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Abstract
Studies of human memory indicate that features of an event evoke memories
of prior associated contextual states, which in turn become associated with the
current event’s features. This mechanism allows the remote past to influence the
present, even as agents gradually update their beliefs about their environment.
We apply a version of retrieved context theory, drawn from the literature on
human memory, to explain three types of evidence in the financial economics
literature: the role of early life experience in shaping investment choices, oc-
currence of financial crises, and the impact of fear on asset allocation. These
applications suggest a recasting of neoclassical rational expectations in terms of

beliefs as governed by principles of human memory.
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1 Introduction

Standard decision-making under uncertainty starts with a probability space and an
information structure. The information structure implies that the agent associates a

value with every subset of the space and then maximizes expected utility. This is

the approach of (1954)). The difficulty that agents have in forming beliefs over

an entire state space has been formulated in the Ellsberg paradox (Ellsberg, 1961),

ambiguity aversion formalized by |Gilboa and Schmeidler| (1989) and in the alternative

representations of choice as a probabilistic selection among a small set of alternatives,

due to (1959) and McFadden| (2001)[] The set of possible states of nature is

impossibly large and ever-changing. Nonetheless, we as individuals do manage to
make decisions under uncertainty.

In this paper, we propose a memory-based model of decision-making under uncer-
tainty. A wealth of data support the idea of a human memory system that maintains a

record of associations between experiential features of the environment, and underlying

contextual states (Kahana), 2012). This record of associations, together with inference

about the current contextual state, constitutes a belief system that could potentially
affect any kind of choice under uncertainty. This belief system responds to the current
environment through retrieved context. The mechanism of retrieved context is how
memory “knows” what information is most relevant to bring forward to our attention

at any given time. At the same time, any new experience, and the context itself, is

then stored again in the memory system (Howard and Kahanaj, 2002).

This paper applies these concepts to puzzles in asset pricing and portfolio choice

that defy the standard Bayesian paradigm. Chief among these are the result that life

experience has near-permanent effects on financial decision making (Malmendier and|

IThe problem of determining the underlying state space continues to be a point of contention in|

recent literature on ambiguity aversion: see, for example, the debate concerning rectangularity of the

model set (Epstein and Schneider, 2003; |[Hansen and Sargent, [2018)).




Nagel, |2011}, 2016; Malmendier et al., |2017; [Malmendier and Shen, 2018), and that an
exogenous cue, such as a horror movie, can influence financial decisions (Guiso et al.
2018). We also apply the framework to understanding the sudden onset of the financial
crisis, and to over and under-reaction more generally.

When making a decision, an agent is confronted by certain features of the environ-
ment. The agent connects features over time through contezrt. Context is an internal
mental state that endows the agent with an understanding of possibly latent aspects
of the environment that are relevant for the decision at hand. We will think of context
as assigning probabilities to the underlying states of nature, and at that point proceed
in a manner similar to the standard economic approach. A natural benchmark is the
Bayesian model in which the agent learns about the unobserved state from observable
features. Principles of memory, however, can lead context to evolve in ways that are
distinctly non-Bayesian.

Whereas many applications of psychological principles to economic decision mak-
ing have focused on cognitive biases such as loss aversion and narrow framing (see
Barberis (2013))), or on limited attention (see |Gabaix| (2019)) the literature on human
learning and memory offers a different perspective. Three major laws (first articulated
by Aristotle) govern the human memory system: similarity, contiguity, and recency:
Similarity refers to the priority accorded to information that is similar to the presently
active features, contiguity refers to the priority given to features that share a history of
co-occurrence with the presently active features, and recency refers to priority given to
recently experienced features. All three “laws” exhibit universality across agents, fea-
ture types, and memory tasks and thus provide a strong basis for a theory of economic
decision-making.

While few economic models explicitly incorporate these laws, there are exceptions.
Gilboa and Schmeidler| (1995)) replace axiomatic expected utility with utility computed

using probabilities that incorporate the similarity of the current situation to past situ-



ations. [Mullainathan| (2002)) proposes a model in which agents tend to remember those
past events which resemble current events, and where a previous recollection increases
the likelihood of future recollection. He applies the model to the consumption-savings
decision. Nagel and Xu| (2018) show that a constant-gain learning rule about growth
in dividends can explain a number of asset pricing puzzles; they motivate this learning
rule using the memory principle of recency. Recency-bias is present also in models of
extrapolative expectations (Barberis et al., 2015) and in natural expectations (Fuster
et al.,; 2010). These models do not employ context-based retrieval, which is the focus
of our paper. Bordalo et al.| (2019)) develop a model based on the geometric similarity
of representations in memory. They focus on the the role that similarity in memory
representations plays in accounting for the propensity of agents to make large expen-
ditures on housing or durable goods when lower expenditures would appear optimal
by standard theory. Their work differs from ours in that we focus on the retrieval of
prior contextual states, and we directly model contextual evolution. In their model,
as in psychological studies such as|Godden and Baddeley| (1975), context is embedded
in the environment, and thus is static; the feature layer of the environment and the
context layer are the same.

The remainder of the paper is organized as follows. Section [2| describes the model
and derives general properties. Section |3| describes the psychological and neural basis
for the model. Section [4] discusses applications to problems in economics and finance.

Section [5] briefly describes alternative approaches. Section [6] concludes.

2 Integrating Memory into Decision Making

Section[2.1]describes the economic setting. Section[2.2]outlines assumptions on memory
and shows how Bayesian updating emerges as a limiting case. Section derives

general properties of the model, temporarily abstracting from some aspects of the



decision problem in Section 2.1 Section discusses features retrieval, which links
memory to the decision problem in Section[2.1] Finally, Section [2.5]establishes temporal

contiguity, a key property for the applications that follow.

2.1 Economic setting

We consider an agent who develops memories by experiencing events across time. We
represent these events by a discrete-time stochastic process Y;. We use the notation
{Y;} to denote this process and assume that Y; takes on values in a finite set ) =
{1, .., yn}. At times, it will be useful to define the physical process for Y;. To this
end, we assume there exists a persistent latent process Z; taking on values in a finite
set Z={z1,...,2m}. Let pZ denote the probability of transition from state i to state
k: pZ = Prob(Z;41 = 2| Zi = 2;). Let p(y;|z) denote the probability that Y; = y;
conditional on Z; = z for j = 1,... ,n. It is as if nature delivers a set of persistent states
about which the agent can partially learn through observation. This is a standard set-
up in macroeconomics and finance (Hamilton|, 1994} Sims, [2003). We depart from the
standard set-up in that we do not assume ergodicity, nor do we we assume inference
based on knowledge of pZ or p(:|2)

We consider a static decision problem under uncertainty. In each period, the agent
makes a choice denoted by 7, perhaps subject to constraints. We assume that the
agent has a utility function, denoted by V' that depends on 7 and on the outcome of
the state of the world next period. An example is a one-period portfolio allocation
problem in which 7 is the allocation to a risky asset. Our benchmark assumption is as

follows:

Assumption 1. The agent solves

maxE} [V (Vi) (1)



where EY is the time-t subjective expectation over Yi .

The expectation E} is the subject of our paper. By assuming that the utility
function is over outcomes Y;;; we require that only outcomes traced to observables
matter to the agentE] While a notion of memory requires a multiperiod agent, we focus
on the static problem, leaving aside the question of the agent’s view of future self as

beyond the scope of this paper.

2.2 Human memory

A standard approach to the problem outlined above is to endow an agent with a system
of prior beliefs on the joint dynamics {Y;, Z;}. Based on this prior and on the data,
the agent can infer a posterior distribution over unknown quantities of interest such as
transition probabilities and latent states. Depending on how restrictive one makes the
agent’s prior distributions, the problem becomes more or less well-identified, with an
unavoidable tradeoff between bias and precision. Thus the agent’s inference problem
is a difficult one.

The literature on human memory offers an alternative approach to the problem of
decision-making under uncertainty. Our assumption, formalized below, is that agents
use their memory to guide inference. For the remainder of this section and the next, we
focus on the problem of memory and beliefs, returning to the actual decision problem
in Section [2.4)and Section[dl We draw on the vast literature describing the influence of
past experience on present behavior, a topic that has occupied the attention of experi-
mental psychologists for more than a century (Ebbinghaus, |1913; Muller and Pilzecker,
1900; |Jost,, (1897, Miiller and Schumann, |1894; |Ladd and Woodworth, 1911} |Carr, |1931)).
Because memories of recent experiences readily come to mind, this early work sought to

uncover the factors that lead to forgetting. Experimental findings quickly challenged

2 Assumption |1 implies context does not play a direct role in utility. The agent is only influenced
by, say, mood through what mood tells the agent about the distribution of future features.



the folk assertion that memories decay over time, eventually becoming completely
erased. Rather, they revealed that removing a source of interference, or reinstating
the “context” of original learning, readily restored these seemingly forgotten memo-
ries (McGeoch, (1932; Underwood, |1948; |[Estes, |1955)).

The original view of context was that it consisted of latent, background information
unrelated to the present stimulus. Experiments often treated context as an aspect
of the external environment. In contrast to this early work, |Howard and Kahana
(2002) proposed a model in which context became a mental representation of what
had formerly been thought of as the physical environment. Context went from being
an external physical concept to the internal state of the agent. In the Howard and
Kahana theory, which we term retrieved context theory, the set of psychological (or
neural) features that represent a stimulus enter into association this with internal
mental state. The database of such associations form the basis for performance in
recall, recognition, and categorization tasks. Subsequent work, e.g. |Polyn et al.| (2009)
Lohnas et al| (2015), has thus emphasized the view of context as an internal process,
evolving endogenously based on the stimuli which the agent encounters.

In a free recall experiment, the researcher presents subjects with a list of of items,
often words, which they can recall in any order. We draw an analogy from this list of
items to the features that nature presents to the agent (an analogy that is implicit in the
notion of the free recall experiment). Howard and Kahanal (2002) model these features
(words) as basis vectors in a large n-dimensional space f;. Their key innovation is the
idea of a mental context that links these features through time. Following their work
and the subsequent line of research, we model context as a norm-1 vector of length m

that evolves based on past context and current features:

2= (1= Q) + Caft, (2)



where 2" (the “in” stands for input) is the aspect of context that arises (is retrieved)
from the current environment, and where ( lies between 0 and 1. Note that context
follows a vector auto-regression (VAR)F]

A defining assumption of retrieved context theory is the manner in which the agent
retrieves context from the environment. The agent forms a record of associations
between features and the internal context, and at each time ¢, stores this record in an
m x n matrix M; (memory). Retrieved context arises from multiplying current features

f+ with the memory matrix representing associations as of the previous periodﬁ
ffzign o< M1 fr.

It is convenient to scale z'™ so its elements sum to one:

i Mtflft
Ty = 3
* = @
where, unless stated otherwise, | - | denotes the sum of the elements in the vector[]

The current state for the agent is then summarized by M; and x;.
Associations themselves arise from past associations and the outer product between

current context and features:

M, = M,y + $tftT' (4)

3Formally, features f; are elements of B* C R"™, where B" is a set of basis vectors that spans
n-dimensional space. Context is an element of A™ C R™, for m < n. That is A™ = {z; =
[T1g, - .- ,mmt]T € R™| Ty = 1}, where ¢ denotes a conforming vector of ones. We will have use for
features that are not basis vectors, in which case they are elements of the unit circle in n-dimensional
space.

4The symbol  denotes equality up to multiplication by a positive scalar. Its use implies that we
only care about the magnitude of the elements of the vector relative to one another, not in absolute
terms.

®Because all the vectors we consider have non-negative entries, | - | is a valid distance measure;
in fact it is distance under the L!'-norm. The memory literature, e.g. [Polyn et al.| (2009), uses the
L?-norm, with z; = pyxe—_1 + Cxin and p; =~ 1 — (, to maintain z; on the unit circle.



To complete the model, the agent must possess initial associations My. How the agent
comes by these associations is beyond the reach of this paper.

To understand the implications of and , consider what happens when the
agent is cued with features f;. This cuing will recover all the contexts previously

associated with those features. Retrieved context equals:

inn _ Mtflft
! [ M1 fi]|

o Mofi+ Y (waf)) e
s=1

x Mo+ (£ f). (5)

A benchmark case (Assumption [2 below) has f. f; equal either to zero or one. It is
zero if fy # f;; it is one if f; = f;. Equation [5| shows that features evoke the past
contexts under which they are experienced. A context z, appears in the sum in (5))
if the corresponding f, equals f;; otherwise it does not. The interpretation remains
valid even when f; are not orthonormal basis vectors. Even when features are not
orthonormal, is an average of past contexts under which similar features were
experienced.

According to retrieved context theory, context determines what an agent is most
likely to remember. Figure [1] illustrates the mechanism. The current state of context
contains a component that overlaps with the contexts of recent experiences, and a
retrieved context component that overlaps with items experienced close in time to the
just-recalled item(s). The figure illustrates these two effects as spotlights shining down
on memories arrayed on the stage of life. Memories are not truly forgotten, but just
obscured when they fall outside of the spotlights. Section [3| discusses the implications
of this model for memory, and in particular for the temporal contiguity property in the

introduction.



The theory developed by Howard and Kahanal (2002), Polyn et al.| (2009), and
Lohnas et al.| (2015) among others treats memory as an outcome of a mechanistic
process. There is no decision-maker maximizing an objective function, nor is there
an underlying probability space on which such an agent would form beliefs. The first
step in mapping their framework to decision-making under uncertainty is to formally

connect features with observable aspects of the environment:

Assumption 2. Features are characterized by an n X 1 column vector f, such that

1 of Y=y,

0 otherwise.

ft(j) =

That is, f: = ej, the jth standard basis vector in n-dimensional space, where j corre-

sponds to the state of Y.

Unless stated otherwise, we assume features come from the underlying physical
environment (and thus are basis vectors) — namely that Assumption [2[ holds. It will
at times be useful to relax Assumption [2, and consider features arising, for example,
in an experiment, and also as part of the agent’s recollections. We use the notation e;
to denote the jth standard basis vector in R", representing features. When context is
a basis vector, we use the notation é; to denote the ¢th standard basis vector in R™.

The second step in linking memory to decision-making is to relate the contents of
memory to subjective probabilities. Such a link is implicit in the model as defined
in the memory literature, and becomes explicit under a simple benchmark in which
context is fully observed. In this case the contents of M; equal Bayesian unconditional

probabilities.

Theorem 1. Assume context corresponds to the underlying state Z;, and that it is

fully observable. Then M; correctly encodes posterior probabilities of each state.



If z; and f; equal the ith basis vector and jth basis vector respectively, then z;f,"”
represents exactly one occurrence of state Z; = z; and Y; = y;. At time ¢, the ijth
entry of M, consists of an initial value, plus the number of times z; and y; occurred
together up to time t. Overall, then, elements appear in M; in proportion to their
relative occurrence in the agent’s environment. This intuition extends to the case in
which x; (or even f;) is not a basis vector; memory stores a fraction of an observation.
For example, if 2; places weight 1/2 on the first two entries, then z,f,” is as if the agent
has seen “fractional” occurrences of the first two states co-occurring with state j.

Now suppose context is latent and evolves endogenously. Equation {4 still implies
that the agent stores joint occurrences of context and features. Supposing that ( =
1, the agent will retain the incorrect associations, regardless of how much data are

observed:

Theorem 2. Assuming ( = 1, M; evolves such that the relative magnitudes of the
elements in each column remain invariant while the magnitudes across columns change.
That is, the agent correctly estimates the occurence of features, but incorrectly associates

features with context.

In the special case of ( =1,

in
Tep1 = Ty = aM; fiqa,

where « is a positive scalar of proportionality. Consider the formation of the new

association:

-
My = M+ x0fiyy

= M; + oM, (ft+1ft11) : (6)

Suppose, for example, that f;, 1 = e, the first basis vector. Then f; f;l is the

10



matrix with 1 in the first diagonal element and zero otherwise. Equation [6] takes the
first column of M; and multiplies it by 1+ «, leaving the rest of the matrix unchanged.

