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“The result is that, even while one of our fundamental mandates is to

encourage competition, the SEC has stood on the sidelines while enormous

market power has become concentrated in just a few players. . . And every

time exchanges raise prices [for exchange connections], that money comes

out of investors’ pockets, who pay more to buy and sell stocks than they

otherwise might. . . In a world where the costs of electronic connections are

constantly falling, exchanges have asked us to raise these prices over and

over again during the past three years.”

Unfair Exchange: The State of America’s Stock Markets , SEC Commis-

sioner Robert J. Jackson Jr., September 2018.

1 Introduction

Over the past two decades, governments and regulators moved to foster competition

among trading venues. This has led to an increase in market fragmentation, which

contributed to a drastic reduction in the cost of trading, benefiting market participants.

However, this has also led exchanges to heighten their reliance on revenue generating

activities which price they can control better. A case in point is the provision of

services such as the sale of market data, co-location space, and fast connections to the

matching engine.1 As suggested by the opening quotation, US regulators have voiced

their concern over the price of such “technological services” with the SEC alleging that

exchanges exercise too much market power in their provision. This begs the question

of what type of regulatory intervention, if any, is warranted.

The liquidity provision industry can be thought of as having a vertical structure,

with an “upstream” level, populated by exchanges/platforms producing an intermedi-

ate good (that comprises access to the matching engine, data feeds, high-speed con-

nection,. . . and that we summarily call “technological services”), and a “downstream”

level, populated by liquidity providers which, through the use of such a good, are able

to satisfy liquidity traders’ demand for immediacy.

1“Take, for example, our rules requiring orders to be routed to the exchange that displays the
national best bid or offer [. . . which ensure] that all investors get the benefit of a competitive national
market system. When the SEC enacted these rules, [. . . ] there would be cases where brokers would
be required to send the order to a specific exchange, leaving the broker–and [. . . ] their customer–
exposed to excessive trading fees on that exchange. So we capped the fees the exchanges can charge.
But facing a limit on one kind of fee, exchanges may have simply raised other fees, like the cost of
connecting to the exchange.” (Robert J. Jackson Jr., 2018)
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Starting from this premise, this paper makes first a methodological contribution by

modeling the vertical structure of liquidity provision combining a two-period market

microstructure model à la Grossman and Miller (1988), with one of platform compe-

tition with free entry, featuring a finite number of exchanges competing to provide

technological services to dealers (respectively, the downstream and the upstream lev-

els). Second, it puts the model to work by comparing the market solution, with free

entry of exchanges, with the second best solutions that can be implemented by a regu-

lator. This approach allows us to analyze the Industrial Organization of stock markets

and evaluate the effects of different regulatory measures.

We find that the competitive (price-taking) solution is generically not efficient

since exchanges do not care about the welfare of all market participants but only

the one of those whose surplus they can appropriate (a vertical externality). In this

context, the market power of exchanges may improve or worsen welfare in relation to

the competitive benchmark. Furthermore, regulation can improve upon the market

solution. We characterize how structural and conduct regulation of exchanges has the

potential to increase welfare, and the subsets of parameter space where one type of

regulation is better than the other.

The optimal second best regulatory intervention revolves around a simple trade-off:

increasing competition, or lowering the technological service fee, spurs technological

capacity production which depresses industry profits to the detriment of exchanges,

while increasing liquidity, to the benefit of market participants. When the wedge be-

tween the first best capacity and the capacity a monopolist would set is sufficiently

large (small), entry regulation is inferior (superior) compared to regulating the tech-

nological service fee charged by a monopolistic exchange.

Thus, our model provides an economic backing to the logic behind the excerpt of

SEC Commissioner Robert J. Jackson’s speech reported in the opening quotation. In-

deed, the vertical structure of the liquidity supply industry, together with exchanges’

market power in providing an essential input for liquidity suppliers explains the mech-

anism by which “[. . . ] every time exchanges raise prices, that money comes out of

investors’ pockets, who pay more to buy and sell stocks than they otherwise might.”

In addition, our model allows to understand when raising prices is detrimental or

beneficial for overall welfare.

The profit orientation of exchanges, when they converted into publicly listed com-

panies, led to regulatory intervention both in the US (Reg NMS in 2005) and the

EU (Mifid in 2007), to stem their market power in setting trading fees. Regulation,
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together with the removal of barriers to international capital flows and technological

developments, led in turn to an increase in fragmentation and competition among

trading platforms. Incumbent exchanges such as the NYSE reacted to increased com-

petition by upgrading technology (e.g, creating, NYSE Arca), or merging with other

exchanges (e.g., the NYSE merged with Archipelago in 2005 and with Euronext in

2007). (See Foucault et al. (2013), Chapter 1.)

As a result, the trading landscape has changed dramatically. On the one hand,

large-cap stocks nowadays commonly trade in multiple venues, a fact that has led to

an inexorable decline in incumbents’ market shares, giving rise to a “cross-sectional”

dimension of market fragmentation (see Figure 1).2 The automation of the trading

process has also spurred fragmentation along a “time-series” dimension, in that some

liquidity providers’ market participation is limited (Duffie (2010), SEC (2010)), en-

dogenous (Anand and Venkataraman (2016)), or impaired because of the existence of

limits to the access of reliable and timely market information (Ding et al. (2014)).3

On the other hand, trading fees have declined to competitive levels (see, e.g., Foucault

et al. (2013), Menkveld (2016), and Budish et al. (2019)), and exchanges have steered

their business models towards the provision of technological services (e.g., proprietary

data, and co-location space).4

Such a paradigm shift has raised a number of concerns highlighted by the fact that

even though there are 13 lit stock venues in the US (and 30 alternative ones), 12 of

them, which account for two-thirds of daily trading, are controlled by three major

players: Intercontinental Exchange, Nasdaq, and CBOE.5 Indeed, market participants

2The figure replicates the one that appears in the OECD Business and Finance Outlook 2016
(Ch. 4, Figure 4.6), with data that reflect the volume for 2018, and illustrates the degree of market
fragmentation by showing the fraction of volume for securities that are listed on a given exchange that
is captured by the listing and competing venues (the “Off-exchange” category includes dark-pools,
crossing-networks, systemic internalizers and OTC trading).

3Limited market participation of liquidity providers also arises because of shortages of arbitrage
capital (Duffie (2010)) and/or traders’ inattention or monitoring costs (Abel et al. (2013)).

4Increasing competition in trading services has squeezed the profit margins exchanges drew from
traditional activities, leading them to gear their business model towards the provision of technological
services (Cantillon and Yin (2011)). There is abundant evidence testifying to such a paradigmatic
shift. For example, according to the Financial Times, “After a company-wide review Ms Friedman
[Nasdaq CEO] has determined the future lies in technology, data and analytics, which collectively
accounted for about 35 per cent of net sales in the first half of this year.” (see, “Nasdaq’s future
lies in tech, data and analytics, says Nasdaq CEO” Financial Times, October 2017). Additionally,
according to Tabb Group, in the US, exchange data, access, and technology revenues have increased
by approximately 62% from 2010 to 2015 (Tabb Group, 2016).

5See FT January 8, 2019, where it is also reported that large brokers and banks are setting MEMX
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Figure 1: Market shares among trading venues in the US in 2018. Source: CBOE
Global Markets, own calculations (See Table 1 (Panel (b)) for venues’ classification).

allege that exchanges abuse of their market power in the provision of technological

services. Additionally, regulators and policy makers such as the SEC and the antitrust

authorities have also expressed concern about the existence of potential monopoly

restrictions. Indeed, the SEC has moved to regulate data fees. In August 2020 the

SEC modified its regulatory framework, rescinding the rule that allowed exchanges to

unilaterally change some of their fees. From September 2020, fee hikes from exchanges

for “core” data require public comment and approval from the SEC. The SEC now

holds an ex-ante control over exchanges’ fee setting process.6

When is regulatory intervention on setting the price of technological services war-

a competing exchange to lower costs of trading.
6In 2018, the SEC sided with market participants over their challenge to the NYSE ARCA’s and

NASDAQ’s decision to increase their data fees (Statement on Market Data Fees and Market Structure,
SEC Chairman J. Clayton, October 2018, Clayton, 2018, Bloomberg, 2018). Stock exchanges subse-
quently appealed against the SEC’s decision, and in June 2020, won the legal battle: the US Court
of Appeals ruled “some fee increases can’t be challenged by the government after they have taken
effect.” (WSJ, 2020). As a response, in August 2020, the SEC modified its regulatory framework,
rescinding the rule that allowed exchanges to unilaterally change some of their fees: from September
2020, fee hikes from exchanges for “core” data require public comment and approval from the SEC
(Bloomberg, 2020). Prior to this, the SEC did not have the power to approve exchanges’ fees before-
hand. However, market participants were permitted to challenge them, upon which challenge, the
SEC could intervene–a form of ex-post fee control. Thus, with this new regulatory approach the SEC
now holds an ex-ante control over exchanges’ fee setting process, Bloomberg, 2020). An important
element which secured the success of exchanges’ appeal in June 2020, was the fact that the SEC based
its 2018 action on a section of law that “makes no mention of fees at all,” highlighting the lack of a
proper mandate to oversee competition at the core of the US regulator’s mission.
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ranted? How should a regulator set such a price to maximize welfare? Is there room

for alternative forms of regulatory intervention?

We assess the consequences for market quality and the welfare of market partici-

pants of different exchanges’ entry regimes and pricing policies in a context of limited

market participation. To this end we propose a stylized framework that captures the

above dimensions of market fragmentation and competition among trading venues, in-

tegrating a simple two-period, market microstructure model à la Grossman and Miller

(1988), with one of platform competition with entry, featuring a finite number of

exchanges competing to attract dealers’ orders.

The microstructure model defines the liquidity determination stage of the game.

There, two classes of risk averse dealers provide liquidity to two cohorts of rational

liquidity traders, who sequentially enter the market. Depending on the structure of the

market, at each round traders can submit their orders only to an “established” venue,

or also to one of the competing venues. Dealers in the first class are endowed with a

technology enabling them to act at both rounds, absorbing the orders of both liquidity

traders’ cohorts, and are therefore called ‘full’ (FD); those in the second class can only

act in the first round, and are called ‘standard’ (SD). The possibility to trade in the

two rounds captures in a simple way both the limited market participation of standard

dealers, and FD’s ability to take advantage of short term return predictability. We

assume that there is a best price rule ensuring that the transaction price is identical

across all the competing trading platforms. This is the case in the US where the

combination of the Unlisted Trading Privilege (which allows a security listed on any

exchange to be traded by other exchanges) and RegNMS’s protection against “trade-

throughs” imply that, despite fragmentation, there virtually exists a unique price for

each security.7 We also assume that trading fees are set at the competitive level by

the exchanges.8

7Price protection rules were introduced to compensate for the potential adverse effects of price
fragmentation when the entry of new platforms was encouraged to limit the market power of incum-
bents. In particular, rule 611 of RegNMS restricts “trade-throughs – the execution of trades on one
venue at prices that are inferior to publicly displayed quotations on another venue.” Additionally, rule
610 disciplines the access to quotations, and sets a cap to the price that can be charged to access such
information. The aim is to enforce price priority in all markets (see SEC). However, for large orders
execution pricing may not be the same in all exchanges except if traders have in place cross-exchange
order-routing technology. In Europe there is no order protection rule similar to RegNMS. Foucault
and Menkveld (2008) show empirically the existence of trade-thoroughs in Amsterdam and London
markets. Hendershott and Jones (2005) find that in the US price protection rules improve market
quality.

8We therefore abstract from competition for order flow issues (see Foucault et al. (2013) for an
excellent survey of the topic).
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The platform competition model features a finite number of exchanges which, upon

incurring a fixed entry cost, offer “technological services” to the full dealers that allow

them to trade in the second round. A standard dealer becomes full by paying a

fee reflecting the incremental payoff he earns by operating in the second round.9 This

defines an inverse demand for technological capacity. Upon entry, each exchange incurs

a constant marginal cost to produce a unit of technological service capacity, receiving

the corresponding fee from the attracted full dealers. This defines a Cournot game

with free entry in which the technological capacity offered by exchanges is determined.

Two aspects of our model are worth noting. First, the Cournot specification of the

platform game is appropriate since even if there is price competition after the capacity

choice, the strategic variable is costly capacity.10 Second, ours is a Cournot model

with externalities. Indeed, gross welfare in our context is not given by the integral

below the inverse demand curve faced by the exchanges. This is so since platforms’

capacity decisions also affect the welfare of market participants other than full dealers

(i.e., standard dealers, and liquidity traders).

We now describe in more detail the main features of the model and our findings.

Due to their ability to trade at both rounds, full dealers exhibit a higher risk bearing

capacity compared to standard dealers. As a consequence, an increase in their mass

improves market liquidity. This has two countervailing effects on the welfare of market

participants. First, it lowers the cost of trading, which leads traders to hedge more

aggressively, increasing their welfare. Second, it heightens the competitive pressure

faced by standard dealers, lowering their payoffs. As liquidity demand augments for

both dealers’ classes, however, SD effectively receive a smaller share of a larger pie.

