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Abstract

Term structure models are widely used to price interest-rate derivatives such as swaps and
bonds with embedded options. This paper describes how a genera one-factor modd of the
ghort-rate can be implemented as a recombining trinomia tree and calibrated to market prices
of actively traded instruments such as caps and swap options. The generd model encompasses
most popular one-factor Markov models as specia cases. The implementation and the
cdibration procedures are sufficiently genera that they can sdect the functiona form of the
mode that best fits the market prices. This alows the modd to fit the prices of in- and out-of-
the-money options when there isavolatility skew. It aso alows the modd to work well very
low interest-rate economies such as Japan where other modd s often falil.



The Generd Hull-White Modd and Super Cdibration

There are two mgor approaches to modeling the term structure of interest rates. One approach
isto model the evolution of elther forward rates or discount bond prices. This gpproach was
first developed by Heath, Jarrow and Morton (HIM, 1992). In this paper they model the
behavior of ingtantaneous forward rates. The method is both powerful (it contains many other
term Structure models as specid cases) and easy to understand. It exactly fitsthe initia term
dructure of interest rates, it permits as complex avolatility structure as desired, and it can
readily be extended to as many sources of risk as desired.

More recently the HIM modd has been modified by Brace, Gatarek and Musidla (1997),
Jamshidian (1997), and Miltersen, Sandmann, and Sondermann (1997) to apply to non-
ingtantaneous forward rates. This modification has come to be known asthe Libor Market
Modd (LMM). In one version, 3-month forward rates are modeled. This allows the model to
exactly replicate observed cap prices that depend on 3-month forward rates. In another verson
forward swap rates are modeled. This alows the modd to exactly replicate observed European
swap option prices. The main difficulty with the HIM —LMM moddsisthat they are difficult to
implement by any means other then Monte Carlo smulation. As aresult they are
computationaly dow and difficult to use for American or Bermudan style options.

The other mgor approach to modding the term Structure is to describe the evolution of the
instantaneous rate of interest, the rate that applies over the next short interva of time. Short rate
models are often more difficult to understand than modes of the forward rate. However, they
are implemented in the form of arecombining tree Smilar to the stock price tree first developed
by Cox, Ross, and Rubingtein (1979). This makes them computationdly fast and useful for
vauing al types of interest-rate derivatives.

The Generalized Mode

The generdized Hull-White mode isamodd in which some function of the short-rate obeys a
Gaussan diffusion process of the following form

df (r)=ga(t)- a(t)f (r)gdt +s (t)dz (1)

where dzisaWiener process. The function ¢(t) is selected so that the mode fitsthe initid term
gructure. The functions a(t) and s(t) are volatility parameters that are chosen to fit the market
prices of a set of actively traded interest-rate options.

The generdized Hull-White modd contains many popular term structure models as specid
cases. When f(r) =r, a(t) = 0 and s iscongtant it isthe Ho-Lee (1986) modd. When f(r) =r
and a(t) isnot zero it is the origind Hull-White (1990) mode!. In both these modes future
interest rates of dl maturities are normaly distributed and there are many andytic solutions for
the prices of bonds and options on bonds. When f (r )= Jr itisamode developed by

Pelsser (1996) and when f(r) = Inr it isthe Black-Karasinski (1991) modd which is perhaps



the most popular version currently in use. In thismodd the future short-rate is log-normaly
digtributed and rates of al other maturities are gpproximately log normaly distributed.

In the next section of the paper we will describe how this class of moddsisimplemented using a
recombining trinomid tree. In the section on calibration we will discuss how the model
parameters are chosen and findly, in the section on super-cdibration we will show how the
functiond form f(r) can be selected.

I mplementation

In this section we will describe how the generdized modd isimplemented in arecombining
trinomid tree. Initidly we will assume thet the volatility parameters, a(t) and s(t), and the
functiond form, f(r), have been sdlected. Later we describe how these are chosen.