Consider the intuition behind Theorem [I} the agent experiences events and stores
them in memory. Similar reasoning is at work in Theorem [2} the agent “experiences”
joint occurrences of z; and f; and stores them in memory (the agent’s thoughts become
data). However, z; is not reality; rather it is context that is retrieved based on prior
associations from features. The agent nonetheless stores it as an event in memory. The
agent correctly learns the frequency of outcomes of {Y;}, but matches this frequency
incorrectly to the underlying states.

This intuition extends to ¢ < 1. Note that columns of M translate directly into
which context is retrieved; for this reason, we describe the more general result directly
in terms of retrieved context. Rather than being equal at all times, retrieved context
decays at a rate that is slower than exponential, and at an ever slower rate as time
goes by. The decay takes place in “event time,” not in calendar time. For example,
consider, as we will in Section [} the experience of stock market losses. Suppose these
take place at a sequence of times t1, 1o, . ... For the first loss that the agent experiences,
retrieved context is determined by the initial matrix M,. For the second loss,

in 1— C in 1 - C
PEAREN IS

where x;,_; is the context just before the loss. We generalize this to an arbitrary

number of losses in the following theorem:

Theorem 3. Consider events occurring at a subsequence of times {ti,ta, ... tg,...}.

Assumption [q implies that retrieved context follows a VAR:

in 1 - C in 1 - C
xtz = (1 — 7) th—l + Txtgfl (7)

11



for € > 1. For the first occurrence of the event (( = 1), zi* o« Mye;, where e; is the

basis vector corresponding to the event.

Assuming that prior to each event, an agent is in a “neutral” context, Then beliefs
decay toward this context at a rate that is slower than exponential, and time-scale
invariant (decay operates on event time not on calendar time).ﬂ This is similar to the
long-term recency effects modeled by Nagel and Xul (2018)).

The next assumption links context directly to subjective probabilities.

Assumption 3. At time t, the agent assigns the probability x;(i) to state i, and acts

as if this probability is permanent.

There are two parts to Assumption The first is that the agent’s subjective
probability of state ¢ at time ¢ is z;(7). That there should be some link between context
and beliefs is highly plausible. The second (namely the permanence of context) pertains
to the agent’s view of future self. Behind Assumption [3]is the idea that what memory
brings to mind is the basis of probabilities that inform financial decisions. Recent
experimental work in finance (Godker et al.,|2019; Enke et al., 2020) suggests that this
is the case.

Assumption [3]is consistent with Bayesian updating, under the view that M, contains

unconditional probabilities.

Theorem 4. Consider a Bayesian agent who assumes {Z;} is #id and who interprets
M;_1 as containing (known) probabilities of joint occurrences of {Z;} and {Y;}. Then

retrieved context (@ 1s the conditional probability of Z; given Y.

While Theorem {4 technically requires an iid process (if Z; were not iid, then the
agent would use additional information from previous Y; values in inferring the current

value), it nonetheless points to the dual role of memory: Besides maintaining a record of

6In the memory literature, “neutral” refers to features or contexts without positive or negative
emotional valence (Long et al.l |2015]).

12



past experiences (Theorem , memory also allows for the most important information
to come to mind.

Recall that one of the three Aristotelian laws is similarity: better memory for an
item that is similar to the just-remembered item. The modern memory literature has
concerned itself with similarity since the beginning of the field (see Woodworth| (1938)
for a survey of the early literature). The multidimensional nature of the model readily
incorporates similarity. The features space is spanned by physical features, represented
by basis vectors. Virtual experiences, and even thoughts themselves (which are a form
of virtual experience) can be close to these physical features in a mathematically well-
defined sense. Features that are close in this high-dimensional space will retrieve similar
contexts. In this way, a virtual experience, such as a narrative of a stock market crash,
or a movie representing danger, can evoke memories similar to the actual physical

experience. The following theorem formalizes this property:

Theorem 5 (Similarity). Features that resemble one another retrieve similar con-
texts. Namely, consider a series of features vectors {f]'} with lim,,_, f* = f;. Then

. in : . .
lim, oo ;" =, with a rate of convergence independent of t.

The series {f/*} consists of ever more precise reminders of f;, and hence an ever
more effective retrieval cue for context z*. Similarity in this model differs from that
in Bayesian models, in which information that has similar content results in similar
changes to beliefs. In this case, it is the experience that is similar (there may be no
information content in the usual sense). In what follows, we apply this theorem to
account for experimental evidence on time-varying risk aversion that is lies outside of
the Bayesian domain.

Similarity plays an important role in the geometric model of Bordalo et al.| (2019)
and in the model of Mullainathan| (2002), both of which parsimoniously capture the role

of associations in memory. Contextual dynamics and temporal contiguity are points of

13



departure from these studies.

2.3 Implications of autoregressive context

Standard inference models in economics imply that agents have equal access to stored
information at all points in time. As Section [5| discusses, this assumption, while conve-
nient, is contrary to experimental data. Retrieved context theory concerns itself with
the retrieval of information.ﬂ This section derives implications of retrieved context the-
ory following from the fact that context is a VAR: neglected risk, extrapolative beliefs,
and, under different conditions, over and under-reaction.

Assume a time interval [t,#] during which the agent fails to experience features
associated with a given state @E| If at time ¢, the agent places zero probability on state
i (x4(i) = 0) then, assuming no crisises between t and t', z4(i) = 0 for any s € [t,t].
More interestingly, assume the agent places a positive probability of crisis at time ¢
(x4(7) > 0). For this agent, experiencing sufficiently diverse non-crisis features will lead
to an exponential decline in z4(7). Following Gennaioli and Shleifer| (2018)), we refer to

the phenomena by which a low-probability event is ignored as neglected risk.

Theorem 6 (Neglected risk). Fiz a state i and assume that between time t and t',
the agent fails to experience features associated with state i. Further assume mutually
orthogonality of features experienced between t and t'. Then the probability the agent

places on state i decays exponentially: xy(i) = (1 — )V a,(4).

The assumption of independent features allows us to focus on the exponential decay
of context, suppressing the creation of associations in M. If the agent begins the interval

in a crisis context, any features nearby in time will become associated with that context.

"We consider decisions in which some human agency is involved; modern technology allows for
the mechanical retrieval of vast quantities of information, but one still must know, for example, what
model to estimate, or what terms for which to search.

8Features that are associated with state i are those that retrieve state i. See Appendix

14



As formerly innocuous features of the environment come to be associated with a crisis,
the crisis becomes harder to forget. Strictly speaking, for exponential decay to occur,
the agent must experience a sequence of novel featuresﬂ

For comparison, consider a Bayesian agent who begins with the same prior proba-
bility of a crisis. Assume that the crisis is observablem Given non-crisis observations,
the decline in the posterior mean probability of a crisis is not exponential, but, the
Bayesian case, hyperbolic (Appendix . We illustrate the difference between expo-
nential decay implied by Theorem [6] and Bayesian updating in Panel A of Figure
(Section provides more detail). It takes many more observations for a Bayesian
agent to reach the same level of certainty that a crisis will not occur, and (assum-
ing a nonzero probability of such events), it is much less likely that the agent will in
fact reach this level of certainty. More generally, Equation [2] implies that recently-
experienced features are over-represented in the agent’s context x;. This mechanism
leads to extrapolative beliefs[M]

Over-weighting of recently-experienced features also implies that the agent slowly
updates beliefs in response to new information, but will eventually update too strongly.
The model thus accounts for short-term under-reaction and long-term reversal[’?] As-
sume a subset of outcomes in Y that occur if and only if the state is ©: Z; = z; <=
Y, € ), for a nonempty subset ); € Y (call this the uniqueness condition). Also
assume that the agent’s associations at time ¢ — 1 accurately reflect the underlying
correlations (call this correct associations). That is, M, ; is block-diagonal, reflecting

the physical correlations.

90rthogonal features, are used in the memory laboratory to reset context. These features consist
of “distractor tasks,” such as asking subjects to solve arithmetic problems, or to view outdoor scenes
(Howard and Kahanal {1999; Manning et al., [2016).

UNamely, assume that the space of outcomes ) partitions into outcomes that can occur during a
crisis and those that cannot.

1 See Barberis et al.| (2015)) for discussion of evidence on extrapolation in financial markets.

2For models and for a discussion of the evidence on under-reaction and reversal, see [Daniel et al.
(1998), Barberis et al.|(1998), and [Hong and Stein| (1999).
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Theorem 7 (Short-run under-reaction; long-term reversal). Consider a state i satis-
fying the uniqueness condition and correct associations at t. Assume that t is large, or

that Y; contains many elements. Then

1. If 4(4) is low relative to pZ (features associated with i are novel or ¢ low) positive

revisions to beliefs about i tend to be followed by further positive revisions.

2. If 2,(i) is high relative to pZ (i.e., the agent has repeatedly experienced features

associated with i or ¢ high) then beliefs tend to reverse.

For example, if agents receive positive earnings news on a given company, they
will update their beliefs, generating an increase in price (thus far, the model behaves
the same as in the full information case). However, further high-growth observations
(more likely than not if the state is persistent) will cause further updates in beliefs,
and hence positive realized returns. Once the belief in the persistent high growth state
is sufficiently high, the agent will by surprised by any shift to the low state.H As
with Theorem |§|, we require an additional technical assumption (that either ¢ is large
or ); contains many elements). Under-reaction also characterizes models in which
information is lost on the front end, e.g. Mullainathan (2002). In our model, under-
reaction occurs because of slow-moving context.

To restate the conclusions from Theorems [0 and [7} agents temporarily forget con-
texts associated with features that they have not seen for a sufficiently long duration.
Agents’ beliefs take time to adjust to novel circumstances, but then tend to adjust too
much. If the agent knew the underlying persistence, he or she could perhaps adjust con-
text. However, true persistence is unknown. In fact, if states are transient, the agent
over-reacts, confusing a conditional probability with an unconditional probability. For

simplicity, we assume the limiting case of iid states.

13The price momentum effect is the finding that stocks with the highest price appreciation measured
over the past 12 months outperform those with the lowest price appreciation (Jegadeesh and Titman),
1993). These gains partially reverse one year later. Macroeconomic expectations appear to under-react
and then overshoot |[Angeletos et al.| (2020)), as do earnings expectations [Bordalo et al.| (2020)).

16



Theorem 8 (Over-reaction). For ( sufficiently high and for iid {Z;}, upward revisions

to beliefs about state i reverse on average.

Theorems [7] and [§ both address the predictability of
A$t+1(i) = PrObt+1(Zt+1 = ZZ) - PrObt(Zt+1 = Zi)a (8)

for Azy11(i) = x441(7) —x(7), and where Prob,(-) corresponds to the agent’s subjective
probability, conditional on time-t information. Consider a Bayesian agent who infers
state ¢ with certainty (as he or she would in the setting of Theorem [7]). The Bayesian
agent forecasts that in the next period, state ¢ will obtain with probability pZ, so
that Prob;(Z;,, = z;) = pZ. This is in fact the actual probability of Z;,, = z;. The
difference on the right-hand side of (8] is zero on average under Bayesian updating.
Let E denote the expectation calculated by the econometrician. Revisions in beliefs

equal:

Ei[Az ()| Azy(i) > 0] ~ ((pf — x4(i))

¢ (pii = (1= Qi (4) +0)) (9)

Q

because zi%, (i) = 1. Consider first the case with p7 high and z; (i) low (think of
it as zero). This is the setting of the first statement of Theorem [7] Beliefs under-
react to news because the persistence of state i is greater than the weight of the new
information is context. Slow adjustment of context implies that the agent cannot
“take in” all the information at once. Now consider pZ high, z;_;(i) high (think of it
as one). This is the setting of Theorem [6] and of the second statement of Theorem [7]
If the agent has seen sufficient observations consistent with a state, the agent forgets
that other states are possible. Beliefs predictably reverse because of mean-reversion

in the state. Finally, consider the case of pZ low, and ¢ high. This is the setting of
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Theorem|[§ If the agent puts relatively high weight on new information, or if the state is
transitory, then then the agent over-reacts. In the last two cases, the agent forgets that
the world may be different next period. Note that our model generates over-reaction
from contextual dynamics; this is contrast to [Mullainathan| (2002) and Bordalo et al.
(2019), in which over-reaction through a mechanism akin to similarity, namely that
irrelevant information acts as a cue. Our model also incorporates this latter effect, but
over-reaction can occur even when the agent’s associations are correct.

While optimality of memory lies outside the scope of this study, one might conjec-
ture that slow context evolution protects against over-reaction. If the state is transitory,
then it is indeed inappropriate to react strongly. On the other hand, times might call
for an instantaneous shift in perspective, as captured by Theorem [§l Understanding
the constraints on storage and retrieval is a prerequisite to a study of optimality of
memory; (Azeredo da Silveira and Woodford|, 2019)) offer a theory of such constraints.
A constrained-optimal view of memory might shed light on when there is sufficient in-
formation for an agent to act as Bayesian models specify, and when the agent instead

must rely on the mechanisms that we emphasize here.

2.4 Features retrieval

The previous analysis abstracts from how agents go from probabilities on underlying
states in Z (given by context) to outcomes in )). While nature supplies p(y|z), agents
must learn this distribution from observations. Subjects in memory experiments must
also go from context to a specific memory that is then recorded in the laboratory.
That is, just as context is retrieved from features, there is an additional step by which
features are retrieved from context.

The same associative principles govern features retrieval as govern context retrieval.
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Given a basis context vector é; define retrieved features as

- M &
1mn t—1%1
in _ 1% 10
i |ML 6] (10)

Because | > 7", a:t(z)le’rtlH =1, the n x 1 vector

tin = Z%(Z)lertl (11)
i=1

is a subjective probability distribution over features. Note that the same interpretation
as in (5)) applies: the agent retrieves features experienced under similar contexts.

We assume to stay as close as possible to Bayesian updating. Memory research,
however, supports a retrieval rule that is closer to winner-take-all (“stronger” features

— those with a higher weight in — inhibit the recall of weaker ones). For example,

Howard and Kahana (2002) assume a Euclidean distance rule, whereas Polyn et al.

(2009)) assume a “leaky accumulator” model. Except where noted, assuming a winner-
take-all process does not affect our results below.

The existence of retrieved features that are not the same as physical features raises
the question: which are encoded in ? The most natural assumption would seem to
be that it is the physical features, and we use this assumption in establishing temporal

contiguity in Section 2.5 However, while economic models assume agents see reality

unfiltered (Woodford (2020) discusses exceptions), neurobiology supports a notion of

filtering based on memory-driven expectations (Reynolds and Chelazzi, 2004; Makino

and Komiyamal 2015). What is retained in each re-remembering is not exactly what

occurred, but rather a distorted copy of the original event (Rubin et al. 2008). Ex-

perimental evidence supports encoding of retrieved features at study 1992;
Siegel and Kahana,, [2014), and at test (Zaromb et al., [2006; [Howard et al., 2009; Miller|

et al.,[2012; Kuhn et al., 2018). Encoding of retrieved features is a form of rehearsal, as
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discussed by |Mullainathan| (2002)). In our model, however, the effect of rehearsal is per-
manent as opposed to short-term (see the discussion in Section . We will incorporate
encoding of retrieved features into the applications (Section {4)) that follow.

The process of features retrieval and encoding is how disparate features become
“olued” together. As we show in the following section, it is key to understanding

temporal contiguity and the jump back in time.

2.5 Temporal Contiguity

Temporal contiguity serves as a fundamental organizing principle of the memory system
(Healey et all [2019). In this section we show, by means of an example, how the
model accounts for temporal contiguity effects. We consider a stylized model of the
Great Depression, in which an economic collapse follows a financial crisis. Subsequent
to the Great Depression, many narratives emphasized the importance of the stock
market crash of 1929, runs on financial institutions, and the connection between these
purely financial events and the subsequent period of high unemployment and sharply
decreasing output and consumption from which the Great Depression received its name.
But from where did these narratives arise in the first place?