This, in turn, contributes to make gross welfare (i.e., the weighted sum of all mar-

ket participants’ welfare) increasing in the proportion of full dealers, implying that

liquidity becomes a measurable indicator of gross welfare.

Given the demand for technological services, standard Cournot analysis implies

the existence and uniqueness of a symmetric equilibrium in technological capacities

which, we verify, is also stable. By the properties of stable Cournot equilibria, it then

follows that an increase in the number of trading platforms increases the total capacity

offered to FD, lowering the price of technological services, thereby augmenting the

mass of these liquidity providers. In view of what argued above, this in turn, increases

9Actually, FD may have to invest on their own also on items such as speed technology. In our
model we will abstract from such investments.

10See Kreps and Scheinkman (1983) and Vives (1999).
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the liquidity of the market, benefiting liquidity traders. Thus, when the number of

trading platforms is treated as an exogenous variable, heightening competition induces

a positive externality on the welfare of market participants.

The latter result highlights the key role of the industry’s technological capacity for

market liquidity. In view of the multiple claims made by market participants,11 this

leads us to interpret technological services as an essential intermediate input in the

“production” of market liquidity, and, in the last part of the paper, turn to a welfare

analysis of the impact of platform competition. There, we use our setup to compare

the market solution arising with no platform competition (monopoly), and with entry

(Cournot free entry), with four different planner solutions which vary depending on

the restrictions faced by the planner. An unrestricted planner attains the first best

by choosing the number of competing exchanges as well as the industry technological

service fee; a planner who can only regulate the technological service fee but not entry,

achieves the Conduct second best; finally, if the planner is unable to affect the way in

which exchanges compete but can set the number of those who can enter the market,

she achieves the Structural second best solution (restricted or unrestricted, depending

on whether she regulates entry making sure that platforms break even or not).

Insulated from competition, a monopolistic exchange seeks to restrict the supply

of technological services to increase the fees it extracts from FD.12 Thus, the market

at a free entry Cournot equilibrium delivers a superior outcome in terms of liquidity

and (generally) welfare. However, compared to the case in which the regulator can

control entry, the market solution can feature excessive or insufficient entry. In the

absence of regulation, an exchange makes its entry decision without internalizing the

profit reduction it imposes on its competitors. This “profitability depression” effect is

conducive to excessive entry. As new platform entry spurs liquidity, however, it also

has a positive “liquidity creation” effect which, by benefiting liquidity traders, can

offset the profitability depression effect, and lead to insufficient entry.13 Our numer-

ical simulations show that platform entry is typically excessive. However, when the

11See for example the Wall Street Journal, which in a recent piece referring to market participants’
view over the need to access data showing the most complete view of market activity, states: “Brokers,
traders and investors say the information is essential for pricing orders and responding to market
conditions.” Wall Street Journal, June 6, 2020.

12In a similar vein, Cespa and Foucault (2014) find that a monopolistic exchange finds it profitable
to restrict the access to price data, to increase the fee it extracts from market participants.

13These effects are respectively similar to the “business stealing” and “business creation” effects
highlighted by the Industrial Organization literature (see Mankiw and Whinston (1986), and Ghosh
and Morita (2007)). Note, however, that business stealing refers to the depressing impact that a firm
entry has on its competitors’ output.
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entry cost is sufficiently large and traders have low risk aversion, or when they have

somewhat higher risk aversion and payoff volatility is low, entry is insufficient. Intu-

itively, a high entry cost makes it harder for platforms to break-even; conversely, a low

payoff volatility or a low risk aversion, reduces traders’ needs to hedge the endowment

shock, lowering the rents from liquidity supply, and platforms’ margins from the sale

of technological services. In these conditions, decentralized entry decisions lead to an

outcome where liquidity is too low compared to the planner’s solution.

The optimal second best regulatory intervention revolves around a simple trade-off:

increasing competition, or lowering the technological service fee, spurs technological

capacity production which depresses industry profits to the detriment of exchanges,

while increasing liquidity, to the benefit of market participants. When the wedge

between first best and monopolist capacity is sufficiently large, entry regulation is

inferior compared to regulating the technological service fee charged by a monopolistic

exchange. This is because in this case, to approach the first best the planner needs

to induce a large increase in technological capacity. Due to setup costs, achieving this

objective via regulated entry is more costly than forcing the monopolistic exchange to

charge the lowest possible technological service fee that is compatible with a break-even

condition. Conversely, when the wedge between monopolist and first best capacity is

small, a smaller increase in technological capacity is required to approach the first

best. In this case, the planner may instead choose to regulate entry, since regulating

the fee to ensure a monopolist breaks even, leads to a large industry profit depression

which is not offset by a sufficiently large market participant welfare gain. We show

that the presence of a sector of SD committed to supplying liquidity at each trading

round, can increase the demand of technological services and its equilibrium supply,

prompting a switch in the optimal second best regulatory approach from fee to entry

regulation.

To the best of our knowledge, this paper is the first to analyze the relative merits

of different types of regulatory interventions in a single, tractable model of liquidity

creation and platform competition in technological services. Our paper is thus related

to a growing literature on the effects of platform competition and investment in trad-

ing technology. Pagnotta and Philippon (2018), consider a framework where trading

needs arise from shocks to traders’ marginal utilities from asset holding, yielding a

preference for different trading speeds. In their model, venues vertically differentiate

in terms of speed, with faster venues attracting more speed sensitive investors and

charging higher fees. This relaxes price competition, and the market outcome is ineffi-

9



cient. The entry welfare tension in their case is between business stealing and quality

(speed) diversity, like in the models of Gabszewicz and Thisse (1979) and Shaked and

Sutton (1982). In this paper, as argued above, the welfare tension arises instead from

the profitability depression and liquidity creation effects associated with entry.14 Biais

et al. (2015) study the welfare implications of investment in the acquisition of High

Frequency Trading (HFT–we will use HFT to also indicate High Frequency Traders)

technology. In their model HFTs have a superior ability to match orders, and possess

superior information compared to human (slow) traders. They find excessive incentives

to invest in HFT technology, which, in view of the negative externality generated by

HFT, can be welfare reducing. Budish et al. (2015) argue that HFT thrives in the con-

tinuous limit order book (CLOB), which is however a flawed market structure since it

generates a socially wasteful arms’ race to respond faster to (symmetrically observed)

public signals. The authors advocate a switch to Frequent Batch Auctions (FBA)

instead of a continuous market. Budish et al. (2019), introduce exchange competition

in Budish et al. (2015) and analyze whether exchanges have incentives to implement

the technology required to run FBA. Also building on Budish et al. (2015), Baldauf

and Mollner (2017) show that heightened exchange competition has two countervailing

effects on market liquidity, since it lowers trading fees, but magnifies the opportunities

for cross-market arbitrage, increasing adverse selection. Menkveld and Zoican (2017)

show that the impact of a speed enhancing technology on liquidity depends on the

news-to-liquidity trader ratio. Indeed, on the one hand, as in our context, higher

speed enhances market makers’ risk sharing abilities. On the other hand, it increases

liquidity providers’ exposure to the risk that high frequency speculators exploit their

stale quotes. Finally, Huang and Yueshen (2019) analyse speed and information acqui-

sition decisions, assessing their impact on price informativeness, and showing that in

equilibrium these can be complements or substitutes. None of the above papers con-

trasts the impact of different types of regulatory intervention for platforms’ investment

in technology, market liquidity, and market participants’ welfare.

Our paper is also related to the literature on the Industrial Organization of se-

curities’ trading. This literature has identified a number of important trade-offs due

14Pagnotta and Philippon (2018) also study the market integration impact of RegNMS. Pagnotta
(2013) studies the interaction between traders’ participation decisions and venues’ investment in speed
technology, analysing the implications of institutions’ market power for market liquidity and the level
of asset prices. Babus and Parlatore (2017) find that market fragmentation arises in equilibrium when
the private valuations of different investors are sufficiently correlated. Malamud and Rostek (2017)
and Manzano and Vives (2018) look also at whether strategic traders are better off in centralized or
segmented markets.
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to competition among trading venues. On the positive side, platform competition

exerts a beneficial impact on market quality because it forces a reduction in trad-

ing fees (Foucault and Menkveld (2008) and Chao et al. (2019)), and can lead to

improvements in margin requirements (Santos and Scheinkman (2001)); furthermore,

it improves trading technology and increases product differentiation, as testified by

the creation of “dark pools.” On the negative side, higher competition can lower the

“thick” market externalities arising from trading concentration (Chowdhry and Nanda

(1991) and Pagano (1989)), and increase adverse selection risk for market participants

(Dennert (1993)). We add to this literature, by pointing out that market incentives

may be insufficient to warrant a welfare maximizing solution. Indeed, heightened com-

petition can lead to the entry of a suboptimal number of trading venues, because of

the conflicting impact of entry on profitability and liquidity.

The rest of the paper is organized as follows. In the next section, we outline the

model. We then turn our attention to study the liquidity determination stage of the

game. In section 4, we analyze the payoffs of market participants, and the demand

and supply of technological services. We then concentrate on the impact of platform

competition with free entry, and contrast the welfare and liquidity effects of different

regulatory regimes. A final section contains concluding remarks.

2 The model

A single risky asset with liquidation value v ∼ N(0, τ−1
v ), and a risk-less asset with

unit return are exchanged during two trading rounds.

Three classes of traders are in the market. First, a continuum of competitive, risk-

averse, “Full Dealers” (denoted by FD) in the interval (0, µ), who are active at both

rounds. Second, competitive, risk-averse “Standard Dealers” (denoted by SD) in the

interval [µ, 1], who instead are active only in the first round. Finally, a unit mass of

traders who enter at date 1, taking a position that they hold until liquidation. At date

2, a new cohort of traders (of unit mass) enters the market, and takes a position. The

asset is liquidated at date 3.

This liquidity provision model captures in a parsimonious way a setup where FD

possess an edge over SD along two related dimensions: first they trade “faster” in

that they can quickly turn around their first period position, re-trading at the second

round, facing no competition from SD; second, anticipating this possibility, they are

able to better manage their first-round inventory, increasing their profit from liquidity
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supply. Both these features liken FDs to High Frequency Traders.15 Additionally,

since in our framework all market participants’ trading needs are endogenous, we are

able to perform welfare analysis.

A model captures the reality we observe in a stylized manner and is thus likely to

miss some of its important aspects. This is why we consider three alternative ways

to model the divide between FD and SD. More in detail, in section 1 of the Internet

Appendix, we endogenize the mass of dealers who are active in the market by studying

the effect of allowing potential dealers to decide whether to enter the intermediation

industry prior to making the decision to become FD. In Appendix B, we assume

instead that a fixed mass of SD is in the market at both rounds. This assumption

relaxes the monopolistic power over liquidity supply that FD enjoy in our baseline

model. Finally, similarly to Huang and Yueshen (2019), in Section 3 of the Internet

Appendix, we assume that SD enter the market at the second round. This assumption

puts front and center the speed difference between these two types of traders.

2.1 Trading venues

The organization of the trading activity depends on the competitive regime among

venues. With a monopolistic exchange, both trading rounds take place on the same

venue. When platforms are allowed to compete for the provision of technological

services, we assume that a best price rule ensures that the price at which orders are

executed is the same across all venues. We thus assume away “cross-sectional” frictions,

implying that we have a virtual single platform where all exchanges provide identical

15The literature on High Frequency Trading has identified a number of characteristics of these
market participants. The SEC (2010) in a 2010 concept release on market structure argues: “Other
characteristics often attributed to proprietary firms engaged in HFT are: (1) the use of extraordinarily
high-speed and sophisticated computer programs for generating, routing, and executing orders; (2)
use of co-location services and individual data feeds offered by exchanges and others to minimize
network and other types of latencies; (3) very short timeframes for establishing and liquidating
positions. . . .” This view is also shared by Brogaard (2010), who defines high frequency trading
as “. . . a type of strategy that is engaged in buying and selling shares rapidly, often in terms of
milliseconds and seconds.” He also points out that, compared to algorithmic traders, HFT “. . . differ
in that algorithmic trading may have holding periods that are minutes, days, weeks, or longer, whereas
HFT by definition hold their position for a very short horizon and try and to close the trading day
in a neutral position.” See also Hasbrouck and Saar (2013) and Aı̈t-Sahalia and Saglam (2013) for
similar definitions. As will become clear in Section 2.1, we allow dealers to improve their performance
via the purchase of technological services sold by exchanges, while abstracting from modeling other
forms of technological investment on their part.
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access to trading, and stock prices are determined by aggregate market clearing.16

We model trading venues as platforms that prior to the first trading round (date

0), supply technology which offers market participants the possibility to trade in the

second period. For example, it is nowadays common for exchanges to invest in the

supply of co-location facilities which they rent out to traders, to store their servers and

networking equipment close to the matching engine; additionally, platforms invest in

technologies that facilitate the distribution of market data feeds.17 In the past, when

trading was centralized in national venues, exchanges invested in real estate and the

facilities that allowed dealers and floor traders to participate in the trading process.