Firg we set the current time to 0 and define a deterministic function g, which satisfies

dg = [q(t)-a(t)g(t)]ct
We then define anew variable, x, that is

x(r,t)=f(r)- g(t)
The new variable obeys a much smpler diffuson process

dx=-a(t)xdt+s (t)dz

Theinitid value of g ischosen so that theinitia value of x is0.* This processis mean reverting
to O sothat if x sartsat O the unconditiona expected vaue of x a dl futuretimesisO.

Building atreefor f(r) involves 4 steps. The firgt step is to sdlect the spacing of the tree nodes in
the time dimension. The second step isto decide on the spacing of the nodes in the interest-rate
dimension. The third step is to choose the branching process for x(r, t) through the grid of
nodes. Once thisis complete, the fourth step involves shifting the tree by the value of g at each
point in time. This then resultsin atree for f.

1. Choosng the times at which nodes are placed

When aterm structure modd isimplemented it is usualy for some specific purpose such as
pricing an option on a swap. As aresult it is convenient to congtruct the tree in such away that
we have nodes on specified dates such as payment and exercise dates. Suppose we wish to
build an n-step tree with nodes at times t, ty, to, ..., ty whereto =0, t; > ti; and t, = T, the
longest date to be considered. Since the values of dl bonds, swaps and other instruments are
computed by discounting their payoffs back through the tree, T must be chosen so that no

t
! When the reversion rate is constant the form of g is g (t) =g (0) e+ Qq (S) e s whilethis

looks ominous we do not actually ever have to determine its exact form. The addition of this function to the
processisjust adevice that makes the implementation simpler.



payments occur after T. We should aso ensure that we have chosen our node times, t;, so that
there isa set of nodes on every payment date. Other node times can be sdlected to increase the
resolution of the tree.

2. Choosing the values of x where nodes are to be placed

Once the times at which nodes are to be placed have been chosen, at each time step we must
choose the values of x where nodes are to be placed. First we place anode at x = 0 at each
timestep. Then a eachtimestep ti (i = 1, ..., n) weplacenodesat +Dx,, +2Dx, ...,
+mDx . The determination of the value of m; will be explained in the following section. In
choosing the Dx, the only constraint we face is that the spacing of the nodes must be wide

enough to represent the volatility of x at that time. Thisis achieved by setting the x-spacing at
timet; to?

Dx =s (t.,)/3(t - t.,) 2

The next gage of the implementation isto determine how the nodes in (x, t) space will be
connected together. Thiswill also determine the my’s, the indices of the highest and lowest
nodes that are attainable at each time step.

3. Choosing the branching process

We choose the branching through the tree so thet at every point in the tree we are mimicking the
diffuson process as closdly as possible. Thisis done by ensuring that the expected change and
the variance of the change in x seen on the tree are the same as predicted by the diffuson
process for x. At each nodein the tree we select the branching process and the branching
probabilities accordingly.

Suppose that we are at some node jDx. at step i and propose to branch to nodes
(k-1)Dx,,, kDx,,, and (k+1)Dx,, at stepi+1. From the diffusion process for x we
calculate the expected mean changein x over the next timeinterval, E(dx) =M , and the
second moment of x, E(dx?) =V +M? ® Let the probability of branching to (k - 1) Dx,,

kDx,,, and (k +1) Dx,, be pq, pm and p, respectively. Matching the mean and variance gives

% The node spacing can be set to DX =S (ti_l) n(1; - ti_l) for arange of values of n without impairing

the numerical procedure. The choice n = 3 is made because this allows the numerical procedure to exactly
replicate the first 5 moments of the distribution of x(t;)}x(t;.;) when the reversion rate is zero. This produces a
slightly more rapid convergence than do other values of n.

3 A reasonable approximationis M = - xa(t ) (t,,- t.)= - jDx; a(t )(t,,- ) and

V=s? ('[i ) ('[i+l -t ) . When a and s are constant more exact calculations are possible.