Let 21929 denote context as of 1929, which we refer to as time ¢t — 1. Let f.qs be
features associated with the failure of a financial institution, also occurring at ¢ — 1.
Equation [4| implies that this combination of features and context become associated in
memory:

My = My_5 + 1999 fohicie- (12)

Let faepression b€ features associated with depression occurring in the next period ¢.

in : .
Call Tepression the context retrieved by features fyepression:

in
r depression ox M t—1 f depression ( 1 3)
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in

Retrieved context L depression

is the agent’s state of mind when confronted with the
observable features of the Great Depression, such as mass unemployment. Calling this

state of mind @, on 1 Simply terminology. We make no assumptions on the utility
consequences or associations other than what follows from the model. Note that we
assume the crisis strictly precedes depression and that we make no assumptions on a

prior link between z1929 and z!

depression- Features feisis and faepression are orthogonal,

so that even though M, ; appears in both and , the occurrence of the crisis
nothing to do with the retrieval of xggpression.m
Context evolution implies that the retrieved depression context combines with

previous context, to create the current context:

T1930 = Tp = (1 — () 21929 + Cmiirzepressionv (14)

where 19g9 is the time-(t — 1) context and xq93¢ is the time-t contextﬁ Crucially, 21930

is a weighted average between and T1999, even if the events leading to the

depression
retrieval of z}f, o, had nothing to do with the events of z1939. From , it follows
that
Mt = Mt—l + x1930fc—1|;pression' (15)

Thus far, it is clear that faepression and 1930 are associated, as are feisis and z1929. What
is not yet clear is how feisis relates to faepression-

Suppose fuisis appears at some future time ¢’ > ¢. As described in Theorem [8] there

4More precisely, would be retrieved whether or not the crisis had occurred.

xgclspression
15For simplicity, we refer to this as context in 1930, even though unemployment rose throughout

the early 1930s.

21



is a jump back in time — the agent retrieves x1999:

in
Ty X Mt’—lfcrisis

t—2 t'—1
08 (MO + Z xstT + x1929fc—|;isis + Z l’st) fcrisis (16>
s=1 s=t

X T1929. (17)

To obtain from , we assume f.iss only appears once — in 1929, and that there
are no other prior associations with fe.iss. These assumptions simplify the algebra
without changing our conclusions, and we relax them in Appendix [D] In any case, a
financial crisis retrieves xq1929 — a crisis retrieves the context of the previous crisis. It
does not retrieve xi939. And yet the agent believes a depression is imminent. Why is
this?

The reason lies with the features retrieved by xlgggm

in T
t X Mt/71x1929

t'—1
o< My 1929 + Z(f#;r)ﬂﬂlmg
s=1
t—2 t'—t
X (MOT + Z fsl‘sT) T1929 + forisis + Z(l - C)lftJrlfl + (18)
prior as;gciations depressi(;r: features

The re-appearance of the crisis retrieves features associated with 1999 prior to the
actual crisis (the first term in (18])). They retrieve f.isis, because 199 is the very con-
text under which the crisis was experienced. Most importantly, they retrieve fqepression

because 1929 was part of context at the time of depression. The time—t term in

16To simplify the algebra, we assume that ; ~ xil,l as will be the case if crisis features are persistent.
We also assume z/ is a basis vector. We relax these assumptions in Appendix E
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(18) equals

T T
f tTy L1929 = I depression1930L1929
_ 1 in T
= f depression ( —¢ )CL’ 1929 + C‘rdepression L1929

= (1 - C)fdepression

Thus re-appearance of a crisis retrieves the depression. If the depression features
continue for more than one year, as in fact occurred, the crisis context re-instates these
as well, with geometrically declining weights.

Because we do not take a stand on whether context x1929 is retrieved at some future
time, there is a potential for additional terms in . That is, 2™, for s = t+1,...,t'—1
might be correlated with x1999. If, for example, a financial crisis occurred again while
the agent was already in context xig3p, that would lead to additional terms in (|18))
containing faepression and would strengthen the associations between depressions and
crises. If, on the other hand, a crisis occurred during a context very different from
T1929, the additional terms in would be orthogonal to fgepression, and the association
would weaken.

Equation shows that the probability distribution over future features places

weight on fgepression- SUppose one were to compare the weight on fqepression retrieved by

T1g29 Versus a retrieval of the depression itself (z1930). We find

t—2 t'—t
(ligpression X <MJ + Z fsx;r) 1930 + (1 - C)fCrisis + Z(l - C)lilft%*l*l + o (19>
prior as;gciations depressic;: features

Note that a depression context, like the x1999, retrieves the crisis, and it retrieves
depression, though with slightly different weights. For example, the weight on f;, =
fdepression 1l is 1 — ¢ times its value in . At the heart of this similarity is
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, contextual evolution implies that contexts close in time must be similar. Though
in this example a crisis need not occur in a depression state, the agent’s subjective
beliefs are as if it does. In effect, contexts x1909 and xq939 place similar weights on
the underlying states in Z because of the features they retrieve. Financial crises and
depressions become associated simply because they were associated in time. Because
context is a vector autoregression, a financial crisis pulls up all events that occurred
around 1929, including the Great Depression. A crisis leads the agent to think about
depression features, which is to say in the language of traditional economics that the
agent gives them a high probability.

It is useful to compare the role of associations in this model to a Bayesian one. Con-
sider the reasoning that lies behind the formation of subjective Bayesian probabilities.
The agent conceptualizes states of the world. The agent knows features that occur in
each state of the world. There is a concept of events occurring “at the same time”
— and yet in reality hardly anything occurs truly contemporaneously. If the agent’s
conceptualization of the underlying states happens to be correct, then arrival of one of
the features is correctly taken as a signal that others will soon occur, and the agent’s
model of the world moves closer to the truth. The Bayesian set-up is convenient, but
fragile. If the agent’s prior did not allow for the correct features to signal a change in
states (and there are a great many potential signals), there would be no way for the
agent to learn.

Indeed, the “signal” argument requires that, in 1929, the agent foresaw the Great
Depression, and then prior to 2008, believed that a signal such as one received in 1929
might recur, foreshadowing the next Great Depression. It seems more likely that in
1929, agents did not place some probability on the Great Depression being imminent;
had they, events might have unfolded differently. Thus they did not start with priors
that the Bayesian analysis would require. Rather, after the Great Depression occurred,

they associated the events (note that our analysis greatly reduces the sensitivity of
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the prior; M, is part of the analysis, but does not prevent the agent from forming
other associations). The crisis followed by the depression created an association that
simply was not present before. Then, after years went by and context shifted, the
assumption became that great depressions, and for that matter financial crises, were a
thing of the past (accorded zero probability), until events sufficiently similar to 1929
made individuals feel that the Great Depression was about to occur all over again.
One might argue that the fact that individuals explicitly considered this possibility,
whereas they had not in 1929 is what prevented the Great Depression from recurring
in 2009.

One might object that this temporal association is unrealistic. Clearly agents should
be able to distinguish between reminders and actual shifts in distributions. Simply
because an event recurs, or a context changes should not change an agent’s perspective.
The well-known phenomenon of post-traumatic stress disorder, suggests that this idea
is not so easily dismissed. In the next section we discuss the psychological and neural

basis for contextual retrieval.

3 Psychological and Neural Basis for Contextual
Retrieval

Before turning to specific applications, we summarize the psychological and neural
evidence for context as an internal state.

In the memory laboratory, researchers create experiences by presenting subjects
with lists of easily identifiable items, such as common words or recognizable pictures.
Subjects attempt to remember these items under varying retrieval conditions: these
include free recall, in which subjects recall as many items as they can in any order,

cued recall, in which subjects attempt to recall a particular target item in response
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to a cue, and recognition in which subjects judge whether or not they encountered a
test item on a study list. In each of these experimental paradigms, memory obeys
the classic “Laws of Association” which appear first in the work of Aristotle, and
later in Hume| (1748). The first of these is recency: human subjects exhibit better
memory for recent experiences, semantic similarity: we remember experiences that are
most similar in meaning to those we are currently experiencing, and finally, temporal
contiguity: we remember items that occurred contiguously in time to recently-recalled
items. Although quantified in the memory laboratory, each of these phenomena appears
robustly in real-world settings, as described below.

A longstanding and persistently active research agenda in experimental psychology
seeks to uncover the cognitive and neural mechanisms that could give rise to these
regularities. Students of memory have proposed many hypotheses which they have
tested in the laboratory. Some striking findings include the fact that recency and
contiguity appear regardless of whether you measure memory for list items presented
seconds apart or many minutes apart, or for autobiographical memories separated by
days or weeks.

What gives rise to the recency and contiguity effects that appear ubiquitously in
both laboratory memory experiments and in our daily lives? One influential class of
explanations posits the existence of a fixed-capacity memory buffer, better known as
“short-term memory.” In such models, retrieval involves two stages: first, subjects
report the items maintained in the short-term store; next, they search through long-
term memory guided by interitem and context-to-item associations, and subject to
interference from similar memories. This model accounts for contiguity owing to the
strengthening of interitem associations among items that share time in the short-term
store (Kahanaj, [1996).

Although the short-term memory model produces recency and contiguity in imme-

diate recall, it cannot readily explain why similar recency and contiguity effects appear
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for experiences that are widely separated in time, and thus neither likely to be present
in short-term store at the time of recall, or to have occurred together in short-term
store (Howard and Kahana, [1999; Healey et al., 2019)H Related to accounts based on
short-term memory, neurobiological models of association posit that patterns of brain
activity can associate with one another when they co-occur within a short time window
governing synaptic plasticity (Abbott and Bluml [1996; Kempter et al., [1999). These
models, however, also struggle to explain why robust temporal contiguity appear for
temporally separated events.

These findings suggested the alternative retrieved context framework that we extend
to economic choice behavior. According to this view, context evolves recursively by
adding the retrieved past contexts associated with an item, remembered or experienced,
to the prior state of context. The retrieved context will bear similarity to contiguously
experienced items, generating the contiguity effect. Because retrieval depends on the
relative similarities among competing items, strong contiguity effects can appear even
for items separated by very long intervals. The same is true for recency effects, in both
the model and in the data.

Figure [2 illustrates the temporal contiguity effect (TCE) and how it has provided
empirical support for the idea of context retrieval. To measure the effect of contigu-
ity on memory retrieval, researchers examine subjects’ tendency to successively recall
items experienced in proximate list positions. In free recall, this tendency appears as
decreasing probability of successively recalling items f; and fi1,,4 as a function of lag,
conditional on the availability of that transition (Kahana, 1996). This TCE reaches its

maximum at lag = +1, but also exhibits a forward asymmetry in the form of higher

1"Within economics, Mullainathan| (2002) could be understood as a model of short-term memory.
Items are available to be recalled (in the short-term store) or are not. They enter and exit the short-
term store with probabilities determined by associations with current events. However, there is no
mechanism by which an item from the distant past can evoke another item simply by virtue of being
proximate in time. Nagel and Xu| (2018) invoke long-term recency to explain economic phenomena,
but do not otherwise employ associativeness.
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probability for positive as compared with negative lags. Equations generate a for-
ward asymmetry in the contiguity effect because recalling an item reinstates both its
associated study-list context and its associated pre-experimental context. Whereas the
study-list context became associated, symmetrically, with both prior and subsequent
list items, the pre-experimental context became associated only with subsequently en-
coded list items, leading to a forward asymmetric contiguity effect, as seen in the
datal3|

Figure 1A shows that interitem distraction does not disrupt the TCE. Figure 1B-D
shows that the TCE appears robustly for both younger and older adults, for subjects
of varying intellectual ability, and for both naive and highly practiced subjects. Figure
1E shows that the TCE appears even for transitions between items studied on distinct
lists, despite these items being separated by many other item presentations. Figure
1F-H shows that the TCE also predicts confusions between different study pairs in a
cued recall task, in errors made when subjects attempt to recall an individual list item
in response to a sequential cue, and in tasks that do not depend on inter-item associ-
ations at all, such as picture recognition (see caption for details). Finally, long-range

contiguity appears in many real-life memory tasks, such as recalling autobiographical

BConsider the example in Section and treat the 1929, 1930 episodes as a “study phase.” The
model predicts that crises better recall economic contractions than the reverse. Let

T1929 = (1 - C)xprior + Cl‘gllrisis7
where xi:r;isis is comprised of the 1929 stock market crash and any previous financial crises. These
previous financial crises form the “pre-experimental”’ context associated with a crisis. The depression
then becomes associated with this pre-experimental crisis context as well as with the 1929 crash
because they are both part of xicr;isis, xicr;isis is part of x1929, and w1929 is a part of x1939 which co-
occurs with fgepression-

In contrast, there are no means by which previous economic contractions can become associated
with crises. Consider l| where xicﬁepression consists of the Great Depression and previous economic
contractions. Like crises, these previous economic contractions are part of “pre-experimental” context.
However, whereas prior crises become associated with depressions, prior depressions do not become
associated with crises. Why? Though these depressions are part of atgépr essions they are orthogonal to
T1929, which is the means by which crises and depressions are associated. Thus there are two routes in
memory by which a crisis recalls a depression: the 1929 crisis itself, and any previous crisis. However,
there is only one route by which a large contraction recalls a crisis, and that is the Great Depression.
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memories (Moreton and Ward, 2010) and remembering news events (Uitvlugt and
Healey, 2019)). These findings argue for a general associative memory mechanism,
like context retrieval, that requires neither strict temporal proximity, nor specialized
mnemonic strategies.

A second source of data in favor of retrieved context arises from neurobiology.
The theory implies that brain states representing the context of an original experience
reactivate or replay during the subsequent remembering of that experience. Several
studies tested this idea using neural recordings. These studies found that in free recall
(Manning et al., 2011)), cued recall (Yaffe et al.,|2014)) and recognition memory (Howard
et al} 2012; Folkerts et al., 2018)) brain activity during memory retrieval resembles not
only the activity of the original studied item, but also the brain states associated
with neighboring items in the study list. Thus, one observes contiguity both at the
behavioral and at the neural level, with these effects being strongly correlated (Manning
et al., 2011). Finally, this recursive nature of the contextual retrieval process offers a
unified account of many other psychological phenomena including the spacing effect
(Lohnas and Kahana, 2014b)), the compound cueing effect (Lohnas and Kahanal, 2014al),
and the phenomena of memory consolidation and reconsolidation (Sederberg et al.,
2011).

Memory theory thus indicates that remembering an item involves a jump-back-in-
time to the state of mind that obtained when the item was previously experienced.
This reinstatement, in turn, becomes encoded with the new experience and also per-
sists to flavor the encoding of subsequently experienced items. The persistence of the
previously retrieved contextual states enables memory to carry the distant past into
the future, allowing the contextual states associated with an old memory to re-enter
one’s life following a salient cue and associate with subsequent “neutral” memories.
While the original memory is retained in association with its encoding context, the

retrieval and re-experiencing of that memory forms a new memory in association with
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the mixture of the prior and retrieved context.

