Note that loan contracts are equivalent to debt: the lender captures the investment payoff upto the
specified repayment (1+ r)L, and the borrower is the residual claimant. The term ck represents
the opportunity cost of funds to bank k.

The expected utility that borrower i obtains from picking contract (r,L) from bank k is

uik (r,L)≡ ξik× vi (r,L) . (3)

The term ξik ≥ 0 is a random taste shock and is i.i.d. across borrowers and banks. We refer to
vi (r,L) as the contractual value, and uik (r,L) as the expected utility, of loan (r,L) to borrower i. The
taste shock ξik represents idiosyncratic heterogeneity, such as borrowers’ differential preferences
for the services provided by differentiated banks.

When the context is clear, we abuse notations and use uik for uik (rik,Lik), vik for vi (rik,Lik), and
πik for πik (rik,Lik).
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Bank Competition and Equilibrium Banks k = 1, . . . ,K compete for borrowers by simultane-
ously offering contracts. Each bank k offers one contract (rik,Lik) to each borrower i. Borrowers
accepts the contract that generates the highest expected utility. The probability that borrower i

chooses the contract offered by bank k is

qik ≡ Pr (i chooses k) = Pr
(
uik ≥ uik′ for all k′

)
, (4)

The randomness in borrower’s choice of contract originates from the idiosyncratic taste shocks.
Note that qik is increasing in the contractual utility vik offered by bank k and is decreasing in vik′

for all k′ 6= k. We normalize

When competing for borrowers, banks observe borrower’s production technology Gi (ω;L) but
do not observe the idiosyncratic shocks. Each bank k offers the contract that maximizes expected
profit:

(r∗ik,L
∗
ik)≡ arg max

rik,Lik
qik×πik. (5)

Definition 1. A Laissez-faire equilibrium is the set of contracts
{(

r∗ik,L
∗
ik

)}K
k=1 that solves the

profit maximization problem (5).

Default happens in the model when the output is below the required loan repayment ( f (L;ω)<

(1+ r)L). Note that default is always involuntary in the model: borrower repays as much as the
output allows, and there is no strategic decision regarding default. Another feature of the model is
that default generates no deadweight loss and simply represents a transfer between the borrower
and the lender under the contingency that output is low. This can be seen by noting that the sum of
bank profit and the contractual value to the borrower is a function of only loan size and is invariant
to the interest rate:

vi (r,L)+πik (r,L) = Ei [ f (L)]− ckL.

We model this feature in order to abstract away from inefficient default; the only source of potential
inefficiency in the model is market power.

2.2 The Laissez-faire Equilibrium
Let εik ≡ ∂ lnqik

/
∂ lnvik denote the elasticity of the choice probability qik (that borrower i

chooses bank k) with respect to the contractual utility vik, holding contracts offered by all other
banks constant. We refer to εik simply as the “choice elasticity”. The choice elasticity is always
non-negative, as higher contractual utility vik always raises the likelihood for borrower i to accept
the contract offered by bank k.
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Proposition 1. In the Laissez-faire equilibrium, loan terms
(
r∗ik,L

∗
ik

)
satisfy

L∗ik = argmax
L
{Ei [ f (L)]− ckL} , (6)

πik
(
r∗ik,L

∗
ik

)
vi
(
r∗ik,L

∗
ik

) =
1

εik
. (7)

The proposition characterizes equilibrium loan terms offered by each bank as a function of
lending cost ck. Equation (6) shows that equilibrium loan size is efficient—it maximizes the ex-
pected investment output net of lending cost. This result may come as a surprise: banks do have
market power and are profit-maximizing entities that choose contractual terms. Why is there is
no distortion over loan terms? To understand this, note that each bank always offers the loan size
that maximizes output net of lending cost and default costs; the bank can always extract rents by
charging a high interest rate. Because default does not generate deadweight losses, the equilibrium
loan size is always efficient.

The equilibrium interest rate is implicitly characterized by equation (7), which states that the
ratio between bank profits and the contractual value captured by the borrower is inversely related to
the choice elasticity εik. When εik is high, the choice probability qik is sensitive to contractual value
vik; consequently, banks choose low interest rates, extract little surplus, and leave more surplus to
the borrower (low πik and high vik). Conversely, an inelastic choice probability implies high interest
rates and bank profits, and low contractual value to the borrower. In what follows, we say bank k

has low market power to borrower i if εik is high.

Proposition 1 clarifies the potential impact of market power in lending. Absent inefficient de-
fault, market power translates into high interest rates and efficient loan size offered; consequently,
market power does not generate investment distortions along the intensive margin, i.e., investments
are efficient as long as investments are made. However, because high market power translates into
high interest rates and low contractual value, market power may lead to under-investment along
the extensive margin, as entrepreneurs may choose not to borrow at all. This can be formalized by
allowing the borrower to choose an outside option in our model.

In order to take our model to data, we now turn to a parametrized version of our model with
functional form assumptions on the investment technology.

2.3 Parametrized Model
We parametrize the model so that it is sufficiently rich to be taken to the data, yet it remains

simple and tractable. We maintain these parametric assumptions throughout the rest of the paper.
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Investment Technology We assume the investment technology is isoelastic and, for a given in-
vestment L, has two random output levels:

f (L) =

ziLα +δiL (succeeds) with probability pi,

δiL (fails) with probability (1− pi) .

Each borrower i can be summarized by its characteristic (zi,δi, pi). The borrower succeeds with
probability pi. The term δiL can be seen as the undepreciated investment after output is realized;
this is also the amount that can be recovered by banks in case of investment failure. If the invest-
ment succeeds, it generates an additional output ziLα . The term zi is a Hicks-neutral productivity
shifter, and the parameter α captures the concavity of the production function.

When the project fails, borrower gets paid zero and the bank gets paid δiL. When the project
succeeds, borrower gets paid ziLα − (1+ r−δi)L and the bank gets paid (1+ r)L.

Let F (·) denote the distribution of borrower characteristics in the market.

Distribution of Taste Shock We assume the idiosyncratic taste shocks ξik are drawn from a
Fréchet distribution, with CDF G(ξ ;σ) = e−(γξ )−σ

, where γ ≡ Γ(1−1/σ) is a normalizing con-
stant and Γ is the Gamma function (Johnson and Kotz (1970)). This assumption enables us to
analytically solve for equilibrium loan contracts as a function of the market structure; it has the
implication that, ceteris paribus, the choice elasticity εik is higher in more competitive markets.

Under the distributional assumption, the choice probability for any given bank becomes

qik

(
{vik′}K

k′=1

)
=

vσ
ik

∑
K
k′=1 vσ

ik′
. (8)

The demand elasticity is
εik = σ (1−qik) .

The expected utility of borrower i is

EUi ≡ E
[

max
k

ξikvik

]
=

(
K

∑
k=1

vσ
ik

) 1
σ

.

σ > 0 is an important parameter. It captures the substitutability of loans across banks and it
relates inversely to the variance of the idiosyncratic taste shocks. Banks are more substitutable
when σ is high. As we show below, in the limit as σ → ∞, banks become perfect substitutes.
Conversely, as σ → 0, the choice probability for any given bank converges to 1

K regardless of the
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contractual utilities {vik′}.