JDX|+M :kDXi+1+(pu_ pd)DXi+1
V+(jDg+M)" =k D¢, +2k(p, - py) DX, +(p, + ) DX
Solving equation (3) we find that
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o

Py (4)

where
o = ADX +M - KD,
DX,
is the distance from the expected vaue of x to the central node to which we are branching. If
V=s?(t)(t,,- t) and Dx,, =s (t;)/3(t.. - t;) it can beshown that al the branching
probabilities are positiveif - +/2/3 <a <+/2/3. That is, when branching from apoint jDx ,
we should choose as the central node of the 3 successor nodes a node within+/2/3Dx.,, of the

expected outcome. Usualy we choose the node closest to the expected outcome by setting k to
thevaueof (jDx +M)/Dx,, rounded to the nearest integer. This ensures we are within

Dx.,, /2 of the expected outcome and the condition for positive probabilitiesis satisfied.

This procedure we have just described determines the tree branches and the branching
probabilities. It dso defines the highest and lowest possible node a each step. The highest node
at step i+1, my.4, is determined by the branching from the highest node at step i, mi. Smilarly,
the lowest node at step i+1, -4, is determined by the branching from the lowest node at step
i, —m. Since at step 0 there is only one node my = 0. From this the highest and lowest nodes at
step 1 and al subsequent steps can be determined.

Weilludrate the caculation with an extreme example. We suppose that t,=0, t,=1.5, t,=1.6,
and t;=2.0 S0 that the time steps are of widely varying lengths. (In most applicationsthey are
much more equa than this.) We suppose that the volatility parameters are a(t)=1.0 and

S (t)=0.30for dl t. The node spacing at each step is determined using equation (2). This gives
Dx;,=0.6364, Dx,=0.1643, and Dx3=0.3286. The grid of nodes on the tree is therefore as
shownin Table 1.

The next step to compute the branching process. Starting at the root node (t=0 and x=0), we
compute x+M=x-ax” 1.5=0 and V =0.30* * 1.5=0.135. The node closest to the expected
outcomeisthenodek =0 at t = 1.5. For thisnode a = 0 and using equetion (4) the branching
probabilities are pq = 0.1667, pm = 0.6667 and p, = 0.1667. Smilarly a the highest node a



step 1 (t = 1.5and x = 0.6364), x+M =x- ax’ 0.1=0.5728, V =0.30°" 0.1=0.009,
(x+M)/Dx,,=3.486 sok = 3,and a =(0.5728- 3" 0.1643)/0.1643=0.4857. The
results for every node are in the Table 2 and the shape of the treeis shown in Figure 1.

4. Adjuging thetree

Thefina stage of the tree building process involves adding the function g(t) to the vaue of x at
each node. Since g(t) isafunction of ¢(t) and the function q(t) is selected so that the mode fits
the term structure, the de facto processis to adjust the nodes in the tree so that it correctly
prices discount bonds of al maturities. Thisis done in asequentia process sarting a the root
node.

We denote node (i,j) asthe node on thetree at timet; for which x=jDx; (O£ i £ n;-m; £] £
m;) and define

gi- g(t)
Xij: vaueof x at node (i,))
fi: vadueof f(r) at node (i,j). Thisisx;+g:.
rij: interest rate at node (i,j) . Thisisf *(x;+g;)
Q(i,j [n,k): value at node (h,k) of a security that pays off $1 at node (i,j) and nothing at
any other node.’*
p(i,j [n,k): the probability of transiting from node (h,k) to node (ij)
Q;:Q(1,j10,0)

The variable Q(i,j |h,k) is known as an Arrow-Debreu (AD) price. We will refer to the Q; as
root AD pricefor node (i,)).

The root AD price for node (i,j) can be determined once the root AD prices for dl nodes at
timet;; have been determined. To see thiswe note that

Q1] li-1,k)=p(i.jfi-1,K)exp[-ri1ti-ti-1)
and

Q(iv j1i- 1K) Q..
p(i1j |i - lk)eXp('ri-l,k(ti B ti—l))Qi—l,k

~ Qo = Qo

Q j
©)

where the summation is over al nodes at step i—1.

