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Abstract

An extensive literature in �nance has found that return predictability can have important

e¤ects on optimal asset allocations. While some papers have also considered the portfolio e¤ects

of parameter and model uncertainty, model instability (�breaks�) has received far less attention.

This poses an important concern when the parameters of return prediction models are estimated

on data samples spanning several decades during which the parameters are unlikely to remain

stable. In this paper we adopt a new approach that accounts for breaks to return prediction

models both in the historical estimation period and at future (out-of-sample) points. The analysis

covers optimal asset allocation under parameter uncertainty, model uncertainty and uncertainty

about the stability of the return forecasting model, as captured by the number of potential

breaks. Our empirical �ndings suggest that model instability has a large e¤ect on the asset

allocation when compared to the e¤ect of parameter estimation and model uncertainty. The

possibility of future breaks has its largest e¤ect at long investment horizons, but historical (in-

sample) breaks can signi�cantly change investment decisions even at short horizons through its

e¤ect on current parameter estimates.

�We thank Jun Liu, Ross Valkanov, Jessica Wachter and Mark Watson as well as seminar participants at Princeton,

UCSD and Studiencenter Gerzensee for helpful comments on the paper.



I. Introduction

That stock returns are predictable is now widely accepted by the �nance profession.1 Such pre-

dictability has been used extensively for purposes of testing asset pricing models (e.g. Ferson and

Harvey (1991), Harvey (1989)), assessing the performance of mutual funds (e.g. Ferson and Schadt

(1996), Farnsworth, Ferson, Jackson, and Todd (2002)) and, most notably, in a large literature on

optimal asset allocation under time-varying investment opportunities.2

Investors attempting to exploit such predictability in returns encounter several sources of un-

certainty. Most obviously, the parameters of return prediction models are typically estimated with

considerable uncertainty - a point emphasized by Kandel and Stambaugh (1996) and Barberis (2000)

who propose Bayesian methods for integrating out this type of uncertainty. Moreover, since �nance

theory often does not identify which particular predictor variables to use, how to measure such

variables and which functional form to use, investors also face model uncertainty. This point has

been explored by Avramov (2002) and Cremers (2002).

One aspect of return predictability that has received far less attention is model instability.

Despite the positive historical correlation between stock returns and the lagged dividend yield,

the 1990s saw an unprecedented bull market with large stock returns and historically low values

of the dividend yield. This brought many to question the stability of the relation between the

dividend yield and stock returns. Lettau and Ludvigsson (2001) report evidence of a breakdown

in a prediction model based on their cay variable in the mid-nineties. Lettau, Ludvigsson, and

Wachter (2004) explain the run-up in stock prices during the nineties by means of a downward shift

in the volatility of consumption growth. These �ndings lend credibility to long-lasting views among

�nance practitioners�indeed, as pointed out by Pastor and Stambaugh (2001), p. 1207 �Finance
practitioners and academics often elect to rely on more recent data ... motivated in part by concerns

that the probability distribution of excess returns changes over time, experiencing shifts known as

�structural breaks��.

There are many reasons for questioning the model stability assumption. Structural instability

is known to a¤ect the majority of macroeconomic and �nancial variables, c.f. Stock and Watson

(1996). Natural candidates for explanations of structural shifts such as institutional, legislative

and technological change, large macroeconomic (oil price) shocks or changes in monetary targets

or tax policy are known to occur in samples spanning long periods of time. This is important

since predictability in stock returns is generally rather weak, necessitating the use of long spans of

data in order to obtain reasonably precise estimates of the underlying regression coe¢ cients. For

example, Barberis (2000) uses monthly data from 1927 to 1995 to estimate the coe¢ cient of the

dividend yield in a return forecasting model. However, it is unlikely that this coe¢ cient remained

constant through a sample spanning the Great Depression, World War II, the stag�ation period of

1See, e.g. Campbell (1987), Fama and French (1988), Kandel and Stambaugh (1996), Aït-Sahalia and Brandt

(2001), Pesaran and Timmermann (1995).
2See, e.g., Aït-Sahalia and Brandt (2001), Avramov (2002), Barberis (2000), Brandt (1999), Brandt, Goyal, Santa-

Clara, and Stroud (2002), Brennan, Schwartz, and Lagnado (1997), Brennan and Xia (2002), Campbell and Viceira

(1999), Campbell and Viceira (2001), Kandel and Stambaugh (1996) and Xia (2001).
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the seventies and the run-up in stock prices during the 1990s.

The model stability assumption is particularly important to asset allocation decisions since these

rely on forecasts of future returns, often at long horizons. Suppose that it is found that there are

structural breaks in the parameters of the return prediction model over some historical sample. If

such breaks occurred in the past it would seem plausible to assume that they could also appear in

the future. This introduces an extra source of risk related to when the next break(s) will occur,

how long new �regimes�will last and how large any shifts in the parameters of the return equation

will be.

Despite these arguments, asset allocation exercises invariably assume that although the para-

meters of the return prediction model or the identity of the �true�model may not be known to

investors, the parameters of the data generating process remain constant through time. To ex-

tend this analysis, we propose in this paper an approach that accounts for structural breaks in

return forecasting models. Our approach builds on Chib (1998), Pastor and Stambaugh (2001)

and Pesaran, Pettenuzzo, and Timmermann (2004) in proposing a changepoint model driven by an

unobserved discrete state variable. This allows us to characterize structural breaks in the historical

data sample. To forecast future returns under breaks, we introduce a meta distribution that sits

on top of the parameters drawn for the individual regimes and characterizes how the parameters

of the return model vary across di¤erent break segments. The model nests as special cases both a

pooled scenario where the similarity between the parameters in the di¤erent �regimes�is very strong

(corresponding to a narrow dispersion of the distribution of these parameters across regimes) as

well as a more idiosyncratic scenario where these parameters have little in common and can be very

di¤erent (corresponding to a wide dispersion). Which of these cases is most in line with the data is

re�ected in the posterior distribution of the parameters across regimes.

Our approach is very general and allows for uncertainty about the timing (dates) of historical

breaks as well as uncertainty about the number of breaks. We also extend our setup to allow for

uncertainty about the identity of the predictor variables (model uncertainty) using Bayesian model

averaging techniques as proposed by Avramov (2002) and Cremers (2002). Hence, investors are

not assumed to know the true model or its parameter values, nor are they assumed to know the

number and timing of past or future breaks. Instead, they come with prior beliefs about the �meta�

distribution from which current and future values of the parameters of the return model are drawn

and update these beliefs e¢ ciently according to Bayes�rule as new data is observed.

Our empirical analysis investigates predictability of US stock returns using two popular predictor

variables, namely the dividend yield and the short interest rate. We �nd evidence of seven breaks

in return models based on either predictor variable in a data sample covering the period 1926-2003.

Moreover, many of the break dates coincide with major events such as changes in the Fed�s operating

procedures (1979, 1982), the Great Depression, World War II and the growth slowdown following

the oil price shocks in the early 1970s.

Structural breaks are found to have a large e¤ect on optimal asset allocations. We �nd empiri-

cally that model instability can have an even larger e¤ect on the asset allocation than sources of risk

such as parameter estimation uncertainty and can lead to a steep negative slope in the relationship
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between the investment horizon and the proportion of wealth that a buy-and-hold investor allocates

to stocks. This re�ects the extent to which the coe¢ cients of the predictor variables in the return

equation were subject to change. Once rebalancing opportunities are introduced, as expected the

asset allocation becomes less sensitive to the investment horizon, but we continue to �nd that breaks

have an important e¤ect on the asset allocation through two separate channels. First, past histori-

cal breaks increase the importance of parameter estimation uncertainty since the parameters from

the current regime are typically surrounded by larger uncertainty than the full-sample parameters.

For example, if in a sample with 30 years of data the most recent break took place ten years ago,

then 10 years rather than 30 years of data can be used to estimate the model parameters. Second,

the possibility of future breaks a¤ects investors�optimal allocations even under rebalancing due to

incomplete learning since they can only be detected with a lag. As a result, our estimates of the

certainty equivalence of returns under rebalancing suggest that the cost of ignoring breaks can be

large in economic terms.

Our study is related to that of Pastor and Stambaugh (2001) who model structural breaks in the

equity premium using a univariate approach that is based on priors about the risk-return trade-o¤.

This provides a way to deal with the problem that stock returns are typically so noisy that it is

di¢ cult to identify breaks in univariate return models based on �rst moments alone. Conversely,

there is considerably more structure�and persistence�in the volatility of returns. Assuming that
there is a trade-o¤ between risk and returns, volatility can be used as an instrument that has power

to detect breaks in the equity premium. This idea also reveals intuition for the approach we propose

here, which is to increase the power to detect breaks in the model for expected returns by using as

conditioning information variables that have been found empirically to be strongly correlated with

returns.

There are also important di¤erences between our approach and that proposed by Pastor and

Stambaugh (2001). Most obviously, the model used here is multivariate whereas Pastor and Stam-

baugh use a univariate framework built on the relation between the mean and variance of returns.

Furthermore, whereas the focus of Pastor and Stambaugh is on characterizing the presence of struc-

tural breaks in the equity premium in a long historical sample, we model the predictive distribution

of future (out-of-sample) returns since our interest lies in the asset allocation implications of breaks.

This means that we need to characterize the full breakpoint process, including the duration between

future breaks and the size of possible breaks in the parameters that a¤ect future stock returns.

Another literature that is related to our paper assumes that the parameters of the return equa-

tion are driven by a Markov switching process with a small number of states, as in Ang and Bekaert

(2002), Ang and Chen (2002), Guidolin and Timmermann (2004) and Perez-Quiros and Timmer-

mann (2000). The assumption of a �xed number of states amounts to imposing a restriction that

�history repeats�. For example, most papers on Markov switching in stock returns assume only two

states so the mean and variance of returns can either be high or low depending on which state the

model is in. This approach is well suited to identify patterns in returns that are linked to repeated

events such as recessions and expansions. It is less clear that it is able to capture the e¤ects of

institutional and technological changes over long spans of time. These are more likely to lead to
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genuinely new and historically unique regimes.

The paper is organized as follows. Section II introduces the basic breakpoint methodology

and Section III presents empirical estimates for return prediction models based on the dividend

yield or the short interest rate. Section IV shows how investors�optimal asset allocation can be

computed while accounting for past and future breaks. Section V considers the asset allocation

e¤ect empirically for a buy-and-hold investor while Section VI introduces rebalancing. Section VII

proposes various extensions to the our approach and �nally Section IIX concludes. Technical details

are provided in an Appendix at the end of the paper.

II. Methodology

Studies of asset allocation in the presence of return predictability (e.g., Barberis (2000), Campbell

and Viceira (2001), Campbell, Chan, and Viceira (2003) and Kandel and Stambaugh (1996)) have

mostly used vector autoregressions (VARs) to capture the relation between asset returns and pre-

dictor variables, many of which are known to be highly persistent. We follow this literature and

focus on a simple model with a single risky asset and a single predictor variable. This gives rise to

a bivariate model relating returns (or excess returns) on the risky asset to a predictor variable, xt.

Zero-constraints on the coe¢ cients of the lagged returns are often imposed and we shall do so here.

This re�ects the common �nding that stock returns are not strongly serially correlated and reduces

the number of parameters to be estimated. The resulting model takes the form

zt = B0~xt�1 + ut; (1)

where zt = (rt; xt)
0 ; ~xt�1 = (1; xt�1)

0, rt is the stock return at time t in excess of a short risk-free

rate, while xt�1 is the lagged predictor variable and E[utu0t] = � is the covariance matrix. We refer

to �r and �x as the intercepts in the equation for the return and predictor variable, respectively,

while �r and �x are the coe¢ cients on the predictor variable in the two equations:

rt = �r + �rxt�1 + "rt

xt = �x + �xxt�1 + "xt: (2)

A. Predictive Distributions of Returns under Breaks

Asset allocation decisions require the ability to evaluate the expected utility associated with the

realization of future payo¤s of risky assets. This, in turn, requires computing expectations over

the predictive distribution of returns during an h�period investment horizon [T; T + h] conditional
on information available at the time of the investment decision, T , which we denote by ZT . To
compute the predictive distribution of returns under breaks, we need to make assumptions about

the probability that future breaks occur, their likely timing as well as the size of such breaks. Most

obviously, we need an estimate of the probability of staying in the current regime. If more than one

break can occur over the course of the investment horizon, we also need to model the distribution

from which future regime durations are drawn. We next explain how this is done.
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To capture instability in the parameters in (2), we build on the multiple change point model

proposed by Chib (1998) and extended by Pastor and Stambaugh (2001). Shifts to the parameters

of the return model are captured through an integer-valued state variable, St, that tracks the

regime from which a particular observation of returns and the predictor variable, xt, are drawn. For

example, st = l indicates that zt has been drawn from f (ztj Zt�1;�l) ; where Zt�1 = fz1; :::; ztg is
the period-t� 1 information set, while a change from st = l to st+1 = l + 1 shows that a break has

occurred at time t+1. The location and scale parameters in regime l are collected in �l = (Bl;�l) :

Allowing for K breaks or, equivalently, K + 1 break segments, our model takes the form

zt = B01~xt�1 + ut; E[utu
0
t] = �1 for �0 � t � �1 (st = 1)

zt = B02~xt�1 + ut; E[utu
0
t] = �2 for �1 + 1 � t � �2 (st = 2)

...
...