Each bank’s profit maximization problem in this parametrized model can be written as

max
r,L

[pi (1+ r)+(1− pi)δi− ck]L︸ ︷︷ ︸
expected profit conditioninal

on contract being accepted

×
vσ

ik

∑
K
k′=1 vσ

ik′︸ ︷︷ ︸
choice probability

s.t. vik = pi (ziLα − (1+ r−δi)L) . (9)

We define bank k’s profit margin as

µik (r,L)≡
πik (r,L)
(ck−δi)L

=
pi (1+ r−δi)− (ck−δi)

ck−δi
.

Because borrowers always repay δi fraction of the investment, (ck−δi) can be interpreted as the
effective marginal cost of lending. The profit margin µik is therefore the ratio between expected
bank profit and effective marginal cost, conditioning on the loan being accepted.

Proposition 2. The Laissez-faire equilibrium of the parametrized model has the following features.

1. Every borrower chooses bank k with the same probability: qik = sk for all i, where sk is the

market share of bank k.

2. Loan terms satisfy

Lik =

(
α pizi

ci−δi

) 1
1−α

, (10)

µik =
1−α

α

1
1+σ (1− sk)

. (11)

3. Let HHI ≡ ∑
K
k=1 s2

k denote the Herfendahl index in the lending market. Then the average

profit margin (µ =
∫

µikskLikdF∫
∑

K
k′=1 qik′sk′dF

) in the market can be written as

µ ≈ 1−α

α (1+σ)
+

(1−α)

α (1+σ)

σ

(1+σ)
×HHI,

where the approximation error is o
(

maxk (sk)
2
)

, i.e., second-order in the market share of

the largest bank.

The first part of the proposition states that each bank’s market share captures the choice prob-
ability for any borrower in the market. Note that market share sk is itself an endogenous outcome
of bank competition. Banks may differ in their equilibrium market share due to heterogeneity in
funding cost, ck. Banks with lower funding costs have higher market share. When all banks have
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identical funding costs, they also have the same market share: sk = 1/K for all k, where K is the
total number of banks.

The second part of Proposition 2 characterizes equilibrium loan terms. Equation (10) is an ap-
plication of Proposition 1, that equilibrium loan size is efficient and solves maxL piziLα +δiL−ciL.
Equation (11), which is derived from (7), solves for the equilibrium profit margin and thus the in-
terest rate. To understand this, note that the total surplus generated by a loan of size L, piziLα −
(ck−δi)L, is equal to 1−α

α
(ck−δi)L and depends on the concavity of borrower’s production tech-

nology, α . The profit margin therefore depends on α . The remaining term, 1
1+σ(1−sk)

captures the
fraction of surplus accrued to the bank and is a direct consequence of (7). Bank’s share of surplus
relates to its market power (recall σ (1− sk) = εik): banks have higher profit margins when they are
less substitutable (lower σ ). Banks with greater market shares (higher sk) also have higher profit
margins.

The last part of Proposition 2 shows that in equilibrium, the average profit margin in a given
market is approximately linearly in the HHI index for bank loans. The HHI index is a summary
statistics for market concentration and it ranges between zero and one. Higher HHI indicates
greater market concentration. The index is equal to 1 when a single bank captures the entire mar-
ket and is equal to 1/K when all K banks are symmetric. The HHI index can therefore also be seen
as inversely related to the effective number of banks operating in the market. The proposition im-
plies that, holding borrower characteristics constant, profit margins and interest rates are higher in
more concentrated markets, i.e., when there are fewer banks or when banks have more asymmetric
lending costs. The proposition also implies that profit margins and interest rates are higher when
banks are less substitutable (lower σ ). These results are intuitive: when there are fewer competing
banks or when banks are less substitutable, demand for loans from a specific bank should become
more inelastic, as a marginal increase in interest rate—and the consequent reduction in contrac-
tual utility—should lead to a smaller outflow of potential borrowers. Consequently, competition is
weaker, and banks offer loan terms that are less favorable to borrowers.

3 Banks’ Response to Policy Interventions
We now analyze how banks respond to constraints in the contract space imposed by policy.

We conduct this analysis for two reasons. First, when we estimate the model in the data, our
identification strategy exploits banks’ response to constraints in the contract space to recover model
primitives. Second, interest rate caps are common policy tools; this section guides our analysis of
these policies as we perform counterfactuals in section 6.

We first analyze how banks respond to simple, flat constraints on the interest rate and loan size.
We then analyze how banks respond to interest rate caps that vary with loan size.
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Interest Rate and Loan Size Are Strategic Substitutes Because contracts are two-dimensional,
banks have two levers to extract profit from borrowers: either by raising the interest rate or by
increasing the loan size. In equilibrium, a bank sets contractual terms to balance the trade off
between extracting profits πik and leaving surplus to the borrower to raise the choice probability
qik. Imposing any binding constraints over one of the choice variables r and L will intuitively
cause banks to respond over the other choice variable. More importantly, because a higher value
in either r or L raises πik and lowers qik, the two choice variables are strategic substitutes, meaning
imposing a binding interest rate cap leads banks to over-lend, as loan size becomes larger than
what’s efficient; likewise, imposing a binding loan size cap leads banks to charge higher interest
rates than what would have prevailed absent the constraints.

Figure 3: Contour plot of bank’s profit as a function of contractual terms

Laissez-faire contract

Contract under the 
interest rate cap

Interest rate cap

To understand this better, Figure 3 shows a contour plot of bank’s iso-profit curves as a func-
tion of the two choice variables r and L. Darker shades indicate higher profits. Because bank’s
maximization problem is concave, the profit function is single peaked: the blue dot indicates the
contract that would have been offered if no policy constraints are imposed. Now imagine an in-
terest rate cap (dotted horizontal line) is imposed so that the contract in blue is no longer feasible.
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Which contract does the bank offer now? The bank would choose, among all feasible contracts,
one with the highest profit—the darkest spot—in the constrained set. Because the decline in profits
is least steep in the direction of higher L, the bank conforms to the interest rate cap and sets a larger
loan size, as indicated by the red dot. Likewise, a binding loan size cap induces the bank to raise
the interest rate.

The property, that r and L are strategic substitutes, holds with and without the parametric as-
sumptions. Under the parametric forms, we are further able to provide analytic solutions to the
contractual response under various policy constraints. For notational simplicity, we now assume
all K banks are symmetric, and we characterize how contracts change in response to policy con-
straints. We drop the subscript k whenever it’s unambiguous.

Simple Caps

Proposition 3. Consider a bank’s profit maximization problem (9) under additional constraints.

Let (r∗i ,L
∗
i ) represent the Laissez-faire contract.

1. Consider the constraint ri ≤ r̄. If pi (1+ r̄−δi) < ck− δi, then the loan will be rationed

as the bank is no longer able to recover lending cost under the constraint. Otherwise, the

equilibrium contract is

(ri,Li) =

(
min{r̄,r∗i } ,L∗i ×max

{
1,
(

1+ r∗i −δi

1+ r̄−δi

) 1
1−α

})
.

2. The equilibrium contract under the constraint Li ≤ L̄ satisfies pi (1+ ri−δi)− (ck−δi)

ck−δi︸ ︷︷ ︸
profit margin

,Li

=

min
{
(L̄/L∗i )

α−1
,1
}
/α−1

1+(1−1/K)σ
,min{L̄,L∗i }

 .