Now consider a discount bond that pays $1 at timet;.;. Let Pi.; be the price a node (0, 0) of
this discount bond and let V;; be the value of this bond at node (i, j). The process for
determining the adjustiment g; at step i involves two stages. First we determine Q; for every



nodej at stepi. Using theseroot AD prices we then compute P;. ;. Since the discount bond
pays $1 at every node &t ti.; the vdue at theij’th nodeis

v, :exp(- M-t ))
=9(p(' f- (Xij +giXti+1_ ti ))

and the present vaue is

1 QY
L Q exp(- £ (x; +9)(ta - 1))

Thevaueof g; isadjusted until the value computed using equation (6) matches the price of the
discount bond computed from the current term structure.

(6)

— Qo _ Q)

Theimplementation of this two-stage process proceeds in the following way. The vaue of a
security that pays $1 at the root node is $1 s0 Qo = 1. Based on the value of Qg equation (6)
IS used to compute go to maich the price of a discount bond maturing &t t;. Thisalowsusto use
equation (5) to compute Qy; for every nodej, which then alows us to use equetion (6) to
compute g; and so on.

To complete the illugtration of the tree-building process we will now fit our example treeto a
term structure. Suppose that x = f(r) = Inr (r =f(x)= )and that the term structure of

continuoudy compounded discount bond yields is given in Table 3. The tree adjustment process
isto first set Qo = 1. Then solving equation (6) at the root node

Pl :QooeXp(' f _l(Xij +gi)(ti+1 -1 ))
0.9277 =exp(- exp(0+g, ) (1.5))

wefind go = —2.9957 and r,, = f (%, + g,) =exp(- 2.9957) =0.05. Thisrateis used to
cdculae

Q.1 = Quo P, €XP(- Too ’1.5)=O.1546
Qo = QP exp(-r,  1.5)=0.6185
Ql,—l - Qoo Py eXp(- 0 -5) =0.1546

where the probabilities p,, pm, @nd pg, are the probabilities of trangting from the root node to
the 3 nodes a time step 1. With thisin hand equation (6) is used to find g; and so on. The
results of the cdculations are shown in the Table 4

This completes the congtruction of the tree for alog-normaly distributed short-rate that exactly
fits the term sructure. It isworth noting at this point that the functiond form, f(r), only comes
into play at the sage where the term structure is being fit (athough as we will show, it does have
an impact on the volatility parameters chosen). Prior to the term-structure fitting stage the tree
building processis completely generic. Also note that when the tree was being fit to the term-



dructure, in order to compute the interest rates at the fourth time step we had to specify afifth
time step at time 2.5 years. Thiswas necessary to dlow us to define the term of the rates that
are being determined at the fourth step. In this case they are 0.5-year rates.

Calibration

Cdiibration is the process of determining the volatility parameters that are used in the term
Sructure modd. It is analogous to sdecting the volatility that will be used when implementing the
Black- Scholes mode to price equity options. In the case of the generalized Hull-White moddl
the volatility parameters that are to be chosen are the functions a(t) and s(t). The procedureis
to choose the volatility parameters o that the tree implementation of the term structure model
accurately replicates the market prices of actively traded options. Specificaly we use a
numerical procedure such as the Levenberg-Marquardt dgorithm to find the set of voltility
parameters that minimizes the sum of the squares of the differences between the modd prices
and market prices for these options.