At date t = −1, trading venues decide whether to enter and if so they incur a fixed

cost f > 0. Suppose that there are N entrants, that each venue i = 1, 2, . . . , N pro-

duces a technological service capacity µi, and that
∑N

i=1 µi = µ, so that the proportion

of FD coincides with the total technological service capacity offered by the platforms.

Consistent with the evidence discussed in the introduction (see also Menkveld (2016)),

we assume that trading fees are set to the competitive level.

2.2 Liquidity providers

A FD has CARA preferences, with risk-tolerance γ, and submits price-contingent

orders xFDt , to maximize the expected utility of his final wealth: W FD = (v−p2)xFD2 +

(p2−p1)xFD1 , where pt denotes the equilibrium price at date t ∈ {1, 2}.18 A SD also has

CARA preferences with risk-tolerance γ, but is in the market only in the first period.

He thus submits a price-contingent order xSD1 to maximize the expected utility of

his wealth W SD = (v − p1)xSD1 . Therefore, FD as SD observe p1 at the first round;

16Holden and Jacobsen (2014) find that in the US, only 3.3% of all trades take place outside
the NBBO (NBBO stands for “National Best Bid and Offer,” and is a SEC regulation ensuring
that brokers trade at the best available ask and bid (resp. lowest and highest) prices when trading
securities on behalf of customers). See also Li (2015) for indirect evidence that the single virtual
platform assumption is compelling on non-announcement days.

17Empirical evidence shows that co-location can have a positive impact on traders’ profits and
market quality. For example, according to Baron et al. (2018), HFTs that improve their latency
rank due to co-location upgrades enjoy improved trading performance. The stronger performance
associated with speed comes through both the short-lived information channel and the risk manage-
ment channel, and speed is useful for various strategies including market making and cross-market
arbitrage. Similarly, exploiting an optional colocation upgrade at NASDAQ Stockholm, Brogaard
et al. (2015) show that traders who upgrade, use their enhanced speed to reduce their exposure to
adverse selection and to relax their inventory constraints (reduced sensitivity to inventory position).
As a result, they increase their presence at the BBO, with a beneficial effect on effective spreads.

18We assume, without loss of generality with CARA preferences, that the non-random endowment
of FD and dealers is zero. Also, as equilibrium strategies will be symmetric, we drop the subindex i.
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furthermore, FD also observe p2, so that their information set at the second round is

given by {p1, p2}.
The inability of a SD to trade in the second period is a way to capture limited

market participation in our model. In today’s markets, this friction could be due

to technological reasons, as in the case of standard dealers with impaired access to

a technology that allows trading at high frequency. In the past, two-tiered liquidity

provision occurred because only a limited number of market participants could be

physically present in the exchange to observe the trading process and react to demand

shocks.

2.3 Liquidity demanders

Liquidity traders have CARA preferences, with risk-tolerance γL. In the first period a

unit mass of traders enters the market. A trader receives a random endowment of the

risky asset u1 and submits an order xL1 in the asset that he holds until liquidation.19

A first period trader posts a market order xL1 to maximize the expected utility of

his profit πL1 = u1v + (v − p1)xL1 : E[− exp{−πL1 /γL}|u1] . In period 2, a new unit

mass of traders enters the market. A second period trader observes p1 (and can thus

perfectly infer u1), receives a random endowment of the risky asset u2, and posts a

market order xL2 to maximize the expected utility of his profit πL2 = u2v + (v − p2)xL2 :

E[− exp{−πL2 /γL}|p1, u2]. We assume that ut ∼ N(0, τ−1
u ), Cov[ut, v] = Cov[u1, u2] =

0. To ensure that the payoff functions of the liquidity demanders are well defined (see

Section 4.1), we impose

(γL)2τuτv > 1, (1)

an assumption that is common in the literature (see, e.g., Vayanos and Wang (2012)).

19Recent research documents the existence of a sizeable proportion of market participants who do
not rebalance their positions at every trading round (see Heston et al. (2010), for evidence consistent
with this type of behavior at an intra-day horizon).
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2.4 Market clearing and prices

Market clearing in periods 1 and 2 is given respectively by xL1 +µxFD1 +(1− µ)xSD1 = 0

and xL2 + µ(xFD2 − xFD1 ) = 0. We restrict attention to linear equilibria where

p1 = −Λ1u1 (2a)

p2 = −Λ2u2 + Λ21u1, (2b)

where the price impacts of endowment shocks Λ1, Λ2, and Λ21 are determined in

equilibrium. According to (2a) and (2b), at equilibrium, observing p1 and the sequence

{p1, p2} is informationally equivalent to observing u1 and the sequence {u1, u2}.
The model thus nests a standard stock market trading model in one of platform

competition. Figure 2 displays the timeline of the model.

−1

− Exchanges

make costly

entry decision;

N enter.

1

− Liquidity
traders receive
u1 and submit
market order xL1 .

− FD submit
limit order
µxFD1 .

− SD submit
limit order
(1− µ)xSD1 .

0

− Dealers

acquire FD

technology.

− Platforms

make techno-

logical capacity

decisions (µi).

2

− New cohort of
liquidity traders
receives u2,
observes p1, and
submits market
order xL2 .

− FD submit
limit order
µxFD2 .

Liquidity determination
stage (virtual single
platform)

Entry and ca-
pacity determi-
nation stage

3

− Asset liquidates.

Figure 2: The timeline.

3 Stock market equilibrium

In this section we assume that a positive mass µ ∈ (0, 1] of FD is in the market, and

present a simple two-period model of liquidity provision à la Grossman and Miller

(1988) where dealers only accommodate endowment shocks but where all traders are

expected utility maximizers.

Proposition 1. For µ ∈ (0, 1], there exists a unique equilibrium in linear strategies

in the stock market, where xSD1 = −γτvp1, xFD1 = γτuΛ
−2
2 (Λ21 + Λ1)u1− γτvp1, xFD2 =
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−γτvp2, xL1 = a1u1, xL2 = a2u2 + bu1, and prices are given by (2a) and (2b),

Λ1 =

(
1−

(
1 + a1 + µγτu

Λ21 + Λ1

Λ2
2

))
1

γτv
> 0 (3a)

Λ2 = − a2

µγτv
> 0 (3b)

Λ21 = −(1− ((1− µ)γ + γL)τvΛ1)Λ2 < 0 (3c)

at = γLτvΛt − 1 ∈ (−1, 0) (3d)

b = −γLτvΛ21 ∈ (0, 1), (3e)

and

Λ21 + Λ1 > 0. (4)

The coefficient Λt in (2a) and (2b) denotes the period t endowment shock’s negative

price impact, and is our (inverse) measure of liquidity:

Λt = −∂pt
∂ut

. (5)

As we show in Appendix A (see (A.3), and (A.14)), a trader’s order is given by

XL
1 (u1) = γL

E[v − p1|u1]

Var[v − p1|u1]︸ ︷︷ ︸
Speculation

− u1︸ ︷︷ ︸
Hedging

XL
2 (u1, u2) = γL

E[v − p2|u1, u2]

Var[v − p2|u1, u2]︸ ︷︷ ︸
Speculation

− u2︸ ︷︷ ︸
Hedging

.

According to (3d), a trader speculates and hedges his position to avert the risk of a

decline in the endowment value occurring when the return from speculation is low (at ∈
(−1, 0)). We will refer to |at| as the trader’s “trading aggressiveness.” Additionally,

according to (3e), second period traders put a positive weight b on the first period

endowment shock. SD and FD provide liquidity, taking the other side of traders’

orders. In the first period, standard dealers earn the spread from loading at p1, and

unwinding at the liquidation price. FD, instead, also speculate on short-term returns.

Indeed,

xFD1 = γ
E[p2 − p1|u1]

Var[p2|u1]
− γτvp1.

To interpret the above expression, suppose u1 > 0. Then, liquidity traders sell the
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asset, depressing its price (see (2a)) and leading both FD and SD to provide liquidity,

taking the other side of the trade. SD hold their position until the liquidation date,

whereas FD have the opportunity to unwind it at the second round, partially unloading

their inventory risk. Anticipating this, second period traders buy the security (or

reduce their short-position), which explains the positive sign of the coefficient b in

their strategy (see (3e)). This implies that E[p2 − p1|u1] = (Λ21 + Λ1)u1 > 0, so that

FD anticipate a positive speculative short-term return from going long in the asset.

In sum, FD supply liquidity both by posting a limit order, and a contrarian market

order at the equilibrium price, to exploit the predictability of short term returns.20 In

view of this, Λ1 in (3a) reflects the risk compensation dealers require to hold the

portion of u1 that first period traders hedge and FD do not absorb via speculation:

Λ1 =

(
1−

(
1 + a1︸ ︷︷ ︸

L1 holding of u1

+ µγτu
Λ21 + Λ1

Λ2
2︸ ︷︷ ︸

FD aggregate speculative position

))
1

γτv
.

In the second period, liquidity traders hedge a portion a2 of their order, which is

absorbed by a mass µ of FD, thereby explaining the expression for Λ2 in (3b).

Therefore, at both trading rounds, an increase in µ, or in dealers’ risk tolerance,

increases the risk bearing capacity of the market, leading to a higher liquidity:

Corollary 1. An increase in the proportion of FD, or in dealers’ risk tolerance

increases the liquidity of both trading rounds: ∂Λt/∂µ < 0, and ∂Λt/∂γ < 0 for

t ∈ {1, 2}.

According to (2b) and (3c), due to FD short term speculation, the first period

endowment shock has a persistent impact on equilibrium prices: p2 reflects the impact

of the imbalance FD absorb in the first period, and unwind to second period traders.

Indeed, substituting (3c) in (2b), and rearranging yields: p2 = −Λ2u2 + Λ2(−µxFD1 ).

Corollary 2. First period traders hedge the endowment shock more aggressively than

second period traders: |a1| > |a2|. Furthermore, |at| and b are increasing in µ.

Comparing dealers’ strategies shows that SD in the first period trade with the same

intensity as FD in the second period. In view of the fact that in the first period the

20This is consistent with the evidence on HFT liquidity supply (Brogaard et al. (2014), and Biais
et al. (2015)), and on their ability to predict returns at a short term horizon based on market data
(Harris and Saad (2014), and Menkveld (2016)).
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latter provide additional liquidity by posting contrarian market orders, this implies

that Λ1 < Λ2, explaining why traders display a more aggressive hedging behavior in

the first period. The second part of the above result reflects the fact that an increase

in µ improves liquidity at both dates, but also increases the portion of the first period

endowment shock absorbed by FD. This, in turn, leads second period liquidity traders

to step up their response to u1.

Summarizing, an increase in µ has two effects: it heightens the risk bearing capacity

of the market, and it strengthens the propagation of the first period endowment shock

to the second trading round. The first effect makes the market deeper, leading traders

to step up their hedging aggressiveness. The second effect reinforces second period

traders’ speculative responsiveness. When all dealers are FD, liquidity is maximal.

4 Traders’ welfare, technology demand, and ex-

change equilibrium

In this section we study traders’ payoffs, derive demand and supply for technological

services, and obtain the platform competition equilibrium.

4.1 Traders’ payoffs and the liquidity externality

We measure a trader’s payoff with the certainty equivalent of his expected utility:

CEFD ≡ −γ ln(−EUFD), CESD ≡ −γ ln(−EUSD), CEL
t ≡ −γL ln(−EUL

t ), t ∈
{1, 2}, where EU j, j ∈ {SD,FD} and EUL

t , t ∈ {1, 2}, denote respectively the

unconditional expected utility of a standard dealer, a full dealer, and a first and sec-

ond period trader. The following results present explicit expressions for the certainty

equivalents.

Proposition 2. The payoffs of a SD and a FD are given by

CESD =
γ

2
ln

(
1 +

Var[E[v − p1|p1]]

Var[v − p1|p1]

)
(6a)

CEFD =
γ

2

(
ln

(
1 +

Var[E[v − p1|p1]]

Var[v − p1|p1]
+

Var[E[p2 − p1|p1]]

Var[p2 − p1|p1]

)
(6b)

+ ln

(
1 +

Var[E[v − p2|p1, p2]]

Var[v − p2|p1, p2]

))
.
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Furthermore:

1. For all µ ∈ (0, 1], CEFD > CESD.

2. CESD and CEFD are decreasing in µ.

3. limµ→1CE
FD > limµ→0CE

SD.

According to (6a) and (6b), dealers’ payoffs reflect the accuracy with which these

agents anticipate their strategies’ unit profits. A SD only trades in the first period,

and the accuracy of his unit profit forecast is given by Var[E[v− p1|p1]]/Var[v− p1|p1]

(the ratio of the variance explained by p1 to the variance unexplained by p1).

A FD instead trades at both rounds, supplying liquidity to first period traders,

as a SD, but also absorbing second period traders’ orders, and taking advantage of

short-term return predictability. Therefore, his payoff reflects the same components of

that of a SD, and also features the accuracy of the unit profit forecast from short term

speculation (Var[E[p2 − p1|p1]]/Var[p2 − p1|p1]), and second period liquidity supply

(Var[E[v − p2|p1, p2]]/Var[v − p2|p1, p2]). In sum, as FD can trade twice, benefiting

from more opportunities to speculate and share risk, they enjoy a higher expected

utility.