Loan Size-Dependent Interest Rate Caps Now consider size-dependent interest rate caps, i.e.,
an interest ceiling r̄H for loans size below L̄ and ceiling r̄L < r̄H for loan size above L̄. We continue
to use (r∗i ,L

∗
i ) to represent the Laissez-faire contract and use (ri,Li) to represent the equilibrium

contract under the policy.

Because the two choice variables r and L are strategic substitutes, we can intuitively categorize
each bank’s response to the size-dependent interest rate cap into three scenarios, depending on
borrower i’s characteristics and the policy environment

(
r̄L, r̄H , L̄

)
:

12



A. r∗i < r̄L, or (r∗i < r̄H and L∗i < L̄): for these borrowers, the interest rate ceilings do not bind.

B. r∗i > r̄H and L∗i < L̄: for these borrowers, equilibrium loan terms have two possibilities other
than being rationed:

(a) Li ≤ L̄ and ri = r̄H ;

(b) Li > L̄ and ri = r̄L.

In
te

re
st

 R
at

e

Loan Size

Contract under Laissez-faire

Possible contracts under 
interest rate ceiling

rH
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C. r∗i > r̄L and L∗i ≥ L̄: for these borrowers, equilibrium loan terms have two possibilities other
than being rationed:

(a) Li > L̄ and ri = r̄L;

(b) Li = L̄ and ri ∈ (r̄L, r̄H ].
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The next proposition formally characterizes the equilibrium contract.

Proposition 4. Suppose the Laissez-faire contract (r∗i ,L
∗
i ) is infeasible under the policy environ-
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ment with rate cap r̄H for L < L̄ and r̄L for L > L̄. Let
(
rL

i ,L
L
i
)
≡
(

r̄L
i ,L
∗
i

(
1+r∗i −δi
1+r̄L−δi

) 1
1−α

)
, and

let

(
rH

i ,L
H
i
)
≡


(

r̄H ,min
{

L̄,L∗i
(

1+r∗i −δi
1+r̄H−δi

) 1
1−α

})
if L∗i < L̄(

min

{
r̄H ,

ziL̄α−1+
ck−δi

pi
(1−1/K)σ

1+(1−1/K)σ −1+δi

}
, L̄

)
if L∗i ≥ L̄.

If pi
(
1+ r̄H−δi

)
< ck− δi, then the loan will be rationed. Otherwise, the equilibrium contract

under rate ceilings is either
(
rL

i ,L
L
i
)

or
(
rH

i ,L
H
i
)
. The equilibrium contract is

(
rH

i ,L
H
i
)

if and only

if

Vi ≡
((

1+ rH
i −δi

)
− (ck−δi)/pi

)
LH

i((
1+ rL

i −δi
)
− (ck−δi)/pi

)
LL

i
> 1.

For borrowers whose Laissez-faire contract is infeasible under the interest rate ceilings, bank
either offer smaller loans with higher interest rates,

(
rH

i ,L
H
i
)
, or larger loans with lower interest

rates,
(
rL

i ,L
L
i
)
. The object Vi represents the relative bank payoff between offering high interest rate

(and small) loan and offering low interest rate (and large) loan. Marginal borrowers are those with
Vi = 1.

4 Data and Empirical Setting: SBA Express Loan Program
We apply and estimate our model using the universe of small business loans made through the

Small Business Administration (SBA) lending program from 2008-2017. In this section we de-
scribe the SBA guaranteed lending program and provide some descriptive statistics of the data. In
the next section we discuss the identification strategy that allows us to estimate the model param-
eters using the empirical policy variation.

The SBA is an independent federal government agency. It provides commercial lenders with
an indirect guarantee on loans made to small businesses who document that they have been turned
down for alternative forms of credit. Lenders pay a fixed fee (typically 1 to 3% of loan principal)
to the SBA in return for a guarantee that the SBA will reimburse a certain percentage of loan
principal in the case of default. Loans made through the SBA guarantee program are subject to
specific rules and regulations, including the interest rate cap studied here. Over 2,000 commercial
lenders across the entire country participate in the program, and offer guaranteed SBA loans to
clients who qualify.

The coverage, granularity, and policy variation contained within this dataset makes it the ideal
laboratory to study market concentration. The dataset contains contract-level information on loan
terms (interest rate, size) and repayment outcomes, borrower identity and characteristics and bank
identity. We know the location of both borrowers and banks, which allows us to generate measure
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Table 1: Summary Statistics for the SBA Express Loan Program

Mean Std Dev
Avg Interest Rate 6.86 .428
Loan Size 71,925 77,292
Charge-off Rate 0.03 .172
% at Cap 11.3
Maturity 77.81 31.4
N 240,188

This table displays summary statistics for loans used in our estimation sample from the SBA Express Loan program, 2008-2017. Average interest
rate is expressed in percentage points, and is captured when the loan is first made. It includes both the base rate and the margin. Loan size is
expressed in dollar units. The charge-off rate is calculated using a dummy variable for whether or not a loan has gone into default. % at Cap is
calculated using a dummy variable that indicates whether a loan has an interest rate that is at either the lower or high interest rate cap. Maturity is
expressed in months.

of market concentration both cross-sectionally and over time. Borrowers in the SBA market must
also document that they have been turned down for other forms of credit; this creates a clearly
defined market of banks (regional SBA lenders) for that particular borrower, and rules out the
possibility that borrowers are “topping up” their SBA loans with additional sources of credit. For
these borrowers, the relevant market of lenders are those we observe participating in the SBA
program.

Table 1 presents summary statistics for our Express loan sample, which includes 240,188 loans
made under the SBA Express program between 2008 and 2018. On average, these loans are
$71,925 in size, and have a maturity of 6.5 years. Interest rates for SBA Express loans can be
fixed or variable; they are tied to base rates, with the maximum allowable interest rate ranging
from 4.5 to 6.5 percent above the base rate, depending on loan size.2 The average interest rate in
our sample is 6.9%, well above typical rates for corporate loans.

Despite the fact that the SBA lending market is heavily regulated, we still observe strong sugges-
tive evidence in the data of imperfect competition. We calculate an inverse Herfendahl-Hirschman
Index (HHI) based on the dollar volume lending share (skct), of each bank k within a given county c

and year t: InverseHHIc,t =
1

∑
K
k=1 s2

kct
. A value of 1 means that a single bank holds the entire mar-

ket share, whereas larger values signal less market concentration. In a market where banks have
equal market shares, the inverse HHI is simply the number of banks in the market. Figure 4, which
plots the distribution of InverseHHIc,t , suggests that a large portion of markets are monopolistic
and only a small minority of markets have a substantial level of lender competition. The inverse

2These base rates are the prime rate, the LIBOR, and the PEG, which can fluctuate based on market conditions.
For variable rates, the base rate for the computation of interest rate is the lender’s choice, provided that the maximum
interest rate the borrower is charged still does not exceed prime rate plus 4.5 percent to 6.5 percent. It should also be
similar to the rates the lender charges for other, similarly-sized, non-SBA guaranteed loans.