...

zt = B0l~xt�1 + ut; E[utu
0
t] = �l for � l�1 + 1 � t � � l (st = l)

...
...

...

zt = B0K+1~xt�1 + ut; E[utu
0
t] = �K+1 for �K + 1 � t � T (st = K + 1)

(3)

Here �K = f�0; ::::; �Kg is the collection of break points with �0 = 1. Within each regime we

decompose the covariance matrix, �j , into the product of a diagonal matrix representing the stan-

dard deviations of the variables, diag( j), and a correlation matrix, �j , each of which is modeled

separately:

�j = diag( j)� �j � diag( j): (4)

This speci�cation allows both volatilities and correlations to vary across regimes.

The state variable St is assumed to be driven by a �rst order hidden Markov chain whose

transition probability matrix is designed so that, at each point in time, St can either remain in the

current state or jump to the subsequent state. The one-step-ahead transition probability matrix

therefore takes the form

P =

0BBBBBBBBBBBB@

p11 p12 0 � � � 0

0 p22 p23 � � � 0
...

...
...

...
...

0 � � � 0 pKK pK;K+1

0 0 : : : 0 pK+1;K+1 pK+1;K+2

0 0 : : : 0 pK+2;K+2
. . .

1CCCCCCCCCCCCA
: (5)

Here pj�1;j = Pr (st = jj st�1 = j � 1) is the probability of moving to regime j at time t given that
we are in state j � 1 at time t� 1 so pj;j + pj;j+1 = 1. K is the number of breaks in the historical

sample up to time T so the (K + 1) � (K + 1) sub-matrix in the upper left corner of P describes

possible breaks in the historical data sample, fz1; :::; zT g. The remaining part of P describes the

breakpoint dynamics over the future out-of-sample investment period from T to T +h.3 The special

case without breaks corresponds to K = 0 and p11 = 1.
3Following Chib (1998), estimation proceeds under the assumption ofK breaks in the historical sample (1 � t � T ).
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Notice that the persistence parameters in (5) are regime-speci�c. This assumption means that

regimes can di¤er in their expected duration�the closer is pjj to one, the longer the regime is
expected to last. Furthermore, pj;j , are assumed to be independent of pi;i, for j 6= i; and are drawn

from a beta distribution:

pj;j � Beta (a; b) : (6)

This means that breaks are di¢ cult to predict ahead of time, but still can have very important

implications for portfolio allocations.

B. Meta Distributions

Since we are interested in forecasting future returns out-of-sample, we follow Pastor and Stambaugh

(2001) and Pesaran, Pettenuzzo, and Timmermann (2004) and adopt a hierarchical prior formula-

tion, but extend those studies to allow for structural breaks in a multivariate setting.4 To this end

we assume that the location and scale parameters within each regime, (Bj , �j), are drawn from

common distributions. We refer to these as meta distributions since they sit on top of the parameter

distributions within each regime and characterize the degree of similarity in the parameters across

di¤erent regimes. Suppose for example that the mean parameters do not vary much across regimes

but that the variance parameters do. Then this will show up in the form of a wide dispersion in

the meta distribution of the scale parameters and a narrow dispersion in the meta distribution for

the location parameters.

The assumption that the parameters are drawn from a common meta distribution implies that

data from previous regimes carry information relevant for current data and for the new parame-

ters after a future break. An alternative approach of entirely discarding pre-break data tends to

lead to imprecise estimates and also goes against the intuition that pre-break data contains some

information about the parameters in the new regime. By using meta distributions that pool infor-

mation from di¤erent regimes our approach makes sure that historic information is used e¢ ciently

in estimating the parameters of the current regime.

We next describe the meta distributions in more detail. We use a random coe¢ cient model to

introduce a hierarchical prior for the regime coe¢ cients in (3) and (4), fBj ; diag( j);�jg. Let m be

the number of equations in the prediction model (1) and assume that the m2 � 1 vector of location
coe¢ cients are independent draws from a normal distribution, vec(B)j � N (b0; V0), j = 1; :::;K+1;

while the m error term precisions  �2j;i are independent and identical draws (IID) from a Gamma

distribution,  �2j;i � Gamma (v0;i; d0;i), i = 1; :::;m. Finally, the m (m� 1) =2 correlations, �j;ic, are

This assumption greatly simpli�es estimation. We show later that uncertainty about the number of in-sample breaks

can be integrated out using Bayesian model averaging techniques.
4Bai, Lumsdaine, and Stock (1998) apply a deterministic procedure to detect breaks in multivariate time series

models and �nd that when break dates are common across equations, the resulting breaks are estimated more precisely.

The power to detect breaks can also increase when the breaks are estimated from a multivariate model. Their frame-

work is not well suited for our purpose, however, since asset allocation exercises build on the predictive distribution

of future returns and thus require modeling the stochastic process underlying the breaks.
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IID draws from a normal distribution, �j;ic � N(��;ic; �
2
�;ic), i; c = 1; :::;m, i < c:5 In this context,

b0; v0;i and ��;ic represent the location parameters, while V0, d0;i and �
2
�;ic are the scale parameters

of the three meta distributions.

The pooled scenario (all parameters are identical across regimes) and the regime-speci�c scenario

(the parameters of each regime are unrelated) can be seen as extreme special cases each of which is

nested in our framework. Which scenario most closely represents the data can be inferred from the

estimates of the location parameters of the meta distribution V0, d0;i and �2�;ic.

To characterize the parameters of the meta distribution, we assume that6

b0 � N
�
��;��

�
(7)

V �10 � W
�
v�; V

�1
�

�
;

where W (:) is a Wishart distribution and ��, ��, v� and V
�1
� are prior hyperparameters that need

to be speci�ed. The hyperparameters v0;i and d0;i of the error term precision are assumed to follow

an exponential and Gamma distribution, respectively, c.f. George, Makov, and Smith (1993) with

prior hyperparameters �0;i, c0;i and d0;i:

v0;i � Exp
�
�0;i

�
(8)

d0;i � Gamma
�
c0;i; d0;i

�
: (9)

Following Liechty, Liechty, and Müller (2004), we specify the following distributions for the hyper-

parameters of the correlation matrix (truncated to lie in the (�1; 1) interval):

��;ic � N
�
��;ic; �

2
ic

�
(10)

��2�;ic � Gamma
�
a�;ic; b�;ic

�
; (11)

where again ��;ic, �
2
ic, a�;ic and b�;ic are prior hyperparameters for each element of the correlation

matrix. We �nally specify a prior distribution for the hyperparameters a and b of the transition

probabilities,

a � Gamma
�
a0; b0

�
; (12)

b � Gamma
�
a0; b0

�
:

These are all standard choices of distributions.

C. Prior elicitation

To the extent possible, choice of priors in the breakpoint model must be guided by economic theory

and intuition. Here we explain the choices made for the baseline results. In section VII we conduct

a sensitivity analysis to shed light on the importance of these choices.

5Given the symmetry of the correlation matrix �j , we only model elements above the main diagonal.
6Throughout the paper we use underscore bars (e.g. a0) to denote prior hyperparameters.
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We impose two constraints on the parameters in the return prediction model, (2). First, to rule

out explosive behavior in the driving variable (and consequently in stock returns), we impose that

�x < 1. Second, since neither the dividend yield nor the short interest rate can go negative, we

impose that the unconditional mean in each state is non-negative, i.e. 0 � �x=(1��x) � ��x, where
��x is an upper limit chosen so the unconditional mean of the predictor variable lies in the centre

of the interval. This ensures that the predictive densities of all variables are well-behaved even at

very long investment horizons.7

Starting with the prior hyperparameters for the mean of the regression coe¢ cient, b0, we set

�� = 0m2 and �� = sc� Im2 where sc is a scale factor set to1 to re�ect uninformative priors. The

hyperparameters for the prior variance of the regression coe¢ cient, V0, are set at �� =
�
m2
�
+2 and

V� = diag(0:1; 10; 0:01; 0:1). This is su¢ cient to preserve the variation in the regression coe¢ cients

across regimes and ensures that the mean of the Wishart distribution exists. As we shall see, this

choice re�ects the large variation in the slope coe¢ cient of the predictor variable in the return

equation (�r), the very small variation in �x and the somewhat larger variation in �r and �x.

Moving to the variance hyperparameters, we maintain uninformative priors and set c0;i = 1,

d0;i = 1=1 and �0;i = 1 in all equations, hence specifying a very large variance. We also use

uninformative priors for the correlation coe¢ cient, rj;12, i.e. ��;12 = 0; �212 = 1, a�;12 = 1 and

b�;12 = 0:01. Finally, we assume a more informative prior for the diagonal elements, pii in (5),

centered at 0.98, namely a0 = 1 and b0 = 0:02. This ensures that breaks do not occur too frequently.

III. Breaks in Return Forecasting Models: Empirical Results

Using the approach from Section 2, we next report empirical results for two commonly used return

prediction models based on the dividend yield or the short interest rate.

A. Data

Following common practice in the literature on predictability of stock returns, we use as our de-

pendent variable the continuously compounded return on a portfolio of US stocks comprising �rms

listed on the NYSE, AMEX and NASDAQ in excess of a 1-month T-bill rate. Data is monthly and

covers the period 1926:12-2003:12. All data is obtained from the Center for Research in Security

Prices (CRSP).

As forecasting variables we include a constant and either the dividend-price ratio�de�ned as the
ratio between dividends over the previous twelve months and the current stock price�or the short
interest rate measured by the 1-month T-bill rate obtained from the Fama-Bliss �les. The dividend

yield has been found to predict stock returns by many authors including Campbell (1987), Campbell

and Shiller (1988), Keim and Stambaugh (1986) and Fama and French (1988). It has played a key

role in the literature on asset allocation implications of return predictability, c.f. Kandel and

Stambaugh (1996) and Barberis (2000). Furthermore, due to its persistence and the large negative

7 If the upper constraint on the mean of the predictor variable is ignored while negative values are ruled out, the

mean of the predictive density tends to increase too much at very long investment horizons.
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correlation between shocks to the dividend yield and shocks to stock returns, the dividend yield

is known to generate a large hedging demand for stocks, particularly at long investment horizons.

The short interest rate has also been found to reliably predict stock returns, c.f. Campbell (1987)

and Ang and Bekaert (2002).

Consistent with results in the literature, full-sample estimates of the parameters in the return

equation (2) reveal (mean) coe¢ cients on the dividend yield or the T-bill rate slightly less than two

standard errors away from zero, although the sign of the regression coe¢ cients di¤er�positive for the
yield, negative for the T-bill rate. Both predictor variables are highly persistent with autoregressive

parameters close to 0.98.

B. Predictability from the Dividend Yield

Determining whether the return prediction models are subject to breaks and, if so, how many breaks

the data support, is the �rst step in our analysis. For a given choice of number of breaks, K, we get

a new model, MK , with its own set of parameters. Table 1 provides a comparison of models with

di¤erent numbers of breaks by reporting various measures of model �t such as the conditional log-

likelihood (which does not penalize for additional parameters as more breaks are considered), the

marginal log-likelihood (which penalizes for over�tting in case too many breaks are identi�ed) and

the posterior model probability computed for models with up to eight breaks. The latter (computed

under equal priors on each of the possible number of breaks) is a conventional way to summarize

the evidence in support of a particular model.

First consider the return model based on the dividend yield. For this model there is strong

support for structural breaks�the posterior odds ratios for the models with multiple breaks relative
to a model with no breaks are all very high. Among all models with up to eight breaks, the fourth

column in Table 1 shows that the model with seven breaks obtains a posterior probability weight

of two-thirds. Although this may appear to be a large number of breaks, it is consistent with the

evidence reported by Pastor and Stambaugh (2001) of 15 break points in the equity premium over

a sample (1834-1999) a bit longer than twice the period covered here. Of course we cannot be sure

that there are seven breaks in the sample, nevertheless the data strongly supports this speci�cation.8

Table 1 also shows for each model the time of the associated breaks. More precisely, these are

the posterior modes for the break dates since our model only provides probability estimates of the

break dates. Accordingly, Figure 1 shows posterior probabilities of the break locations for the model

with seven breaks. The break dates are quite precisely identi�ed in the form of single spikes with

probabilities ranging from 0.27 to more than 0.50. This suggests that there is not much uncertainty

about the locations of the break dates for this model.