One might argue that, while retrieved context theory offers a persuasive account of
human memory phenomena, memories need not affect behavior, and still less, conscious
decisions such as how much to invest in the stock market. While evidence on the role of
experience in economic decision-making suggests otherwise, one might still argue that
experience operates through a conscious process of attaining knowledge, rather than
memory per se. Such a purely rational account would, however, miss important mem-
ory phenomena[”] Evidence shows that agents re-live events from both the remote and
recent past, often involuntarily (Rubin and Berntsen, [2009). If memory is a process of
knowledge accumulation, it appears to be one that is outside of conscious control. An
extreme example of the power of involuntary memory is post-traumatic stress disor-
der (PTSD), in which a traumatic event is not only “persistently reexperienced” but
“causes clinically significant distress or impairment in social, occupational, or other
important areas of functioning.”Y] Studies show that PTSD is diminished when brain
injury, childhood amnesia, or pharmacologically-induced amnesia blunts encoding, in-
dicating that it is primarily a memory disorder (Rubin et al.,|2008)). As such, it exhibits
patterns that are well-accounted for by retrieved context theory (Cohen and Kahanal,
2020)). Overall, evidence on PTSD suggests that it is best understood in terms of
principles that govern “normal” memory functioning (Rubin et al.). In other words,
there is no clear line separating trauma-induced and normal memories. It appears that
people relive the past involuntarily and unawares, to the extent that they base their
behavior on a biased representation of the external environment. In what follows, we
show how this idea can account for economic phenomena that are difficult to explain

otherwise.

9Though such an account would also have to explain why agents base their decisions on their
particular experience.

20See the Diagnostic and Statistical Manual of Mental Disorders (4th ed., text revision.; APA, 2000,
pp. 467-468).
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4 Applications

This section describes three applications of our theory. Section describes an appli-
cation to portfolio allocation, illustrating how long-run stock-market experience might
influence portfolio choice. Section shows how memory dynamics might effect stock
prices and interest rates in an otherwise standard macro-finance model in which cir-
cumstances lead an agent to recall a rare event such as an economic depression. Lastly,
Section shows how the model can account for the effects of changes in short-term
context, thus explaining observed experimental effects on portfolio choice.

In each of these sections, rather than modeling the full lifetime of an agent’s mem-
ories, we assume a self-contained decision problem. We follow the memory literature
in making an assumption on the matrix M; prior to the decision problem at hand.
Associations represented by M, are motivated by the temporal contiguity property
(Section . That said, we do not generate the prior M; within the model. In par-
ticular, we require a memory matrix that is sparser than lifetime simulations of the
process , and would imply. Augmenting the model with costly storage
(Azeredo da Silveira and Woodford, |2019) could endogenously generate such sparsity
while maintaining the model’s ability to account for temporal contiguity. Encoding of
retrieved features, generated using a process that downweights low probability items
also “organizes” memory, leading to a sparser M; as noted by |Polyn et al. (2009).
Wachter and Kahana| (2020) show that winner-take-all retrieval and encoding leads to

a more organized M;.

4.1 Retrieved-context theory and the persistence of beliefs

A basic account of the behavior of financial markets and the macroeconomy requires
that agents disagree (Lucas, 1975; (Grossman and Stiglitz, [1980). Such disagreement

poses a problem for standard Bayesian models in which agents begin with possibly
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different priors, but nonetheless see the same data and take a rational view of oth-
ers’ beliefs beliefs. Recent evidence linking economic decisions to lifetime experience
suggests that experience may be the place to look for understanding how disagree-
ment arises and what causes it to persist (Malmendier and Nagel, 2011}, 2016). The
explanatory power of experience immediately suggests a role for memory.

We focus on the results of [Malmendier and Nagel (2011), who show that experi-
enced stock returns affect portfolio decisions, because the departure from rationality is
particularly striking. The size of the equity premium — the expected return on stocks
over Treasury bills — is discussed in finance textbooks, the media, and in popular
books. Provided that the equity premium is positive, participation in the stock market
is optimal (Arrow} [1971). Yet a large percentage of households do not participate in
equity markets (Campbell, 2016]). In what follows, we show how the theory in Section
can generate, based on life experience, permanent pessimism regarding stock returns.
While survey evidence suggests agents are on average pessimistic (Goetzmann et al.|
2017)), the aim in this section is not to explain average pessimism, but why some agents
remain pessimistic in the face of contrary data. This is what is required to account for

non-participation.

4.1.1 The portfolio choice problem

Assume latent states Z = {21, 23}, and let p < 1/2 denote the unconditional probability
of the adverse state zy, which we refer to as a depression. The investor allocates wealth
between a risky asset with net return 7, and a riskfree bond with zero net return. The
agent also receives risky labor income (. The set Y thus consists of joint outcomes of
labor income and stock returns. Assume that the value of labor income is known given
the state: £(z1) > ¢(z3) = 0. Assume that the stock return 7 takes on values r, (gain)
and 7, < ry (loss). Assume Prob(ry|z1) = (1 — p)™ and Prob(ry|22) = 0 so that the

marginal distribution of 7 is 50% gains and 50% losses. Because gains do not occur in
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state 2, their probability is slightly elevated under the normal state z;.
The agent prefers more wealth to less, and is risk averse. Mean-variance utility

tractably captures these preferences (Markowitz, [1952)). We assume the agent solves:

maxE[(1 + 77+ )] - %V(l i+ D), (20)

where 7 is the percent allocation to the risky asset. The expectation and the variance
in are with respect to the agents’ subjective preferences.ﬂ Setting the derivative

of the objective function with respect to m equal to zero leads to

_ E7 — Cov(#, 1)
T = 0 . (21)

Stocks are unattractive because they deliver a low return in the negative labor income
state.

Normalize the mean of 7 to 1, implying ry, = 1 4+ 0, 7, = 1 — 0, where o is the
standard deviation of 7. Let {(z) = ¢ > 0 and {(z,) = 0. Then Ef = (1 — p)¢ and

Var(¢) = p(1 — p)¢?. Direct calculation implies

Cov(7,0) = E[(F — EF)E] = %aﬁ - (% - p) ol = pol,

so that the optimal allocation equals

_ 1—pot

m(p) = (22)

o2

The greater the probability that the agent assigns to the depression, the less he or

she allocates to the risky asset. We next consider how memory impacts the agent’s

21For convenience, we assume that the agent solves an unconditional problem; that is, the agent
chooses a portfolio allocation once and for all, and does not attempt to estimate the current state. In
Section we show to how to formally specify the problem using a conditional expectation.
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allocations.

4.1.2 Memory for stock market gains and losses

In the Bayesian benchmark (Theorem [1f) the agent retains a perfect memory of gains
and losses, and their associations with depressions. We now consider the implications
of contextual retrieval and encoding for the agent’s beliefs and portfolio allocation.
Because both labor income states and stock returns influence utility, Assumption
implies that they both must be features of the environment 2| Table [[] summarizes the

features space.

Table 1: Features corresponding to gains, losses, and depressions

Basis Vector Features Outcome for wealth

e1 gain 1+7mry+4,
e loss 1+7mr+4,
es3 depression 14+ 7r+ 4,

Prior to time t, the agent has associations

N | +—=

M, i = (23)

e}
D=
|
i
*
i

Loss and depression share a context. Section [2.4] shows how associations of the form

(23)) ariseﬁ First assume ¢ = 1, as in Theorem Consider retrieved context in

22Under our assumptions, gains cannot occur with a negative outcome of £. There are thus three
possible features.

ZSection discusses how events experienced close in time are linked to similar contexts (in that
they retrieve similar features, or equivalently, that they are close in terms of the standard distance
measure. In order to focus on the main mechanism in these examples, we assume that the agent
experiences depressions and stock market losses under the same context. It is reasonable to imagine
memory consolidates contexts that are sufficiently close into a single context.
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response to a gain (f; = e;):

. 1
Ty =x) o< My_1e1 =

0

By (10), context in turn retrieves features corresponding to a gain:
in T
. o< M, = —e; X €]

Now consider retrieved context in response to a loss (f; = e2):

. 0 0
=y X My_1eq = x ) (24)

2P L

What does this context imply about the probabilities the agent places on future fea-
tures? For this, we need to look at retrieved features. It follows from , that context

(24)) retrieves some probability on depression as well as on loss:
in T 0 1 * *
;o My =|5—p | X[ 1=2p (25)

Note that we are generalizing the analysis of Section to allow for retrieved features.
Combining Theorem [2] together with Theorem [4 implies a Bayesian theory of disagree-
ment over latent states (see also |Andreoni and Mylovanov| (2012)). However, if agents
have differing beliefs only about latent states, but their utility depends ultimately on
states that can be observed (as in Assumption , it does not appear that disagreement
has been generated in a meaningful sense.

Having recalled features , the agent encodes them with context . If encoding
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were instead to take place with actual features, the form of M; implies learning with

be the same as the Bayesian benchmark (Theorem . Memory M, evolves according
to , with

;

1 1 00
el = if gain
- 0 0 00
Tofy = (26)
0| [01—2p*2p*] 0 0 0
= if loss
1 0 1-—2p" 2p*
After 7 periods of which k are gains:
st+k 0 0
Miir = (27)

0 (%—p*)t+(1—2p*)(7'—k:) prt+ 2p* (1 — k)

Note that the relative probability of losses and depressions, M (2,2)/M (2, 3), remains
the same, regardless of how much experience the agent accumulates.@ The agent does
learn, in particular, about the relative probabilities of stock market losses and gains.
In fact, the agent’s beliefs will converge to the truth in this regard. However, the
agent still overestimates the probability of a depression. We thus recover the result of
Theorem [2| this time generalized to allow for features retrieval. Probabilities remain
distorted, irrespective of the quantity of data.

Why, intuitively, does the agent fail to update his or her probabilities? The reason
is that the agent’s memory over-associates a stock market loss with a depression. The
appearance of a stock market loss, then reinstates the depression context. This act of
recalling the depression context is similar to experiencing the depression. Thus, a high
probability of depression remains associated with losses in the agent’s mind. Note that

if the agent had begun with the correct associations, this process would have produced

#INote that (p*t + 2p* (1 — k))/((5 — p*)t + (1 — 2p*)(7 — k)) = p*(3 — p*) regardless of k.
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the correct probabilities.

The solid line in Figure |3| illustrates that, when ( = 1, the agent never changes his
or her beliefs.@ In contrast, the Bayesian agent quickly learns that unemployment is
very unusual. Though learning the precise value takes time, even with a pessimistic
prior, the agent quickly learns enough information to imply investing a substantial

portion of wealth in stock |

4.1.3 Generalizing to autoregressive context

This section generalizes the conclusions of the previous section to ¢ < 1. Consider
a richer features space, but continue to assign e; to gains ey to losses, and es to
losses combined with a depression. For simplicity, assume the following form for initial

assoclations:
1 0 0 0

0 1—2p* 2p* 0
0 0 0 M,

where M, represents associations other than gains, losses, and depressions. Many
paths of experience could influence the agent’s memory for losses. Here, we will focus
on one such path. Appendix [E] gives details of the arguments below.

Assume the agent experiences losses at times t1,to, ..., ts,.... Also assume that the
agent does not experience actual depressions; relaxing this assumption will strengthen
our results. Context at the time of the first loss equals x;, = (1 — )y, -1 + (é2, where

xl_lég = 0, and where features retrieved by z;,_; put no weight on depressions. It

25In calculating portfolio choice, we use , with p* taken from . Alternatively, we could use
the idea of a neutral decision context as defined in the section below.

26For the purposes of the figure, p = 0.02, p* = 0.50, 0 = 1, and £ = 2.

2"The column sums in My can be interpreted as the number of observations of each feature in a
prior sample. See Appendix[A] Lemma Our assumptions on these do not qualitatively effect the
results.
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follows from that

fin=¢lo, 1—2p%, 20", 0, ...+ (1 - Q. (29)

The subjective probability of depression (the third element of ) equals 2¢p*. Re-
trieved features are encoded with context x;,. Contextual drift will lead this agent to
dis-associate the context loss with losses and depressions, thus putting a progressively
lower weight on depressions@ If, for example, the agent experienced a single loss and
saw no other features to remind him or her of a loss or a depression, then the weight on
the depression would decay exponentially to zero. However, should another loss arise,
even after an arbitrarily long time delay, the agent will recall the depression as if no
time has passed.

Theorem [3]shows that retrieved context follows a recursion, assuming that encoding
takes place with basis vector features. Appendix [E] proves an analogous result when
encoding is with non-basis features. Let ¢; denote the agent’s subjective probability
of zo € Z, namely, ¢ = z4(2). Assume at least one loss has taken place (t > t;).

Appendix [E] shows

i Gi—1(1 — Gi—1) in Gi-1(1 = Ge=1) Lina
ftHQI = (1 - ﬁ) t—1,2 + T —i—1 ~ t—i% (30)
1+281 '3 ]‘+Zs:1q3
where
tlilfQ: (1—G-1) th () fin 1

J#2
The third element of gives the subjective probability of a depressionﬁ [terating

28This conclusion would not necessarily hold under winner-take-all features retrieval. See Section
and the introduction to Section [ for further discussion. Winner-take-all would lead retrieved features
to continue to place high weight on the depression, assuming that agents’ beliefs in a depression were
above a threshold. In this respect, it would make it easier for us to derive our main result. However,
incorporating winner-take-all features retrieval would complicate the analysis, which is why we do not
assume it here.

29%We make the conservative assumption that f 1 o Places zero weight on the depression; if not,
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on (30) shows how the subjective probability decays from its initial value of 2({p*. As

of time 7', the subjective depression belief pr = }%(3) equals

Gr—1(1 — Gi—1)

pr = 2(p° H ( m) (31)
Note that the rate of decay depends on ¢;_1(1 — q}_l) = (2] j6)(1 — ] (&5). If 24y
is either orthogonal or proportional to é;, then ft“% = fiZ1 2. In neither case do beliefs
decay, because associations are unchanged. If z; ; has some, but not perfect, overlap
with é,, then the agent learns new associations with the current context, causing beliefs
to decay more quickly. Over time, the rate of decay slows, as captured by 1+ Zi;ll qs-
As the sum increases, the term multiplying f 12 also tends to increase, causing the
process to become more persistent.

We now assume that, following each loss, context decays to a neutral value (one

that is not associated with depression features). The most recent loss occurred at

ty = argmintj{t —t;;t; < t}, and 7 =t —t,, the time elapsed since the loss event. Then

Topr = (1= )¢+ (1~ (1= OO, (32)

is the required time path of context.m

We continue to assume that stock market gains and losses are equally likelyﬂ We
also assume that gains and losses occur one out of every J periods, capturing the
fact that the agent experiences other types of features (greater values of J correspond
to slower decay of probabilities). We assume that portfolio choice takes place when

the agent is in a neutral decision context, namely a context that is %(él + é5). This

beliefs in depressions will be greater.
30We continue to assume that features that are losses retrieve context é>. Appendix [E| explains
why this assumption is valid for p* close to =. In short: for p* ~ 3, retrieved features are more like
depressions than losses. Thus actual losses retrleve the context assoc1ated with the initial loss.
31Gtrictly speaking, because depressions do not occur in the sample we are considering, losses should
be slightly less likely; we ignore this effect here.
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neutral decision context implies a depression probability of p* Hthtl (1 — %).
Figure [3] shows these values, and the resulting portfolio choice when we average over
1000 individuals and assume J = 4 and p* = 1/2. The figure shows that slow decay
of beliefs is not special to ( = 1; incorporating contextual drift allows for the more

realistic conclusion that early memories still exercise influence, but that they fade

gradually over time.

4.2 Context and the jump back in time: Application to the

financial crisis

The failure of Lehman Brothers is widely recognized as a point of inflection in the 2008
financial crisis[*

An open question is: why was the failure of Lehman Brothers so pivotal? A grow-
ing line of research answers this question by focusing on the importance of financial
intermediation to the overall the economy. |Brunnermeier and Sannikov| (2014) and He
and Krishnamurthy| (2013) develop models in which the balance sheets of intermedi-
aries contribute to business cycle fluctuations. However, while it may be necessary
to have specialized institutions trade certain complicated investments, it is not clear
why the failure of a financial institution should be followed by a broad-based stock
market decline. Common stocks are not intermediated assets: trading costs for com-
mon stocks, already quite low for the past half-century, have only gotten lower (Jones,
2002). Another possibility is that Lehman represented a sunspot that caused a run
on other intermediaries, and other forms of debt (Allen and Galel |2009; (Gorton and
Metrick, [2012). Unanswered is why this should cause the stock market to crash, as
it did in the fall of 2008, when most companies have very low leverage and can fund

themselves through retained earnings?™]|

32Gee, for example, [French et al. (2010).
33Kahle and Stulz (2013) argue that firms dependent on bank-lending were not unduly affected by
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Gennaioli and Shleifer| (2018]) emphasize a third possibility: individuals and finan-
cial institutions took on too much debt because they incorrectly extrapolated from
a recent low-risk environment. This debt created unstable conditions. The Lehman
bankruptcy caused a sudden shift in beliefs by reminding agents of the risks they had
forgotten. This account is most in spirit of the discussion here. Indeed, our hypothesis
is that the financial crisis was a psychological event caused by the failure of Lehman
Brothers.