Substituting (3d) and (3e) in (6a) and (6b), and rearranging yields:

CESD =
γ

2
ln

(
1 +

(1 + a1)2

(γL)2τuτv

)
(7a)

CEFD =
γ

2

(
ln

(
1 +

(1 + a1)2

(γL)2τuτv
+

(
1 + a1

1 + µγτuτv(µγ + γL)

)2)
(7b)

+ ln

(
1 +

(1 + a2)2

(γL)2τuτv

))
.

An increase in µ has two offsetting effects on the above expressions for dealers’ wel-

fare. On the one hand, as it boosts market liquidity, it leads traders to hedge more,

increasing dealers’ payoffs (Corollaries 1 and 2). On the other hand, as it induces more

competition to supply liquidity it lowers them. The latter effect is stronger than the

former. Importantly, even in the extreme case in which µ = 1, a FD receives a higher

payoff than a SD in the polar case µ ≈ 0.
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Proposition 3. The payoffs of first and second period traders are given by

CEL
1 =

γL

2
ln

(
1 +

Var[E[v − p1|p1]]

Var[v − p1|p1]
+ 2

Cov[p1, u1]

γL

)
(8a)

CEL
2 =

γL

2
ln

(
1 +

Var[E[v − p2|p1, p2]]

Var[v − p2|p1, p2]
+ (8b)

2
Cov[p2, u2|p1]

γL
+

Var[E[v − p2|p1]]

Var[v]
−
(

Cov[p2, u1]

γL

)2)
.

Furthermore:

1. CEL
1 and CEL

2 are increasing in µ.

2. For all µ ∈ (0, 1], CEL
1 > CEL

2 .

Similarly to SD, liquidity traders only trade once (either at the first, or at the

second round). This explains why their payoffs reflect the precision with which they

can anticipate the unit profit from their strategy (see (8a) and (8b)). Differently from

SD, these traders are however exposed to a random endowment shock. As a less

liquid market increases hedging costs, it negatively affects their payoff (Cov[p1, u1] =

−Λ1τ
−1
u , and Cov[p2, u2|p1] = −Λ2τ

−1
u ). Finally, (8b) shows that a second period trader

benefits when the return he can anticipate based on u1 is very volatile compared to v

(Var[E[v−p2|p1]]/Var[v]), since this indicates that he can speculate on the propagated

endowment shock at favorable prices. However, a strong speculative activity reinforces

the relationship between p2 and u1, (Cov[p2, u1]2), leading a trader to hedge little of

his endowment shock u2, and keep a large exposure to the asset risk, thereby reducing

his payoff.

Substituting (3d) and (3e) in (8a) and (8b), and rearranging yields:

CEL
1 =

γL

2
ln

(
1 +

a2
1 − 1

(γL)2τuτv

)
(9)

CEL
2 =

γL

2
ln

(
1 +

a2
2 − 1

(γL)2τuτv
+
b2((γL)2τuτv − 1)

(γL)4τ 2
uτ

2
v

)
. (10)

An increase in the proportion of FD makes the market more liquid and leads traders

to hedge and speculate more aggressively (Corollary 2), benefiting first period traders

(Proposition 3). At the same time, it heightens the competitive pressure faced by SD,
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lowering their payoffs (Proposition 2). As liquidity demand augments for both dealers’

classes, however, SD effectively receive a smaller share of a larger pie. This mitigates

the negative impact of increased competition, implying that on balance the positive

effect of the increased liquidity prevails:

Corollary 3. The positive effect of an increase in the proportion of FD on first period

traders’ payoffs is stronger than its negative effect on SD’ welfare:

∂CEL
1

∂µ
> −∂CE

SD

∂µ
, (11)

for all µ ∈ (0, 1].

Aggregating across market participants’ welfare yields the following Gross Welfare

function:

GW (µ) = µCEFD + (1− µ)CESD + CEL
1 + CEL

2 (12)

= µ(CEFD − CESD)︸ ︷︷ ︸
Surplus earned by FD

+ CESD + CEL
1 + CEL

2︸ ︷︷ ︸
Welfare of other market participants

Corollary 4.

1. The welfare of market participants other than FD is increasing in µ.

2. Gross welfare is higher at µ = 1 than at µ ≈ 0.

The first part of the above result is a direct consequence of Corollary 3: as µ

increases, SD’s losses due to heightened competition are more than compensated by

traders’ gains due to higher liquidity. The second part, follows from Proposition 2

(part 3), and Proposition 3. Note that it rules out the possibility that the payoff

decline experienced by FD as µ increases, leads gross welfare to be higher at µ ≈ 0.

Therefore, a solution that favors liquidity provision by FD is also in the interest of all

market participants. Finally, we have:

Numerical Result 1. Numerical simulations show that GW (µ) is monotone in µ.

Therefore, µ = 1 is the unique maximum of the gross welfare function GW (µ).

In view of Corollary 1, gross welfare is maximal when liquidity is at its highest

level.21 Furthermore, because of monotonicity, the above market quality indicator,

becomes “measurable” welfare indexes.
21Numerical simulations where conducted using the following grid: γ, µ ∈ {0.01, 0.02, . . . , 1},

τu, τv ∈ {1, 2, . . . , 10}, and γL ∈ {1/√τuτv + 0.001, 1/
√
τuτv + 0.101, . . . , 1}, in order to satisfy (1).
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Remark 1. Our results on liquidity provision and market participants’ payoffs are

robust to an extension of the model in which a positive mass of standard dealers is in

the market at both rounds (see Appendix B).

4.2 The demand for technological services

We define the value of becoming a FD as the extra payoff that such a dealer earns

compared to a SD. According to (6a) and (6b), this is given by:

φ(µ) ≡ CEFD − CESD (13)

=
γ

2

(
ln

(
1 +

Var[E[v − p1|p1]]

Var[v − p1|p1]
+

Var[E[p2 − p1|p1]]

Var[p2 − p1|p1]

)
− ln

(
1 +

Var[E[v − p1|p1]]

Var[v − p1|p1]

)
︸ ︷︷ ︸

Competition

+ ln

(
1 +

Var[E[v − p2|p1, p2]]

Var[v − p2|p1, p2]

)
︸ ︷︷ ︸

Liquidity supply

)
.

FD rely on two sources of value creation: first, they compete business away from

SD, extracting a larger rent from their trades with first period traders (since they can

supply liquidity and speculate on short-term returns); second, they supply liquidity to

second period traders.

We interpret the function φ(µ) as the (inverse) demand for technological services

as it is the willingness to pay to become a FD.22

Corollary 5. The inverse demand for technological services φ(µ) is decreasing in µ.

A marginal increase in µ heightens the competition FD face among themselves,

and vis-à-vis SD. The former effect lowers the payoff of a FD. In Appendix A, we show

that the same holds also for the latter effect. Thus, an increase in the mass of FD

erodes the rents from competition, implying that φ(µ) is decreasing in µ.23

22It formalizes in a simple manner the way in which Lewis (2014) describes Larry Tabb’s estimation
of traders’ demand for the high speed, fiber optic connection that Spread laid down between New
York and Chicago in 2009.

23Numerical simulations show that when µ, τu, and τv are sufficiently large and γ is large above γL,
φ(µ) is log-convex in µ: (∂2 lnφ(µ)/∂µ2) ≥ 0. When this occurs, the price reduction corresponding
to an increase in µ becomes increasingly smaller as µ increases. In these conditions, we find that for
N = 2 exchanges’ best response functions can become upward sloping, differently from what happens
in standard Cournot models.
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4.3 The supply of technological services and exchange equi-

librium

Depending on the industrial organization of exchanges, the supply of technological

services is either controlled by a single platform, acting as an “incumbent monopolist,”

or by N ≥ 2 venues who compete à la Cournot in technological capacities. In the

former case, the monopolist profit is given by

π(µ) = (φ(µ)− c)µ− f, (14)

where c and f , respectively denote the marginal and fixed cost of supplying a capac-

ity µ. We denote by µM the optimal capacity of the monopolist exchange: µM ∈
arg maxµ∈(0,1] π(µ). In the latter case, denoting by µi and µ−i =

∑N
j 6=i µj, respectively

the capacity installed by exchange i and its rivals, and by f and c the fixed and

marginal cost incurred by an exchange to enter and supply capacity µi, an exchange

i’s profit function is given by

π(µi, µ−i) = (φ(µ)− c)µi − f. (15)

With N ≥ 2 venues we may assume that dealers are distributed uniformly across

the exchanges and that competition among exchanges proceeds in a two-stage manner.

First each exchange sets its capacity (and this determines how many dealers become FD

in the venue) and then exchanges compete in prices. This two stage game is known to

deliver Cournot outcomes under some mild conditions (Kreps and Scheinkman (1983)).

We define a symmetric Cournot equilibrium as follows:

Definition 1. A symmetric Cournot equilibrium in technological service capacities is

a set of capacities µCi ∈ (0, 1], i = 1, 2, . . . , N , such that (i) each µCi maximizes (15),

for given capacity choice of other exchanges µC−i: µ
C
i ∈ arg maxµi π(µi, µ

C
−i), (ii) µC1 =

µC2 = · · · = µCN , and (iii)
∑N

i=1 µ
C
i = µC(N).

We have the following result:

Proposition 4. There exists at least one symmetric Cournot equilibrium in techno-

logical service capacities and no asymmetric ones.

Proof. See Amir (2018), Proposition 7, and Vives (1999), Section 4.1. 2
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Numerical simulations show that the equilibrium is unique and stable.24 As a

consequence, standard comparative statics results apply (see, e.g., Section 4.3 in Vives

(1999)).

In particular, an increase in the number of exchanges leads to an increase in the

aggregate technological service capacity, and a decrease in each exchange profit:

∂µC(N)

∂N
≥ 0 (16a)

∂πi(µ)

∂N

∣∣∣∣
µ=µC(N)

≤ 0. (16b)

If the number of competing platforms is exogenously determined, condition (16a)

implies that spurring competition in the intermediation industry has positive effects

in terms of liquidity and gross welfare (Proposition 1 and Numerical Result 1):

Corollary 6. At a stable Cournot equilibrium, an exogenous increase in the number of

competing exchanges has a positive impact on liquidity and gross welfare: ∂Λt/∂N < 0,

∂GW/∂N > 0.

Degryse et al. (2015) study 52 Dutch stocks in 2006-2009 (listed on Euronext Am-

sterdam and trading on Chi-X, Deutsche Börse, Turquoise, BATS, Nasadaq OMX and

SIX Swiss Exchange) and find a positive relationship between market fragmentation

(in terms of a lower Herfindhal index, higher dispersion of trading volume across ex-

changes) and the consolidated liquidity of the stock. Foucault and Menkveld (2008)

also find that consolidated liquidity increased when in 2004 the LSE launched Eu-

roSETS, a new limit order market to allow Dutch brokers to trade stocks listed on

Euronext (Amsterdam).

5 Endogenous platform entry and welfare

In this section we endogenize platform entry, and study its implications for welfare

and market liquidity.25 Assuming that platforms’ technological capacities are identical

24In our setup, a sufficient condition for stability (Section 4.3 in Vives (1999)) is that the elasticity
of the slope of the FD inverse demand function is bounded by the number of platforms (plus one):
E|µ=µC(N) ≡ −µφ′′(µ)/φ′(µ)|µ=µC(N) < 1 +N.

25For example, according to the UK Competition Commission (2011), a platform entry fixed cost
covers initial outlays to acquire the matching engine, the necessary IT architecture to operate the
exchange, the contractual arrangements with connectivity partners that provide data centers to host
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(µ = Nµi), a social planner who takes into account the costs incurred by the exchanges

faces the following objective function:

P(µ,N) ≡ GW (µ)− cµ− fN (17)

= π(µi)N + ψ(µ).

Expression (17) is the sum of two components. The first component reflects the profit

generated by competing platforms, who siphon out FD surplus, and incur the costs

associated with running the exchanges: π(µi)N = ((φ(µ)− c)µi − f)N , implying that

FD surplus only contributes indirectly to the planner’s function, via platforms’ total

profit. The second component in (17) reflects the welfare of other market participants:

ψ(µ) = CESD+CEL
1 +CEL

2 , and highlights the welfare effect of technological capacity

choices via the liquidity externality.26 We consider five possible outcomes:

1. Cournot with free entry (CFE). In this case, we look for a symmetric Cournot

equilibrium in µ, as in Definition 1, and impose the free entry constraint:

(φ(µC(N))− c)µ
C(N)

N
≥ f > (φ(µC(N + 1))− c)µ

C(N + 1)

N + 1
, (18)

which pins down N . We denote by µCFE, and NCFE the pair that solves the

Cournot case. Note that, given Proposition 4 and (16b), a unique Cournot

equilibrium with free entry obtains in our setup if (16b) holds and for a given N

the equilibrium is unique.