Five of the break locations are associated with major events and occurred around the Great

Depression (1932), the beginning of World War II (1940), the major oil price shocks of the early

seventies and resulting growth slowdown (1974), the end of the change in the Fed�s operating

8When speci�cations with more than eight breaks were considered, the same break dates were essentially chosen

twice, thus suggesting that further breaks are not warranted.
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procedures (1982) and, more recently, at the beginning of the bull market of the nineties (1992).

The two remaining break dates (1952 and 1958) are harder to interpret, but the �rst coincided

with the Korean war while the break in the late �fties matches a similar increase in the posterior

probability of a break in the equity premium model identi�ed by Pastor and Stambaugh (2001)

(their Figure 1, top panel).

These break dates suggest that changes to the conditional equity premium are associated with

events such as major wars, changes to monetary policy and important slowdowns in economic

activity as caused, e.g., by major supply shocks.

Parameter estimates for the model with seven breaks (eight regimes) are reported in Table 2.

The mean of the dividend yield coe¢ cient in the return equation ranges from a low of 0.39 prior

to the Great Depression to values around two during the regimes from 1958-1974 and again from

1974-1982 before declining to 1.40 in the last regime. The standard deviation parameters of the

return equation also vary considerably over the sample, from a high of 10% per month around the

Great Depression to a low of only 3.4% per month during the 1950s. Since the mid-seventies, return

volatility appears to have been quite low at 4-5% per month.

Turning to the parameter estimates for the dividend yield equation, it is clear that this process

is highly persistent in all regimes with a mean autoregressive parameter that varies from 0.90 to

0.98. The variance of the dividend yield is again highest in the �rst two regimes and much lower

after the �nal break around 1992. Correlation estimates for the innovations to stocks and the lagged

dividend yield are large and negative in all regimes with mean values ranging from -0.96 to -0.85.

Similarly, transition probabilities are high with means that always exceed 0.98 and go as high as

0.992, corresponding to mean durations ranging from 70 to 140 months.

One of the questions we set out to address in our paper was how dissimilar the parameters of

the return equation are across the various regimes. To address this question, information on the

posterior estimates of the hyperparameters of the meta distribution is provided in Table 3. To

preserve space we only report the values of the mean parameters which are easiest to interpret.

The parameter tracking the mean of the slope of the dividend yield in the return equation across

di¤erent regimes is centered on 1.2 with a standard deviation centered at 0.50, giving rise to a 95%

con�dence interval [0:23; 2:21]. The autoregressive slope �x in the dividend yield equation is centered

on a value of 0.92 with a much smaller standard deviation of only 0.033 and a 95% con�dence interval

[0:84; 0:97]. Similarly, the hyperparameter tracking the correlation between shocks to returns and

to the dividend yield is centered on -0.92 with a modest standard deviation of 0.04. The posterior

distributions of the hyperparameters of the transition probability, a0 and b0; are surrounded by

greater uncertainty as indicated by their relatively large standard deviations. This is consistent

with the considerable di¤erence in the duration of the various regimes identi�ed by our model.

These �ndings suggest that the greatest variability in parameters across regimes is associated

with the e¤ect of the dividend yield on stock returns and the duration of the regimes. There is

considerably less variability in the persistence of the dividend yield or in the correlation between

shocks to returns and shocks to the dividend yield.
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C. Predictability from the Short Interest Rate

Turning to the return model based on the short interest rate, Table 1 also suggests the presence of

seven breaks in this model. Some of these breaks again appear around the time of major historical

events such as the Great Depression (1934), the end of World War II (1947), the Vietnam War

(1968), the beginning and end of the change to the Fed�s operating procedures (1979 and 1982)

and the beginning of the protracted bull market of the 1990s (1990). The two remaining breaks are

estimated to have occurred around 1952 and 1968.9

Figure 2 shows the posterior probabilities for the breakpoint locations. These are more dispersed

than those found for the prediction model based on the dividend yield, but de�ne narrow ranges

for most break dates, nevertheless. For example, the breaks in 1934 and 1947 are con�ned to one

or two months while the break dates around 1979 and 1982 are also quite well determined. The

dating of the breaks occurring around 1952 and 1990 is surrounded by the greatest uncertainty.

Compared to the �ndings for the dividend yield there is considerable overlap in the break dates

of the two models. Both identify breaks in the early part of the Great Depression (1932/34), the

Korean War (1952), the end of the Fed�s monetarist experiment (1982) and at the beginning of the

1990s bull market (1990/92). This suggests that at least some of the breaks may be common across

predictor variables.

Parameter estimates for the return model with seven breaks are displayed in Table 4. The

mean of the coe¢ cient on the lagged T-bill rate in the return equation is always negative but varies

signi�cantly over time, ranging from only -0.44 in the �rst regime to -9.98 in the very volatile regime

from 1979 to 1982 when the Fed changed its monetary policy. Furthermore, the estimates of the

slope on the T-bill rate within each regime are surrounded by large standard errors, particularly in

the regimes from 1934-1947 and 1947-195210.

The process for the short interest rate is highly persistent with the mean of the persistence

coe¢ cient ranging from a low of 0.83 to a high of 0.97 after the most recent break. Although the

correlation between shocks to returns and shocks to the short rate is closer to zero than was found

for the dividend yield model, it also varies much more across regimes, ranging from a low of -0.31

during 1979-1982 to a high of 0.30 during 1982-1990. These changes appear not simply to re�ect

random sample variations since the standard deviations of the correlations are mostly quite low.

All states continue to be highly persistent with mean transition probability estimates varying from

0.976 to 0.992, resulting in state durations between 40 and more than 160 months.

Turning �nally to the meta distribution parameters for the short rate model shown in Table 5,

once again the chief source of uncertainty is the slope coe¢ cient of the interest rate in the return

9The conditional log-likelihood function of the return equation declines as we move from �ve to six breaks. This

can happen even as the number of breaks increases as long as the likelihood of the joint distribution of stock returns

and the short interest rate increases, which indeed it does uniformly as the number of breaks (and hence the number

of parameters) goes up.
10Notice that periods such as during the Accord where interest rates were tightly controlled are picked up by our

procedure which identi�es 1934-1947 as a regime with very low interest rate volatility and an insigni�cant e¤ect of

T-bill rates on stock returns.
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equation. For example, b0(�r) has a mean of -4.6 and a standard deviation of 4.8, giving a very

long 95% con�dence interval that ranges from -14.8 to 4.4. Compared with the model based on

the dividend yield, there is now also greater uncertainty about the correlation between shocks to

returns and shocks to the T-bill rate as indicated by the higher standard deviation of ��.

IV. Asset Allocation under Structural Breaks

Investors care about instability in the return model because breaks a¤ect future asset payo¤s and

therefore may alter their optimal asset allocation. To study the economic importance of structural

breaks in the return model, we next consider the optimal asset allocation under a range of alternative

modeling assumptions for a buy-and-hold investor (later generalized to allow for rebalancing) with

power utility over terminal wealth and coe¢ cient of relative risk aversion, 
:

u(WT+h) =
W 1�

T+h

1� 
 ; 
 > 0: (13)

Following Kandel and Stambaugh (1996) and Barberis (2000), we assume that the investor has

access to a risk-free asset with constant return, rf , and a risky stock market portfolio with returns

in excess of the risk-free rate, rT+1; :::; rT+h; where h is the investment horizon. All returns are

continuously compounded.

A. The Asset Allocation Problem

Without loss of generality we set initial wealth at one, WT = 1, and let ! be the allocation to

stocks. Terminal wealth is then given by

WT+h = (1� !) exp(rfh) + ! exp(rfh+ rT+1 + :::+ rT+h): (14)

De�ning the cumulative excess returns over h periods as

RT+h = rT+1 + rT+2 + :::+ rT+h;

subject to the no short-sales constraints 0 � ! < 1, the buy-and-hold investor solves the following

program

max
!

ET

 
((1� !) exp(rfh) + ! exp(rfh+RT+h))1�


1� 


!
; (15)

where ET is the conditional expectation given information at time T;ZT : How this expectation is
computed re�ects the modeling assumptions made by the investor.

The predictive density for the h-period cumulative returns, RT+h, can be constructed using the

iterative scheme of Barberis (2000) that takes advantage of the assumed VAR structure. To see

how this works, rewrite (2) as zt = �t + �0tzt�1 + ut where �t = (�rt �xt)
0 and

�0t =

" 
0 �rt

0 �xt

!#
:
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The time subscripts on the parameters re�ects the possibility of breaks. Iterating forward on this

model, we have

zT+1 = �T+1 + �0T+1zT + uT+1

zT+2 = �T+2 + �0T+2�T+1 + �0T+2�0T+1zT + uT+2 + �0T+2uT+1

zT+3 = �T+3 + �0T+3�T+2 + �0T+3�0T+2�T+1 + �0T+3�0T+2�0T+1zT

+uT+3 + �0T+3uT+2 + �0T+3�0T+2uT+1
... (16)

zT+h = �T+h + uT+h +

h�1X
j=1

0@ hY
i=j+1

�0T+i

1A (�T+j + uT+j) +
0@ hY
i=j+1

�0T+i

1A zT :

Assuming that uT � (0;�) is normally distributed, in the special case where � and �0 do not vary
over time, we get the results reported by Barberis (2000), namely zT+h � N

�
�zT+h ;�zT+h

�
, where

�zT+h =
h�1X
s=0

�s0�+ �
h
0zT ;

�zT+h =

 
h�1X
s=0

�s0

!
�

 
h�1X
s=0

�s0

!0
:

Furthermore, the sum zT :T+h = zT+1+ zT+2+ :::+ zT+h is distributed as a multivariate normal

variable with mean vector �sum and variance-covariance matrix �sum

�sum = h�+ (h� 1)�0�+ (h� 2)�20�
+:::+ �h�10 �+ (�0 + �

2
0 + :::+ �

h
0)zT (17)

�sum = �+ (I + �0)�(I + �0)
0

+(I + �0 + �
2
0)�(I + �0 + �

2
0)
0

+(I + �0 + :::+ �
h�1
0 )�(I + �0 + :::+ �

h�1
0 )0: (18)

Comparing (16) to (17) and (18), clearly the possibility of shifts in either the persistence pa-

rameters, �0, the intercepts, �, or the covariance matrix, �, can lead to important changes in the

return distribution over an h�period investment horizon and must be carefully taken into account.
Furthermore, such changes make it far more complicated to evaluate the predictive return distrib-

ution and require the use of numerical methods. We next consider a range of assumptions about

how investors deal with their limited knowledge of the parameters of the return model.

B. No Breaks

First consider the asset allocation problem for an investor who ignores parameter estimation un-

certainty and breaks. Once the predictor variables have been speci�ed, the VAR parameters
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� = (�; �0;�) can be estimated and, using (17) and (18), the model can be iterated forward

conditional on these parameter estimates. This generates a distribution for future stock returns,

p(RT+hjb�; ST+h = 1;ZT ) where ST+h = 1 shows that past and future breaks are ignored. The

investor therefore solves the problem

max
!

Z
u(WT+h)p(RT+hjb�; ST+h = 1;ZT )dRT+h: (19)

Here we used that, from (14), the only part of WT+h that is uncertain is RT+h. This of course

ignores that � is not known precisely but typically is estimated with considerable uncertainty.11

Next consider the decision of an investor who accounts for parameter estimation uncertainty

but ignores both past and future breaks, i.e., assumes that ST+h = 1. In the absence of breaks the

posterior distribution �(�jST+h = 1;ZT ) summarizes the uncertainty about the parameters given
the historical data sample.12 Integrating over this distribution leads to the predictive distribution

of returns conditioned only on the observed sample (and not on any �xed �) and the assumption

of no breaks prior to time T + h:

p(RT+hjST+h = 1;ZT ) =
Z
p(RT+hj�; ST+h = 1;ZT )�(�jST+h = 1;ZT )d�: (20)

This investor therefore solves the asset allocation problem

max
!

Z
u(WT+h)p(RT+hjST+h = 1;ZT )dRT+h: (21)

Comparing stock holdings in (19) and (21) gives a measure of the economic importance of parameter

estimation uncertainty. Both solutions ignore model instability, however. To illustrate the e¤ect of

breaks in the parameters of the return prediction model, we separately consider scenarios with past

breaks but no future breaks as well as scenarios allowing for both past and future breaks.