Because the volatility parameters are functionsiit is necessary to parameterize them before
darting the cdibration process. Typicaly we approximete the volatility functions with piecewise
linear functions. This corresponds to selecting aset of times Ty, Ty, Ty, ..., TnWhere To =0, T,
> T;.; and then defining the reversion rate function as

a(t) =a, +bt T £t <T,,
subject to
a +bT., =a,,+b T, b,=0, b, =0

The firgt condition ensures that the function is continuous and the second and third ensure that it
is congtant in the first time interval and beyond the last specified date* These congraints ensure
that there are m degrees of freedom in the parameter s&t. The volatility function is defined in an
anaogous way as

s (t)=g +dt T £t <T,,
subject to
g +dT.,=g.,+d T, d,=0 d,=0

The choice of the number of corner pointsin the volatility functions and at whét times the
corners should be placed is more of an art than a science. Using more corner points gives more
degrees of freedom and permits a better fit to the observed market prices. Often the number
and timing of the corner points are determined by the terms of the options that are used in the
cdibration. If we have m cdibrating options with m distinct maturity detes then holding one

* Neither of these conditionsis required. They are used only because of abelief that the volatility functions
should be continuous and bounded. An alternative parameterization that seemsto work well isastep
function in which the parameters are piecewise constant. Note that the time divisions used for the two
volatility functions do not need to be the same.



volatility function congtant (usudly the reverson rate) and choosing the corner points of the
other to be the option maturity times ensures that we can fit the option prices exactly.

The most common source of option prices for caibration purposes are quotes that are available
from brokers on European-style swap options and caps and floors. Table 5 shows atypica
panel of USD swap option quotes for August 6, 1999. This table contains the voldtilitiesfor a
range of at-the-money swap options. These are the volailities that if used in the market sandard
Black’s swap option-pricing model, result in the mid-market prices for the options. The market
prices of the options range from $0.12 for the 30-day option on a $100 notiona 1-year swap
to $5.45 for the 5-year option on a 10-year swap.

The results of fitting both the norma and the lognorma versions of the modd to this data using
only asingle reverson rate and a ngle volaility are shown in Table 6. Thistable showsthe
best-fit reversion rate, the best-fit volatility and the root mean square pricing error® (RMSE).
The fit of the modd to the option prices is moderately good for both versons of the model
athough the norma version fits somewhat better than the lognorma version. The mean absolute
percentage pricing error (the average of the absolute price error divided by the market price) is
about 2.5%. Those who are not familiar with the various forms of term structure models should
aso note that the magnitude of the voldility parameter is dependent on the functiona form of the
modée. In the norma mode the volatility parameter corresponds to the standard deviation of
annud changesin the short-term rate of interest while in the lognorma modd it is the sandard
deviation of proportiona changesin therate. Thus, if interest rates are about 7% a 1.4% annud
standard deviation roughly corresponds to an annua standard deviation of proportiond changes
of 20%.

To improve the fit we can use more volatility parameters. Table 7 shows the results of increasing
the parameter sat o that thereis a corner in both the reverson rate and volatility functions at
every option maturity date. Comparing Tables 6 and 7, we see that increasing the number of
volatility parameter from 2 to 16 does improve thefit, but not dramaticaly so. The volatility
parameter for the norma modd isrdatively congtant and the reversion rate changes only five
times suggesting that about the same fit could be achieved with far fewer parameters. In the
lognormal model, by contrast, both a(t) and s (t) are highly varigble.

Some experimentation reveas that it is not possble to fit thisfull panel of option prices usng our
model or indeed any one-factor Markov modd of the term structure. As aresult when these
types of models are used in practice they are cdibrated in the same way that equity and F/X
option pricing models are cdibrated. A different volatility parameter set is used for every
different option or for every different type of option. Usualy the voltilities of the European
options that will be used to hedge the option in question are used for cdlibration.

(Pmodel - P

2
arket ) /'n where n isthe number of option

Qo>

® The root mean square error is defined as \/

i=1

prices being fit.