2. Structural second best (ST). In this case we posit that the planner can determine

the number of exchanges that operate in the market. As exchanges compete à la

Cournot in technological capacities, we thus look for a solution to the following

problem: maxN≥1P(µC(N), N) s. t. µC(N) is a Cournot equilibrium with

πCi (N) ≥ 0, and denote by µST , and NST the pair that solves the planner’s

problem.

3. Unrestricted Structural second best (UST). In this case we relax the non-negativity

and operate the exchange technology, and the skilled personnel needed to operate the business. The
Commission estimated that in 2011 this roughly corresponded to £10-£20 million.

26Even incumbent exchanges may have to incur an entry cost to supply liquidity in the second
round. For example, faced with increasing competition from alternative trading venues, in 2009 LSE
decided to absorb Turquoise, a platform set up about a year before by nine of the world’s largest
banks. (See “LSE buys Turquoise share trading platform,” Financial Times, December 2009).
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constraint in the STR, assuming that the planner can make side-payments to ex-

changes if they do not break-even, and look for a solution to the following prob-

lem: maxN≥1P(µC(N), N) s. t. µC(N) is a Cournot equilibrium, and denote by

µUST , and NUST the pair that solves the planner’s problem.

4. Conduct second best (CO). In this case, we let the planner set the fee that ex-

changes charge to FD, assuming free entry of platforms. Because of Corollary 5,

φ(µ) is invertible in µ, implying that setting the fee is equivalent to choosing the

aggregate technological capacity µ. Thus, we look for a solution to the following

problem:

max
µ∈(0,1]

P(µ,N) s.t. (φ(µ)− c) µ
N
≥ f ≥ (φ(µ)− c) µ

N + 1
, (19)

and denote by µCO and NCO the pair that solves (19).27

5. first best (FB). In this case, we assume that the planner can regulate the market

choosing the fee and the number of competing platforms: maxµ∈(0,1],N≥1P(µ,N).

We denote by µFB and NFB the pair that solves the planner’s problem.

We contrast the above four cases with the “Unregulated Monopoly” outcome (M)

defined in Section 4.3, focusing on welfare and market liquidity (we state our results

in terms of aggregate technological capacity µ, with the understanding that based on

Corollary 1, a higher technological capacity implies a higher liquidity). We make the

maintained assumptions that both the monopoly profit and P(µ, 1) are single-peaked

in µ, with maximum monopoly profit being positive, and that the Cournot equilibrium

is stable.28

5.1 First best vs. market solutions

We start by comparing the first best (FB) outcome with the two polar market solutions

of Monopoly (M) and Cournot Free Entry (CFE). We obtain the following result:

Proposition 5. At the first best the planner sets NFB = 1. Furthermore:

1. If the monopoly solution is interior (µM ∈ (0, 1)), then µFB > µM .

27We assume for simplicity that if the second inequality holds with equality, then only N firms
enter.

28These conditions are satisfied in all of our simulations (see Table 3).
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2. If at the first best the monopoly profit is non-positive (πM(µFB) ≤ 0), then

µFB > µCFE ≥ µM .

3. Welfare comparison: PFB is larger than both PCFE and PM .

At the first best, the planner minimizes entry costs by letting a single exchange

satisfy the industry demand for technological services. If at the first best the monopoly

profit is non-positive, then aggregate capacity must be strictly larger than the one at

the Cournot Free Entry outcome since otherwise platforms would make negative prof-

its. Furthermore, the capacity supplied at the monopoly outcome can be no larger

than the one obtained with Cournot Free Entry since, under Cournot stability, in-

creased platform entry leads to increased technological service capacity. Finally, with

higher technological service capacity, and minimized fixed costs, the first best solution

is superior to either market outcome.

We can compare µFB with the capacity that obtains if the fixed cost tends to

zero, and thus the number of platforms grows unboundedly at the CFE. In this case,

platforms become price takers (PT ), and the implied aggregate capacity is implicitly

defined by: φ(µPT ) = c. Since P = (φ(µ)− c)µ+ ψ(µ), we have that P ′ = φ(µ)− c+

µφ′(µ) + ψ′(µ) and therefore:

∂P
∂µ

∣∣∣∣
µ=µPT

= µPTφ′(µPT ) + ψ′(µPT ), (20)

which will be positive or negative depending on whether the cost to the industry of

marginally increasing capacity (−µPTφ′(µPT )) is smaller or larger than the marginal

benefit to the other market participants (ψ′(µPT )). At µPT exchanges do not internal-

ize either effect and only in knife-edge cases we will have that µFB = µPT .29

5.2 Fee regulation

We now compare the constrained second best optimum the planner achieves with con-

duct (fee) regulation (CO) with the two polar market solutions. Under the assumption

that the monopoly profit is negative at the first best solution, which implies that at the

CO profits are exactly zero (see Lemma A.2 in Appendix A), we obtain the following

result:

29Note, however, that if the welfare of other market participants is constant, then the monopoly
solution implements the first best.
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Proposition 6. When the planner regulates the technological service fee, if at the first

best the monopoly profit is negative,

1. NCO = 1.

2. The technological service capacity supplied at the CO is lower than at the FB but

higher than at the CFE: µFB > µCO > µCFE.

3. Welfare ranking: PFB > PCO > PCFE.

Suppose that at the first best the monopoly profit is negative.30 Then with fee

regulation (CO), the aggregate technological capacity should be smaller than at the

first best since otherwise the platforms would make negative profits. As for a given

(aggregate) µ the profit of an exchange is decreasing in N , for given µ the maximum

profit obtains when N = 1 implying that NCO = 1. Furthermore, given that P is

single peaked in µ, it is optimal for µCO to be set as large as possible so that profits

are zero. Finally, with fee regulation, one platform breaks even, while at a Cournot

Free Entry (i) a single platform makes a positive profit (recall that monopoly profits

are assumed to be positive), and (ii) if more than one platform is in the market, then

platforms lose money when offering a capacity larger or equal to the one obtained with

fee regulation. In either case, µCFE < µCO, and we have: µCFE < µCO < µFB.31

Remark 2. If at the first best the monopoly profit is positive, two cases can arise.

First, we can have that (φ(µFB) − c)µFB/2 − f ≤ 0, in which case both constraints

of the Conduct second best problem are satisfied at (µCO, NCO) = (µFB, 1), and the

Conduct second best implements the first best outcome. If, on the other hand, two

platforms earn a positive profit at the first best—(φ(µFB)− c)µFB/2− f > 0—then at

a Conduct second best the planner needs to set a lower fee for technological services

compared to the one of the first best and/or allow more than one platform to enter the

market. Indeed, if NCO = 1, then by construction µCO cannot be set smaller than µFB

since this would violate the right constraint of the Conduct second best problem.

30We have numerically verified the above sufficient condition for NCO = 1, and found that in our
simulations it is always satisfied. In the reverse order of actions model, in some cases πM (µCO) > 0,
but the planner still sets NCO = 1. See Table 2 for details.

31More precisely, notice that µCFE cannot be higher than µCO, as at µCO one firm makes zero
profit. Thus, given single-peakedness of the monopoly profit, if there is either one or more than one
firm in the CFE with µCFE > µCO, profits will be negative. Similarly, it cannot be µCFE = µCO

because if NCFE = 1 then µCO = µCFE = µM , and by assumption the monopoly profit is positive;
if, instead, NCFE > 1, then more than one firm shares the revenue that one firm has in the CO
solution, so that its profit must be negative.
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5.3 Entry regulation

Regulating the fee can however be complicated, as our discussion in the introduction

suggests. Thus, we now focus on the case in which the planner can only decide on the

number of competing exchanges. In the absence of regulation, a Cournot equilibrium

with free entry arises (see (18)), and we compare this outcome to the Structural second

best, in both the unrestricted and restricted cases. Evaluating the first order condition

of the planner at N = NCFE (ignoring the integer constraint) yields:

∂P(µC(N), N)

∂N

∣∣∣∣
N=NCFE

= πi(µ
C(N), N)︸ ︷︷ ︸
= 0

∣∣∣∣∣∣
N=NCFE

(21)

+NCFE ∂πi(µ
C(N), N)

∂N︸ ︷︷ ︸
Profitability depression < 0

∣∣∣∣∣∣∣∣
N=NCFE

+ ψ′(µ)
∂µC(N)

∂N︸ ︷︷ ︸
Liquidity creation > 0

∣∣∣∣∣∣∣∣
N=NCFE

.

According to (21), at a stable Cournot equilibrium, entry has two countervailing wel-

fare effects.32 The first one is a “profitability depression” effect, and captures the profit

decline associated with the demand reduction faced by each platform as a result of

entry. This effect is conducive to excessive entry, as each competing exchange does not

internalize the negative impact of its entry decision on competitors’ profits. The sec-

ond one is a “liquidity creation” effect and reflects the welfare creation of an increase

in N via the liquidity externality. This effect is conducive to insufficient entry since

each exchange does not internalize the positive impact of its entry decision on other

market participants’ payoffs.33

The above effects are related but distinct to the ones arising in a Cournot equi-

librium with free entry (Mankiw and Whinston (1986) and in the vertical oligopoly

of Ghosh and Morita (2007)).

32This is because at a stable equilibrium (16a) and (16b) hold, see section 4.3 in Vives (1999).
33As clarified by condition (21), the necessary conditions for insufficient entry are: (1) that the

total technological capacity installed by entering platforms is increasing in the number of entrants–a
property of all stable Cournot equilibria–and (2) that the gross welfare of all agents except for FD is
increasing in the total capacity of technological services that platforms supply at equilibrium–a result
that holds in our baseline model, and that we formally prove in Corollary 4 (part 1).
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In our setup, when we compare NCFE with NST , entry is always excessive (as

in Mankiw and Whinston (1986)); however, when NCFE is stacked against NUST , this

conclusion does not necessarily hold. More in detail, NCFE is the the largest N so

that platforms break even at a Cournot equilibrium. At the STR solution, platforms

break even too, but the planner internalizes the profitability depression effect of entry.

Thus, we have that NCFE ≥ NST . Conversely, removing the break even constraint,

the planner achieves the Unrestricted STR and, depending on which of the effects

outlined above prevails, both excessive or insufficient entry can occur:

Proposition 7. When the planner regulates entry, for stable Cournot equilibria:

1. NCFE ≥ NST , µCFE ≥ µST .

2. When the profitability depression effect is stronger than the liquidity creation

effect, NCFE ≥ NUST , µCFE ≥ µUST . Otherwise, the opposite inequalities hold.

3. Both µST and µUST are no smaller than µM .

4. Welfare ranking: PUST ≥ PST ≥ PCFE.

The first two items in the proposition reflect our previous discussion. Item 3

shows that while the technological capacity offered with free platform entry (CFE) is

higher than at the Structural second best (a natural consequence of excessive entry

with respect to the STR benchmark), when the planner relaxes the break-even con-

straint (UST), the comparison is inconclusive. Indeed, as explained above, to exploit

the positive liquidity externality, the planner may favor entry beyond the break-even

level–subsidising the loss-making platforms. Thus, while entry regulation implies that

liquidity maximization is generally at odds with welfare maximization, the two may

be aligned when the planner is ready to make up for platforms’ losses. Finally, as at

the UST the non-negativity constraint of the exchanges’ profit is relaxed, PUST ≥ PST
must hold.

To verify the possibility of excessive or insufficient entry compared to the UST,

we run two sets of numerical simulations. In the first set we assume standard risk

aversion (γ = 0.5, γL = 0.25), a 10% annual volatility for the endowment shock,

and consider a “high” and a “low” payoff volatility scenario (respectively, τv = 3,

which which corresponds to a 60% annual volatility for the liquidation value, and

τv = 25 which corresponds to a 20% annual volatility). Platform costs are set to
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f ∈ {1 × 10−6, 2 × 10−6, . . . , 31 × 10−6}, and c = 0.002.34 In the second set, we

assume lower values for risk aversion (γ = 25, γL = 12) which are consistent with

the literature on price pressure, and recent results on the structural estimation of risk

aversion based on insurance market data,35 and set τv = τu = 0.1 (corresponding to

a 316% annual volatility for both the endowment shock and the liquidation value),

f ∈ {1 × 10−2, 2 × 10−2, . . . , 31 × 10−2}, and c = 2. For both sets of simulations,

we solve for the technological capacity and the number of platforms, and perform

robustness analysis (see Tables 2 and 3). In all simulations we obtain πM(µFB) < 0.36

Numerical Result 2. The results of our numerical simulations are as follows:

1. With standard risk aversion values:

(a) With high payoff volatility, entry is excessive: NCFE > NUST , and µCFE >

µUST .

(b) With low payoff volatility and for sufficiently large values of the entry cost,

entry is insufficient: NCFE < NUST and µCFE < µUST .

2. With low risk aversion values, for intermediate values of the entry cost, entry is

insufficient.

Furthermore, at all solutions N and µ are decreasing in f .37

Figure 3 illustrates the output of two simulations in which insufficient entry occurs.