C. Past Breaks Only

Suppose that there are K historic breaks in the sample up to time T but that no new breaks

occur prior to the end of the investment horizon, T + h. Returns can then be modeled using only

the posterior distribution of the parameters from the last regime, fBK+1;�K+1g. Hence the asset
allocation is computed under the predictive density p(RT+hjST+h = ST = K + 1;ZT ). Under this
assumption the predictive density of returns becomes

p(RT+hjST+h = ST = K + 1;ZT )

=

Z
p (RT+hj�K+1; ST+h = K + 1; ST = K + 1;ZT )� (�K+1jH; p;ST ;ZT ) d�K+1;

11To be more precise, we could condition also on MKx i.e. the return prediction model based on the predictor

variable x and conditional on K historical breaks. The importance of Mkx will become clear when we integrate out

uncertainty about the number of in-sample breaks and uncertainty about the predictor variables.
12Throughout the paper, �(�j�;ZT ) refers to posterior distributions conditioned on information contained in ZT .
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where ST = (s1; :::; sT ) is the collection of values of the state variable underlying the breakpoint

process up to period T;

�K+1 =
�
vec(B)K+1;  K+1;�K+1

�
are the parameters from the K + 1�th regime (regression coe¢ cients, error term variances and

correlations), and

H =
�
b0; V0; v0;1; d0;1; :::; v0;m; d0;m; ��;12; �

2
�;12; :::; ��;m�1m; �

2
�;m�1m; a; b

�
are the hyperparameters of the meta distribution. This investor therefore solves the following

portfolio problem

max
!

Z
u(WT+h)p(RT+hjST+h = ST = K + 1;ZT )dRT+h: (22)

Even though the possibility of future breaks is ignored in this scenario, historic breaks still a¤ect

the asset allocation since the parameters assumed to compute the predictive distribution in (22) are

from the last regime, as opposed to being based on the full data sample.13

D. Past and Future Breaks

To allow for multiple breaks over the investment horizon [T; T + h], we need to know not only

the probability of shifting to a new regime but also the probability of staying in future regimes

pK+j;K+j , j � 2: Our hierarchical prior setup is ideally suited to address this question. Under our
model, pK+j;K+j�values are drawn from the conditional beta posterior

pK+j;K+j j ST � Beta(a+ lj ; b+ 1);

where lj = � j � � j�1 is the duration of the lth break segment.
The number of possible out-of-sample break point scenarios becomes very large as the number

of possible breaks increases. To see this, consider the case with only two breakpoints in the out-of-

sample period. This gives
h�1P
i=1

(h� i) = h(h � 1)=2 possible break point locations. For a �ve-year

investment horizon (h = 60) this gives 1,770 possible break locations. Uncertainty about future

breakpoint scenarios is captured through the variable ST+h which must be integrated out. We

do this by �rst conditioning on the maximum number of future breaks between T and T + h .

Conditional on this we then compute the probability of the break locations. We �nally sum over

both the number of breaks and break locations.

For example, conditioning on at most nb breaks over the investment horizon [T; T + h], and

letting j track the date where a break occurs, we can compute the probability of zero, one, two, up

13This is an over-simpli�cation since these parameters depend on other regimes through the meta distribution.

Furthermore, it should also be recalled that we allow for uncertainty about the time of the most recent break, �K .

Later we show how to integrate out uncertainty about the number of in-sample breaks, K.
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to nb breaks as follows:

p(ST+h = K + 1jST = K + 1;ZT ) = phK+1;K+1

p(ST+h = K + 2jST = K + 1;ZT ) =
hX

j1=1

(1� pK+1;K+1) pj1�1K+1;K+1

p(ST+h = K + 3jST = K + 1;ZT ) =
h�1X
j1=1

hX
j2=j1+1

pj1�1K+1;K+1 (1� pK+1;K+1) p
j2�j1�1
K+2;K+2 (1� pK+2;K+2)

...

p(ST+h = K + nb + 1jST = K + 1;ZT ) =
h�nb+1P
j1=1

:::
hP

jnb=jnb�1+1

0@ nbY
j=1

p
dj
K+j;K+j (1� pK+j;K+j)

1A :

With these probabilities in place we can �nally integrate out uncertainty about the future number

of breaks:

p (RT+hjST = K + 1;ZT ) =

nb+1X
j=1

p (RT+hjST+h = K + j; ST = K + 1;ZT ) (23)

�p(ST+h = K + jjST = K + 1;ZT ):

We refer to this as the composite-meta return distribution as it allows for past and future breaks,

weighting the various scenarios by their respective probabilities according to our changepoint model.

An investor who considers the uncertainty about the number of out of sample breaks but conditions

on K historical (in-sample) breaks therefore solves

max
!

Z
u(WT+h)p (RT+hjST = K + 1;ZT ) dRT+h: (24)

Notice that this expression does not restrict the number of future breaks (as long as nb is set

reasonably large), nor does it take the parameters as known. It does, however, take the number of

historic breaks as �xed and also ignores uncertainty about the forecasting model itself. We next

relax our assumptions about these points.

E. Uncertainty about the number of historical breaks

The predictive densities computed so far have conditioned on the number of in-sample breaks (K)

by setting ST = K +1. This is of course a simpli�cation since the true number of in-sample breaks

is unknown. To deal with this, we adopt a simple Bayesian model averaging method that computes

the predictive density of returns as a weighted average of the predictive densities conditional on

di¤erent numbers of historical (in-sample) breaks. For each choice of the number of breaks, k,

and predictor variable, x, we get a model Mkx with predictive density px(RT+hjST = k + 1;ZT ).
Integrating over the number of breaks (but keeping the choice of predictor variable, x, �xed), the

predictive density under the Bayesian model average is

px(RT+hjZT ) =
�KxX

kx=0

px(RT+hjST = kx + 1;ZT )p(Mkx jZT ); (25)
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where �Kx is an upper limit on the largest number of in-sample breaks that is entertained. The

weights used in the average are proportional to the posterior probability of modelMkx and are hence

given by the product of the prior for modelMkx ; p (Mkx), and the marginal likelihood, f (ZT jMkx),

p (Mkx j ZT ) / f (ZT jMkx) p (Mkx) : (26)

F. Model uncertainty

In addition to not knowing the parameters of a given return forecasting model and not knowing the

potential number of historical breaks, it can reasonably be argued that investors do not know the

true identity of the return model. This point has been emphasized by Pesaran and Timmermann

(1995) and, more recently in a Bayesian setting, investigated by Avramov (2002) and Cremers

(2002). The analysis of Avramov and Cremers treats model uncertainty by considering all possible

combinations of a large range of predictor variables.

We follow this analysis by integrating across the two return prediction models considered in this

study based on the dividend yield and the short interest rate. This is simply an illustration of how

to handle model uncertainty and our analysis could of course be extended to a much larger set of

variables. However, to keep computations feasible, we simply combine the return models based on

these two predictor variables, in each case accounting for uncertainty about the number of past and

future breaks:

p(RT+hjZT ) =
XX
x=1

�KxX
k=0

px(RT+hjST = kx + 1;ZT )p(Mkx jZT ): (27)

Here p(Mkx jZT ) is the posterior probability of the model with k breaks using x as the predictor
variable and X is the number of di¤erent combinations of predictor variables used to forecast stock

returns.

V. Empirical Asset Allocation Results

This section uses the methods from Section 4 to assess empirically the e¤ect of structural breaks

on a buy-and-hold investor�s optimal asset allocation. We use the Gibbs sampler to evaluate the

predictive distribution of returns under breaks. Details of the numerical procedure used to compute

the distributions are provided in the Appendix.

Before moving to the results, it is worth recalling two important e¤ects on asset allocation under

predictability from variables such as the dividend yield. First, the dividend yield identi�es a mean-

reverting component in stock returns which means that the risk of stock returns grows more slowly

than in the absence of predictability, creating a large hedging demand for stocks, c.f. Campbell,

Chan, and Viceira (2003). Negative shocks to returns are bad news in the period when they occur

but tend to increase subsequent values of the dividend yield and thus become associated with higher

future expected stock returns. This e¤ect is particularly important at long investment horizons.

Second, parameter estimation uncertainty generally reduces a risk averse investor�s demand for
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stocks. For example, if new information leads the investor to revise downward his belief about

mean stock returns shortly after the investment decision is made, this will a¤ect returns along the

entire investment horizon in a similar way to a permanent negative dividend shock.

In our breakpoint model there is an interesting additional interaction between parameter estima-

tion uncertainty and structural breaks. In the absence of breaks, parameter estimation uncertainty

has a greater impact on returns in the sense that parameter values are �xed and not subject to

change. The presence of breaks means that bad draws of the parameters of the return model will

eventually cease to a¤ect returns as they get replaced by new parameter values following future

breaks. On the other hand, the presence of breaks to the parameters tends to lower the precision

of current parameter estimates and thus increases the importance of parameter estimation uncer-

tainty. Which e¤ect dominates depends on the extent of the variability in the parameter values

across regimes as well as on the average duration of the regimes.

A. Results Based on the Dividend Yield

Figures 3 and 4 plot the allocation to stocks under the four scenarios discussed in Section 4, namely

(i) no breaks, ignoring parameter estimation uncertainty; (ii) no breaks, accounting for parameter

estimation uncertainty; (iii) breaks in the historical sample, but no future breaks (so the last regime

remains in e¤ect over the course of the investment horizon); (iv) both past and future breaks allowed.

The �rst two scenarios ignore breaks and so use full-sample parameter estimates. They correspond

to the cases covered by Barberis (2000). We compute the optimal weight on stocks under two values

for the coe¢ cient of relative risk aversion, namely 
 = 5 and 
 = 10.

Figure 3 starts the dividend yield o¤ from its value at the end of sample (2003:12) which is 1.5%.

Under the models that assume no (past or future) breaks, the weight on stocks rises from a level

near 10% at short investment horizons to 30% at the �ve-year horizon. The assumed absence of a

break means that a very long data sample (1926-2003) is available for parameter estimation. This

reduces parameter estimation uncertainty and leads to an increasing weight on stocks, the longer

the investment horizon. This interpretation is con�rmed by the �nding that stock holdings are

very similar irrespective of whether parameter estimation uncertainty is accounted for. In contrast,

the model estimated under the parameters of the last regime�which acknowledges past breaks
but ignores future breaks�implies a short-run allocation to stocks around 30% that is essentially

independent of the investment horizon. In this case parameter estimation uncertainty is much

larger due to the shortness of the data sample after the most recent break which occurred in 1992.14

However, the greater risk of future stock returns due to parameter estimation uncertainty largely

cancels out against the mean reversion in returns identi�ed by the dividend yield. The higher

allocation to stocks at short horizons compared to under no breaks can be explained by the higher

mean stock return during the last regime than during the full sample.

14Di¤erences observed between the stock holdings under this scenario and that under no breaks and no parameter

estimation uncertainty are similar to the di¤erences in asset allocation shown by Barberis (2000) for a short data

sample (1985-1996).
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Allowing for both past and future breaks�with the latter weighted by their probabilities com-
puted under the assumed changepoint model�the weight on stocks starts out at 30% at the short

horizon and declines to a level below 10% at the �ve-year horizon. Parameter instability and esti-

mation uncertainty now dominates the hedging demand for stocks induced by return predictability

from the dividend yield.

When the coe¢ cient of risk aversion is increased from �ve to ten, the weight on stocks declines

uniformly and stays well below 20% in all scenarios. This may seem low but is mainly driven by

the assumed initial value of the dividend yield which, at 1.5%, is close to its historical minimum.

To demonstrate this point, Figure 4 shows the allocation to stocks when the parameters and

the initial value of the dividend yield are set at their mean values during the regime prevailing from

1958-1974. In this regime, the values of the parameters and the dividend yield are closer to their

overall average although, at 3.1%, the mean dividend yield is slightly below the historical average

of 4%. Comparing Figures 3 and 4 it is clear that the level of the optimal stock holding can be

quite sensitive to the initial value of the dividend yield. The allocation to stocks under the no-break

model now starts at a level close to 40% at short investment horizons and increases to nearly 45% at

the �ve-year horizon - or 50% if parameter estimation uncertainty is ignored. Stock holdings under

the model that accounts for past breaks but ignores future breaks are now increasing in the horizon.

Finally, the allocation to stocks under past and future breaks is non-monotonic in the investment

horizon, �rst increasing from around 55% to 60% before declining to around 10% at the �ve-year

horizon.

These �ndings suggest that the allocation to stocks is increasing in the horizon if the initial

value of the dividend yield is very low and (past and future) breaks are ignored. If past breaks

are accounted for but future breaks are ignored, the asset allocation can be �at or increasing as a

function of the horizon. Finally, if both past and future breaks are modeled, we see a non-monotonic

or sometimes strongly declining allocation to stocks, the longer the investment horizon.