For example, acommon use of these modelsisthe pricing of Bermudan swap options. To
cdibrate our model to price Bermudan swap options we use a diagona strip of volatilities from
Table 5 for caibration. If we are interested in pricing a 5-year Bermudan swap option we note
that if it isexercised a the 1-year point in itslifeit issmilar to a 1-year European option on a4-
year swap. Smilarly exercise at the 2-year point issmilar to a 2-year European option on a 3-
year swap, and so on. As aresult we use the 1x4, 2x3, 3x2 and 4x1 swap option volatilitiesto
cdibrate the modd and we will likely use these options to hedge the Bermudan option. By using
4 volatility parameters we can exactly fit the calibrating option prices with our mode and
achieve agood hedge—or at least a good hedge for the prices caculated by the model.

Super Calibration

In the previous section we discussed how the volatility parameters for a particular form of the
model could be determined from market prices of options. In this section we describe how the
functiond form of the modd can aso be determined from the market prices of options.

Black’s modd, the market standard for caps and European swap options, assumes that interest
rates are lognormally didtributed. If rates redlly were lognormally digtributed, the volaility used
to price a cap or aswap option would be independent of the option strike rate. In the last year
the USD cap market has developed to the point that brokers are now able to provide voldtility
quotes for in- and out-of-the-money caps and floors. The usua practice is to provide at-the-
money volatility quotes for the standard set of caps and to provide atable of spreadsto be
added to the volatilities of in- and out-of-the-money caps. A typical set of broker quotes for
Jduly 27, 1999 isshown in Table 8.

Since the market volatilities for caps and floors are not independent of their strike rates we can
conclude that the lognorma assumption does not reflect the market perception of the
digtribution of rates. Table 8 shows that volatilities for in-the-money cgps are Sgnificantly higher
than those for at-the-money caps. . Except for very long maturities, out-of-the-money caps aso
have somewhat higher voldtilities that at-the-money caps. The market’ s perception is therefore
that very low rates and (to alesser extent) very high rates are more likely than the lognorma
distribution would suggest.

The term structure models implied by equation (1) assumes that some function of the short rate,
x=f (r), follows anorma mean-reverting process. To understand the role that the functional
form, f(r), plays note that the process that the short rate, r, obeysis

h

dr= ... dt+ﬂ—(x)s (t)dz 7)

X
where histheinverse of the functionf, that is, r =h(x) The primary effect of the choice of the
functional form isin itsimpact on the volatility component of this process, s (t) Th(x)/1x.

This determines the relation between the level of rates and the variability of rates. We now
propose amore generd model inwhich s (t) Th(x)/x=s (t)s(r) for some function of the



level of rates, §(r) . Thefunction s (t)s(r) isknown asthelocal standard deviation of the rate
and s (t)s(r)/r istheloca volatility. In this paper we have so far considered two cases:

x=1f(r) =r orr =h(x)=x forwhich s (t)s(r) =s (t), rates dways have the
same leve of variahility and future rates are normally distributed. Thisisthe origina
Hull-White modd.

x=In(r) orr =exp(x) forwhich s (t)s(r)=s (t)r, the variability of ratesis

proportiond to the level of rates and rates are log normally didtributed. Thisisthe
Black-Karasinski model.

These two moddshave g(r) =1 and gr) =r . Just asthe volility functions, a(t) and s(t), are

constructed as piecewise linear functions, (r) can also be constructed as a piecewise linear
function. Thisis done by sdlecting a number of different rates, r; >0 fori =1, 2, ..., n, and the
corresponding valuesof S(r)>0, s fori=1,2, ..., n. Weusudly force sr) to passthrough
the origin. Thisensuresthat asr becomes small the variability of rates vanishes and negative
rates do not occur. Theformof s(r)/r for the three models s shown in Figure 2.

The sdection of thevaluesof s fori =1, 2, ..., n now becomes part of the calibration exercise.
We choose the vaues that result in aterm-structure mode implementation that most closely
replicates the market prices of the options. Our least squares best fit criterion is the same as
before. Since the variability of the short ratein equation (7) is s (t)s(r) itisnot possibleto

determinethe forms of both s (t) and s(r) simultaneoudy. Asaresult, wefirs findthe s (t)

that best fits the at-the-money options and then, holding that fixed, find the s(r) that best fits
the prices of the in- and out-of -the-money options.