15



Figure 4: Distribution of County-Year Inverse HHI

This figure plots the distribution of inverse HHI over all county-year observations in our data. We calculate an inverse Herfendahl-Hirschman Index

(HHI) based on the dollar volume lending share (sict ), of each bank within a given county-year: InverseHHIc,t =
1

∑
N
i=1 s2

ict
. A value of 1 means that

a single bank holds the entire market share, whereas larger values signal less market concentration. The majority of counties in a given year in our
dataset are dominated by less than 4 lenders.
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Figure 5: Observed Average Interest Rate and Loan Size by Market Concentration

The left-hand figure plots the average interest rate charged in markets with differing levels of concentration, as measured by number of competing
banks within a zip code. The interest rate measure controls for loan maturity, log size, business NAICS category, time fixed effects, ex-post
performance, and bank brand. The plot suggests that higher interest rates are charged in more concentrated markets. Default (i.e. charge-off) rates
do not increase in more concentrated markets; if anything, loans in more concentrated markets are less costly for lenders. Therefore risk-related
costs cannot explain the downward sloping relationship between competition and interest rates. The right-hand figure plots the average loan size in
each of these markets, which is relatively flat.

HHI of a median county-year is 4.5.

We also observe an impact of market concentration on loan pricing. Figure 5 documents a
strong positive relationship between the average initial interest rate charged on observationally
identical loans3 within a county, and the HHI of that county. A similar relationship exists for other
measures of market concentration (e.g. number of banks in the county or zipcode HHI, banks
within an X-mile radius). This is not driven by changes in borrower risk across markets – we plot
ex-post measures of default again market HHI, and find no relationship. The right hand panel plots
average loan size across the same measure of market concentration.

While the relationship between HHI and interest rates shown above motivates an analysis of
market power, it remains suggestive; an exogenous shift or shock to lenders’ maximization problem
is required to separate and identify the relevant demand and supply parameters from our model.
Loans made through the SBA Express program are subject to specific SBA rules and regulations
that provide this identifying policy variation. Specifically, they face a loan-size dependent interest
rate cap — loans smaller or equal to $50,000 are capped at Prime + 6.5%, while loans larger than
50,000 are limited to Prime + 4.5%. This “notch” in the interest rate cap imposes a size-dependent
constraint on banks’ pricing problem, and generates specific lending and pricing responses under

3We control for bank brand (i.e. West America, Chase, etc), borrower business NAICS code, loan maturity, and
time fixed effects.
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our model.

Figure 6 shows the interest rate cap over loan size in our dataset, as well as the average interest
rate by loan size; there is a clear impact of the cap on prices in the market. In total 11% of loans are
constrained by the interest rate cap, 8.5% of loan above the threshold and 13% of loans below the
threshold. SBA regulations do not allow lenders to originate multiple loans to the same borrower
at the same time. Thus lenders cannot "piggyback" loans to take advantage of the notch.

Figure 6: Interest Rate Ceiling and Average Interest Rate (Minus the Base Rate) by Loan Size
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Loans made through the SBA Express program are subject to specific SBA rules and regulations that provide identifying policy variation. Specifi-
cally, we use the fact that they face a loan-size dependent interest rate cap — loans smaller or equal to $50,000 are capped at Prime + 6.5%, while
loans larger than 50,000 are limited to Prime + 4.5%. This figure plots the interest rate cap (minus the Prime base rate), and the average interest rate
by loan size.

5 Two Dimensional Bunching: Identification
We use the empirical distribution of contractual terms under a loan-size-dependent interest

rate caps policy to identify model parameters. Our identification strategy builds on and extends
the “bunching” literature that uses kinks and notches to identify key elasticities (Kleven (2016)).
Broadly speaking, this approach exploits discontinuities in economic agents’ choice sets and the
consequent distortions in the equilibrium outcome distribution to infer structural parameters that
govern economic behaviors. The bunching approach requires two steps: 1) recover a counterfactual
distribution H0 (·) of equilibrium outcome absent the policy discontinuity; 2) use the difference be-

18



tween the counterfactual distribution and the observed, equilibrium distribution HP (·) under policy
to infer parameters.

Our methodological contribution is to advance the bunching approach to a multi-dimensional
behavioral response.

First, we recover the two-dimensional joint distribution H0 (r,L) of Laissez-faire contracts from
the observed distribution of contracts HP (r,L) in the data. We start from the subsample of loans
with interest rates strictly below the cap, S≡

{
r,L|r < r̄L or

(
r < r̄H and L < L̄

)}
, and we recover

H0 (r,L) from the conditional distribution of loans HP (r,L|S). This strategy is motivated by the fact
that if it were optimal for banks to offer a contract in set S under Laissez-faire, then such a contract
is still optimal and available even in the presence of the policy cap. Moreover, because each bank’s
profit maximization problem is concave, the policy cap does not move any Laissez-faire contract
strictly outside of the set S to the interior region strictly below the policy cap. Therefore, the
distribution of contracts in set S under the policy cap coincides with the conditional distribution
under Laissez-faire: HP (r,L|S) = H0 (r,L|S). Under the assumption that H0 (·) is analytic over its
domain—a standard assumption in the bunching literature—we then recover H0 (·) over the entire
two-dimensional domain by extrapolating from the conditional distribution HP (r,L|S). Section 6.1
provides a detailed discussion of the statistical procedure that recovers H0 (r,L) from HP (r,L|S).

Once we have the counterfactual and empirical distribution of contracts H0 and HP, we then
take the difference between the two and define D ≡ HP−H0. Conceptually, we could do this
market by market, and have a collection of D’s across markets. We refer to D simply as the
“distortion”, as it represents the distortion in the distribution of contracts due to the interest rate
cap. As an example, D for a particular market is visualized in Figure 7. In green are the regions
in which there are “excess mass”—i.e. the observed joint distribution has more mass than the
predicted counterfactual distribution. The excess mass is concentrated along the interest rate cap,
where banks have “bunched” loans that would have otherwise existed above the cap. In pink are
the regions in which there is “missing mass”, where the observed distribution has less mass than
the predicted counterfactual distribution. Since banks are not allowed to make loans above the cap,
this missing mass is concentrated in the region above the cap. In principle, the two distributions
should be identical strictly below the cap; any difference therein is due to imperfect fit in our
estimation procedure.

We now discuss how to identify model parameters α and σ based on the collection of distor-
tions D across markets. We form moment conditions guided by Proposition 4, which describes
how banks would offer contracts in the presence of a size-dependent interest rate cap. The propo-
sition describes which loans under a laissez faire regime, (L∗,r∗), would be distorted under a size
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Figure 7: Difference between empirical distribution HP and counterfactual distribution H0

dependent interest rate cap, and importantly where they would be relocated, as functions of α and
σ . In other words, it describes how the distortions we observe in D relate to the model parameters.
It directly links the observables, L, r, and K, to the structural parameters. This approach enables
us to be completely agnostic about borrower heterogeneity: we allow for an arbitrary distribution
of borrower characteristics (zi, pi,δi), and the distribution could vary arbitrarily across markets.