In the model described below, the failure of an important financial institution in
the absence of insurance reminds investors of the Great Depression.@ Some felt that
they had — literally — returned to the Great Depression. Once this feeling entered
the discourse, it proved hard to shake. Subsequent events showed that in fact there
was no Great Depression; yet the association continued through a greatly renewed
interest in financial crises and the macroeconomy, and through even the very name

Great Recession ]

4.2.1 Endowment and preferences

Assume an endowment economy with identical log utility agents, each with time-
discount factor 8. Let W; denote an agent’s wealth at time ¢, and let C; be consumption.

Each agent solves

max(1 — ) log C; + BE[log W] (33)

mt,Ct

the crisis. (Gomes et al.| (2019)) argue that fluctuations in borrowing conditions are more likely to be
affected by investment opportunities than the other way around.

34Gee, for example, the reporting of The Guardian on the day’s events:
https://www.theguardian.com/business/2008 /sep/15/marketturmoil.stockmarkets.

35The model below is stylized; it cannot capture many interesting features of the Great Recession.
One line of research in particular focuses on a channel from asset valuations to the real economy, either
through real-business-cycle mechanisms (Gourio), [2012) or New Keynesian mechanisms (Caballero and
Simsek], 2020)). This literature can be viewed as taking beliefs in a changed regime as given and deriving
joint implications for real outcomes and asset markets. Our model is about endogenizing the beliefs.
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subject to

Wi = (W — Cy) [Ryp1 + T (Reyr — Rypeq)], (34)

where, 7; denotes the percent allocated to the risky asset and where, because agents
are identical, we omit an agent subscript. Each agent trades in a risky asset with
gross return Ry and a riskless asset with gross return R,y (known at time t)ﬁ We
specify the aggregate endowment; asset prices will then equilibrate so that it is optimal
for the agent to consume this endowment (Lucas, 1978)). Let g denote the growth rate
in consumption during normal times, and ¢ € [0, 1) the decline in consumption, should
a depression occur:
Cyi1 14+g with probability 1 —p

= (35)
Ct (14¢9)(1—6)  with probability p

The aggregate market is a claim to dividends D; satisfying Dy,1/D; = (Cyy1/C)?, with
¢ > 1. The assumption of ¢ > 1 captures the fact that payouts to shareholders fell
by far more than consumption during the Great Depression (Longstaff and Piazzesi|
2004)@ Equilibrium will require that m; = 1, and that the dividend claim and the
riskfree asset are in zero supply.

We briefly describe equilibrium under full information. The wealth-to-consumption

36Under time-consistent beliefs, the assumption of log utility implies that is a recursive formu-
lation of the multiperiod consumption and savings problem (Samuelson, [1969).

37This specification implies dividends and consumption are perfectly conditionally correlated. In
the data, dividends have greater normal-times volatility than consumption, and they are imperfectly
correlated with consumption. Both facts could be introduced into the model by assuming that divi-
dends also are subject to independent shocks. Because these shocks are unpriced, and assuming that
we abstract from dividends as features about which the agent learns, they would have a negligible
effect on the results of interest. The assumption that normal-times growth in dividends is (1 + g)¢
could similarly be relaxed without affecting the results.
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ratio W;/Cy = 1/(1 — ). In equilibrium, the riskfree rate equals a constant given by

C, }1
Ct+1

= B (1+9) <1+p<1—i5—1)>_1- (36)

From , it follows that (in a comparative statics sense) an increase in the depression

Ry = E[ﬁ

probability p lowers the interest rate. An increase in the depression probability leads
the investor to want to save today. Bond prices rise, and riskfree rates fall.

Let S; equal the value of the aggregate stock market. In equilibrium,

C
Sy =, Bct; (St41+ Dij1)| (37)
Solving for a fixed point yields:
Si Bl+p(AL-0)"—1))

Dy (1492 —=B0+p(1=0)1—1)) (38)

for all £. For ¢ > 1, an increase in p lowers the stock price. Realized returns on the

stock market equal

R® with probability 1 —p
Ra=4 ’ (39)
R(1—0)?  with probability p

where R® is the stock market return during normal times:@

RS =371+ (1+p(m—1)>_1. (40)

BLet @ =B(1+9)* '(1+p((1—6)?"'—1)). Then

pS _ St41/Dip1 +1

79 1D )¢:q>/(1—<1>)+1

afi—g) (O

1+
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The expected return for the stock market equals:
E.Rf 1 = R¥(1+p((1-4)* —1)). (41)

Subtracting the log of the riskfree rate from the log of the expected return (41)) give
the equity premium. For small p (in the continuous-time limit), the equity premium is

well-approximated by
logE [RY 1 /Ry] =p((1—08)""=1) (1 - (1-10)?).

The right hand side is is the negative change in marginal utility multiplied by the

change in stock price during depressions.

4.2.2 Features, context, and memory

Now assume that agents update beliefs according to retrieved-context theory. An
application to asset pricing immediately raises the question of agent’s beliefs about
others’ beliefs. Here we assume agents have identical initial associations My, identical
experiences (and thus the same M;), and that beliefs are common knowledge. Relaxing
these assumptions would be desirable and would have interesting implications.

There are three possible outcomes in ): normal, crisis, and depression. These states
are captured by basis features vectors: e; (normal), es (crisis), and ez (depression). At
each time ¢, the agent observes W, and f; (we abstract from wealth as a feature). We
conjecture an equilibrium in which the agent possesses the correct mapping between
fir and 74,11 and f; and r,. The agent solves under the subjective expecta-

tion, formed from memory as Section describes.ﬂ The agent’s problem satisfies

39The agent retrieves context x%n from features f; and memory M;_;. Retrieved context and lagged

context x;_1 combine to determine x; through . Using M, |, the agent retrieves fi*', which gives
the probability distribution over future features.
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Assumption 1| in that it depends only on the distribution of future features.@

The agent’s optimal consumption continues to equal 1/(1 — /) times wealth. As-
suming the agent sets the subjective probability of depression p; = ej ftiﬂl, the agent
will allocate m; = 1 to the consumption claim provided that rf.;, satisfies , and
ry11 satisfies with ¢ = 1. The assumption that p; is permanent (agents do not
foresee a change in their own, or others’ beliefs) implies that is also satisfied in

equilibrium. Table [2] summarizes features and their effects on outcomes of interest.

Table 2: Features corresponding to normal times, financial crises, and depressions

Basis Vector Features  Consumption claim return Crisis?

e normal B~H1+g) No
e crisis B7H1+g) Yes
es depression 371(1+ g)(1 —d) Yes

Equilibrium returns on the consumption claim equal growth in consumption, scaled
by 7!, and thus depend only on the realization of a depression. While the agent uses
current features (such as crises) to form beliefs as in (I]), and indeed the value function
depends in equilibrium on the riskfree rate and hence on current features, the only
future feature of interest to the agent is whether or not there will be a depression.

We assume a simple form for the memory matrix at time ¢ — 1, the period before

the crisis:

normal crisis depression

1—p° 0 0
Mt,1 - (42)

C

0 p(1-q) p°q
perhaps generated as in Section [2.4)*'| We assume two underlying states in Z, one gen-

erating the financial crisis that is, in the agent’s mind, associated with the depression,

40We assume the agent is capable of conceiving of the equilibrium and calculating quantities that
are directly implied, through algebraic equations, to features (this is required for optimization as well
as equilibrium). These are strong assumptions and relaxing them is an interesting topic for future
research. We make them here to focus on one departure from the standard model at a time.

41 As in the previous example, we consolidate two contexts into one.
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and one associated with normality. While it is not necessary to take a stand on whether
there is a physical association between a depression and a financial crisis, for ease of
comparison with the full-information case above, we assume that the true correlation
between disasters and crises equals zero, so that the disaster probability is iid.
Assume that there has been a sufficiently long period of normal features e;. so
that the agent exhibits neglected risk: namely context @,y = [1,0]" (Theorem [6) [?]
Though agents neglect the depression state, they have not forgotten it. Representing
the failure of Lehman brothers is f; = es, the well-publicized failure of a major financial

institution. Retrieved context in response to crisis features equals

o oc My_jey o< [0,1] 7. (43)
Context therefore equals
1 0 1—¢
x = (1-) + ¢ = . (44)
0 1 ¢

As in Section [2.4] we calculate features retrieved by each component of context:

in T 1
1: X M, X €1
0
- - 0
in T 0
o0 < M, 4 X | 1—gq
1
S q

42Gtrictly speaking, this requires a large number of neutral features; it is simple to alter this example
to include these but it also makes the notation more complicated.
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Therefore, applying and ,

1—-¢
D= cl-g) |- (45)
Cq

Equation 45| represents reinstatement of the depression context — the financial crisis
reminds the agent of the depression. The probability of a depression rises from 0 to
(q, causing an immediate decline in stock prices and in the riskfree rate (36]).
The sharp drop between ¢t = 0 and ¢t = 1 of Figure {4 illustrates this effect on the
price-dividend ratio and on the riskfree rate.@. Figure [4] also shows a sharply negative
return corresponding to this event "]

What does the model say about the time path of context, and hence that of prices,
interest rates, and stock returns, following the event? We discuss in detail one such
possible path. Consistent with events in late 2008, we assume several (specifically,
three) observations of crisis features, and then normal features. Assume a sufficiently
long prior sample so that updating memory is not ﬁrst—orderﬁ If the agent continues

to observe crisis features, context updates as follows:

1 0
i1 = (1= ¢)° + (1 =¢)+¢) (46)

Thus recall of the depression increases, the stock price declines further, and realized
returns continue to be negative. Figure [4] shows this continued decline. Thus while the

initial drop was an over-reaction relative to the correct iid benchmark (Theorem ,

43When we report the riskfree rate in the figure, we assume a zero lower bound. That is, we assume
that for institutional reasons, the observed riskfree rate cannot fall below zero, whereas the true
riskfree rate might

44We assume ¢ = 0.5, p¢ = 0.05, § = 0.15, 5= .98, g =0, ¢ = 2.

45The solution shown in Figure [4 assumes a prior sample of 100 years and calculates the exact path
of context.
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there is also a sense in which it was, in the short run, an under-reaction because
prices fall more before they stabilize (Theorem @ Given sufficient crisis observations,
the stock price would stop declining once context reached a steady state of [1 — ¢, ¢q|",
implying zero weight on normal features. In this example, however, assume that normal
features return after three periods, leading to a partial recovery. Returns are positive
and high, because they represent good news that there has not been a depression@
Prices recover more slowly than they fall. In this model with autoregressive beliefs,
this is mainly due to the effects of duration embedded in . An increase in the
probability of disaster decreases the effective maturity of the stock return, and so any
increase in p from this low point has a smaller effect.

This duration explanation cannot, however, account for the fact that the price-
dividend ratio asymptotes to a lower level. This is because as depression features are
retrieved, not only are they encoded with the crisis context (as in Section, but they
are also encoded with the normal context. The agent then associates this context with
depression, so that even a return to a normal context implies a permanently elevated
probability of depression. More precisely, the agent associates whatever was in context
just before the crisis with depression, even though the depression did not occur. The
continued retrieval of the depression context ensures that this is a permanent effect. To

the extent that (previously normal features) reminiscent of 2009 re-appear, they will

remind agents of the Great Recession, which in turn will recall the Great Depressionﬂ

46Due to log utility, the equity premium is small in this model, even with a high probability of a
rare. Little of realized returns correspond to an equity premium.

4TWhile Figure [4| represents a clear departure from a full-information benchmark, another bench-
mark of interest is one in which a Bayesian agent believes in the existence of two states and that the
financial crisis serves as a signal for depression. That is, the Bayesian agent shares the associations
M;_1, and thus is as close as possible to the agent we consider. |Wachter and Zhul (2019) model
Bayesian learning in such a setting. The Bayesian agent does not neglect risk (or at least not to the
same degree): there is always some probability on the depression state regardless of how long a period
of normalcy occurs. The total decline in price relative to the Bayesian benchmark represents an over-
reaction; the Bayesian agent believes the state will revert. However, unlike the Bayesian agent, there
is also under-reaction in the sense that prices do fully react immediately to the “news” — they take
several periods to respond. The permanent adjustment in prices due to the new associations shown
in Figure |4]is absent in the Bayesian model, nor does the Bayesian model explain how an agent came
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4.3 Fear and asset allocation

Psychological and neuroscientific research reveals a tight link between memory and
emotion. For example, when people are sad or depressed, they tend to recall negative
events (Matt et al., [1992; Teasdale and Fogarty, 1979). When people remember an
emotionally-valent word (positive or negative) in a list of mixed-valence words, the next
word they remember tends to be emotionally congruent (Long et al., 2015} |Siddiqui and
Unsworth, 2011). Emotion also affects memory for neutral items — subjects exhibit
superior recall when tested under a state that is emotionally congruent to the study
state (Eich, [1995]).

The connection between emotion and memory extend to the financial domain.
Guiso et al.| (2018]) found that after the 2008-209 financial crisis, professional investors
required twice the premium to accept a risky bet rather than a sure payoff than before,
suggesting a role for fear in decision-making. In this case, the finance professionals’
response need not be due to fear; an alternative is that they were materially worse off
following the crisis, and that they exhibit risk aversion that increases as wealth falls.
To demonstrate that it is the memory and not the wealth change that influences risk
aversion, (Guiso et al.| conduct an experiment in in which subjects are randomly as-
signed to view a scene from a horror movie. Subjects who viewed the scene required a
50% greater premium to accept the lottery as compared to those that did not. Similar
results are found by |Cohn et al.| (2015]), who conduct an experiment in which financial
professionals are selected randomly to view a chart of a stock market boom versus a
crash. Investors in the boom condition invested significantly more in the risky asset
that those in the crash condition. The effect of emotion on financial decisions extends

beyond the laboratory. Cuculiza et al. (2020) show that analyst earnings forecasts

to associate crisis and depression in the first place. The initial slow adjustment and the permanent
change in prices also differentiates the model from that of |Gennaioli and Shleifer| (2018]). Note that
this comparison also assumes the agent begins with conditional probabilities that the present model
endogenizes through temporal contiguity.
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become more negative upon anniversaries of terrorist attacks (as well as following the
attacks themselves). Ramadorai et al.| (2020) examine the trading behavior of investors
following the outcome of IPO lotteries. Investors who received shares in companies that
subsequently performed well not only purchase similar stocks, but trade more in gen-
eral. While [Loewenstein| (2000) proposes a model by which emotion influences utility,
his model is silent on the connection between emotion and recent experience.

In what follows, we apply our framework to explain findings on fear and aversion
to risk. We specifically consider the set-up of |Guiso et al.| (2018), in which an agent
chooses between a risky asset (a lottery) and a sure investment. As in Section {.1,
the agent chooses an allocation 7 to a risky investment with net return 7, and 1 — 7
to a safe investment with net return of zero. Also as in Section [4.1], the agent is
subject to a second source of risk, which we can think of as loss of a job, loss of health,
or some other financial calamity. The risky investment (capturing the lottery in the

experiment) experiences a gain or a loss, each with equal probability:

p+o  prob. 1/2

=
I

i —o prob. 1/2.
Wealth equals 1 + 77 — £, where ¢ is the second source of risk mentioned above:

0 prob. 1—p

(W
I

0 prob. p.