Parameter instability can therefore have a larger e¤ect on a buy-and-hold investor�s optimal

asset allocation than parameter estimation uncertainty. This can be seen by comparing the full

sample (no break) plots in Figures 3 and 4 with and without estimation error. In both cases these

are very similar. This is to be expected since investors have access to 75 years of data. In fact, the

large e¤ect of parameter estimation error documented by Barberis (2000) was found in a sample

where the parameters were estimated using a much shorter data set from 1986 to 1995. Presumably

investors would only want to use such a short sample if they thought that the parameters of the

return model had changed over time.

B. Results based on the Short Interest Rate

Optimal stock holdings under the return prediction model based on the short rate are shown in

Figures 5 and 6. First consider the results in Figure 5 when the short rate is set at its terminal value

in 2003:12 (0.83%). The allocation to stocks is downward sloping as a function of the investment

horizon irrespective of the assumed breakpoint scenario. There are two reasons for this. First,
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while shocks to the dividend yield and stock returns are strongly negatively correlated and thus

give rise to a strong hedging demand for stocks, shocks to the short rate and stock returns are�on
average�largely uncorrelated, c.f. Table 4. Second, as was the case for the dividend yield, the T-bill
rate ended up far below its historical average in 2003:12. However, since the coe¢ cient on the T-bill

rate in the return prediction model is negative, this raises the expected stock return, whereas the

low terminal value of the dividend yield reduces the expected stock return.

We continue to �nd that the level and slope of the stock holdings as a function of the invest-

ment horizon are sensitive to assumptions about breaks. Under the assumption of no breaks (but

accounting for parameter estimation uncertainty), the weight on stocks starts from a level near 70%

and declines to around 50% at the �ve year horizon. The allocation is only marginally higher if

parameter estimation uncertainty is ignored.

Suppose next that we consider historical breaks but ignore future breaks. The far greater

uncertainty about current parameter values under the return model based on the last regime (which

uses 13 years of data after 1990) means that the allocation to stocks drops more precipitously from

a level near 90% at the shortest investment horizon to 40% at the longest horizon. The drop is even

sharper under the model that allows for both past and future breaks. This model sees the weight on

stocks decline from nearly 100% to a level around 10% at the �ve year horizon, suggesting that the

possibility of breaks has an even greater impact on the optimal allocation in the return prediction

model based on the T-bill rate than in the model based on the dividend yield. This is a re�ection

of the greater dispersion of parameter estimates found for this model, as can be seen by comparing

Tables 4 and 5 to Tables 2 and 3.

Once again we computed allocations under a higher coe¢ cient of risk aversion (
 = 10). Stock

holdings continue to slope downwards as a function of the investment horizon and decrease by

roughly half compared to their level when 
 = 5.

To account for the fact that the T-bill rate at the end of our sample (0.83%) is unusually low,

we consider the asset allocations in a second regime with state and parameter values closer to the

overall sample mean. Figure 6 shows the allocation to stocks under the parameters and mean

interest rate value prevailing during the regime from 1952-1968. The allocation to stocks is now

�at under the no-break models (with and without parameter estimation uncertainty) but continues

to decline under the models that allow for breaks, particularly when both past and future breaks

are considered. This suggests again that model instability is more important to the asset allocation

decision than parameter estimation uncertainty.

C. Uncertainty about the number of historical breaks

Return models that allow for breaks include a larger number of parameters than the conventional

full-sample model so one might be concerned that they over�ts the data. We do not believe that this

is a particular cause for concern since the number of breaks is selected using a criterion (posterior

odds) that is known to penalize large models very heavily. In addition, by using a meta distribution

that characterizes commonalities in the model parameters across di¤erent regimes, e¤ectively the
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parameters are being shrunk towards a common prior which tends to reduce the e¤ect of parameter

estimation uncertainty.

One way to address this issue is to integrate out uncertainty about the number of historical (in-

sample) breaks. The e¤ect of using this approach is illustrated in Figure 7. This �gure compares

plots of optimal stock holdings under a forecasting model that assumes seven historical breaks and

under Bayesian Model Averaging which considers between zero and eight breaks. The plots assume

identical prior weights on each of the models in Table 1. The two sets of allocations are quite

similar, particularly for the dividend yield model (left panel). The reason is easy to explain from

Table 1: Nearly 70% of the total probability is allocated to a model with seven breaks while the

remainder is allocated to the model with eight breaks whose break dates and parameter estimates

are very similar to those for the model with seven breaks. Turning to the return equation based on

the T-bill rate (right panel), the model with seven breaks gets a somewhat smaller weight, with the

remainder going to models with �ve or eight breaks. Overall, however, the e¤ect on asset allocations

of conditioning on seven historical breaks is quite small.

D. Model Uncertainty

Figure 8 shows the results of accounting for model uncertainty in a simple experiment that combines

the return forecasting models with up to seven breaks and includes either the dividend yield or the

T-bill rate as a predictor variable, weighting these according to equation (27). Predictive densities

across 18 di¤erent models are considered here (namely two predictor variables, each with between

zero and eight breaks). Optimal stock holdings most resemble the allocation under the forecasting

model based on the T-bill rate. It is easy to understand why: The return forecasting model based

on the T-bill rate gives a better �t than the model based on the dividend yield irrespective of the

number of breaks and hence gets a greater weight in the forecast combination.

VI. Asset Allocation with Rebalancing

Asset allocations reported so far considered a buy-and-hold investor who could not rebalance during

the holding period. The assumption of no rebalancing serves the purpose of highlighting the impor-

tance of breaks to the return process for a long-term investor whose transaction costs are high. In

practice, investors can rebalance broadly diversi�ed stock portfolios at low costs (e.g. through fu-

tures contracts). We therefore next assume that the investor can adjust the portfolio weights every

' = T
B months at B equally spaced points T , T + T

B , T + 2
T
B , ..., T + (B � 1)

T
B . Setting B = 1

gives the buy-and-hold problem as a special case. For notational convenience, in the following we

drop the subscript T , and simply refer to T + b TB as b.

Let !b, b = 1; :::; B � 1, be the weights on the stock portfolio at the rebalancing times. Then
1� !b is the weight on the risk free asset at time T + b TB and the investor�s optimization problem
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becomes

max
f!jgB�1j=0

Eb

"
W 1�

B

1� 


#
(28)

s:t: Wb+1 = Wb

n
(1� !b) exp

�
'rf

�
+ !b exp

�
'rf +Rb+1

�o
:

The derived utility of wealth is de�ned by

J (Wb; rb; xb;�b; �b; Tb) � max
f!jgB�1j=b

Eb

"
W 1�

B

1� 


#
;

where rb and xb are the excess return and predictor variable at time Tb, �b is the collection of model

parameters, including the regime speci�c parameters, the meta hyperparameters and the elements

of the transition probability matrix. Finally, �b is the probability of remaining in the last historical

regime at time Tb (i.e. the probability of not having observed a break in the out-of-sample period

between T and Tb.)

Under power utility this expression simpli�es to

J (Wb; rb; xb;�b; �b; Tb) =
W 1�

b

1� 
 Q (rb; xb;�b; �b; Tb) :

We solve the investor�s dynamic asset allocation problem under structural breaks and rebalanc-

ing by means of Monte Carlo simulation methods. Suppose the investor�s allocation problem has

been solved backward at the rebalancing points B � 1; B � 2; :::; b + 1 so that Q
�
rib; x

i
b;�b; �

i
b; Tb

�
is known for all values i = 1; 2; :::; Gx � G�, where Gx is the number of grid points for the pre-

dictor variable x and G� is the number of grid points used to evaluate the posterior probability

Pr
�
STb+1 = K + 1

��STb = K + 1;ZTb
�
, i.e. the posterior probability of not observing a structural

break between Tb and Tb+1. At each point
�
xb = xib; �b = �ib

�
we then �nd Q

�
rib; x

i
b;�b; �

i
b; Tb

�
by

Monte Carlo integration of the expression

max
!b

Eb

�n
(1� !b) exp

�
'rf

�
+ !b exp

�
'rf +Rb+1

�o1�

Q
�
rib; x

i
b;�b; �

i
b; Tb

��
:

Results from the analysis that accounts for rebalancing are displayed in Figure 9 for the dividend

yield and in Figure 10 for the T-bill rate. Asset allocations under the no-break scenarios become

marginally more �at as a function of the investment horizon independently of whether parameter

estimation uncertainty is considered. Rebalancing has a much greater e¤ect on the models that

allow for breaks. Under the model speci�cation that allows for both past and future breaks and

predictability from the dividend yield, the allocation to stocks goes from being decreasing under no

rebalancing (see Figure 4) to being marginally increasing under rebalancing. Rebalancing has such

a large e¤ect on the asset allocation under breaks since it provides an e¢ cient way for investors to

adjust their asset allocation in case a future adverse shock hits the parameters of the stock return

equation. Still, the optimal asset allocations with and without breaks continue to be very di¤erent

due to di¤erences in the parameter estimates, thus showing that breaks have a very signi�cant e¤ect

on asset allocations even under rebalancing.
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Rebalancing also continues to have strong e¤ects on a long-term investor�s optimal asset alloca-

tion in the model with predictability of returns from the T-bill rate. This can be seen by comparing

Figure 6 to Figure 10. Rather than being strongly downward sloping, the allocation to stocks now

becomes mildly downward sloping in the model that considers past and future breaks.

A. Learning E¤ects

So far we ignored learning e¤ects that arise when investors update their beliefs as captured by the

state probabilities in the light of the arrival of future information. For a buy-and-hold investor this

is not important since no decisions will be a¤ected by future learning. However, under rebalancing,

new information available at the rebalancing points can lead to important changes in the sequence

of optimal portfolio choices and may a¤ect the current investment decision. To account for future

learning e¤ects, let �b+1 = Pr
�
STb+1 = K + 1

��STb = K + 1;ZTb+1
�
be the state probability at the

�rst rebalancing point conditional on the initial information (at time Tb) as well as the new infor-

mation arriving during the ' periods between time Tb and time Tb+1. Investors�learning can then

be incorporated by letting them update their beliefs about the probability of observing structural

breaks in the out-of-sample period using Bayes�rule at each point in time:

�b+1 =
(�b)

' � f
�
zTb+1 + :::+ zTb+'jSTb+1 = STb = K + 1;ZTb

�
f (zTb+1 + :::+ zTb+'jSTb = K + 1;ZTb)

: (29)

Here f
�
zTb+1 + :::+ zTb+'jSTb+1 = STb = K + 1;ZTb

�
is the predictive distribution under no breaks

between Tb and Tb+1 while f (zTb+1 + :::+ zTb+'jSTb = K + 1;ZTb) is the composite predictive dis-
tribution integrating out uncertainty about the timing and the size of any breaks between Tb and

Tb+1, both evaluated at zTb+1 . If learning is ignored, the investor does not update the estimate of

�b+1 from �b = Pr
�
STb+1 = K + 1

��STb = K + 1;ZTb
�
: Di¤erences between �b+1 and �b therefore

re�ect learning e¤ects due to the arrival of new information between Tb and Tb+1. Learning e¤ects

are important since optimal portfolio choices obviously depend not only on future values of asset

returns and predictor variables, but also on future perceptions at the rebalancing points.

As a way to quantify the e¤ect of learning on the optimal asset allocation, we compare in

Figure 11 the allocation under the composite model that accounts for investors�updating of their

state beliefs or ignores it. While the e¤ect of accounting for future learning in the context of this

model is smaller than, say, the e¤ect of accounting for breaks in the �rst instance, it nevertheless

has a systematic e¤ect on the optimal asset allocation which is generally quite a bit lower under

future learning. The reason for this �nding is that learning makes asset returns riskier in the sense

that negative shocks to the investment opportunity set make investors more pessimistic about the

future and hence further decrease future returns. This e¤ect is relatively minor at short investment

horizons but becomes quite signi�cant at longer horizons as can be seen from the �gure.

B. Welfare Costs of ignoring Breaks

Our analysis so far suggests that structural instability in return forecasting models has a large

impact on the investor�s asset allocation. This does not, on its own, imply high expected utility
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costs from ignoring breaks, however. To investigate to which extent di¤erences in asset allocations

under di¤erent forecasting models translate into changes in expected utility, we follow Kandel and

Stambaugh (1996) and compute the cost of ignoring breaks through the certainty equivalent return.

This equates the expected utility of an investor that accounts for past and future breaks with that

of an investor who either ignores breaks or allows for in-sample (historical) breaks but rules out

future out-of-sample breaks. Our calculations allow for rebalancing every 12 months.