Specifically, we use two moment conditions per market for identification. These conditions
equate the excess mass at the notch (where L = $50,000) to specific regions of missing mass, as
illustrated in figure 8. The notch is painted green to represent excess mass and the purple region
represents missing mass. There are two purple regions separated by a dotted curve. Our first
moment condition equates the excess mass at the point

(
r̄H , L̄

)
to the missing mass in the upper

purple region, which contains the set of Laissez-faire contracts that would relocate to
(
r̄H , L̄

)
under

the policy cap. Analogously, our second moment condition equates the excess mass along the notch
but excluding the end points (i.e. excess mass over the set B≡

{
(r,L)

∣∣r ∈ (r̄L, r̄H),L = L̄
}

) to the
missing mass in the lower purple region. The boundaries that define the two purple regions vary
continuously with model parameters α and σ . Under the true structural parameters that generate
the data, the excess mass in green should be exactly equal to the missing mass in purple.
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The intuition for selecting these two moments is as follows. Recall that α and σ respectively
capture 1) how lending surplus relates to loan size and 2) how each bank’s market power varies with
its market share. First consider a Laissez-faire contract with r∗i > r̄H and L∗i < L̄. If the loan is not
rationed under the policy cap, Proposition 4 shows that the equilibrium contract will carry interest

rate ri = r̄H and loan size Li = L∗i
(

1+r∗i
1+r̄H

) 1
1−α

< L̄ if r∗i and L∗i are relatively small. For this contract,
the rate cap r̄H binds but the loan size remain locally unconstrained (Li < L̄), in which case the
equilibrium loan size depends only on the structural parameter α and not σ . Intuitively, because
interest rate cap binds, the bank’s market power becomes irrelevant in choosing loan terms, and
the parameter α governs the distortion in equilibrium loan size because it captures the elasticity of
investment output to L. Consequently, the shape of the left boundary to the upper triangle—defined

by the set
{
(r,L) |L

(
1+r

1+r̄H

) 1
1−α

= L̄
}

—is entirely pinned down by α and not σ .

Second, consider a Laissez-faire contract with r∗i ∈
(
r̄L, r̄H) and L∗i > L̄. If the loan is not

rationed, Proposition 4 shows that the corresponding equilibrium contract must either scale back
loan size to Li = L̄ and charge a relatively higher interest rate ri ∈ [r∗i , r̄

H ], or conform to the
lower rate cap ri = r̄L and remain unconstrained on loan size Li > L∗i . For a fixed Laissez-faire
contract, which of the two scenarios prevail in equilibrium depends on whether the contract falls
to the left or to the right of the lower boundary of the lower purple region. The shape of that
boundary in turn depends on banks’ market power. Intuitively, when market power is low, the profit
margin underlying the Laissez-faire contract is also low; hence, conforming to the lower rate cap
r̄L represents a disproportionately large decline in the profit margin and is relatively unattractive.
In this case, banks are more likely to scale back loan size to maintain a larger profit margin. An
extreme case is perfect competition and no market power—banks are perfect substitutes σ → ∞

and there are multiple banks K > 1—the Laissez-faire rate r∗i fully reflects marginal lending cost,
and conforming to the lower rate cap r̄L would generate losses to the banks; hence, banks have no
choice but to scale back loan size and offer ri = r∗i , Li = L̄. Conversely, when the Laissez-faire
contract has high profit margin, conforming to lower rate cap implies a relatively small decline in
profit margin, and banks are more likely to find this option attractive relative to distorting loan size.

The discussion above illustrates that the lower boundary of the lower purple region depends on
banks’ market power and the choice elasticity. Because the choice elasticity is equal to σ (1−1/K),
we first use the moment condition to identify the choice elasticity within each market, and we then
utilize the variation in choice elasticity across markets with varying number of banks and HHIs to
recover the structural parameter σ .
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Figure 8: Excess and Missing Mass Regions Used for Identification
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Formally, let

S1
K ≡

{
(ri,Li)

∣∣∣∣∣
(
(L̄/Li)

α −αL̄/Li

1+(1−1/K)σ

)
>

(
1+(1−1/K)σα

1+(1−1/K)σ

(
1+ ri−δi

1+ r̄L−δi

) α

1−α

−α

(
1+ ri−δi

1+ r̄L−δi

) 1
1−α

)
,Li > L̄

}

S2
K ≡

{
(ri,Li)

∣∣∣∣∣(1+ ri)
(L̄/Li)

α−1
+(1−1/K)σα

1+(1−1/K)σα
< 1+ r̄H ,Li > L̄

}
.

The intersection SK ≡ S1
K ∩ S2

K corresponds to the lower purple region in the figure above, and
Laissez-faire contracts (r∗,L∗) ∈ SK will bunch into region B≡

{
(r,L)

∣∣r ∈ (r̄L, r̄H),L = L̄
}

under
the size-dependent interest rate cap. Intuitively, S1

K picks out the Laissez-faire contracts that scale
back to L̄ (instead of over-lending), and S2

K picks out Laissez-faire contracts that charge strictly
less than r̄H under the policy intervention. That the excess mass in the region defined by B is equal
to the missing mass in the region defined by SK is our first moment condition for all markets with
K banks.

To formalize the second moment condition, let

R1
K ≡

{
(r,L) |L > L̄,

}

R1
K ≡

{
(r,L)

∣∣∣∣∣L≥ L̄,
(1+ r)(L/L̄)1−α

+(1+ r)(1−1/K)σα

1+(1−1/K)σα
≥ 1+ r̄H

}
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R2
K ≡

{
(r,L)

∣∣∣∣∣r ≥ r̄H ,L
(

1+ r
1+ r̄H

) 1
1−α

≥ L̄

}

R3
K ≡

(r,L)

∣∣∣∣∣
1+ r̄H− (1+ r)

1+(1−1/K)σα

α+(1−1/K)σα

 L̄≥

1+ r̄L− (1+ r)
1+(1−1/K)σα

α+(1−1/K)σα

L
(

1+ r
1+ r̄L

) 1
1−α

 .

The intersection RK ≡ R1
K ∩ R2

K ∩ R3
K corresponds to the upper purple region, the Laissez-faire

contracts in which will bunch back to the point
(
r̄H , L̄

)
.

For each market structure K, we generate the following moment condition:
∫∫

(r,L)∈B dD(r,L)+
∫∫

(r,L)∈SK
dD(r,L) = 0

D
(
r̄H , L̄

)
+
∫∫

(r,L)∈RK
dD(r,L) = 0.

Intuitively, the two moment conditions for a single market are sufficient to recover α and the
choice elasticity of that market. We exploit cross-market variation in order to recover σ , which gov-
erns how the choice elasticity varies with market structure. The model is therefore over-identified.

For computational simplicity, we sort markets by HHI and group them into 8 bins. We assume
all banks are symmetric, and we set 1/K to be the average HHI of markets within each group. We
estimate (σ ,α) by exploiting the two moment conditions across groups of markets with varying
average HHI.

6 Estimation and Results
Here we describe the empirical procedure for estimating the counterfactual distribution and the

estimation of the model parameters using the set of indifference conditions that equate the excess
and missing mass in our two-dimensional setting.

6.1 Estimating the counterfactual joint distribution
A precise measure of the excess mass requires that we compare the observed distribution of

contracts to the counterfactual distribution that would exist in the absence of a notch. Therefore,
in this section our goal is to get a reasonable estimate of the joint distribution of loan amount and
interest rates in a hypothetical world in which the Small Business Administration did not impose a
size-dependent interest rate cap. This is a nontrivial problem as we only observe loans created in
an environment subject to this rate cap.