In what follows, we refer to ¢ as a human capital shock.

Because 7 is the outcome of a lottery, £ and 7 must be independent. Moreover,
7 has a well-defined set of outcomes (it obeys the Savage (1954) model). Unlike in
Section [£.1] we cannot rely on the agent’s misperception of the correlation between

the stock return and human capital. While it is possible that the agent has such a
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misperception, here we assume that agents understand that the outcome of the lottery
does not bear on other events.

While the agent is told that the outcome of the lottery is 50/50, the probability
p is unknown. The agent determines the more ambiguous probabilities of ¢ based
on memory. Assume that the agent has log utility over wealth, so that perceived
probabilities of ¢ influence the utility of the lottery (any power function over wealth
would have this property). The agent feels more fearful of a bad outcome, and thus is
less likely to take on risk. Whereas the connection between an increased likelihood of
a bad outcome and a willingness to take on risk is not irrational, the increased fear of
the bad outcome is.

As in Section [£.1.3] we assume the first features vector corresponds to a normal
state, whereas the next two correspond to the negative outcomes. There are also a
large number of “neutral” features, i.e. neither positive or negative. The matrix M;

takes the form:

normal fin. crisis danger other associations
1— P1 — P2 0 0 0
0 p1 P2 0
M,y = .
0 0 0 M,

The second context corresponds to a state in which negative events occur. Temporal
contiguity could account for the associations between a financial crisis and danger in
this context. The relative values of columns indicate how much of each feature the

agent has experienced. Given our focus on context and feature retrieval, this will not
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be important in what follows. Features retrieved by each component of context are:
{2 o M, 6 xe

o o< M, yés o< (p1+ p2) ' (pres + poes)

Let ¢, = 2,(2) denote the subjective probability of the second state (in which ¢ = §),

and assume that, prior to the experiment, ¢;_1 = p1 + p2 = p.

The scene from the movie is a feature that is similar to, but not exactly the same
as, danger. That is, f; &~ é3, Assuming f; is sufficiently close to é3, then Theorem
applies: retrieved context will be similar to what would occur under actual danger.
That is zi* & é;, and ¢ ~ (1 — {)g—1 + ¢. If the agent had watched this particular
scene on a prior occasion, then the approximation zi" ~ é, would not hold as well,
because the features specific to f; would have their own associations. |Guiso et al.
(2018)) chose a scene likely to be unfamiliar to subjects.

What matters, ultimately, is retrieved features. It follows from that

A (1= Ger + G o (pr 4 p2)” (prea + paes),
so that the probability of danger or depression equals ¢;. The agent chooses 7w to

maximize:

K %1og(1+7r(u+a)—é)+%1og(1+7r(ﬂ—a)—2) , (47)

where the outcome ¢ = § occurs with probability ¢; and is 0 otherwise. We assume
an excess return u = 4%, a standard deviation o = 20%, a prior probability of the
negative labor market outcome p = 2%, and a percent decline 6 = 0.8, should the
outcome occur. As elsewhere, ¢ = 0.35. The agent trades off the higher return arising
from greater m with greater risk. The higher is the probability of a bad realization, the

less risk the agent can afford to take. The experiment reminds agents that such bad
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realizations can occur.

Figure |5 shows as a function of the allocation m. At an initial level of zero,
taking on a small value of risk is optimal (the function is increasing). After a certain
level of 7, the function begins to fall, representing the curvature in the utility function.
When the agent is not fearful, this occurs at 70%. When the agent is fearful, it occurs
at 30%. The response of the agent to the experiment cannot be Bayesian: a movie
has not changed anything about the outside world. In that sense, the response of
risk-taking to viewing a horror movie is a good test of our theory. This, and related
results, show that it is possible to manipulate internal mental state (context) in a way
that changes decision-making. Context alters agents beliefs about the outside world,

and hence agents’ decisions.

5 Retrieved Context Theory and Alternative Mem-
ory Models

Our theoretical framework for modeling human memory—retrieved context theory—
builds upon scholarship going back to the early 20th century. McGeoch’s classic (1932)
theory of forgetting assumed that memories do not wither away in time, but rather
that the retrieval cues used to search memory may either reveal or occlude a particular
experience. McGeoch theorized that this retrieval-based interference depends on the
state of context, the mental “set” of the rememberer, and the activation of similar
“competitor” memories. [Estes (1959) and Bower| (1972) developed a mathematical
foundation for these ideas, positing a VAR context representation that determined the
retrievability of items from memory, accounting for the law of recency (Crowder, 1976)).
These models also allowed for explicit manipulations of context that could alter the

memorability of particular experiences, as seen in experimental studies.
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Unlike recency effects, which are easy to quantify, the influence of contiguity eluded
careful measurement (Murdockl, |1974). In studying the order and timing of recall
sequences, (Kahanal, [1996) introduced a conditional-probability measure of contiguity
by computing the likelihood of recalling an item as a function of its contiguity to the
just recalled item. |Howard and Kahana| (1999) theorized that contiguity could arise
from retrieval of context, rather than direct interitem associations, and subsequent
work provided support for this account (see, Healey et al., 2019, for a review).

Retrieved-context theory provides a unified account of recency and contiguity ef-
fects at short and long time scales. As a vector-based model of associative learning,
this theory nests earlier work on similarity-based organization in memory and cue-
dependent interference effects (Kahanay 2012)). Two key aspects of this model make
novel predictions not shared by most other memory theories: First, each encoding
event involves an internal retrieval whose output modifies memory. Thus, thoughts
become memories that influence subsequent retrieval. Second, the recursive definition
of context predicts a forward asymmetry in memory retrieval because the contextual
states previously associated with an item recombine with the items context and as-
sociate with subsequent items. The recursive contextual dynamics imply that when
a new event matches, or closely resembles, an earlier experience, the context of that
earlier experience will re-embed in memory; analogously, new contexts that resemble
old contexts will tend to retrieve old features, which will also re-embed in memory. In
the present theory of economic choice, these re-embeddings help to explain persistent
disagreement in the face of accumulating evidence.

Whereas modern memory theorists have adopted McGeoch’s early emphasis on re-
trieval processes, other classic models saw memory-guided choice as primarily reflecting
the strength of memories established during learning. Consider a repeated event, such
that each occurrence supplies an agent with information about the world (e.g., or-

dering a cappuccino and learning about its price). According to strength theory, the
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association between a cappuccino and its price continuously updates, and a future re-
minder of a cappuccino retrieves a single sufficient statistic reflecting the distribution
of experienced prices. In this model, one updates the summary statistic and discards
the memories of each experienced event. A fundamental problem facing strength the-
ories of memory is defining the unit of memory; at some point a new experience is
sufficiently different from an existing “memory” to constitute a new memory, but the
model is silent as to how that point is determined.

Unlike strength theory, exemplar theory assumes that the memory system sepa-
rately records each event (feature vector) in an ever growing matrix of memories (Estes,
1986; Hintzman), [1988; Nosofsky, [1992). The events retain their individuality, including
their ordinal position within the series. Aggregation of memory happens at the time of
retrieval, when the memory system compares a cue event against all previously stored
examples, computing the summary statistic at the time of test. Although a wealth
of data favor exemplar over strength-based models, the latter have resisted extinction
due to their parsimony and computational efficiency (Murdock, [1985; Wixted, |2007)).

Exemplar and strength-based models share a major limitation: they lack any mech-
anism for associating events that co-occur in a spatiotemporal context. Such associa-
tions have long held a central role in philosophical conceptions of the “association of
ideas” (Hume) and form the basis for the Aristotelian “Law of Contiguity”. Conti-
nental philosophers (Herbart, [1834) developed theories based on chained associations
that stimulated the earliest experimental work on human memory (Ebbinghaus, 1913]).
These theories did not posit a specific representation of time, but rather assumed that
contiguously experienced events become associated and that the strength of this as-
sociations falls as a function of the temporal separation of the events (Solway et al.,
2012). The repetition of an item, evoked by an external stimulus or an internal re-
trieval, triggers retrieval of the item’s neighbors as a function of the strength of their

association. Chaining theory encounters serious obstacles when two lists of sequen-
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tially presented items share an overlapping item, or an overlapping subsequence of
items. In this case, one cannot recall either list without suffering catastrophic interfer-
ence between the competitor items (i.e the items that follow the overlapping items in
both lists). Such interference prevents the model from recovering order information,
or even accurately recalling a series with repeated or high similar elements (Lashley|
1951; Henson et al., |[1996; [Kahana and Jacobs|, |2000). Despite the failure of many of its
predictions, chaining theory retains a powerful appeal based in part on the everyday
experience of sequential cuing of memories.

The idea that memories preserve a record of their spatial information, and the
complementary observation that spatial cuing offers an aid to learning and retention,
formed a centerpiece of the medieval “arts of memory” (Yates, 1966). Soon after the
advent of list memory studies in the late 1800s, researchers recognized that subjects
often visualized a series of items as occurring within a virtual, mental, space, much
as medieval scholars used the “palaces of memory” to commit vast written works to
memory (Ladd and Woodworth, [1911). This idea of positional coding as a means of
representing ordinal information offered an alternative to the classic idea of chained
associations described above. Positional coding models assumed that in learning a
series of items, subjects formed associations between items and positions (location on
an array, or position within an ordinal series). Later, at the time of test, subjects
used positional information, assumed to be a mental primitive, to cue retrieval of
items. Modern positional coding theories offer some of the most successful accounts of
memory of short, ordered lists: phone numbers and postal codes and the like (Burgess
and Hitch| 2006; Brown et al., [2000).

Although one can imagine items in a series as occupying locations in space, they
actually occupy locations in time. For early researchers, this raised the question of
whether memories retain information about their time of occurrence. Although the

notion of time tagging appeared in some of the earliest psychological literature (James,
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1890) memory scholars did not take stock of its significance until the emergence of
experimental procedures that required subjects to explicitly judge the temporal order
of studied items (Yntema and Trask, 1963; Hinrichs and Buschke, 1968) and models
developed to explain these data (Bower, 1972). Consistent with the aforementioned
notions of spatial and temporal coding of memories, neural recordings in both human
and non-human animals have identified individual neurons in the brain that encode
spatial information (O’Keefe and Dostrovsky), [1971; Ekstrom et al., 2003)), and temporal
information (MacDonald et al., 2011} Pastalkova et al., 2008; Umbach et al. 2020).
Further, the activity of neural ensembles coding time and place during memory storage
predict aspects of subsequent recall even when the recall task requires neither memory
for the time or place of occurrence (Miller et al., [2013; Umbach et al., [2020)).

Early exemplar models were not designed to match the aforementioned evidence on
centrality of time and place; these models defined similarity by perception or meaning.
Researchers met the challenge posed by this evidence by adding time and place as
features of memory. Brown et al.| (2007)) proposed an exemplar memory model (termed
SIMPLE) that includes an explicit representation of temporal information, such that
subjects confuse memories that occurred at similar times in the past. They showed
how this model could account for several major list recall phenomena.

An exemplar theory which posits that agents store a complete record of the at-
tributes describing every memory would support optimal choice. But the marked
failures of memory in our daily lives and the presumed finite capacity of the memory
system pose a serious challenge for such a model. If memory failures primarily reflect
inaccurate storage, there must be a massive degree of “lossy” data compression on the
front end. A commonly adopted view is that initial processing occurs via a limited ca-
pacity short-term storage system; only a tiny fraction of information survives to make

it into long-term storageEg] Contrary to this limited storage view, Gallistel and King
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(2009) summarize extensive data, and computational arguments, in favor of the brain’s
ability to store massive amounts of information. Failures of memory, they argue, reflect
failures of retrieval rather than storage (see, also, Tulving and Madigan| (1970)). Using
sensitive indices of retrieval one can show that a once experienced laboratory event can
leave a near-permanent record in memory (Kolers and Magee| |1978; Standing, [1973;
Brady et al., 2011]).

Thus, to build a choice model upon an exemplar theory with complete memory re-
quires a fully-specified model for retrieval. The principles of memory used to motivate
our modeling approach—similarity, recency and contiguity—would need to emerge from
the hypothesized retrieval process. Most retrieval choice rules will naturally give rise to
similarity effects (Kahana, 2012, Chapter 4). Recency effects arise based on the simi-
larity of temporal codes between study and test (recency is another form of similarity).
The challenge, however, facing these models is to explain the contiguity effect and its
persistence across time scales. The ability to retrieve temporal codes associated with
past memories, and use those codes to retrieve subsequent memories, requires substan-
tial machinery that is not part of exemplar models. Although a chaining model, as
described above, can produce associations among nearest neighbors, it does not easily
account for associations that span multiple items as seen in the data. These findings
require something like the contextual retrieval process used in this paper.

To summarize, a half-century of scholarship has shown that memory depends crit-
ically on the cues present at the time of retrieval, and that retrieval operates during
both learning and recall. Retrieval during learning determines the information present
on subsequent learning and recall trials. Scholars no longer see encoding and retrieval
as distinct phases of memory; both processes play an important role during the acqui-
sition of new knowledge and the during the recall or recognition of past experiences.
The retrieved context framework builds upon classic notions of contextual variability

and cue-dependent recall to offer a unified account of the principles of recency, conti-
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guity and similarity, and their persistence across time scales. [Kahanal (2020) provides
a more complete discussion of the relation between retrieved context theory and other
models of memory, as well as discussing some of the important open questions to be

addressed in the study of memory.

6 Conclusion

What makes us know what we know, perceive what we perceive, think what we think?
What makes us the same person when we get up in the morning as we were the day
before? What makes life a connection of meaningful events, and not just a random
set of stimuli? It is our memories — the experience of our lives that is unique to each
individual.

The standard model in economics would have it otherwise. Under this framework,
individuals maximize expected utility, seeing the form of the utility function and beliefs
about the future as fundamentally stable. These assumption arise from pure reason —
under a specific notion of rationality. Although empirical and experimental studies have
challenged this framework, its parsimony and the appeal of assuming agents smarter
than ourselves have led to its continued use.

In this paper we propose an alternative that is also parsimonious, potentially ra-
tional, and based on a centuries-old program in experimental psychology, namely, the
study of memory. We show that principles emerging from this program offer a very
different set of implications than the standard ones in economics.

First, decisions can be affected by seemingly irrelevant information, making revealed
preferences far less stable than they might be otherwise. Second, individuals have
trouble processing information, not because of the amorphous idea of lack of attention,
but because of a stable internal state. Because we carry with us an internal state, we

cannot “take in” our surroundings all at once. This internal state, however, allows
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us to tag memories in time, with the powerful consequence of temporal contiguity, a
property of memory noted since ancient times. Temporal contiguity strings together
events, pulling up an entire universe with one memory, and forms a basis for conjectures
of causal behavior. Finally, retrieval and encoding of memories implies that our beliefs
may not converge, regardless of how many data points we observe. The reason is that
the same data comes, for everyone, with its own associations — its own context. This
context then triggers an actual perception of different data.

This paper represents a start in connecting memory with decision-making. Many
questions remain unanswered. We assumed a single decision-maker solving a static
problem (though memory itself is dynamic). A key question pertains to the decision-
maker’s view not only of future self, but of other selfs in the economy. Like beliefs
about the physical world, these may also be contextually-dependent. A second question
pertains to the boundaries between the type of recall of probabilities that we consider
here, and model-driven decisions. To some extent we all do use models; at what level
does the model come into play? Finally, economics concerns itself with maximization
under constraints. Perhaps memory evolved to solve some maximization problem, but
if so, which one? These are some of the questions we hope will be answered in future

work.
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A Proofs of results in Section 2.2

The following Lemma clarifies that the elements of M; can be thought of as proportional
to probabilities, with a prior distribution given by M,. The scaling in implies that
the absolute magnitude of the elements in M is irrelevant. The time path of retrieved
context, will the same if one employs a modified updating rule for M that scales the

sum of its elements to equal one. The following Lemma makes this statement precise.