Intuitively, the combination of a high entry cost and low risk aversion and payoff

volatility, work to reduce exchanges’ profit margins. A high entry cost, makes it

harder for platforms to break-even; a low payoff volatility or a low risk aversion, reduces

traders’ needs to hedge the endowment shock, lowering the rents from liquidity supply.

In these conditions, decentralizing entry decisions yields an outcome where liquidity

is too low compared to the planner’s solution.

34Analyzing the US market, Jones (2018) argues that barriers to entry to the intermediation in-
dustry are very low, a consideration that is corroborated by the current state of the market, where
13 cash equity exchanges compete with over 30 ATS. This suggests that entry cost must be low.

35See respectively Hendershott and Menkveld (2014), and Cohen and Einav (2007).
36We have run simulations both for the liquidity provision model presented in the paper, and for

an alternative one in which SD enter the market at the second round (we refer to the former as
the “Original” order of actions case, and to the latter as to the “Reverse” order of actions case, and
respectively denote them by the letters OO and RO in Table 3). As explained in Section 2, we present
the analytical results related to the OO case to Section 3 of the Internet Appendix.

37Assuming γ = 0.25 < γL = 0.5 yields qualitatively similar results in the high volatility case,
whereas in the low volatility case insufficient entry disappears.
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Let us examine Figure 3(c). When f is small, both NCFE and µCFE are high.

Then, the profitability depression effect

NCFE ∂πi(µ
C(N), N)

∂N

∣∣∣∣
N=NCFE

,

dominates the liquidity creation effect

ψ′(µ)
∂µC(N)

∂N

∣∣∣∣
N=NCFE

.

In these conditions, further entry would have a limited impact on the welfare of other

market participants, consistent with the fact that in the simulations ψ(µ) is concave.

The result is thus excessive entry. As f grows, NCFE diminishes and the two effects

equilibrate. For larger values of f and smaller NCFE, encouraging entry generates

large liquidity creation benefits and there is insufficient entry at the CFE. For very

large values of f , entry is so restricted that the two forces equilibrate again since to

foster more entry is very expensive (because fN becomes very high). Our analysis

therefore offers a way to put into perspective market participants’ complaints about

platforms’ alleged price gouging practices. In a second best world, this is true only

when a fee hike yields a profit increase on the side of exchanges that is more than

offset by the loss in terms of liquidity creation externality it produces.38

Our results can be related to the oligopoly literature with free entry. Mankiw

and Whinston (1986) obtain an excessive entry result in Cournot because of business

stealing (i.e., individual output being decreasing in the number of firms) which leads to

the profitability depressing effect of entry to dominate, (except for the integer problem,

insufficient entry can occur by at most one firm).

Ghosh and Morita (2007) obtain insufficient entry in a vertical oligopoly when

the downstream sector is sufficiently imperfectly competitive. In a vertical oligopoly,

increased upstream entry lowers the price of the intermediate input used by the down-

stream firms which, as long as these hold market power, leads to business creation and

an increase in surplus. With a perfectly competitive downstream sector, such effects

disappear eliminating the positive welfare externality due to upstream entry.

However, in our model, liquidity providers are competitive, yet upstream entry

38“[. . . ] For example, one exchange, EDGX, has raised the price on its standard 10GB connection
five times since 2010–in total, leaving the price of the connection seven times higher than it was in
that year.” Unfair Exchange: The State of America’s Stock Markets, speech of Commissioner Robert
J. Jackson Jr., George Mason University, September 2018.
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induces a positive externality by increasing the mass of FD which improves risk sharing

and the welfare of liquidity traders.

5.4 Comparing all solutions

The previous sections have shown that either fee regulation (Section 5.2) or en-

try/merger policy (Section 5.3) can be used as a tool to correct platforms’ market

power, and improve aggregate welfare. The following result assesses which one of such

tools works best:

Proposition 8. Comparing solutions when πM(µFB) < 0:

1. µFB > µCO > µCFE ≥ µST ≥ µM .

2. The number of exchanges entering the market with Cournot free entry or with

entry regulation is no lower than with fee regulation (NCO = 1).

3. Welfare comparison:

PFB > PCO > PST ≥ max
{
PCFE,PM

}
≥ min

{
PCFE,PM

}
, (22a)

PFB ≥ PUST ≥ PST , (22b)

where if the FB solution is interior, then PFB > PUST .

The first two items in the proposition respectively follow from Propositions 5, 6,

and 7, and from Propositions 6, and 7.

In terms of welfare, due to Propositions 5, and 6, the first best outcome is superior

to the one achieved with fee regulation, which is in turn preferred to the monopoly

outcome. Since µST ≤ µCFE < µCO < µFB—so that we are in the increasing (in

µ) part of the planner’s objective function—and NST ≥ 1 = NCO, we have that

fee regulation is also superior to entry/merger policy (constrained by the break even

condition). In words: with entry policy the planner allows platforms to retain some

market power, to make up for the entry cost. However, if the planner can regulate

the fee, provided that aggregate capacity at a constrained second best solution falls

short of that implied by the first best, a superior outcome can be achieved in terms

of liquidity, which also allows to save on setup costs. Finally, entry policy (with the

break-even constraint) yields an outcome that is never inferior in terms of welfare to
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the polar market solutions (CFE and M). Indeed, the latter are always available to

the planner.

The results under the assumption of Proposition 8 imply that, if unregulated, the

monopoly outcome yields lower liquidity compared to any other alternative. Further-

more, in our simulations, the planner’s objective function evaluated at µM is always

the lowest compared to the other five alternatives. Thus, both from a liquidity, and

welfare point of view the unregulated monopoly solution is the worst possible.

5.5 The effect of “committed” SD

In the liquidity provision model of Section 3, only FD can supply liquidity to second

period traders. This is a convenient assumption which however fails to recognize that

in actual markets liquidity provision is ensured by a multitude of market participants.

In this section we check how the introduction of a mass of “committed” SD, present in

the market at each trading round, can alter the risk-sharing properties of the market,

affecting exchanges’ technology supply, and the welfare ranking among different forms

of regulatory intervention.

Suppose that a mass ε of SD is unable to become FD and is in the market at each

trading round, so that in total, a mass 2ε SD are committed. Thus, at the first round

liquidity is supplied by µ FD, and a total mass 1−µ of SD (ε of which are committed,

and 1 − ε − µ are as in the baseline model). At the second round, instead, we have

a total mass of µ FD and ε SD liquidity suppliers (see Figure B.1 in Appendix B

for the modified timeline of the model). In the following, we summarize the effect of

committed dealers in the model, and refer the interested reader to Appendix B for a

detailed analysis. With committed dealers the market clearing equations in Section 2.4

are replaced by: µxFD1 +(1−µ)xSD1 +xL1 = 0, and (xFD2 −xFD1 )µ+εxSD2 +xL2 = 0, where

xSD2 denotes the position of a committed dealer at the second round (see (B.5)). Thus,

denoting by Λ̃t, Λ̃21, ãt, and b̃ the coefficients of the linear equilibrium with committed

dealers (which replace the corresponding price coefficients in (2a), (2b), and traders’

strategies in Proposition 1), in Appendix B we prove the following result:

Proposition 9. For µ ∈ [0, 1], there exists a unique equilibrium in linear strategies in

the stock market where a mass ε of SD is in the market at both rounds. At equilibrium,

the sign of the comparative statics effect of µ, as well as the ranking between liquidity

traders’ hedging aggressiveness is preserved, while
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1. Λ̃t, |ãt| are respectively decreasing and increasing in ε.

2. |Λ̃21| and b̃ are decreasing in ε.

Committed dealers improve the risk bearing capacity of the market, increasing

its liquidity at both rounds, and leading traders to hedge a larger fraction of their

endowment shock. As second period traders face heightened competition in speculating

against the propagated endowment shock, a larger ε reduces their response to u1 (b̃).

To measure the impact on the welfare of market participants and the market

for technological services, we appropriately replace the equilibrium coefficients with

their tilde-ed counterparts in the expressions for the market participants’ payoffs

(see (6a), (6b), (8a), and (8b)), and compute the payoff for second period committed

dealers (see (B.15)) which, given Proposition 9, is decreasing in µ. Finally, defining

the inverse demand for technological services as the payoff difference between FD and

first period dealers: φ(µ) ≡ CEFD − CESD
1 , we also obtain the following result:

Corollary 7. With committed SD:

1. The comparative statics effect of µ on dealers’ and traders’ payoffs, and the in-

verse demand for technological services, are as in Propositions 2, 3, and Corol-

lary 5. Furthermore, the payoff of second period committed dealers is decreasing

in µ.

2. Standard dealers’ payoffs are decreasing in ε.

Committed dealers heighten competition in the provision of liquidity, explaining the

second part of Corollary 7. Numerical simulations show that an increase in ε increases

the payoff of liquidity traders at both rounds as well as that of FD. The former effect is

in line with the improved liquidity provision enjoyed by liquidity traders. The intuition

for the latter is that besides the competitive effect, committed dealers also improve

FD ability to share risk when they retrade at the second period. This also explains

why in our simulations, the demand for technological services can be non-monotone

in ε, as shown in Figure 4.

More in detail, the demand for technological services can increase (decrease) with a

higher ε in the low (high) payoff volatility scenario. This is consistent with the fact that

an increase in τv leads first period traders to hedge a larger portion of their endowment,

increasing FD risk exposure, and thereby increasing the value of technological services
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to this class of liquidity providers. Indeed, based on (B.7b) and (B.12), ã1 < 0, and

we have ∂ã1/∂τv < 0.
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Figure 4: Comparative statics effect of an increase in ε on the demand for technological
services.

Our simulations also confirm that as in Numerical Result 1, gross welfare: GW (µ) =

µ(CEFD −CESD
1 ) +CESD

1 + εCESD
2 +CEL

1 +CEL
2 , is increasing in µ. Furthermore,

we also find that GW (µ) is increasing in ε.

We can now use the model to rank market outcomes against the different welfare

benchmarks introduced in Section 5:39

Numerical Result 3. With committed dealers (ε = 0.05), we obtain the same Nu-

merical Result for ε small as when ε = 0. Otherwise:

1. With high payoff volatility (τv = 3), πM(µFB) < 0, and the general ranking result

of Proposition 8 applies.

2. With low payoff volatility (τv = 25), the monopoly profit function is larger and

flatter than with ε = 0. We have that πM(µFB) > 0, and:

(a) µST = µUST , and µCO > µCFE ≥ max{µFB, µST}.
(b) Entry regulation can yield a higher welfare than fee regulation when fixed

costs are small.

Furthermore, at all solutions N and µ are decreasing in f .
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In Figure 5 we present a case in which, for a small entry cost, entry regulation

yields a higher welfare than fee regulation, a result that is at odds with Proposition 8.

The reason for this finding is as follows. The presence of committed dealers boosts

the demand for technological services, making the monopoly solution “closer” to the

first best (with ε > 0, πM(µFB) can be positive). In this case, increasing welfare

via fee regulation, requires the planner to set µ very high (much higher than at FB),

substantially depressing industry profits for mild liquidity gains. Thus, for a small

entry cost, controlling µ by choosing N can be better. Summarizing:

• When µM and µFB are far apart (πM(µFB) < 0), a very high N is needed to

increase capacity via entry, which is very expensive in terms of fixed costs (see

Figure 6, panel (a)), and it is optimal to control µ to induce N = 1.

• When µM and µFB are closer (πM(µFB) > 0), increasing welfare with CO sub-

stantially depresses industry profits for mild liquidity gains. In this case, it may

be better to control µ by choosing N (see Figure 6, panel (b)).

39We have run our numerical simulations assuming ε ∈ {0.01, 0.03, 0.05}, and standard risk aversion.
When ε ∈ {0.01, 0.03} and τv = 25, insufficient entry obtains for small values of f . When ε = 0.05,
only excessive entry obtains.
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Figure 6: The figure illustrates the effectiveness of alternative regulatory tools to
approach µFB. In panel (a) ε = 0, πM(µFB) < 0, and fee regulation dominates. In
panel (b) ε > 0, and entry regulation can dominate.

6 Concluding remarks

We provide a model where competition among exchanges fosters innovation, benefiting

traders. In the model, both supply and demand for liquidity arise endogenously, with

the former depending on exchange competition. Exchanges compete in the provision

of technological services which improve the participation of (full) dealers and allow

them to absorb more of the net order flow, enhancing the risk bearing capacity of the

market. At equilibrium, the mass of full dealers matches the industry’s technological

service capacity. As a consequence, as exchange competition heightens, the mass of full

dealers increases, improving market liquidity and traders’ welfare. We use the model

to analyze the welfare effects of different entry regimes. A monopolistic exchange ex-

ploits its market power, and under-supplies technological services, thereby negatively

affecting liquidity and welfare. Allowing competition among trading platforms is ben-

eficial for market quality and (generally) for welfare. However, the market outcome

can overprovide or underprovide technological capacity with the corresponding effects

on liquidity. If the regulator cannot make transfers to platforms, then entry is never
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insufficient and the market never underprovides capacity when the benchmark is regu-

lated entry. If, on the other hand, side payments are possible, depending on parameter

values entry can also be insufficient.