Following the identification argument in section 4, we restrict our sample to the subset of con-
tracts that have interest rates below the interest rate cap. Within this subsample, we estimate the
joint distribution of loan size and interest rate, allowing for a flexible correlation structure between
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the two variables.

While the distribution of both interest rates and loan size below the lower cap appears log-
normally distributed, the presence of pronounced “round number bunching” at familiar basis point
or dollar multiples generates some empirical challenges. For example, in fitting a smooth lognor-
mal counterfactual joint distribution to both L and r, we would fail to reflect the “spiky” nature of
HP(r,L|r < r̄L). Therefore we take a more non-parametric approach: we first fit a flexible poly-
nomial with round number dummies to the marginal distribution of r, accounting for the fact that
we observe only the truncated distribution of (r|r < r̄). We then divide the loan size distribution
into $2,500 bins, and estimate the distribution of loan size conditional on interest rate. Using the
estimated parameters, we then predict the distribution of contracts,

(
r̂, L̂
)
, for r > r̄.

Below is a more detailed description of the estimation procedure. It is composed of 3 central
steps:

• Step 1: Derive an estimate for the marginal probability function H0
r = P(R = r)

• Step 2: Estimate the conditional probability function H0
L|r = P(L = l|R = r)

• Step 3: Combine the output from steps 1 and 2 to compute the counterfactual distribution
H0 = P(L = l,R = r). Rescale the counterfactual mass so that it matches the observed mass
below point of truncation.

1. Estimation of marginal density function, P(R = r)

We focus initially on estimating the marginal distribution of interest rates using the observed set
of contracts with interest rates strictly below the rate cap. Our key assumption in using this set for
estimation is that these contracts were not altered by the interest rate cap, and thus an identical set
of loan contracts would have existed in the counterfactual world.

The distribution of observed contracts displays distinct round number bunching at predictable
intervals, and is also truncated at the notch. Figure 17in the appendix contains the histogram and
CDF of observed loans with rates below 6.5% and 4.5% respectively. In both the histograms and
CDFs, we see significant spikes occurring at integer interest rates, and at multiples of 50 basis
points and 25 basis points. These are marked by red, blue, and green lines respectively.

Using this observed data, we fit the following model using nonlinear least squares:

P(R≤ r) =
eη

1+ eη

where the linear predictor, η , is given by:
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η = α +
P

∑
p=1

βprp +δ1

I

∑
i=1

1{r ≥ .01i}+δ2

J

∑
j=1

1{r ≥ .005+ .01( j−1)}

+δ3

K

∑
k=1

1{r ≥ .0025+ .005(k−1)}

Here, δ1 measures the discontinuous jump in the linear predictor when r reaches a round integer
interest rate, δ2 measures the discontinuous jump when r reaches a multiple of 50 basis points, and
δ3 measures the discontinuous jump when r reaches a multiple of 25 basis points. α is an intercept
of the linear predictor and β is the slope measuring how the linear predictor moves continuously
with changes in r. The linear predictor is then inserted as an argument to the Sigmoid function as
shown above giving the desired estimate. We vary the degree of the polynomial, P, over various
specifications.

Using these coefficients, we can then estimate the P(R≤ r) for r≥ r̄ by imposing the assumption
that the jumps to the linear predictors (measured by the δ coefficients) are the same for interest
rates that would be located above the cap. Importantly for interpretation, this assumption does not
impose that the same jump occurs in the CDF at, for example, 3% and 7% since the slope of the
Sigmoid function is much greater at η(.03) than at η(.07). The graph in Figure 9 overlays the
estimated CDF from the model (in red) with the unconditional CDF from the data (in black).
2. Estimation of conditional density function P(L = l|R = r)

In this next step, we estimate the density of loan size conditional on interest rates, P(L = l|R =

r). If L were independent of r, we could repeat step one, estimating the marginal distribution of
loan size. However, the correlation between L and r in our sample is negative and significant. We
therefore need to include the dependence on r in our model for the distribution of L.

To model this conditional probability distribution, we begin by discretizing L into bins of width
$2,500 and fitting the linear predictor such that it includes interaction terms between log(L) and r:

χ = α +
P

∑
p=1

βpr ∗ log(L)p +δ1

I

∑
i=1

1{L≥ 5,000i}+δ2

J

∑
j=1

1{L≥ 10,000 j}

+δ3

K

∑
k=1

1{L≥ 25,000k}+δ4

M

∑
m=1

1{L≥ 30,000 j}+σ1

I

∑
i=1

r ∗1{L≥ 5,000i}

+σ2

J

∑
j=1

r ∗1{L≥ 10,000 j}+σ3

K

∑
k=1

r ∗1{L≥ 25,000k}+σ4

M

∑
m=1

r ∗1{L≥ 30,000 j}
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Figure 9: Observed vs. Estimated Marginal Distribution of Interest Rates

This figure plots the estimated (in red) and observed (in black) marginal CDF of interest rates. The estimated CDF is created by fitting the model
P(R≤ r) = eη

1+eη using nonlinear least squares where the linear predictor, η , is given by η = α +∑
P
p=1 βprp +δ1 ∑

I
i=1 1{r≥ .01i}+δ2 ∑

J
j=1 1{r≥

.005+ .01( j−1)}+δ3 ∑
K
k=1 1{r ≥ .0025+ .005(k−1)}. The use of various dummies variables accounts for the visible “spikes” occurring in the

distribution at integer interest rates, and at multiples of 50 basis points and 25 basis points.

We then follow the estimation procedure described in step one, using NLLS to estimate the
parameters of the linear predictor once inserted into a sigmoid function.
3. Creation of H0(L,r) and rescaling

We are able to create the joint predicted distribution H0(L,r) = P(L = l,R = r) = P(L = l|R =

r)∗P(R = r) by multiplying the marginal and conditional distributions estimated in steps 1 and 2.
We again rescale the counterfactual distribution such that:

• For each discretized value of r, the marginal Ldistribution is equal to 1 at the maximum loan
size and equal to the observed distribution at L = $47,500 for loans with interest rates from
4.5 to 6.5%.

• For each discretized value of L, the marginal r distribution is equal to 1 at the maximum
interest rate, which we set to be 8%. Additionally, we need the observed and counterfactual
marginal distributions of r to obtain the same value at 6.49% or 4.49% in the case of loans
≥ $50,000.

Figure 10 plots the observed loan distribution and the predicted counterfactual distribution, pooling
over all markets and loans. In the observed distribution, the excess mass at the threshold, $50,000,
and along the interest rate cap is pronounced. The predicted counterfactual distribution spreads this
excess mass throughout the region where loan contracts would have been located in the absence of
the discontinuity, both above and to the right of the threshold.
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Figure 10: Counterfactual, Observed, and Difference in Density for average Loan Distribution

This figure plots the difference in density between the observed loan distribution and the counterfactual distribution, pooling over all markets and
loans. Here the excess mass at the threshold, $50,000, is pronounced and equal to 2 percentage points. One can also see that there is some missing
mass to the right of the threshold, where loan contracts would have been located in the absence of the discontinuity.