Lemma A.1. Let {x;}1_, be the time path of context up to time T given {fi}_,, My,
xo, and updating rule . Let tg = 1" Mye, namely, the sum of the elements in M. Let
{#,}T, be a time path of context given the same features, initial condition My = %Mg,

To = T, and updating rule

i, (A.1)

Then #; = x; and M, = — M,.

to+t

Proof. Assume by induction that 7,1 = x,_; and M, ; = (to +t — 1) *M;_y. Tt
follows from (3)) that it = :i%n, implying that z; = Z;. It remains to show that

Mt = (tU +t)_1Mt. By ,

e t—1 - 1
MtZO—Mtfl‘i‘

.
A2
fo+1 ol (A2)

Recall +" Myt = to. Further recall that " f, = "z, = 1. It follows that the elements of

the outer product matrix z;f,” sum to one. Using the induction step and substituting

into (A.2)) implies

as required. O
It might seem that the updating rule (A.1]) contains more information than in
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that includes both the current sample size t and a prior sample size t;. Lemma
says that this intuition is not correct and that they contain the same information. The
reason is that the extra information in is contained in the size of M itself. The sum
of the elements in M equals the size of the sample, whereas the sum of the elements of M
equals one. The updating rule takes information that was previously embedded

in M and puts it into the updating rule.

Proof of Theorem [Il Under the assumptions of the theorem, context z; is such that
x(i) = 1if Z; = z; and 0 otherwise. Consider a Bayesian agent with a Dirichlet prior,
with parameters given by M,. Specifically, let K = mn, and let P be the m x n matrix

of prior probabilities p;; over state (z;,y;):
vec(P) ~ Dir(K, vec(My)).

Note that the prior mean of p;; is My(i, j)/to, with to = " Mye. Suppose the agent
observes {Yy, Z,}1_,. Let Y, = (Y,, Z,). Assume the agent computes a quasi-likelihood

function under the assumption that observations are iid{"]

t
LM, ..., Y|P) =] uviP)

t=1

Each term [(Y;|P is multinomial. The posterior distribution p(P|Yi,...,Y;, M) is
therefore Dirichlet (Gelman et al., 2004]):

vec(P) [{Y;, Z;}._, ~ Dir(K, vec(M,)).

The mean of the posterior distribution for p;; is then M,(7, 5)/(to +t) as required. [

49 Alternatively, the agent could use the true likelihood that would allow for autocorrelation. This
would necessitate a prior over pg for all pairs (i, ). The quasi-likelihood function avoids this compli-
cation.

62



Lemma A.2. Given Assumption|3, the following two invariance conditions are equiv-

alent:
1. For any positive integer s,t, if fs = f; then z'* = z!™.
2. For any basis vector f, and any non-negative integers s,t, Myf oc M, f.

Proof. Assume condition 1 above. Assume f, = f, = f. By and condition 1
Ms—lf =M, 1 fs xi;n = xin o< My fy = Mt—1f,

proving condition 2.

Now assume condition 2. Let f, = f, = f. Then by and condition 2,
:Eisn o M_1fs o< My_1f o min.

Equality follows because elements of retrieved context must sum to 1. This proves

condition 1. N

Note that the proof does not, strictly speaking, require Assumption [2} It holds for
any subset of possible basis vectors (assuming we restrict ™ accordingly). In what
follows, we will mainly be concerned with the case in which the features are basis

vectors.

Proof of Theorem 2l Given Lemma and ¢ = 1, it suffices to show that, for any
(basis) features vector f, and any non-negative integer s, t, M, f oc M, f.
For convenience, normalize one of the times to 0. We prove, by induction, that for

non-negative integers t:

Mtf X Mof_-
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Clearly the statement holds for t = 0. Assume
My 1 f o< My f. (A.3)

It follows from that
Mt = Mt—l + ,I'tftT. (A4)

It follows from , , and ¢ = 1 that
vy = (| Mo-1 fol) ™ M1 fo. (A.5)
Substituting into (A.4)) implies
My = Mooy + (|Mo-s fil) " My fof, (A.6)
Consider some basis vector f. It follows from (A.6) that
Mif = My f + (IMea fol) N (Mea ) (S ). (A.7)

First assume f # f,. Then f,' f = 0, the second term on the right-hand side of (A.7)
equals zero and

Mtf = Mtflf'

Now assume f = f,. Then f,' f =1 and
Mf = My f + (|My—r fo]]) " Moy f o< My_y f.
Thus for any basis vector f,

Mtf X Mt—lf X MOJF,
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where the second statement of proportionality follows from the induction step (A.3]).
O

Lemma A.3. Assume thus far an agent has experienced an event at times {t1, ..., ts}.

Then Assumption 3 implies

/—1
. 1 .
=7 (;g;f; +3 jg;tk> . (A.8)
k=1

Proof. Without loss of generality, assume the event is represented by basis vector e;.

A direct application of implies that, should this occur at time t:

i oc My_1eq (A.9)
Substituting in from ({5)), we find:
t—1
o< Moey + sz(fsTel) (A.10)
s=1

If the agent experienced the event at time s < ¢, f,e; = 1; otherwise it is equal to zero

(note that the Lemma assumes all features are basis vectors). Therefore:

xyt o< Moey + E T

s€{t1,..te}

Note that the vector on the right hand side has elements summing to ¢. The result

follows from the fact that elements of 2I® must sum to 1. ]

Proof of Theorem [3l Consider retrieved context for the £th event. A slight rewriting
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of (A.8]) implies

|

£

(xi‘ll + § Ty, + xt“>

= ((mtl + thk) — Qw1 + Ca 1) (A.11)
The second line follows from (2)):
=1 =)y, 1 +§th i

The term in the inner parentheses in (A.11)) equals (¢ — 1)zj* . This follows from
1' applied to xi‘l}_l. Therefore,

(=D, + (1= 1+ Gl ).

|

in __
ZL‘tz =

Collecting terms in z}’_, establishes the result. O

Proof of Theorem [4. Assume {Z,;} is iid. Define a matrix P such that P(i,j) =
p(zi,y;), the joint probability of z; and y;. Then P(i,j) oc M;_1, with the constant of
proportionality equal to the sum of the elements of M;_;. Suppose Y; = y;. Then f; is

the jth basis vector and

Iin _ Mt—lft
' || M1 fi]
_ P
|| Pej|
-1 (Zl7yj)
= (Zp(zi,yg)>
P(2m, 5)
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Note that ), p(z;,y;) is simply the unconditional probability of y;. Thus

2 (i) = p(zi, y;) (ZP(%%)> = p(zi | y;),

the conditional probability of Z; = z;, given Y; = y;. O]

Proof of Theorem [l It suffices to show that, as a function of features elements, ™
is uniformly continuous, where we define continuity by the L'-norm. We first show
that unscaled xi® is uniformly continuous. Define tq = +" My.. We show that, for any

€ > 0, there exists a 0 > 0 such that

-

t0+t(Mo+;wst)(ft—ﬂ),H <e (A.12)

provided that || f, — f| < 0.

Standard triangle inequality argument imply that it suffices to show that

[ IERATEAI (A.13)
oMt =P < 2 (A14)

For (A.13), note that £ (f, — f,) is a scalar, so that

[ SEN AT AT EEED Sy P VA 3]

IN

1< .
n S £l s = fl
s=1

1 ¢ A A
= D lh=Fl=1f- 1 (A.15)
s=1
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For (A.14]), note that

|Lantse— 7

= |20 M) - £

IN

B f Mol )| max{IG) ~ LG (A6)

It suffices then to choose ¢ so that the right-hand side of (A.15)) and (A.16]) are less
than €/2.

We now extend this argument to show that x® is uniformly continuous.ﬂ Define

in

7% to be unscaled zi":

t
' 1
in _ M. . T
Lot t0+t( 0+8§1xfs )ft
. 1 i
~in M, § : T A.
Tyt tO +t( o+ - xsfs )ft

We have shown | — 2| < e. Our aim is to show |#® — 2i*| < e. Because we are
interested in the limit for a fixed f; (given t), and therefore a fixed z'%, it suffices to
show, with a suitable adjustment to ¢, that

~in

23" — 2"l < e

50We treat the previous history of contexts and features, as well as My, as fixed. Then xitn is a

function of time and of f;. We let ft — f+ and show that the convergence of :c%n does not depend on t.
It will, however, depend on the choice of f; because it depends on the scale of ﬁ(Mg +Zi=1 o) fi
as the subsequent argument makes clear.
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Finally note that

o — aPllesl = [elalhl - 2Pl + e - el
= [ ol — @ty - al (gt - 1)
< ol — @+ e |l - el
= o — @]+ |Ia%] — 2| < e,
provided that [z — Z1| < €/2. O

B Proofs of results in Section 2.3

Definition (Associated features). Features vector f and state Z, = z; are associated

at time t if either one of the two conditions hold:
1. &/ Myf #0
2. There exists an s < t such that for fIf #0, z,(i) # 0.

If f is associated with state 7, then the agent has either experienced features f in

a context that places weight on state 4, or initial memory associates f with state i.

Definition (Uniquely associated features). Features vector f and state Z, = z; are

uniquely associated at time t if f is only associated with state i at t.
If f is uniquely associated with state 4, it can only retrieve state i.

Notation. Let €);; C B" denote the set of features uniquely associated with state i at

time t. Let Qift C B"™ denote the set of features not associated with state i at time t.

Lemma B.1. 1. Features retrieve a context placing weight on i if and only if these

features are associated with state 1.
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2. Features uniquely associated with state i retrieve only state i (if fi1 € Q;y, then
() = 1).

Proof. Let f be features at time ¢ + 1. Consider retrieved context :

@11 8 Mtf
t
X M0f+ Z‘TS(fsTf)a
s=0
it follows that

—_ t p—
oy (i) oc e Mof + > ()(f£) )

s=0

The right hand side is nonzero, if and only if f is associated with state 1.
Now assume [ is uniquely associated with state i. Then, for k # i, 2, (k) = 0.

Because the elements of the context vector sum to 1, 2%, (i) = 1. O

Lemma B.2 (Context reset). For a given integer 7 > 0, assume the agent experiences
a sequence of features fii1,..., frir € th Also assume the features are orthogonal to

one another. Then

v (i) = (1= ). (B.1)
Thus as T — 00, x4, (1) — 0.

Proof. We prove (B.1)) by induction on 7. It holds trivially for 7 = 0. Assume (B.1))
holds for 7 — 1. Given features fii1,..., fiir, it follows from that

T T
My 1 =M+ xep1 fon + TS

Assume features f;,, not associated with i at ¢ and orthogonal to fii1,..., fiar—1. It
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follows from that

wﬁﬂ & Miyr1feer
o< Mifir + xt—i—lft—l;rlft—&-T + o xt-‘-lft—iT*lft'i‘T
(8 MtftJrT

in

t+7

induction that y4.—1(i) = (1 — ¢)" 'a,(i). Then (B.1)) follows from (2). O

Thus, lack of association at time ¢, x}% (i) = 0. Recall that we have assumed by

Exponential decay of context, combined with a sufficiently large number of orthog-
onal features, implies the possibility of context “reset.” Context reset is not a mere
mathematical construction: novel features are used in the memory laboratory to reset
context. These novel features, presumably orthogonal to the features that the agent
has recently experienced, are introduced through “distractor tasks” that often involve

solving arithmetic problems under time constraints (Howard and Kahana, 1999).
Proof of Theorem [6l See Lemma [B.2] O

The sets €2;; and th define subjective associations. It is useful to have notation

for the analogous concepts in the physical world.

Notation. Let ); C Y denote the set of outcomes that can only occur in state i. That
18:

Vi={y; €Y :p(y;lz) >0 & ply; | z) = 0,Vk # i}.

Let yf denote the set of outcomes that cannot occur in state i:

Vi ={y; € YV :ply;lzi) = 0}.

Definition (Correct associations). The agent has correct associations with state i if

the agent’s associations reflect reality. That is: ; = Y, and Q4 = Vi
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If features unambiguously signal a state, then context shifts in the direction of that

state.

Lemma B.3. Consider a nonempty state i such that ;)/Z»l =Y\ V. Assume at time

t — 1 that the agent has correct associations with state i. Then
1. For xy1(i) € [0,1), 4(i) > x4-1(i) if and only if Z; = z;.
2. Forxy (i) =1, 24(i) = x4_1(7) if and only if Z; = z;.

Proof. First rewrite as:
Al’t(i) = C(@H@ - l‘t—1(i)>~ (B-Q)

Under the stated assumptions, f; € €;;— implies ¥; € ); and f; € Qift_l implies
Y; € Y. Moreover, by Lemma , ft € Qi1 implies z*(i) = 1 and zi"(i) = 0
otherwise. It follows that if x"(i) = 1, we must have Y; € Y;. If (i) = 0, we must
have Y; € Y. Therefore, zi*(i) = 1 if and only if Z; = 2;. It then follows from

that

1—$t,1’l' ith:ZZ'
Azy(i) = < (®) (B.3)

—(Cry1(i)  otherwise
Suppose first that x; (i) € [0,1). If Z; = z;, 24(i) — 24-1(1) = (1 — x,_1(¢)) > 0. If
Zy # 2z, 24(i) — x4-1(1) = —Cx—1(2) < 0, establishing the first statement.
Now suppose x;_1(i) = 1. If Z, = z;, then z,(i) = x,1(i) = 1. If Z; # z.

x(i) < x4-1(7) = 1, establishing the second statement. O

We use the notation E to denote the expectation taken under the econometrician’s

measure, whereas [E is the expectation taken under the agent’s subjective probability.

Proof of Theorem [Tl We calculate E[Ax; (i) | Az, (i) > 0], where E denotes the

expectation that the econometrician calculates. We assume throughout that z;_1(i) <
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1. Then lemma and the assumptions of the theorem together imply that Az, (i) > 0
if and only if Z; = z;. We therefore need only calculate E[Ax;,1 (i) | Z; = z].

Given that Z; = z;, we consider what happens at t+1. If Z, 1 # z;, fi11 # f; by the
assumptions of the theorem. We have g1 € Vi, and fi;q € Q. Thus, 2)5,(1) = 0

by Lemma [B.1] If, on the other hand, Z; 1 = 2, Y41 € Vi, and fiq € Q1. Recall
x;’jrl o (M1 + :BtftT)ftH. (B.4)

If the features are again novel (fi41 # fi), then 7%, (¢) = 1 by Lemma . However,
if fiy1 = fi, (B.4) becomes

in
vy o< My_q fin + @4

The first term is proportional to é; by assumption. Its magnitude will depend on

the magnitude of the elements in M; ;. Let ty be the length of the prior sampleﬂ
Lemma [A ] implies
Ty o (t+tg — 1)é; +

and therefore that
a2 (1) = (|(t+to — 1)és +a]) 7t +to — 1+ 24(3)). (B.5)
To summarize, conditional on Z;,; = z;, we have

1 if fi1 # fi

2 (i) =
" (U +t0— Dt al) Mt +to— 1+ 20))  frs = f

Let
(i 10) = Befa, (1) Z0 = Zigr = 2] (B.6)

5IThe length of the prior sample is the sum of the elements in My. See Lemma for further
discussion.
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Note that z,(i) < Z;(i;2;) < 1. A large prior sample or many elements of }; give us
Z4(i; x4) close to 1.

Substituting into (B.2)) implies

C@ (is0) — (1)) Zipr = 2

—Cx4(1) otherwise

Et[A$t+1(i)|Zt+1 =Z;= Zi] =

Taking the expectation over the possible outcomes of Z;,, we find:

E Az, 1()|Azy(7) > 0] = E Az 1(0)|Z = 2]

= (P (i) — x(i)).