To see how this approach works, let the optimal weights of an h�period investor who believes
in a particular model, say Mi corresponding to no breaks, be given by !i;h: These weights give rise

to the following certainty equivalent return:

[exp(h� ceri;h)]1�


1� 
 = E

 
((1� !i;h) exp(rfh) + !i;h exp(rfh+RT+h))1�


1� 


����� p (RT+hjYT )
!
;

where p (RT+hjYT ) is the predictive distribution over which future returns, RT+h, is being evaluated.
If model Mi is not correctly speci�ed, this distribution will di¤er from p (RT+hjMi; YT ). We next

repeat the analysis under a di¤erent model, Mj , that in our case allows for past and future breaks.

This gives rise to another set of portfolio weights, !h, and a certainty equivalent return cerj;h :

[exp(h� cerj;h)]1�


1� 
 = E

 
((1� !j;h) exp(rfh) + !j;h exp(rfh+RT+h))1�


1� 


����� p (RT+hjYT )
!
:

Evaluating these expression under the assumption that the predictive return distribution p (RT+hjYT )
allows for breaks, we can compute the annualized di¤erential certainty equivalence return simply as

1; 200� (cerj;h� ceri;h). For example, when model j allows for breaks while model i ignores breaks,
this measures the cost in certainty equivalence terms of ignoring past and future breaks.

Results from this analysis are presented in Figure 12 in the form of the certainty equivalent

measured in returns per annum. For the model based on the dividend yield, the certainty equivalent

return lies between 0.1 and zero percent when computing the expected utility under past and future

breaks versus under no breaks. However, the certainty equivalence return grows to 1.5 percent at

short horizons under predictability from the T-bill rate, assuming a coe¢ cient of risk aversion of

�ve. When comparing the expected utility under past and future breaks against that under past

breaks only, the picture is reversed as the certainty equivalence returns are highest (0.2-0.4%) under

predictability from the yield and generally smaller under predictability from the T-bill rate.

VII. Sensitivity Analysis and Extensions

A. Robustness to Priors

To investigate the robustness of our empirical results with regard to the assumed priors, we con-

ducted a sensitivity analysis. The greatest sensitivity of our results is related to the speci�cation of

V�. This matrix controls variations in the regression coe¢ cients across regimes. In the basic results,
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we set V� = sd� Im�k with sd = 10. We experimented with di¤erent values of V� and found that

the variation in the parameters across regimes under the non-hierarchical model is preserved when

the diagonal elements of V� exceed the values chosen here. Our choice of V� thus respects the

variation in the original coe¢ cient estimates and allows us to have reasonable meta distributions

for the regression coe¢ cients that can capture the values taken by the coe¢ cients in the various

regimes identi�ed by our model.

Imposing constraints that the driving variable, xt, is stationary (0 < �x < 1) and that the

unconditional mean of this variable is non-negative with symmetric constraints around its historical

average (0 � �x=(1� �x) � 0:08 in the case of the dividend yield) did not have much e¤ect on the
results. Nor did imposing an additional parameter constraint which requires that the unconditional

mean excess stock return within each regime lies between zero and 1% per month (0 � �r+
�r�x
1��x

�
0:01) have much e¤ect on the results.

B. Dependence in Parameters Across Regimes

So far we have assumed that location coe¢ cient vector, vec(Bj), the error term precision,  �2j;i ,

and correlation elements, �j;ic, in each regime j are independent draws from common distributions.

However, it is possible that these parameters may be correlated across regimes, so we consider a

speci�cation that allows for autoregressive dynamics in the scale parameters across neighboring

regimes, vec(Bj)i � (�i+ �ivec(Bj�1)i; �2�;i), i = 1; ::;m2. Once again we adopt a hierarchical prior

for the regime coe¢ cients fBj ;  �2j;i ; �j;icg so the regime-speci�c coe¢ cients, vec(Bj), j = 1; :::;K+1
are correlated across regimes, i.e. vec(Bj) � (�+ �vec(Bj�1);��), where � is a diagonal matrix,
while the error term precisions  �2j;i � Gamma (v0;i; d0;i) are independently and identical (IID)

draws from a Gamma distribution and the correlation elements, �j;ic, are IID draws from a normal

distribution, �j;ic � N(��;ic; �
2
�;ic). At the next level of the hierarchy we assume that

(�;�) � N
�
��;��

�
(30)

��1� � W
�
v�;V

�1
�

�
; (31)

where W (:) is the Wishart distribution and ��, ��, v� and V
�1
� are hyperparameters that need to

be speci�ed a priori. We continue to assume that the hyperparameters of the error term precision

v0;i and d0;i follow exponential and Gamma distributions, c.f. (8)-(9), while the hyperparameters

of the correlation matrix follow a Normal-Inverted gamma distribution, c.f. (10)-(11).

Results for the Dividend Yield model are shown in Table 6, which should be compared to Table

3. There is only mild evidence of dependence in the location parameters across di¤erent regimes,

with persistence parameters of the return and predictor variable equations that have means below

one-half and are less than two standard deviations away from zero.

C. Time-varying Volatility of Returns

It is a well-known empirical fact that the volatility of stock returns varies over time. Ideally this

should be captured by a return forecasting model used for asset allocation. In fact, since our model
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allows for breaks to the covariance matrix of returns, it is capable of accounting for heteroskedasticity

in returns insofar as this coincides with the identi�ed regimes. This is an important consideration

since stock market returns were clearly far more volatile during periods such as the Great Depression.

To see how the volatility of stock returns changes over time in our model, Figure 13 provides a

time-series plot of the standard deviation of the predictive density of returns. Since the standard

deviation of returns (and of the yield) is allowed to vary across regimes in the break model, volatility

follows a step function that tracks the various regimes. In fact, the mean value of the standard

deviation of returns varies signi�cantly from a level around 10% around the Great Depression to a

level near 3-4% in the middle of the sample. This means that the asset allocations we computed

earlier account not simply for shifts to the conditional equity premium but, equally importantly,

also for shifts to the volatility of stock market returns.

D. Sharpe Ratios Within Each of the Regimes

Under the Bayesian approach adopted in this paper, the parameters are random variables. We

can therefore consider the distribution of functions of these parameters such as the Sharpe ratio of

returns within each regime. To this end we plot in Figure 14 the posterior predictive distributions

of the 12-month Sharpe ratios in each of the eight regimes identi�ed by our model. These plots

set the predictor variable (in this case the dividend yield) at its mean value within a given regime.

This ensures that the plots provide the typical distribution of Sharpe ratios emerging within a given

regime. With one exception, the Sharpe ratios generally have a positive mean centered between

0.1 and 1 with very little probability mass on negative values. These values appear quite sensible,

and reveal considerable variation in the Sharpe ratio over the almost eighty years covered by our

sample.

The one regime (1927-1932) that generates a negative mean for the Sharpe ratio is dominated

by the e¤ects of the Great Depression. It is not surprising that returns behaved quite di¤erently

during this regime and that the posterior mean was negative for this regime. This observation does

not violate the basic premise that ex-ante expected risk premia be non-negative since the ex-ante

expected return from the meta distribution is positive. Another way of saying this is that although

our model can be used ex post to document regimes with negative Sharpe ratios, the emergence of

such regimes cannot be predicted in advance.

VIII. Conclusion

Optimal asset allocations are always derived contingent upon a set of assumptions about investors�

knowledge of the underlying return forecasting model (model uncertainty), its parameters (parame-

ter uncertainty) and its stability (structural breaks). Kandel and Stambaugh (1996) and Barberis

(2000) pioneered the analysis of the e¤ect of parameter estimation uncertainty on optimal asset

allocations under predictability in returns. Subsequently, Avramov (2002) and Cremers (2002) ex-

tended their results to account for model uncertainty. In this paper we proposed a further step

that allows for model instability. This is particularly relevant given the long data samples typically
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used to estimate the parameters of return prediction models and the sequence of institutional and

technological changes witnessed in the twentieth century. Hence our analysis provides a method

that accounts for

1. model uncertainty

2. parameter uncertainty

3. uncertainty about the number and size of historical (in-sample) breaks

4. uncertainty about future (out-of-sample) breaks

Our empirical results suggest, �rst, that the parameters of standard forecasting models appear to

be highly unstable and subject to multiple shifts, many of which coincide with important historical

events. Second, we �nd that, once such breaks are accounted for, the possibility of future breaks

has a large impact on the optimal asset allocation of a Bayesian investor endowed with reasonable

priors over the distribution from which new parameters are drawn following future breaks.
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Appendix: Gibbs Sampler for the Return Prediction Model with Multiple Breaks

This appendix extends results in Pesaran, Pettenuzzo, and Timmermann (2004) to cover multivari-

ate dynamic models. We are interested in drawing from the posterior distribution � (�;H; p;ST j ZT ),
where

� =
�
vec(B)1;  1; R1; :::; vec(B)K+1; ;  K+1;�K+1

�
are the K + 1 sets of regime-speci�c parameters (regression coe¢ cients, error term variances and

correlations) and

H =
�
b0; V0; v0;1; d0;1; :::; v0;m; d0;m; ��;12; �

2
�;12; :::; ��;m�1m; �

2
�;m�1m

�
are the hyperparameters of the meta distribution that characterizes how much the parameters of

the return model are allowed to vary across regimes. We also use the notation ST = (s1; :::; sT )

for the collection of values of the latent state variable and ZT = (z1; :::; zT )0 for the time-series of
returns and predictor variables. Finally, p= (p11; p22;:::; pKK)0 summarizes the unknown parameters

of the transition probability matrix in (5).

The Gibbs sampler applied to our set up works as follows: First, states, ST , are simulated
conditional on the data, ZT , the parameters, �; and meta hyperparameters, H; next, the para-
meters and hyperparameters of the meta distribution are simulated conditional on the data and

ST . Speci�cally, the Gibbs sampler is implemented by simulating the following set of conditional
distributions:

1. � (ST j�;H; p;ZT )

2. � (�;Hj p;ST ;ZT )

3. � (pj ST ) :

Here we used the identity � (�;H; pj ST ;ZT ) = � (�;Hj p;ST ;ZT )� (pj ST ) and note that under
our assumptions, � (pj�;H;ST ;ZT ) = � (pj ST ).

Simulation of the states ST requires �forward�and �backward�passes through the data. De�ne
St = (s1; :::; st) and St+1 = (st+1; :::; sT ) as the state history up to time t and from time t to T ,

respectively. We partition the joint density of the states as follows:

p(sT�1j sT ;�;H; p;ZT )� � � � � p(stj St+1;�;H; p;ZT )� � � � � p(s1j S2;�;H; p;ZT ): (32)

Chib (1995) shows that the generic element of (32) can be decomposed as follows

p(stj St+1;�;H; p;ZT ) / p(stj�;H; p;ZT )p(stj st�1;�;H; p); (33)

where the normalizing constant is easily obtained since st takes only two values conditional on the

value taken by st+1. The second term in (33) is simply the transition probability from the Markov

chain. The �rst term can be computed by a recursive calculation (the forward pass through the
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data) where, for given p(st�1j�;H; p;Zt�1), we obtain p(stj�;H; p;Zt) and p(st+1j�;H; p;Zt+1),
..., p(sT j�;H; p;Zt). Suppose p(st�1j�;H; p;Zt�1) is available. Then

p(st = kj Zt;�;H; p) =
p(st = kj Zt�1;�;H; p)� f (ztj vec(B)k;�k;Zt�1)
kX

l=k�1
p(st = lj�;H; p;Zt�1)� f (ztj vec(B)l;�l;Zt�1)

;

where, for k = 1; 2; :::;K + 1�and recalling that plk is the Markov transition probability�

p(st = kj�;H; p;Zt�1) =
kX

l=k�1
plk � p(st�1 = lj�;H; p;Zt�1):

For a given set of simulated states, ST , the data is partitioned into K + 1 groups. Let Zj =�
z0�j�1+1; :::; z

0
�j

�0
and Xj =

�
z0�j�1 ; :::; z

0
�j�1

�0
be the values of the dependent and independent

variables within the jth regime. To obtain the conditional distributions for the regression parameters

and hyperparameters, note that the conditional distributions of vec(B)j are independent across

regimes with15

vec(B)j j��vec(B)j ;H; p;ST ;ZT � N
�
vec(B)j ; V j

�
;

where

V j =
�
X 0
j�

�1
j Xj + V0

��1
vec(B)j = V j

�
X 0
j�

�1
j Zj + V0b0

�
:

The densities of the location and scale parameters of the meta distribution for the regression

parameter, b0 and V0, take the form

b0j�;H�b0 ; p;ST ;ZT � N
�
�� ;��

�
V0j�;H�V0 ; p;ST ;ZT � W

�
v� ; V

�1
�

�
;

where

�� =
�
��1� + (K + 1)V0

��1
�� = ��

 
V0

JP
j=1

vec(B)j +�
�1
� ��

!
;

and

v� = v� + (K + 1)

V � =
JP
j=1

(vec(B)j � b0) (vec(B)j � b0)0 + V� :

15Using standard set notation we de�ne A�b as the complementary set of b in A, i.e. A�b = fx 2 A : x 6= bg.
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Moving to the posterior for the precision parameters within each regime j and for each equation

i, let � = (Zj �XjBj)0 (Zj �XjBj) with �ij being its i-th row and j-th column element. Note

that

s�2j;i

�����Sj ;H; p;ST ;ZT � G

�
v0;i + �ii

2
;
d0;i + nj

2

�
;

where nj is the number of observations assigned to regime j.