6.2 Estimation of Parameters
For each market k we calculate the observed empirical joint probability density, ĤP

k over a
2-dimensional grid, with grid points defined by the intervals L = [25,000 : 2,500 : 250,000] and
r = [0 : .0001 : .8]. The visible bunching in the loan size distribution at round number multiples
requires that we use this discrete, rather than a continuous, approach. Using the method described
above, we predict the counterfactual density, Ĥ0

k , over this same domain and calculate the differ-
ence between the two as D̂k = ĤP

k − Ĥ0
k .

Using D̂k, we calculate the empirical analogues to our theoretical moment conditions. Our
estimation routine then chooses (α̂,σ̂) = arg minR(α,σ), where

R(α,σ) = ∑
k

[(
Êk,1 + M̂k,1

)2
+
(
Êk,2 + M̂k,2

)2
]
,

where Êk,i is the excess mass for the i-th moment condition in market k and M̂k,i is the corre-
sponding missing mass. The routine uses a grid-search approach across values of α = (0,1) and
σ = (0,25) to find the minimum of the objective function.

6.3 Implementation and Results
Our main specification splits the data into 8 quantiles of inverse HHI. The most concentrated

market group has an average K of 1.4, while the less concentrated group has an average K of 9.45.
In other specifications we divide the data into more than two quantiles of market concentration.
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We construct Ĥ0
k , and D̂k for k = 1 through 8 using the procedure outlined in section 6.1. Figure

11 plots the distribution of D̂k across loan size and interest rate for the various groups; pronounced
excess mass (in green) occurs along the border of the interest rate cap, where laissez-faire contracts
with higher interest rates have been forced to “bunch”. Missing mass (in pink) is concentrated
above the cap and to the right of the notch. Visually, the missing mass shifts down as K increases,
implying that markups are lower in more competitive markets.

Figure 11: Difference in counterfactual and observed (L,r) distribution across 8 quintiles of market
concentration

This figure plots the difference in density between the observed loan distribution and the counterfactual distribution after dividing the data into 8
quintiles of inverse HHI, K. Excess mass is shown in green and is concentrated along the interest rate threshold. Missing mass is plotted in pink,
and indicates where loan contracts would have been located in the absence of the cap. As predicted by our model, the missing mass is concentrated
primarily above the cap and to the right of the notch. It is lower and more diffuse in the more competitive markets.

Using the various D̂k, we then choose the set of parameters that minimizes the difference be-
tween observed excess and missing mass in all markets. Figure ?? overlays the boundary of the
missing mass region estimated by these parameters over the observed difference in distributions.
Our estimate of the parameters implies that in a symmetric duopolistic market, lenders capture
34% of surplus (see Figure 13).
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Table 2: Parameter Estimates

α σ

Estimate .81 5.876

N 240,188

This table reports the estimated parameter values using two markets, above and below median K, for estimation. We use a grid search over possible
values of σand αto find the set of parameters that minimizes the difference between observed excess and missing mass in both markets. These
parameters imply that in a symmetric duopolistic market, lenders capture 34% of surplus.

Figure 12: Difference between Counterfactual and Observed Loan Distributions (D̂k) for large and
small K

This figure plots the difference in density between the observed loan distribution and the counterfactual distribution for 8 quantiles of inverse HHI.
This is our main estimation sample. We overlay the boundaries of the missing mass region in gray, which is determined by the estimated parameters
as well as K.

7 Counterfactual Analysis
Our counterfactual analysis uses the predicted Laissez Faire contract distribution and estimated

parameters (α̂, σ̂) to compute the impact of several policies commonly implemented to address
market power. We measure how a uniform interest cap, credit subsidy, and increase in bank com-
petition change the distribution of contracts, and consequently the size and division of surplus
between borrowers and lenders. We also analyze the welfare impact of the existing policy, the
“notched” interest rate cap. In appendix D we provide the theoretical formulas used to calculate
changes in welfare and surplus.
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Figure 13: Fraction of Surplus captured by Lenders across K

7.1 Empirical Results
We use the counterfactual distribution constructed during the estimation procedure in Section

6 and the theory in appendix D as the basis of our counterfactual analysis. For every laissez-
faire contract (r∗,L∗), we compute the counterfactual value of rand Lunder the following policy
interventions: 1) a uniform interest rate cap of 5%, 2) the “notched” interest rate cap we find in
our setting, 3) a guarantee-based subsidy to the lender that reimburses losses at a 50% rate, and
4) an increase in market competition of 20%.4 Figure 14shows the resulting loan-interest rate
distributions under each scenario.

Table 3 reports the impact of these policies both on the average values of rand Lin the distribu-
tion, as well as on total surplus, lender surplus, and borrower surplus relative to the laissez-faire
baseline. The table also reports the percentage of laissez-faire loans that are potentially rationed,
or lost, under the counterfactual scenarios.5 We repeat the exercise for both a concentrated market
(K=1.6) and competitive market to show the non-linear policy response across markets of different
sizes.

4For the baseline laissez-faire scenario, in which there is no government intervention, we first “remove” the impact
of the 50% guarantee that exists in the data.

5Note that rationing would only occur under scenarios 1 and 2, which both involve a interest rate cap.
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Figure 14: Distribution of (L,r) contracts under various counterfactual scenarios

These four plots show the predicted distribution of L and runder the laissez faire baseline (top left), an interest rate cap of 5% (top right), the existing
interest rate cap “notch” stucture (bottom left), and a 50% guarantee (bottom right).
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Table 3: Counterfactual Scenarios Calculated for Small and Large K Markets

K = 1.6
LF Cap Notch Guar IncK

AvgR 8.43 4.97 6.12 4.00 7.75
AvgL 91255.00 103116.00 63625.00 138750.00 91259.00

TS/TS* 1.00 0.92 0.95 0.90 1.00
LS/LS* 1.00 0.66 0.63 1.44 0.86
BS/BS* 1.00 1.09 1.17 1.17 1.10

Rationed 0.00 0.08 0.02 0.00 0.00

K = 6.29
LF Cap Notch Guar IncK

AvgR 8.31 4.97 6.12 4.00 8.25
AvgL 92160.00 103116.00 63625.00 138750.00 92168.00

TS/TS* 1.00 0.75 0.84 0.90 1.00
LS/LS* 1.00 0.41 0.49 1.44 0.98
BS/BS* 1.00 0.85 0.94 1.23 1.01

Rationed 0.00 0.30 0.11 0.00 0.00
This table reports the impact of counterfactual policies both on the average values of rand Lin the distribution, as well as on total surplus, lender
surplus, and borrower surplus relative to the laissez-faire baseline. We analyze 1) a uniform interest rate cap of 5%, 2) the “notched” interest rate cap
we find in our setting, 3) a guarantee-based subsidy to the lender that reimburses losses at a 50% rate, and 4) an increase in market competition of
20%. The table also reports the percentage of laissez-faire loans that are potentially rationed, or lost, under the counterfactual scenarios. We repeat
the exercise for both a concentrated market (K=1.6) and competitive market to show the non-linear policy response across markets of different sizes.

There is some reduction in total surplus due to the distortions induced in scenarios 2-4 – loan
size deviates from its efficient size under both the rate caps and the guarantee, generating inefficien-
cies. Total surplus remains constant when K increases (scenario 5), since increasing competition
will only impact the division, but not the size, of surplus. While both interest rate cap policies in-
crease borrower surplus for affected but non-rationed borrowers, they negatively impact borrowers
that are rationed. In the setting where K=6.29 this rationing is so extensive that the net effect is
a decrease in borrower surplus. The guarantee policy lowers costs for lenders, which in turn both
increases loan size and decreases interest rates. However, the cost of the guarantee subsidy must be
born by the government and therefore lowers total surplus. This subsidy is more beneficial for the
lender than the borrower, since the lender does not entirely “pass-through” the reduction in costs.