The theorem follows. O]

Proof of Theorem Bl Because Z; is iid, #i*(i) = p(z;|Y;) (Theorem [)). Applying
B2):
Azyi1(i) = C(p(2i[Yesr) — (2). (B.7)

The assumption of iid Z; implies that Y; is also iid. Thus,

Eip(zi| Y1) = Ep(2i]Yii1) = p(2:). (B.8)

We now calculate E;x4(i), conditional on an upward revision in beliefs from ¢ — 1

to t. First note p(z;) = Y7 p(zily;)p(y;). For y; € Vi, p(zily;) = 0. Because p(z;)

averages these zero terms with terms j such that p(z;|y;) > 0,
E [p(z|Y) Y € V'] > p(=z).

If we further add the provision that Y; is such that p(z;]Y;) > £ > 0, we weakly increase
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the expectation on the left hand side above. That is,

E[p(zlV) |p(a]¥) > 2] = B [p(=lY) |Yi ¢ Y & p(=lY) > 1]
> E[p(=|Y)) |Y; ¢ ]

> p(Zi), (Bg)

because p(z;|y;) > T implies p(z;]y;) > 0 which implies y; ¢ V;*.
By definition, an upward revision in expectations about state ¢ at time ¢ occurs if
and only if z;4(7) > z;_(4), which in turn occurs if and only if z(i) > z;_; (7). Finally,

recall p(z;|Y;) = (7). Putting these pieces together:

E [2"(i)|Az(i) > 0] = E[p(z]Y;) | Az(i) > 0]
= Ep(z|Yy) |p(z]Y:) > x1-1(1)]

by (B.9). It then follows from (B.7) that

E [Aze1(i)|Azi(i) > 0] = ((p(z:) — E[(1 = Qa1 (i) + (™ (4) | Az (i) > 0])
= C(p(zi) = CE [27"()|Azi(i) > 0]) = (1 = OE [21 (1) | Aze(i) > 0]
For ¢ sufficiently large, the first term p(z;) — CE [2}"(¢)| Az (i) > 0] is negative by

(B.10)), whereas the second term is small. O

C Bayesian updating from rare events

Consider a Bayesian agent learning about the probability of a rare event from obser-

vations of the event. In the terminology of Section [2.1] we assume for the purpose of
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this section that Z; is iid, and that there are two outcomes of {Z;}, and that the set )
partitions into outcomes possible in one of these states and those possible in the other.
This is of course the same as saying that Z, is observable.

Let p denote the probability of the rare event. The agent has prior
p ~ Beta(p*t + 1, (1 —p")T + 1), (C.1)

for p*,7 > 0. This prior corresponds to beliefs if the agent had begun with a prior
that is uniform on [0, 1] and observed a sample of length 7, of which there were p*r

occurrences of the rare event. The density function corresponding to (C.1)) is given by

fp) o< pP" (1 = p)PT,

where the constant of proportionality does not depend on p.
Assume T years of data. For concreteness, we will call the rare event a crisis.
Conditional on the probability p, the likelihood of exactly /N occurrences of the event

equals

L(N crises|p) = (N

T)pN<1 Y, (©2)

Therefore the posterior distribution equals

f(p| N crises) oc L(N crises|p)f(p)

N+p*7’(1 TH+7—(N+p*T)

X p - D)

where once again we have ignored terms that do not depend on p. This is proportional

to the Beta density, so

p| N crises ~ Beta(N +p*7+ 1,T 4+ 7 — (N +p*1) + 1).
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It follows from properties of the Beta distribution that the posterior mean equals

N+p't+1

E[p| N crises| = Trrra
T

(C.3)

The posterior mean depends on the sample path. Figure |3 shows the average posterior

mean, assuming the likelihood (C.2)):

N+p't+1

yerises [E[p| Nerises]] = T——|—2£(N crises | p) dN

pl+p't+1
T+ 7142

E

where we have used the fact that, conditional on p, N has a binomial distribution,
and therefore E[N | p| = pT. The figure corresponds to the case of 7 = 0, however the
results are very similar for 7 > 0, provided that the actual sample is large relative to

the prior sample.

D Generalizing results in Section

Consider the setting of Section : the agent experiences a crisis at time ¢ — 1 (say,
1929), followed by a depression at time t. Section considers the effect of re-
appearance of crisis features at time ¢’ > ¢ under two simplifying assumptions, (1)
T1929 18 & basis vector and (2) ft‘? = xp. In this appendix we relax these assumptions.
Given the relative uniqueness of the 1929 stock market crash and the Great Depression
we fix ideas by assuming that feiss and faepression Were novel events, and that prior
associations through M, were sufficiently weak as to be negligible. We assume that
depression features last for k£ periods. Because our primary interest is the jump-back-in
time and not details of associations per se, we assume that fqepression did not reoccurred

prior to ¢, and that the context retrieved by the original depression features is not
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associated with the context in 19292
The reappearance of crisis features, fy = ferisis implies 33;9 = Z1999 as in Section .

Context at time t' is now:

Ty = (1 — C)I’tlfl -+ <I1929. (Dl)

Assume that ¢’ represents the first appearance of crisis features, so that z;, ;21929 = 0.

Let w1929, be the projection of x1999 onto basis vector 7, so that
m
T1929 = Z W1929,i€ Wig29,; > 0. (D.2)
i—1

with Z:il W1929,; = 1.
From ([L0)), it follows that features retrieved by (basis) context vector é; at time ¢’
equal

= M) e, i=1,...,m, (D.3)

)

where ;= |[M,_,&]||" ensures that the elements of fllf}, sum to 1. According to
(11), we calculate the features retrieved by context at time ¢’ by taking the weighted
sum of . Because context at time ¢’ is itself a weighted sum of prior context and
retrieved context, we can consider each of these terms separately.

Define the notation

m
in _ n
19294/ = E W1929,i.f ¢/
i=1

By , fli§1297t, are the features retrieved by 2l = x1929. The subjective probability
of a depression implied by f}&g,t, equals the inner product (faepression) f}gm. Note
that fyepression 1 the basis vector representing physical depression features, so the inner

product is simply the entry of f118297t/ that corresponds to depressions among all the

52This would occur if depression features were novel between ¢t and ¢ + k — 1. We disregard the
small effect of learning in this initial period.
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elements of ). The inner product equals

(fdepression) 1929 t = Z W1929,i fdepressmn) leﬁgl/ .

i=1
Using (D.3):
(fdepression)—rfii,?’ = ai(fdepression>TM/ 161 (D4)
t'—1
- O‘i(fdepression>—r (M(;réz + Z fsx;r> éz (D5)
s=1
t'—1
= o4 Z(fdcprcssion) fs)(m 61) (D6>
s=1
= iz + -+ Tp) 6 (D.7)
k
= Ozi(Z(l — ¢)'T1920 + Tigag) ' i (D.8)
=1

where a:f929 is a vector orthogonal to x1999. Equation follows from the lack of
prior associations for depression features through M,. Equation follows from the
assumption of no depression features after time ¢t + k£ — 1, and follows from

the orthogonality of retrieved context and w909 between ¢t and t + k — 1. Because

T 5 _
T1929€i = W1929,i,

1

(fdepression)T iiftl/ = (Z - 1) (1 - (1 - C)k) Z aiw%QQQ,i (D9>
=1

In the case of basis x1929, W1g29; equals 1 for exactly one ¢ and is otherwise 0. The
weight a; is determined by how common the context x1999 is. If uncommon, then «;
simply equals <— — 1) (1 —(1-¢ )k) and 1999 retrieves a probability of 1.

Note however, that total context is not :c?,l = 1929 but rather . Under the

assumption of orthogonality, the probability of a depression goes from zero (features

retrieved by xy_; to ¢ multiplied by .
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E Proofs for Section 4.1]

This Appendix contains proofs generalizing the results in Section[d.1]to ¢ < 1. We first
derive a recursion, analogous to that in Theorem [3| characterizing features retrieved

by a fixed context é;. The following is a simple extension of to retrieved features.

Lemma E.1. Features retrieved by context €; as of time t satisfy:

t—1 -1 t—1
in _ (JMOT & + Z(@é») (MOT Gty fs(a:;réi)> (E.1)
s=1

s=1

where fs can be physical or retrieved features, and where v is the n x 1 vector of ones.

Proof. Combining with implies

Moo Myéi+ Z (foxl)e:
s=1
which is analogous to for retrieved features. To construct the normalizing constant,
pre-multiply (E.2) with ¢, and recall that " f, = 1 for all s. ]
The following is an extension of Theorem 3| to features retrieval.

Theorem E.2. Let k; = | M, é;|. Assume retrieved features are encoded with context.

Then retrieved features obey the following recursion

in _ 1— (:C;Lléi)(l B xlléi) in (x;r 1éi>(1 - x;l’ 1éi> in,J_' (E 2)
ti ki n Zi;ll I;réi t—1, k I Z TA t—1,i
where
tn—llJ_z = (1 xt 161)” th 1 ft 1,50 (E.3)
J#i
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II’IJ_

namely f,"7;

represents features retrieved at t — 1 by context elements other than 1.

The initial condition is fo; oc My é;.

Proof. We apply (E.1), setting k; = 1" My é; and f, = fin:
. t—1 —1
M= (kl + Z(mjéﬁ) < é + me T, é; ) (E.4)
s=1
We rewrite (E.4]), using the same recursive reasoning as in the proof of Theorem :

t—1 -1
i = (k’z + Z(xjé») ( é; + me (x4 6 )
s=1

(434 szel) o

t—1 -1
() e s
s=1

Note that we apply l’ at t—1 to conclude My é,4+31 22 fin(zle,) = (143 ale) fim Li-
Retrieved features at time ¢t — 1 are a weighted average of those retrieved by é;, and

those retrieved by the other elements of context.

tH—11 = tml z(xt 16i) + me( wz—fr—léi)’ (E.6)

where ftlfli is as defined in (E.3). Combining (E.5) and (E.6) shows that f,;nz1 is a

weighted average of ft 1 and ftuflﬁ Moreover, the coefficient multiplying ftlillﬁ must
—1 R N .

equal (k; + Sl ] Je;) (1 —=xl,&)(x/1¢;). Because the elements of f{% must sum

to 1, it follows that the coefficient on fi2, i equals one minus this quantity, as shown

in . ]

The following Lemma generalizes Lemma to encoding of retrieved features.
We assume that only the physical event triggers encoding of features that are non-

orthogonal to the event. For example, if the event is a stock market loss, we disregard
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events that were not losses, but nonetheless reminded the agent of losses, as second-

order.

Lemma E.3. Assume the agent experiences an event at {t1,...,t,}, and that features
vectors are otherwise orthogonal to the event. Then retrieved context in response to
fi, = ei is proportional to
-1
zy o Moe; + Z xtk(ft:ei) (E.7)
k=2

Note that when features are basis vectors, (E.7)) reduces to (A.8§]).

Proof of Lemma [E.3l By and the fact that ¢, is the first occurence of the event:
2y oc Moe;.

Moreover,

Mtl_lei = Moei

Assume by induction that (E.7]) holds for the (¢ — 1)st occurrence of the event:

te_o
xitzlfl o< Moe; + Z Ly, (ftzez) (ES)
k=2
and that
ty—2
My pmse = Mo+ 3, (£ )
k=2

By , context equals

Lo = (1 - C)xtzq*l + Cx;ltzl_l
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and memory is updated as:
My, =My 1+, f) . (E.10)

where it is not necessary to take a stance on whether f;, | = e; or features retrieved
by $t£71 .

By (3),

in
Ty, K My, 16

By definition, t,_; is the occurrence of the event just before the occurence at t,. Because
of this and additional assumptions of the theorem, all features between ¢,_; and t, are

orthogonal to e;. Therefore we can ignore terms in M;,_; that occur after ¢,_;, and
:Eg; o< My, e
Substituting in from (E.10)):
xg‘ o< (M, -1+ :Ete_lftj_l)ei.

Substituting in from (E.9):

te—2

Ty o< Moe; + Z 2 (fo0) + @iy (f_0):
k=2

Because we can ignore terms in M;,_; that occur after t,_;:

Mtg_lei = Mtz_lei
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It follows from (E.9) and (4]) that

ty—2
Mteﬂei = MOei + Z xw(ft—l,;ei) + xtzg&(ft—;,lei%
k=2

completing the proof.
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Figure 1: Retrieved Context and the spotlights of memory. In this illustration, memo-
ries appear as circles on the stage of life. All experiences that enter memory, as gated
by perception and attention, take their place upon the stage. Context serves as a set
of spotlights, each shining into memory and illuminating its associated features. The
prior state of context illuminates recent memories, whereas the context retrieved by
the preceding experience illuminates temporally and semantically contiguous memo-
ries. Due to the recursive nature of context and the stochastic nature of retrieval, the
lamps can swing over time and illuminate different sets of prior features.
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Figure 2: Universality of Temporal Contiguity. A. When freely recalling a list
of studied items, people tend to successively recall items that appeared in neighbor-
ing positions. This temporal contiguity effect (TCE) appears as an in increase in the
conditional-response probability as a function of the lag, or distance, between stud-
ied items (the lag-CRP). The TCE appears invariant across conditions of immediate
recall, delayed recall, and continual-distractor recall, where subjects perform a demand-
ing distractor task between each of the studied items. B. Older adults exhibit reduced
temporal contiguity, indicating impaired contextual retrieval C. Massive practice in-
creases the TCE, as seen in the comparison of 1st and 23rd hour of recall practice. D.
Higher-1Q subjects exhibit a stronger TCE than individuals with average 1Q. E. The
TCE is not due to inter-item associations as it appears in transitions across different
lists, separated by minutes, in a delayed final test given to subjects who studied and
recalled many lists. F. The TCE appears in conditional error gradients in cued recall,
where subjects tend to mistakenly recall items from pairs studied in nearby list posi-
tions. G. When probed to recall the item that either followed or preceded a cue item,
subjects occasionally commit recall errors whose distribution exhibits a TCE both for
forward and backward probes. H. The TCE also appears when subjects are asked to
recognize previously seen travel photos. When successive test items come from nearby
positions on the study list, subjects tendency to make high confidence “old” responses
exhibits a TCE when the previously tested item was also judged old with high con-
fidence. This effect is not observed for responses made with low confidence. Healey
et al.| (2019) provide references and descriptions of each experiment.
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Figure 3: Posterior probability and asset allocation as a function of sample length
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Notes: The figure shows posterior mean of the probability of a depression (Panel A)
and the resulting asset allocation (Panel B) for the model presented in Section [4.1]
'Retrieved context (¢ = 1) is the retrieved context model when the agent places no
weight on prior context. ’Retrieved context (¢ = 0.35)" corresponds to when the
agent places a weight of 1-0.35 on the prior context. 'Bayes’ corresponds to the mean
posterior probability when a Bayesian learns about a rare event from occurrences.
"Neglected risk’ corresponds to exponential decay of beliefs after observing a rare event,
as described in Section 2.3l
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Figure 4: Response of prices and returns to a financial crisis

Panel A: Price-dividend ratio and riskfree rate
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Notes: Panel A shows the time path of the price-dividend ratio and of the short-term
interest rate in response to a period of calm, followed by a financial crisis (in the model
of Section . The dashed lines show full-information values. Panel B shows realized
stock returns. The agent observes three periods of crisis features followed by normal
features. The figure shows the maximum of the model-implied riskfree rate and zero.
Returns are in annual terms.
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Figure 5: Expected utility under context manipulation
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Notes: This figure shows expected utility as a function of allocation to the risky asset
under the model of Section [4.3] Panel A shows utility prior viewing a scene from a
horror movie. Panel B shows utility after context has been manipulated by viewing the
scene. In Panel B, curvature of the utility function has increased, so that the optimal
allocation to the risky asset falls.
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