The location and scale parameters for the error term precision of each equation are then updated

as follows:

v0;ij�;H�v0;i ; p;ST ;ZT /
K+1Y
j=1

G
�
s�2j;i

��� v0;i; d0;i� exp�v0;ij �0;i� (34)

d0;ij�;H�d0;i ; p;ST ;ZT � G

0@v0;i (K + 1) + c0;i;
K+1X
j=1

s�2j;i + d0;i

1A :

Drawing v0;i from (34) is complicated since we cannot make use of standard distributions. We

therefore introduce a Metropolis-Hastings step in the Gibbs sampling algorithm. At each loop of

the Gibbs sampling we draw a value v�0;i from a Gamma distributed candidate generating density,

q
�
v�0;i
�� vg�10;i

�
� Gamma

�
&; &=vg�10;i

�
:

This candidate generating density is centered on the last accepted value of v0;i in the chain, v
g�1
0;i ,

while the parameter & de�nes the variance of the density and the rejection in the Metropolis-Hastings

step. Higher values of & mean a smaller variance for the candidate generating density and thus a

smaller rejection rate. The acceptance probability is given by

�
�
v�0;i
�� vg�10;i

�
= min

24 �
�
v�0;i

����;H�v0;i ; p;ST ;ZT� =q �v�0;i��� vg�10;i

�
�
�
vg�10

����;H�v0;i ; p;ST ;ZT� =q �vg�10;i

��� v�0;i� ; 1
35 : (35)

With probability �
�
v�0;i

��� vg�10;i

�
; the candidate value v�0;i is accepted as the next value in the

chain. Conversely, with probability
�
1� �

�
v�0;i

��� vg�10;i

��
the chain remains at vg�10;i . The acceptance

ratio penalizes and rejects values of v0;i drawn from low posterior density areas.

Moving to the matrix of correlations within each regime, �j , each element of these, �j;ic, is

sampled independently from the other elements in �j . Liechty, Liechty, and Müller (2004) show

that�up to a proportionality constant�its distribution is

f
�
�j;icj��Rj ;H; p;ST ;ZT

�
/ j�j j�m=2 exp

n
�tr

�
��1j Cj

�
=2
o

(36)

� exp
�
�
�
�j;ic � ��;ic

�
=
�
2�2�;ic

�	
I fR 2 Rmg ;

where I f�g is the indicator function and Cj is the correlation matrix in regime j. The indicator func-
tion I f� 2 Rmg ensures that the correlation matrix is positive de�nite and introduces dependence
among the �j;ic-values.
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The full conditional densities for ��;ic and �
2
�;ic are similar to the conjugate densities with an

additional factor due to the constraint requiring �j to be positive de�nite:

f
�
��;ic

���;H���;ic ; p;ST ;ZT� /
K+1Y
j=1

exp
n
�
�
�j;ic � ��;ic

�2
=
�
2�2�;ic

�o
(37)

� exp
n
�
�
��;ic � ��;ic

�
=
�
2�2ic

�o
I f� 2 Rmg

f
�
�2�;ic

���;H��2�;ic ; p;ST ;ZT� /
K+1Y
j=1

exp
n
�
�
rj;ic � ��;ic

�2
=
�
2�2�;ic

�o
(38)

�
2
�
1�a�;ic

�
�;ic exp

�
�b�;ic=�2�;ic

�
I fR 2 Rmg

The distributions of the correlation coe¢ cients within each regime, �j;ic, and of the hyperparameters

��;ic and �
2
�;ic are not conjugate so sampling is accomplished using a Griddy Gibbs sampling step

inside the main Gibbs sampling algorithm.

Finally, p is simulated from the conditional beta posterior

pjj j ST � Beta(a+ lj ; b+ 1);

where lj = � j � � j�1 � 1 is the duration of regime j.
The distribution for the hyperparameters a and b is not conjugate so sampling is accomplished

using a Metropolis-Hastings step. The conditional posterior distribution for a is

� (aj�;H�b;ST ; p;ZT ) /
KQ
j=1

Beta (pjj j a; b)Gamma
�
aj a0; b0

�
;

and similarly for b. To draw candidate values, we use a Gamma proposal distribution with shape

parameter &; mean equal to the previous draw ag

q (a�j ag) � Gamma (&; &=ag) ;

and acceptance probability

� (a�j ag) = min
�
� (a�j�;H�b;ST ; p;ZT ) =q (a�j ag)
� (agj�;H�b;ST ; p;ZT ) =q (agj a�)

; 1

�
:

If no new breaks occur out-of-sample, we obtain a draw from � (BK+1;�K+1jH; p;ST ;ZT ).
Then, conditional on these parameters, we draw RT+h from the posterior predictive density,

RT+h � p (RT+hjBK+1;�K+1; ST+h = K + 1; ST = K + 1;ZT ) : (39)

With a single future break, we update the posterior distributions of b0, V0, v0;1,d0;1,v0;2,d0;2,��;12
and �2�;12 as follows:

Draw b0 from

b0 � � (b0j�;H�b0 ; P; ST ;ZT ) ;
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and V0 from

V0 � �
�
V �10

���;H�V0 ; P; ST ;ZT � :
Draw v0;1 and v0;2 from

v0;i � �
�
v0;ij�;H�v0;i ; P;ST ;ZT

�
;

and d0;1 and d0;2 from

d0;i � �
�
d0;ij�;H�d0;i ; P;ST ;ZT

�
:

Draw ��;12 from

��;12 � �
�
��;12

���;H���;ic ; P;ST ;ZT� ;
and �2�;12 from

�2�;12 � �
�
�2�;12

���;H��2�;ic ; P;ST ;ZT� :
For a �xed set of hyperparameters, draw BK+2 and �K+2 from their respective priors given by

� (BK+2j b0; V0) and

�
�
�K+2j v0;1; d0;1; v0;m; d0;m; ��;12; �2�;12ZT

�
, respectively.

Draw RT+h from the posterior predictive density,

RT+h � p (RT+hjST+h = K + 2; �K+1 = T + j; ST = K + 1;ZT ) : (40)

To obtain the estimate of pK+1;K+1 needed in equation (??), we combine information from the

last regime with prior information, assuming the prior pK+1;K+1 � Beta(a; b), so

pK+1;K+1j ZT � Beta(a+ nK+1;K+1; b+ 1) (41)

where nK+1;K+1 is the number of observations from regime K + 1.

Turning to the case with an arbitrary number of future breaks, to draw from the distribution

of the parameters a; b that characterize the break probability, we use that the conditional posterior

distributions for a and b are

� (aj�;H�b;ST ; P;ZT ) /
KQ
j=1

Beta (pjj j a; b)Gamma
�
aj a0; b0

�
� (bj�;H�b;ST ; P;ZT ) /

KQ
j=1

Beta (pjj j a; b)Gamma
�
bj a0; b0

�
:

Using these new posterior distributions, we generate draws for pK+2;K+2 using the prior distribution

for the pii�s and the resulting posterior densities for a and b;16

pK+2;K+2j a; b � Beta(a; b):

16Since we do not have any information about the length of regime K + 2 from the estimation sample, we rely on

prior information to get an estimate for pK+2;K+2.
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Figure 1: Posterior probabilities of breakpoint locations for the return prediction model with seven

breaks based on the dividend yield. The estimation sample is 1926:12 - 2003:12.
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Figure 2: Posterior probabilities of breakpoint locations for the return prediction model with seven

breaks based on the T-bill rate. The estimation sample is 1926:12 - 2003:12.
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Figure 3: Optimal Asset Allocation as a function of the investment horizon for a buy-and-hold

investor with power utility over terminal wealth, U(WT+h) =
1

(1�
)W
1�

T+h, where h is the forecast

horizon and 
 is the coe¢ cient of relative risk aversion. The panels show allocations to stocks under

the assumption that the dividend yield is set at its value at the end of the sample, Y ldT = 1:5%.

The dotted line shows allocations starting from the regime at the end of the sample (2003:12). The

dashed line shows the full-sample allocation ignoring breaks and parameter estimation uncertainty.

The dashed/dotted line shows allocations based on full-sample parameter values (no breaks) but

accounting for parameter uncertainty. Finally, the solid line shows allocations under the model that

accounts for both past and future breaks.
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Figure 4: Optimal Asset Allocation as a function of the investment horizon for a buy-and-hold

investor with power utility over terminal wealth, U(WT+h) =
1

(1�
)W
1�

T+h, where h is the forecast

horizon and 
 is the coe¢ cient of relative risk aversion. The panels show allocations to stocks under

the assumption that the current regime parameters and the dividend yield are set at the values

from the regime prevailing during 1958-1974. The dotted line shows allocations starting from the

end of the 1952-1974 regime. The dashed line shows the full-sample allocation ignoring breaks and

parameter estimation uncertainty. The dashed/dotted line shows allocations based on full-sample

parameter values (no breaks) but accounting for parameter uncertainty. Finally, the solid line shows

allocations under the model which accounts for both past and future breaks.
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Figure 5: Optimal Asset Allocation as a function of the investment horizon for a buy-and-hold

investor with power utility over terminal wealth, U(WT+h) =
1

(1�
)W
1�

T+h, where h is the forecast

horizon and 
 is the coe¢ cient of relative risk aversion. The panels show allocations to stocks under

the assumption that the T-bill rate is set at its value at the end of the sample, TBT = 0:83%. The

dotted line shows allocations starting from the regime at the end of the sample (2003:12). The

dashed line shows the full-sample allocation ignoring breaks and parameter estimation uncertainty.

The dashed/dotted line shows allocations based on full-sample parameter values (no breaks) but

accounting for parameter uncertainty. Finally, the solid line shows allocations under the model that

accounts for both past and future breaks.
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Figure 6: Optimal Asset Allocation as a function of the investment horizon for a buy-and-hold

investor with power utility over terminal wealth, U(WT+h) =
1

(1�
)W
1�

T+h, where h is the forecast

horizon and 
 is the coe¢ cient of relative risk aversion. The panels show allocations to stocks

under the assumption that the current regime parameters and the T-bill rate are set at the values

from the regime prevailing during 1952-1968. The dotted line shows allocations starting from the

end of the 1952-1968 regime. The dashed line shows the full-sample allocation ignoring breaks and

parameter estimation uncertainty. The dashed/dotted line shows allocations based on full-sample

parameter values (no breaks) but accounting for parameter uncertainty. Finally, the solid line shows

allocations under the model that accounts for both past and future breaks.
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Figure 7: Stock allocations accounting for uncertainty about the number of in-sample breaks. The

left panels show stock holdings that average across models based on the dividend yield as a predictor

variable, using Bayesian Model Averaging to average across models with between zero and eight

breaks. The right panels plot the allocations when averaging across models with between zero and

eight breaks based on the T-bill rate as the predictor variable. In all panels, the dotted lines show

stock holdings under the model with seven historical breaks, while the solid lines show allocation

under Bayesian Model Averaging. In all cases the allocations allow for the possibility of future

(out-of-sample) breaks.
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Figure 8: Stock allocations accounting for model uncertainty and uncertainty about the number

of historical breaks. The panels show stock holdings that use Bayesian Model Averaging to inte-

grate across models based either on the dividend yield or on the T-bill rate as predictor variables.