The optimal second best regulatory approach turns out to depend on the magnitude

of the wedge between the technological capacity produced by a monopolistic exchange

and the one a first best planner would implement. When such a wedge is large,

approaching the first best by spurring entry involves high total fixed costs. In this case,

then, the planner limits market power by setting a fee low enough so that only one

platform can break even and provide a larger (and cheaper) capacity than the market

outcome. When, on the other hand, the wedge is small, the incremental welfare gain

achieved through fee regulation is small compared to the industry profit depression

this generates. In this case, the planner may find it better to control industry capacity

by spurring entry. It must be noted that both fee and entry regulation are subject to

high informational requirements and to lobbying efforts, costs that have to be taken

into account when designing policy.

Our results suggest that exchanges’ technological capacity decisions can be an

important driver of market liquidity, adding to the usual, demand-based factors high-

lighted by the market microstructure literature (e.g., arbitrage capital, risk bearing

capacity of the market). Thus, any argument about market liquidity should take into

account (i) the framework in which exchanges interact, and (ii) the type of regula-

tory intervention. Furthermore, our results provide a justification for the need of an

“Office of Competition Economics within [the SEC’s] Division of Economic Research

and Analysis” as advocated by SEC’s commissioner Robert J. Jackson Jr., something

which, given the latest developments in the debate over the cost of technological ser-

vices in the US, seems particularly relevant.40 In this respect, our numerical results

can offer guidance as to the type of regulatory intervention. Indeed, we find that when

risk-sharing concerns are mild (either because of a high risk-bearing capacity of liquid-

ity providers, or because of a low payoff risk), platforms entry is below the planner’s

desired level. In these conditions, pro-competitive intervention is warranted precisely

because the welfare gains that accrue to liquidity traders more than offset the losses

incurred by exchanges who end up supplying technological services at a loss. Finally,

they show the limits of the view aligning liquidity to welfare: with excessive entry, even

though the market is more liquid, a social planner chooses to restrict competition, in

this way reducing market liquidity.

40Competition: The Forgotten Fourth Pillar of the SEC’s Mission, Washington D.C., October 2018.
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Our modelling has integrated industrial organization and market microstructure

methods taking technological services as homogeneous. An extension of our approach

is to consider that exchanges offer differentiated capacities and introduce asymmetries

among exchanges. Differentiation could be both in terms of quality (e.g., speed of

connection) and horizontal attributes (e.g., lit vs. dark venues).41

41This would also allow to more directly contrast our results with the differentiated approach
of Pagnotta and Philippon (2018).
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A Appendix

The following is a standard result (see, e.g., Vives (2008), Technical Appendix, pp.

382–383) that allows us to compute the unconditional expected utility of market par-

ticipants.

Lemma A.1. Let the n-dimensional random vector z ∼ N(0,Σ), and w = c + b′z +

z′Az, where c ∈ R, b ∈ Rn, and A is a n × n matrix. If the matrix Σ−1 + 2ρA is

positive definite, and ρ > 0, then

E[− exp{−ρw}] = −|Σ|−1/2|Σ−1 + 2ρA|−1/2 exp{−ρ(c− ρb′(Σ−1 + 2ρA)−1b)}.

Proof of Proposition 1

We start by assuming that at a linear equilibrium prices are given by

p2 = −Λ2u2 + Λ21u1 (A.1a)

p1 = −Λ1u1, (A.1b)

with Λ1, Λ21, and Λ2 to be determined in equilibrium. In the second period a new mass

of liquidity traders with risk-tolerance coefficient γL > 0 enter the market. Because

of CARA and normality, the objective function of a second period liquidity trader is

given by

E[− exp{−πL2 /γL}|ΩL
2 ] = − exp

{
− 1

γL

(
E[πL2 |ΩL

2 ]− 1

2γL
Var[πL2 |ΩL

2 ]

)}
, (A.2)

where ΩL
2 = {u1, u2}, and πL2 ≡ (v − p2)xL2 + u2v. Maximizing (A.2) with respect to

xL2 , yields:

XL
2 (u1, u2) = γL

E[v − p2|ΩL
2 ]

Var[v − p2|ΩL
2 ]
− Cov[v − p2, v|ΩL

2 ]

Var[v − p2|ΩL
2 ]

u2. (A.3)

Using (A.1a):

E[v − p2|ΩL
2 ] = Λ2u2 − Λ21u1 (A.4a)

Var[v − p2|ΩL
2 ] = Cov[v − p2, v|ΩL

2 ] =
1

τv
. (A.4b)
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Substituting (A.4a) and (A.4b) in (A.3) yields

XL
2 (u1, u2) = a2u2 + bu1, (A.5)

where

a2 = γLτvΛ2 − 1 (A.6a)

b = −γLτvΛ21. (A.6b)

Consider the sequence of market clearing equations

µxFD1 + (1− µ)xSD1 + xL1 = 0 (A.7a)

µ(xFD2 − xFD1 ) + xL2 = 0. (A.7b)

Condition (A.7b) highlights the fact that since first period liquidity traders and SD

only participate at the first trading round, their positions do not change across dates.

Rearrange (A.7a) as follows:

(1− µ)xSD1 + xL1 = −µxFD1 .

Substitute the latter in (A.7b):

µxFD2 + xL2 + (1− µ)xSD1 + xL1 = 0. (A.8)

To pin down p2, we need the second period strategy of FD and the first period strategies

of SD and liquidity traders. Starting from the former, because of CARA and normality,

the expected utility of a FD is given by:

E

[
− exp

{
− 1

γ

(
(p2 − p1)xFD1 + (v − p2)xFD2

)}
|p1, p2

]
= (A.9)

= exp

{
− 1

γ
(p2 − p1)xFD1

}(
− exp

{
− 1

γ

(
E[v − p2|p1, p2]xFD2 − (xFD2 )2

2γ
Var[v − p2|p1, p2]

)})
,

For given xFD1 the above is a concave function of xFD2 . Maximizing with respect to

xFD2 yields:

XFD
2 (p1, p2) = −γτvp2. (A.10)

Similarly, due to CARA and normality, in the first period a traditional market maker
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maximizes

E

[
− exp

{
− 1

γ
(v − p1)xSD1

}
|p1

]
= (A.11)

− exp

{
− 1

γ

(
E[v − p1|p1]xSD1 − (xSD1 )2

2γ
Var[v − p1|p1]

)}
.

Hence, his strategy is given by

XSD
1 (p1) = −γτvp1. (A.12)

Finally, consider a first period liquidity trader. CARA and normality imply

E[− exp{−πL1 /γL}] = − exp

{
− 1

γ

(
E[πL1 |u1]− 1

2γL
Var[πL1 |u1]

)}
, (A.13)

where πL1 ≡ (v − p1)xL1 + u1v. Maximizing (A.13) with respect to xL1 , and solving for

the optimal strategy, yields

XL
1 (u1) = γL

E[v − p1|u1]

Var[v − p1|u1]
− Cov[v − p1, v|u1]

Var[v − p1|u1]
u1. (A.14)

Using (A.1b):

E[v − p1|u1] = Λ1u1 (A.15a)

Cov[v − p1, v|u1] =
1

τv
. (A.15b)

Substituting the above in (A.14) yields

XL
1 (u1) = a1u1, (A.16)

where

a1 = γLτvΛ1 − 1. (A.17)

Substituting (A.5), (A.10), (A.12), and (A.16) in (A.8) and solving for p2 yields

p2 = − 1− γLτvΛ2

µγτv︸ ︷︷ ︸
Λ2

u2 +
((1− µ)γ + γL)τvΛ1 − 1− γLτvΛ21

µγτv︸ ︷︷ ︸
Λ21

u1. (A.18)
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Identifying the price coefficients:

Λ2 =
1

(µγ + γL)τv
(A.19a)

Λ21 = Λ2

(
((1− µ)γ + γL)τvΛ1 − 1

)
. (A.19b)

Substituting the above expressions in (A.18), and using (A.12) yields:

p2 = −Λ2u2 + Λ2

(
(1− µ)xSD1 + xL1

)
.

Consider now the first period. We start by characterizing the strategy of a FD.

Substituting (A.10) in (A.9), rearranging, and applying Lemma A.1 yields the following

expression for the first period objective function of a FD:

E[U((p2 − p1)xFD1 + (v − p2)xFD2 )|u1] = −
(

1 +
Var[p2|u1]

Var[v]

)−1/2

× (A.20)

exp

{
−1

γ

(
γτv
2
ν2 + (ν − p1)xFD1 − (xFD1 + γτvν)2

2γ

(
1

Var[p2|u1]
+

1

Var[v]

)−1
)}

,

where, due to (A.1a) and (A.1b)

ν ≡ E[p2|u1] = Λ21u1 (A.21a)

Var[p2|u1] =
Λ2

2

τu
. (A.21b)

Maximizing (A.20) with respect to xFD1 and solving for the first period strategy yields

XFD
1 (p1) = γ

E[p2|u1]

Var[p2|u1]
− γ

(
1

Var[p2|u1]
+

1

Var[v]

)
p1 (A.22)

= γ
Λ21τu

Λ2
2

u1 − γ
τu + Λ2

2τv
Λ2

2

p1.

Substituting (A.12), (A.16), and (A.22) in (A.7a) and solving for the price yields

p1 = −Λ1u1, where

Λ1 =

((
1 +

µγLτu
Λ2 + µγτu

)
γ + γL

)−1
1

τv
. (A.23)
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The remaining equilibrium coefficients are as follows:

a1 = γLΛ1τv − 1 (A.24)

a2 = − µγ

µγ + γL
(A.25)

b = −γLτvΛ21 (A.26)

Λ21 = −µγ(Λ2
2τv + τu)

µγτu + Λ2

Λ1 (A.27)

Var[p2|u1] =
Λ2

2

τu
, (A.28)

where Λ2 is given by (A.19a). An explicit expression for Λ1 can be obtained substi-

tuting (A.19a) into (A.23):

Λ1 =
1 + (µγ + γL)µγτuτv

(γ + γL + (γ + 2γL)(µγ + γL)µγτuτv)τv
. (A.29)

Finally, substituting (A.19a) and (A.29) in (A.27) yields

Λ21 + Λ1 =
γL

τv(γµ+ γL)(γµτuτv(γ + 2γL)(γµ+ γL) + γ + γL)
> 0. (A.30)

2

Proof of Corollary 1

The comparative static effect of µ and γ on Λ2 follows immediately from (A.19a). For

Λ1, differentiating (A.29) with respect to µ and γ yields:

∂Λ1

∂µ
= − (2µγ + γL)γγLτu

(γ + γL + (γ + 2γL)(µγ + γL)µγτuτv)2
< 0

∂Λ1

∂γ
= −1 + (γ2µτuτv(γµ+ γL)2 + 2γ2µ+ 2γγLµ+ 2γγL + (γL)2)µτuτv

τv(γµτuτv(γ + 2γL)(γµ+ γL) + γ + γL)2
< 0,

which proves our result. 2

Proof of Corollary 2

The first part of the corollary follows from the fact that Λ1 < Λ2. Also, since Λt is

decreasing in µ, because of (3d), |at| is increasing in µ. Finally, substituting (A.27)
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in (A.26) and rearranging yields

b =
µγγL(1 + (µγ + γL)2τuτv)

(µγ + γL)(γ + γL + (γ + 2γL)µγτuτv)
,

which is increasing in µ. 2

Proof of Proposition 2

We start by obtaining an expression for the unconditional expected utility of SD and

FD. Because of CARA and normality, a dealer’s conditional expected utility evaluated

at the optimal strategy is given by

E[U((v − p1)xSD1 )|p1] = − exp

{
−(E[v|p1]− p1)2

2Var[v]

}
= − exp

{
−τvΛ

2
1

2
u2

1

}
. (A.31)

Thus, traditional dealers derive utility from the expected, long term capital gain ob-

tained supplying liquidity to first period hedgers.

EUSD ≡ E
[
U
(
(v − p1)xSD1

)]
= −

(
1 +

Var[p1]

Var[v]

)−1/2

= −
(

τu1
τu1 + τvΛ2

1

)1/2

, (A.32)

and

CESD =
γ

2
ln

(
1 +

Var[p1]

Var[v]

)
. (A.33)

Differentiating CESD with respect to µ yields:

∂CESD

∂µ
=
γτv
2

(
1 +

Var[p1]

Var[v]

)−1
∂Var[p1]

∂µ
(A.34)

=
γτv
2τu1

(
1 +

Var[p1]

Var[v]

)−1

2Λ1
∂Λ1

∂µ
< 0,

since Λ1 is decreasing in µ.
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Turning to FD. Replacing (A.22) in (A.20) and rearranging yields

E[U((p2 − p1)xFD1 + (v − p2)xFD2 )|u1] = −
(

1 +
Var[p2|u1]

Var[v]

)−1/2

× exp

{
−g(u1)

γ

}
,

(A.35)

where

g(u1) =
γ

2

(
(E[p2|p1]− p1)2

Var[p2|p1]
+

(E[v|p1]− p1)2

Var[v]

)
.