Tolludrate the effect of cdibrating the functiona form to the volility of in- and out-of-the-
money optionswe set s (t) =1 and find the best S(r) to fit the prices of 3-year caps and floors.

The corner pointsof (r) are set at the at-the-money rate £0.5%, +1%, and +2%. This process
is then repeated for the 7-year and 10-year caps and floors. The best-fit functiond form of the
local voldility for each of the 3 maturitiesis shown in Figure 3. The overdl result shown in
Figure 3 isnot surprising. In order to raise the price (and implied volatility) of in- and out-of-
the-money caps and floors we have to increase the local voltility as we move away from the
money. The shorter the life of the option, the more extreme the adjustment becomes.

Conclusion

In this paper we have explained how a genera mode of the short-rate can be implemented and
cdibrated to market data. The calibration process includes the selection of the functiond form of
the term Structure mode that best fits the prices of in- and out-of-the-money options. Although
not discussed in this paper, the super cdibration processis aso useful in economies like Japan's
where interest rates are very low. In this Stuation if anorma modd is used the probability of



rates becoming negative is very large, while if alognorma mode is used the volatilities must be
in excess of 100% to capture the observed variability of rates. A lognorma mode with these
large volatilities implies that rates will become extremely variable when they rise above 1%. This
issueisdiscussed in more detal in Hull and White (1997).

The super calibration procedure described in this paper isin the same spirit asthe implied tree
methodology for equity options developed by Derman, Kani and Chriss (1996), and Rubingein
(1994). These authors made the locd volatility of the stock price a function of time and the
stock price and developed procedures to infer the loca volatility from option prices. The super
cdibration procedure aso suffers from the same weakness as the implied tree methodol ogy,
which is that we are adding many free parameters to our modd in an atempt to force it to fit a
complex data set.

Thereisarange of views on what is best in fitting amodd to data. At one extreme is what we
might cal the academic’s view that Smple, ationary modds are best. This means that the
volatility parameters should not be functions of time and that the functiona form of the mode
should not change over time. The behavior of modes with these properties will be the samein
the future as it is now. However, if we redtrict oursalves to Sationary models we can only
goproximately fit observed market prices. At the other extreme iswhat we might cal the
trader’ s view that the modd should exactly fit al observed option prices. If thisis done many
free volatility parameters must be estimated and the model becomes highly non-gationary. The
future behavior of the model may be very different from its current characterigtics. In particular
the future option voldilitiesimplied by the modd may be very different from the volatilities seen
today. Our view isthat a moderate approach should be taken in fitting a model to observed
option prices. Modest non- ationarity does not serioudy affect the future behavior of the model
and alows a good fit to today’ s prices.
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Tablel
Grid of Tree Nodes
t=0 t=15 t=16 t=20

0.3286 0.6573
0.6364 | 0.1643 0.3286
0.0000 | 0.0000 | 0.0000 0.0000
—0.6364 | -0.1643 | —0.3286
-0.3286 | —0.6573

Table 2
Tree branching caculaions
t X M Y k a Pu Pm Pa
0 0 0 0135 0 00000 0.1667 06667 0.1667

15 06364 -00636 0009 3 04857 05275 04308 0.0418
15 00000 00000 0009 O 00000 01667 06667 0.1667
15 -06364 00636 0009 -3 -04857 00418 04308 05275
16 06573 -02629 0036 1 02000 02867 06267 0.0867
16 04930 -01972 0036 1 -01000 021217 06567 02217
16 03286 -01315 0036 1 -04000 00467 05067 04467
16 01643 -00657 0036 O 03000 03617 05767 0.0617
16 00000 00000 0036 O 00000 01667 0.6667 0.1667
16 -01643 00657 0036 O -03000 00617 05767 03617
16 -03286 01315 0036 -1 04000 04467 05067 0.0467
16 -04930 01972 0036 -1 01000 02217 06567 01217
16 -06573 02629 0036 -1 -02000 0087 06267 0.2867