Allocations are based on the composite model that accounts for both past and future breaks.
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Figure 9: Optimal Asset Allocation as a function of the investment horizon for an investor who

optimally rebalances every 12 months and has power utility over terminal wealth, U(WT+h) =
1

(1�
)W
1�

T+h, where h is the forecast horizon and 
 is the coe¢ cient of relative risk aversion. The two

panels show allocations to stocks under the assumption that the dividend yield is set at the average

during the period 1958-1974, Y ldT = 3:1%. The dotted line shows allocations starting from the

end of the 1958-1974 regime. The dashed line shows the full-sample allocation ignoring breaks and

parameter estimation uncertainty. The dashed/dotted line shows allocations based on full-sample

parameter values (no breaks) but accounting for parameter uncertainty. Finally, the solid line shows

allocations under the composite model which accounts for past and future breaks.
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Figure 10: Optimal Asset Allocation as a function of the investment horizon for an investor who

optimally rebalances every 12 months and has power utility over terminal wealth, U(WT+h) =
1

(1�
)W
1�

T+h, where h is the forecast horizon and 
 is the coe¢ cient of relative risk aversion. The

two panels show allocations to stocks under the assumption that the T-bill rate is set at the average

during the period 1952-1968, TbiT = 2:68%. The dotted line shows allocations starting from the

end of the 1952-1968 regime. The dashed line shows the full-sample allocation ignoring breaks and

parameter estimation uncertainty. The dashed/dotted line shows allocations based on full-sample

parameter values (no breaks) but accounting for parameter uncertainty. Finally, the solid line shows

allocations under the model which accounts for both past and future breaks.
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Figure 11: Optimal Asset Allocation as a function of the investment horizon for an investor who

optimally rebalances every 12 months and learns about the probability of future break points. The

investor is endowed with power utility over terminal wealth, U(WT+h) =
1

(1�A)W
1�A
T+h , where h is

the forecast horizon and A is the coe¢ cient of relative risk aversion. The panels show allocations

to stocks under the assumption that the dividend yield is set at its value at the end of the sample,

Y ldT = 1:5%. The solid line shows allocations under the model which accounts for past and future

breaks but ignores learning, while the dashed line shows allocations under this model and under

learning.
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Figure 12: Certainty equivalence returns (in annualized percentage terms) under rebalancing as a

function of the investment horizon for di¤erent levels of risk aversion, 
. For each panel, the solid

line shows the di¤erence in certainty equivalence returns between a model that allows for past and

future breaks and a model that ignores breaks. The dashed/dotted line shows the di¤erence in

certainty equivalence returns between a model that allows for past and future breaks and a model

based on the last regime that considers past breaks but ignores future breaks.
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Figure 13: Standard deviations of the predictive distribution of excess returns when the predictor

variable is the dividend yield (top panel) or the T-bill rate (bottom panel) under a model with seven

breaks.
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Figure 14: Annualized Sharpe ratios of the (posterior) predictive return distribution for the eight

regimes based on a model with predictability from the dividend yield and seven breaks.
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I. Excess returns - Dividend Yield

# breaks log lik. marg. log lik. Post. Prob. Break locations

0 1368.18 1319.34 0.00

1 1433.09 1369.33 0.00 Apr-52

2 1445.83 1383.28 0.00 Feb-52 Sep-54

3 1454.38 1387.49 0.00 May-40 Apr-52 Jul-92

4 1459.03 1390.04 0.00 May-40 Feb-58 Jan-74 Jul-92

5 1462.11 1391.51 0.00 May-40 Apr-52 Feb-58 Mar-74

Jul-92

6 1476.60 1404.75 0.01 Aug-32 May-40 Feb-58 Mar-74

Oct-82 Jul-92

7 1482.55 1408.74 0.69 Aug-32 May-40 Apr-52 Feb-58

Mar-74 Oct-82 Jul-92

8 1482.64 1407.89 0.30 Jun-32 May-40 Apr-52 Feb-58

Mar-74 Oct-82 Apr-92 Jul-92

II. Excess returns - Treasury Bill Rate

# breaks log lik. marg. log lik. Post. Prob. Break locations

0 1368.52 1323.33 0.00

1 1378.69 1318.98 0.00 Sep-57

2 1448.08 1389.49 0.00 Nov-37 Aug-47

3 1466.27 1405.79 0.00 Jan-34 Aug-47 Sep-57

4 1471.20 1407.12 0.00 Jan-34 Aug-47 May-73 Jan-90

5 1476.13 1410.67 0.13 Jan-34 Aug-47 Oct-68 Jul-79

Oct-82

6 1474.18 1406.79 0.00 Jan-34 Aug-47 Sep-57 Jul-79

Aug-82 Jan-90

7 1481.13 1412.29 0.64 Jan-34 Aug-47 Oct-52 Oct-68

Jul-79 Aug-82 Jan-90

8 1481.41 1411.26 0.23 Jan-34 Aug-47 Oct-57 Oct-62

Jul-66 Jul-79 Aug-82 Jan-90

Table 1: Model comparison and selection of the number of breaks in the return forecasting models.

The table shows estimates of the log-likelihood for stock returns and the predictor variable (either

the dividend yield or the T-bill rate), marginal log-likelihood estimates for returns and posterior

probabilities for models with di¤erent numbers of breaks along with the time of the break points for

the di¤erent models. The top and bottom panels display results when the predictor for the excess

return is the lagged dividend yield (panel I) and the lagged T-Bill rate (panel II), respectively. The

data sample is 1926:12 - 2003:12.
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Regimes

Full sample 27-32 32-40 40-52 52-58 58-74 74-82 82-92 92-03

�r

mean -0.003 -0.028 -0.026 -0.016 -0.028 -0.062 -0.086 -0.056 -0.020

s.d. 0.005 0.029 0.033 0.015 0.024 0.021 0.033 0.028 0.011

�r

mean 0.197 0.392 0.737 0.479 0.825 2.090 1.999 1.747 1.408

s.d. 0.120 0.489 0.701 0.262 0.508 0.680 0.724 0.782 0.576

�r

mean 0.055 0.105 0.086 0.038 0.034 0.038 0.050 0.046 0.045

s.d. 0.001 0.009 0.007 0.002 0.003 0.002 0.004 0.003 0.003

�x

mean 0.001 0.005 0.004 0.002 0.002 0.003 0.004 0.002 3.0E-04

s.d. 0.001 0.002 0.002 0.001 0.001 0.001 0.002 0.001 2.0E-04

�x

mean 0.983 0.916 0.901 0.967 0.951 0.919 0.908 0.940 0.979

s.d. 0.006 0.033 0.035 0.016 0.022 0.021 0.034 0.026 0.009

�x�100
mean 0.286 0.714 0.443 0.235 0.148 0.111 0.226 0.149 0.065

s.d. 0.007 0.063 0.036 0.014 0.013 0.006 0.016 0.010 0.004

�rx

mean -0.872 -0.930 -0.936 -0.858 -0.928 -0.955 -0.963 -0.941 -0.946

s.d. 0.008 0.021 0.022 0.023 0.023 0.020 0.017 0.021 0.020

p

mean 0.982 0.986 0.990 0.983 0.992 0.987 0.988 N.A.

s.d. 0.013 0.010 0.008 0.013 0.006 0.010 0.010 N.A.

Table 2: Parameter estimates for the return (rt) forecasting model with seven break points, based on

the lagged dividend yield (xt�1) as a predictor variable: rt = �rj + �rjxt�1 + �rt, �rt � N
�
0; �2rj

�
,

xt = �xj + �xjxt�1 + �xt, �xt � N
�
0; �2xj

�
, Pr (st = jj st�1 = j) = pjj , corr (�rt; �xt) = �rxj ,

� j�1 + 1 � t � � j . The sample period is 1926:12-2003:12.
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Hyperparameters of Meta distributions

I Return equation

Mean Parameters

mean s.d. 95% conf interval

b0(�r) -0.042 0.038 -0.123 0.033

b0(�r) 1.218 0.508 0.225 2.209

II Dividend Yield equation

Mean Parameters

mean s.d. 95% conf interval

b0(�x) 0.003 0.002 1.0E-04 0.008

b0(�x) 0.918 0.033 0.839 0.972

Correlation parameters

mean s.d. 95% conf interval

�� -0.920 0.042 -0.984 -0.831

Transition Probability parameters

mean s.d. 95% conf interval

a0 33.258 15.015 10.498 73.091

b0 0.806 0.308 0.357 1.462

Table 3: Estimates of the parameters of the meta distribution that characterizes variation in the

parameters of the return model across di¤erent regimes. The estimates are from a model with

predictability of returns from the dividend yield and assume seven historical breaks. Within the

jth regime the model is: zt = B0jxt�1+ut, where zt = (rt; xt)
0 is the vector of stock returns and the

predictor variable, and vec(B)j � N(b0; V0). �j � N(��; �
2
�) is the correlation between shocks to the

dividend yield and shocks to returns in the jth regime, while pjj � Beta(a0; b0) is the probability

of remaining in the jth regime. The sample period is 1926:12-2003:12.
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Regimes

Full sample 27-34 34-47 47-52 52-68 68-79 79-82 82-90 90-03

�r

mean 0.009 -0.001 0.007 0.016 0.027 0.037 0.092 0.021 0.009

s.d. 0.003 0.018 0.005 0.011 0.007 0.019 0.034 0.024 0.010

�r

mean -1.402 -0.439 -3.343 -4.353 -8.215 -8.203 -9.976 -2.452 -0.942

s.d. 0.731 6.886 11.343 10.542 3.015 4.074 3.656 4.086 2.724

�r

mean 0.055 0.109 0.059 0.036 0.033 0.047 0.047 0.049 0.044

s.d. 0.001 0.008 0.003 0.004 0.002 0.003 0.006 0.004 0.002

�x�100
mean 0.004 0.006 0.001 0.017 0.011 0.032 0.132 0.049 0.006

s.d. 0.002 0.004 0.001 0.006 0.005 0.014 0.069 0.021 0.004

�x

mean 0.986 0.958 0.924 0.844 0.959 0.937 0.832 0.914 0.974

s.d. 0.005 0.021 0.027 0.065 0.020 0.030 0.075 0.037 0.012

�x�100
mean 0.040 0.033 0.004 0.011 0.027 0.045 0.129 0.047 0.025

s.d. 0.001 0.003 2.7E-04 0.002 0.001 0.003 0.017 0.004 0.001

�rx

mean 0.005 0.067 0.003 0.170 -0.011 -0.189 -0.311 0.302 0.067

s.d. 0.032 0.026 0.026 0.046 0.033 0.034 0.033 0.037 0.030

p

mean 0.985 0.991 0.981 0.992 0.989 0.976 0.987 N.A.

s.d. 0.012 0.007 0.015 0.006 0.009 0.019 0.010 N.A.

Table 4: Parameter estimates for the return (rt) forecasting model with seven break points, based

on the lagged T-bill rate (xt�1) as a predictor variable: rt = �rj + �rjxt�1 + �rt, �rt � N
�
0; �2rj

�
,

xt = �xj + �xjxt�1 + �xt, �xt � N
�
0; �2xj

�
, Pr (st = jj st�1 = j) = pjj , corr (�rt; �xt) = �rxj ,

� j�1 + 1 � t � � j . The sample period is 1926:12-2003:12.
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Hyperparameters of Meta Distributions

I Return equation

Mean Parameters

mean s.d. 95% conf interval

b0(�r) 0.026 0.040 -0.062 0.101

b0(�r) -4.645 4.840 -14.833 4.430

II T bill equation

Mean Parameters

mean s.d. 95% conf interval

b0(�x) 4.6E-04 3.4E-04 4.8E-05 0.001

b0(�x) 0.897 0.042 0.793 0.961

Correlation parameters

mean s.d. 95% conf interval

�� 0.013 0.110 -0.205 0.229

Transition Probability parameters

mean s.d. 95% conf interval

a0 26.625 13.103 7.656 54.678

b0 0.660 0.288 0.237 1.271

Table 5: Estimates of the parameters of the meta distribution that characterizes variation in the

parameters of the return model across di¤erent regimes. The estimates are from a model with

predictability of returns from the T-bill rate and assume seven historical breaks. Within the jth

regime the model is: zt = B0jxt�1 + ut, where zt = (rt; xt)
0 is the vector of stock returns and the

predictor variable, and vec(B)j � N(b0; V0). �j � N(��; �
2
�) is the correlation between shocks to

the T-bill and shocks to returns in the jth regime, while pjj � Beta(a0; b0) is the probability of

remaining in the jth regime. The sample period is 1926:12-2003:12.
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Hyperparameters of Meta distributions

I Return equation

Mean Parameters

mean s.d. 95% conf interval

��r -0.019 0.104 -0.188 0.134

��r 0.770 0.457 0.086 1.573

��r 0.490 0.286 0.048 0.945

��r 0.465 0.275 0.043 0.924

II Dividend Yield equation

Mean Parameters

mean s.d. 95% conf interval

��x 1.5E-04 0.0986 -0.157 0.163

��x 0.490 0.288 0.037 0.931

��x 0.497 0.288 0.045 0.942

��x 0.489 0.290 0.045 0.942

Table 6: Estimates of the hyperparameters of the meta distribution for the return forecasting model

with seven break points, based on the dividend yield as the predictor variable under dependence

of the regression parameters across regimes: zt = B0jxt�1 + ut where zt = (rt; xt)
0 is the excess

return and the predictor variable, and vec(Bj)i � N(�i + �ivec(Bj�1)i; �
2
�;i), j = 1; :::;K + 1 and

i = 1; ::;m2. The sample period is 1926:12-2003:12.
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