The graphs in Figure 15plot proportional changes in surplus as a continuous function of the
policy variables. They show the ratios of lender surplus (green), borrower surplus (orange), and
total surplus (pink), relative to the Laissez Faire baseline in each counterfactual scenario for a mar-
ket where originally K=1.6. Along the horizontal axis we vary the intensity of the counterfactual
policy. The top two graphs show the impact of a more/less stringest interest rate cap for the entire
population (left), and for only non-rationed loans (right). In the rationing case, borrower surplus
initially increases as the cap is lowered due to lower prices. However, after a certain point (r̄ = 4%)
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so many loans are rationed that borrower surplus falls. When we focus only on the non-rationed
population, we can see that borrower surplus increases monotonically with decreases in the cap.
Total surplus falls slightly because of the distortions generated in loan size. The bottom left graph
shows the impact of an increase in market competition – total surplus remains constant since loan
size does not vary. However, the markup decreases in K, which causes an increase in BS and de-
crease in LS. The final plot, bottom right, shows the impact of a guarantee that reimburses 10-50%
of lost principal to the lender. This decreases the lenders expected costs. The guarantee decreases
total surplus, since it is costly to the government to provide the subsidy and loans become ineffi-
ciently large relative to the laissez-faire baseline. Both lender and borrower surplus increases – for
the lenders due to a decrease in costs, and for the borrowers due to a decrease in price. However,
due to market power, the increase in surplus is captured primarily by the lender. When moving
from a 0 to a 50% guarantee, a $1 subsidy increases lender surplus by $0.44, and borrower surplus
by only $0.30.
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Figure 15: Counterfactual Scenarios Calculated for Continuum of Policy Levels, at K = 1.6

These four figures plot the ratios of lender surplus (green), borrower surplus (orange), and total surplus (pink), relative to the Laissez Faire baseline
in each counterfactual scenario. Along the horizontal axis we vary the intensity of the counterfactual policy. The top two graphs show the impact
of a more/less stringest interest rate cap for the entire population (left), and for only non-rationed loans (right). The bottom left graph shows the
impact of an increase in market competition. The final plot, bottom right, shows the impact of a guarantee that reimburses 10-50% of lost principal.
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A Model Simulations
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Figure 16: Model Simulations of Distributional Response to an Interest Rate Ceiling, Across Mar-
kets of Varying Concentration
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B SBA Express Program
The SBA Express program was established in 1995 (under the original name FA$TTRAK) and

provides a 50% loan guarantee on loans up to $350k. It is the second most popular SBA lending
program, besides the 7(a) guarantee program.

The primary differences between the Express program and the SBA’s flagship 7(a) Loan Pro-
gram is in the maximum loan amounts, which are lower in the Express Program, the prime interest
rates, which are higher in the Express program, and the SBA review time, which is typically shorter
for Express loans. The documentation necessary for the SBA Express loan is less taxing compared
to the standard SBA 7(a) loans, at the cost of higher interest rates.

There are two types of SBA Express loans. The first type of loans is for businesses that export
goods, and the second type is for all other business. Lenders can approve a loan or line of credit
up to $350,000 with an SBA Express loan. Loans can go to $500,000 if it is an Export Express
Loan. The SBA Export Express loan program can help businesses that export goods get up to
$500,000. The SBA will respond within 36 hours following the submission of a loan application
for an Express Loan, while the eligibility review will take up to 24 hours for an Export Express
Loan.

The type of loan and the type of collateral determine the amount of repayment time. The
(expected) life of collateral is used to determine the repayment time: for example, using real estate
for collateral is expected to lead to a longer repayment period, compared to securing a loan against
equipment collateral. In particular, the maximum SBA Express loan terms are up to 25 years for
real estate term loans, up to 10 years for leasehold improvement term loans, ranging between 10
and 25 years for equipment, fixtures or furniture term loans, up to 10 years for inventory or working
capital term loans, and up to 7 years for revolving lines of credit.
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C Additional Figures

Figure 17: Observed Marginal Distribution of Interest Rates

D Counterfactual Welfare formulas
Let LS denote lender surplus, BS borrower surplus, and T S total surplus. Total surplus is solely

pinned down by loan size, whereas the interest rate serves as transfer between borrower and lender.
We can use the following formulas to compute proportional changes in borrower surplus and lender
surplus as functions of changes in loan size (η), the interest rate (λ ), as well as market structure
(µ).
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D.1 Uniform Interest Rate Cap and Increase in K
Let r and L denote the equilibrium interest rate and loan size under rate cap, η ≡ L

L∗ be the
proportional distortion in equilibrium loan size, λ ≡ 1+r

1+r∗ be the distortion in the gross interest rate,
and µ ≡ 1+(1−HHI)ασ

α+(1−HHI)ασ
denote the market structure, which depends on HHI as well as structural

parameters σ and α .

We can show:
T S
T S∗

=
ηα −αη

1−α
.

Lender surplus is

LS
LS∗

=
(1+ r− c∗)L
(1+ r∗− c∗)L∗

=
(1+ r− c∗)

(1+ r∗) µ−1
µ

×η

=
µ (1+ r)− (1+ r∗)
(1+ r∗)(µ−1)

×η

= η
µλ −1
µ−1

.

Borrower surplus is

BS
BS∗

=
T S−LS

T S∗−LS∗

=
T S−LS∗

( LS
LS∗
)

T S∗
(

1− 1
1+σ(1−HHI)

)
=

T S/T S∗(
1− 1

1+σ(1−HHI)

) − LS∗

T S∗
(

1− 1
1+σ(1−HHI)

) ( LS
LS∗

)

=
ηα −αη

1−α

1+σ (1−HHI)
σ (1−HHI)

− η

σ (1−HHI)
µλ −1
µ−1

.

D.2 Credit Subsidies
Under a credit subsidy, the planner subsidizes the cost of lending.

We know

L =

(
α pz
c−δ

) 1
1−α

Let c′ < c denote the new cost of lending. Doing so costs the government (c′− c)L′, where ′

variables denote the new equilibrium under the subsidy. We know L∗ =
(

αz
c∗
) 1

1−α and L′ =
(

αz
c′
) 1

1−α
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hence
L′

L∗
=
( c

c′

) 1
1−α

The constant markup implies that:
R
′

R∗
=

c′

c
Hence

LS′

LS∗
=

(R′− c′)L′

(R∗− c)L∗
=
( c

c′

) α

1−α

We know

LS∗+BS∗ = z(L∗)α − cL∗

= z
(

αz
c

) α

1−α − c
(

αz
c

) 1
1−α

= (1−α)z
1

1−α c−
α

1−α

Likewise LS′+BS′ = (1−α)z
1

1−α (c′)−
α

1−α . Hence

LS′+BS′

LS∗+BS∗
=

( c
c′

) α

1−α

Borrower surplus also changes accordingly:

BS′

BS∗
=
( c

c′

) α

1−α

.
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