Table3

The term tructure of continuoudy
compounded discount bond yields
Timeto Maturity Yidd Bond Price
15 5.00% 0.9277
1.6 5.10% 0.9216
20 5.25% 0.9003
25 5.30% 0.8759
Table4d
Fitting the tree to the term structure
ri; (%) 10.664 Q 0.0806 Vi 0.9582
9.048 0.0658 0.9645
7677 10238 0.0064 0.0302 09698 0.9501
11663 6514 7.370 01546 01024 02023 09884 09743 09633
5000 6472 5527 5306 10000 06185 04098 04306 09277 09938 09781 09738
3266 4689 3820 01546 01024 0.2059 09967 09814 09811
3979 2750 0.0064 00313 09842 0.9863
3.376 0.0664 0.9866
2.864 0.0813 0.9886
g0 gl g2 g3
29957 -2.7851 -2.8956 -2.9364




Table5

Mid-market volatilities for a the money swap options. The
swap is assumed to start at the expiry of the option so the
totd life of the transaction is the sum of the option life and
the swap life.

Swep Life (Years)

Option Life 1 2 3 4 5 7 10
30-day 19.00 1950 1950 1950 19.50 1950 19.50
3-month | 1950 20.13 20.13 20.13 19.98 19.98 19.98
6-month | 19.90 19.75 19.75 19.70 19.60 1950 19.50

1-year 2155 20.80 20.20 19.90 1960 19.20 18.78
2-year 21.30 2040 19.85 1930 19.00 18.70 18.20
3-year 20.80 19.75 19.20 1885 1860 1820 17.63
4-year 2043 1920 1880 1840 1810 1760 17.03
5-year 19.85 1873 1828 1793 1758 16.98 16.43
Table6
Bedt fit volatility parameters for the norma and log-normal
verson of the modd.
Model Reversonrate, a | Vodility,s | RMSE
Normal 0.0267 0.0146 0.0564

Lognormal 0.0243 0.2093 0.0745




Table7

Bedt fit volatility parameters for the normd and
lognorma versions of the modd

Normal Lognormal
a(t) s(t) a(t) s(t)
05-Sep-99 | 0.1878 | 0.0147| 0.0487 |0.2144
05-Nov-99| 0.0205 | 0.0135| 0.0596 |0.2137
04-Feb-00 | 0.0010 | 0.0135| 0.0007 | 0.1669
05-Aug-00 | 0.0010 [ 0.0136| 0.0002 |0.2261
05-Aug-01 | 0.0003 | 0.0133| 0.0005 |0.1513
05-Aug-02 | 0.0003 | 0.0132| 0.0002 |0.2199
05-Aug-03 | 0.0010 [ 0.0130| 0.0006 |0.1436
04-Aug-04 | 0.0212 { 0.0130| 0.0140 |[0.2071

RMSE 0.0310 0.0292

Table8

Volatility adjustments for in- and our-of-the-money caps and floors
for July 27, 1999.

Cap Strike — At-The-Money Strike (%)

CyplLife ATMVds| -3 -2 -1 -05 05 1 2 3

1-year 14.88 - - 100 050 000 100 - -

2-year 1838 |[3.00 200 1.00 050 0.50 1.00 1.25 1.50
3-year 1919 |315 215 115 0.75 0.70 0.75 1.10 1.10
4-year 1950 |350 250 150 0.75 0.50 0.50 1.00 1.00
S-year 1950 |3.00 2.00 1.20 0.80 0.00 0.50 1.00 1.00
7-year 18.88 |[3.00 200 1.00 0.50 0.00 0.00 0.00 0.00
10-year 1819 |3.00 200 1.00 0.50 0.00 -0.25 -0.50 -0.50




Figure 1
Tree Branching Structure

Figure 2

The relation between the level of rates and local volatility
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Figure 3
Best-fit Local Volatility
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