The argument of the exponential in (A.35) is a quadratic form of the first period

endowment shock. We can therefore apply Lemma A.1 and obtain

EUFD ≡ E[U((p2 − p1)xFD1 + (v − p2)xFD2 )] =

= −
(

1 +
Var[p2|p1]

Var[v]

)−1/2(
1 +

Var[p1]

Var[v]
+

Var[E[p2|p1]− p1]

Var[p2|p1]

)−1/2

,

(A.36)

where, because of (A.21a),

Var [E[p2 − p1|p1]] = (Λ21 + Λ1)2 τ−1
u , (A.37)

so that:
Var[E[p2 − p1|u1]]

Var[p2|u1]
=

(
Λ21 + Λ1

Λ2

)2

.

Therefore, we obtain

CEFD =
γ

2

{
ln

(
1 +

(Λ2)2τv
τu

)
+ ln

(
1 +

(Λ1)2τv
τu

+

(
Λ21 + Λ1

Λ2

)2
)}

. (A.38)

Computing,
Λ21 + Λ1

Λ2

=
γL

γ + γL + (γ + 2γL)(µγ + γL)µγτuτv
. (A.39)

Thus, the arguments of the logarithms in (A.38) are decreasing in µ, which proves that

CEFD is decreasing in µ.

Finally, note that taking the limits for µ → 0 and µ → 1 in (A.33) and (A.38)
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yields

lim
µ→0

CESD =
γ

2
ln

(
1 +

1

(γ + γL)2τuτv

)
lim
µ→1

CEFD =
γ

2

{
ln

(
1 +

1

(γ + γL)2τuτv

)
+ ln

(
1 +

(Λ1)2τv
τu

+

(
Λ21 + Λ1

Λ2

)2
)}

,

which proves the last part of the corollary. 2

Proof of Proposition 3

Consider now first period liquidity traders. Evaluating the objective function at opti-

mum and rearranging yields

− exp

{
− 1

γL

(
E[πL1 |u1]− 1

2γL
Var[πL1 |u1]

)}
= − exp

{
−u

2
1

γL

(
a2

1 − 1

2γLτv

)}
,

where u1 ∼ N(0, τ−1
u1

). The argument of the exponential is a quadratic form of a

normal random variable. Therefore, applying again Lemma A.1 yields

E

[
− exp

{
πL1
γL

}]
= −

(
(γL)2τuτv

(γL)2τuτv − 1 + a2
1

)1/2

, (A.40)

so that

CEL
1 =

γL

2
ln

(
1 +

a2
1 − 1

(γL)2τuτv

)
. (A.41)

Note that a higher a2
1 increases traders’ expected utility, and thus increases their payoff.

Next, for second period liquidity traders, substituting the optimal strategy (A.3)

in the objective function (A.2) yields

E

[
− exp

{
−π

L
2

γL

}
|ΩL

2

]
= − exp

{
− 1

γL

(
(xL2 )2 − u2

2

2γLτv

)}
(A.42)

= − exp

{
− 1

γL

(
xL2 u2

)( 1

2γL2 τv

(
1 0

0 −1

))(
xL2

u2

)}
.

The argument of the exponential is a quadratic form of the normally distributed ran-

dom vector (
xL2 u2

)
∼ N

((
0 0

)
,Σ
)
,
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where

Σ ≡
(

Var[xL2 ] a2Var[u2]

a2Var[u2] Var[u2]

)
. (A.43)

Therefore, we can again apply Lemma A.1 to (A.42), obtaining

E

[
E

[
− exp

{
−π

L
2

γL

}
|ΩL

2

]]
= −|I + (2/γL)ΣA|−1/2, (A.44)

where

A ≡ 1

2γLτv

(
1 0

0 −1

)
, (A.45)

Var[xL2 ] =
a2

2 + b2

τu
. (A.46)

Substituting (A.43), (A.45), and (A.46) in (A.44) and computing the certainty equiv-

alent, yields:

CEL
2 =

γL

2
ln

(
1 +

a2
2 − 1

(γL)2τuτv
+
b2((γL)2τuτv − 1)

(γL)4τ 2
uτ

2
v

)
. (A.47)

For µ = 0, b = 0 and, in view of Corollary 2, CEL
1 > CEL

2 . The same condition holds

when evaluating (A.41) and (A.47) at µ = 1. As CEL
t is increasing in µ, we have that

for all µ ∈ (0, 1], CEL
1 (µ) > CEL

2 (µ). 2

Proof of Corollary 3

We need to prove that:
∂CEL

1 (µ)

∂µ
> −∂CE

SD(µ)

∂µ
.

Computing:

∂CEL
1 (µ)

∂µ
=

γLa1a
′
1

(γL)2τuτv − 1 + a2
1

, (A.48)

where a′1 the partial derivative of a1 with respect to µ, and

∂CESD(µ)

∂µ
=

γ(1 + a1)a′1
(γL)2τuτv + (1 + a1)2

. (A.49)

First, note that the denominator in (A.49) is higher than the one in (A.48), and they
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are both positive. Next, comparing the numerators in the above expressions yields:

γLa1a
′
1 > −γ(1 + a1)a′1 ⇐⇒ (γLa1 + γ(1 + a1)︸ ︷︷ ︸

<0

) a′1︸︷︷︸
<0

> 0,

as can be checked by substituting (A.24) in the above. Thus, the LHS of the inequality

to be proved has a higher (positive) numerator and a lower (positive) denominator

compared to the (positive) numerator and denominator of the RHS, and the inequality

follows. 2

Proof of Corollary 4

The first part of the result follows immediately from (12), and Corollary 3. Next, be-

cause of Propositions 2 and 3, GW (1) > limµ→0GW (µ), which rules out the possibility

that gross welfare is maximized at µ ≈ 0. 2

Proof of Corollary 5

Note that because of (A.39), we can write

Λ21 + Λ1

Λ2

=
Λ1γ

Lτv
1 + µγ(µγ + γL)τuτv

.

Therefore, substituting the expressions for dealers’ payoffs in (13), we have:

φ(µ) = CEFD − CED (A.50)

=
γ

2

{
ln

(
1 +

Λ2
2τv
τu

)
+ ln

(
1 +

Λ2
1τv
τu

K

)
− ln

(
1 +

Λ2
1τv
τu

)}
> 0.

where K = 1+(γL/(1+µγ(µγ+γL)τuτv))
2τuτv > 1, and decreasing in µ. The first term

inside curly braces in the above expression is decreasing in µ since Λ2 is decreasing in

µ. The difference between the second and third terms can be written as follows:

ln

(
1 +

Λ2
1τv
τu

K

)
− ln

(
1 +

Λ2
1τv
τu

)
= ln

(
τu + Λ2

1τvK

τu + Λ2
1τv

)
.

Differentiating the above logarithm and rearranging yields:

τvΛ1

(τu + Λ2
1τvK)(τu + Λ2

1τv)

(
2(K − 1)τu

∂Λ1

∂µ
+ (τu + Λ2

1τu)Λ1
∂K

∂µ

)
< 0,
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since K > 1, and both Λ1 and K are decreasing in µ. 2

We now state and prove a lemma which will be useful for some of the proofs that

follow:

Lemma A.2. πM(µFB) ≤ 0 =⇒ πM(µCO) = 0, and the converse is also true generi-

cally.

Proof of Lemma A.2

We first we prove the direction =⇒. Since πM(µFB) ≤ 0 then, given that the monopoly

profit is single-peaked, the CO constraints can only be satisfied for µ ≤ µFB. Note

that for a given (aggregate) µ, the profit of an exchange (given that it is non-negative)

is non-increasing in N ; so for a given µ, N = 1 maximizes profit. Then, given that

P(µ) is single-peaked at µFB, it is optimal for µCO to be set as large as possible with

NCO = 1, so that πM(µCO) = 0.

Next we prove the opposite direction (⇐=) generically by proving the contraposi-

tive. Suppose that at µFB the monopoly profit is positive, that is (φ(µFB)−c)µFB > f ,

then:

1. If (φ(µFB)−c)µFB/2 ≤ f , then µCO = µFB, NCO = NFB = 1 and thus πM(µCO) >

0.

2. If (φ(µFB)− c)µFB/2 > f , then given that from Proposition 5 we know that µCO ≥
µM , and the monopoly profit is single peaked at µM (thus, we work in the decreasing

part of monopoly profit), we only need to examine whether it is optimal to choose

NCO > 1 and/or µCO > µFB in order to satisfy the right CO constraint.

(a) Assume that for N > 2, we do not have that (φ(µFB) − c)µFB/N = f . We

prove that it cannot be NCO > 1 with µCO ≤ µFB. Suppose by contradiction

that the latter holds. Then with µCO = µFB, the left CO constraint cannot

bind and πCO(µCO) > 0. If µCO < µFB, then the left CO constraint must bind

(and the right not): (φ(µCO)− c)µCO/NCO = f > (φ(µCO)− c)µCO/(NCO +1).

(To see this, observe that if the left did not bind, we could increase µCO to

bring it closer to µFB with both constraints still satisfied.) But then consider a

new candidate CO solution resulting from reducing NCO by one and increasing

µCO to µCO
′
> µCO. From the previous left CO constraint we know that

the new right CO constraint will not bind. Thus, it has to either be that
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µCO
′

= µFB, in which case (µCO, NCO) is rejected as a solution and we have a

contradiction, or that the new left CO constraint will bind—to see the latter,

it suffices to observe that if neither constraint binds and µCO
′ 6= µFB, there

is ε > 0 small enough such that either µCO
′

+ ε or µCO
′ − ε increases the

planner’s function. In the case that the new left constraint binds, we have that

(φ(µCO
′
)− c)µCO′

/(NCO − 1) = f > (φ(µCO
′
)− c)µCO′

/(NCO), so µCO
′
< µFB

(consider a similar argument of reducing µCO
′

by ε to exclude µCO
′
> µFB).

This case also induces P (µCO
′
, NCO − 1) > P (µCO, NCO), as µCO < µCO

′
<

µFB. We conclude that it cannot be that NCO > 1 with some µCO < µFB.

(b) Now consider the case NCO ≥ 1 with µCO > µFB. Then the right CO con-

straint must bind (and the left not): (φ(µCO)− c)µCO/NCO > f = (φ(µCO)−
c)µCO/(NCO + 1). To see this, observe that if the right did not bind, we could

reduce µCO to bring it closer to µFB with both constraints still satisfied. Thus,

πM(µCO) = (φ(µCO)− c)µCO/NCO − f > 0. 2

Proof of Proposition 5

In the first best case, for given µ, the objective function (17) is decreasing in N . Thus,

to economise on fixed costs, the planner allows a monopolistic exchange to provide

trading services, and NFB = 1. From πM(µFB) ≤ 0 it follows that:

(φ(µFB)− c)µFB ≤ f =⇒ (φ(µFB)− c)µFB
N

< f, ∀N ∈ N \ {1}.

We now establish the technological capacity and liquidity ranking. First, note that it

cannot be NCFE = 1 and µCFE ≥ µFB. This is because for NCFE = 1, µCFE = µM and

by assumption the monopolist makes positive profits. Thus, it will be µCFE < µFB.

Finally, by Cournot stability, µCFE ≥ µM (see also the proof of Proposition 7), with

the final implication that µFB > µCFE ≥ µM .

We now prove the welfare ranking. Since µFB > µM and P(µ, 1) is single-peaked

at µFB, it follows that PFB > PM . Also, we have that P(µ, 1) = GW (µ)− cµ− f is

single-peaked in µ at µFB, which means that GW (µ)− cµ is also single-peaked. Thus,

since µFB > µCFE we have:

PFB = GW (µFB)− cµFB − f > GW (µCFE)− cµCFE − f
≥ GW (µCFE)− cµCFE − fNCFE = PCFE,

A-12



and so overall we have PFB > max
{
PCFE,PM

}
≥ min

{
PCFE,PM

}
. 2

Proof of Proposition 6

Given that the monopoly profit is negative at µFB (so that it cannot be µFB ≤ µCO),

it will be NCO = 1 and µFB > µCO so that profits are zero at the CO solution (look

also at the proof of Lemma A.2).

We now prove that µCO > µCFE. Suppose, by contradiction, that µCFE ≥ µCO.

From πM(µFB) < 0 we know that at the Conduct second best NCO = 1 and the

exchange breaks even, so given that ψ′(µ) > 0 we have:

(φ(µCFE)− c)µCFE ≤ f. (A.51)

We first deal with the case where only one firm enters at CFE, and then with the one

where NCFE > 1. At a CFE with N = 1 exchanges, we have µCFE = µM and thus

the monopolist profit is positive by assumption:

(φ(µCFE)− c)µ
CFE

N
= (φ(µCFE)− c)µCFE = (φ(µM)− c)µM > f. (A.52)

Putting together (A.51) and (A.52) leads to a contradiction.

At a CFE with N > 1 exchanges, we need to have:

(φ(µCFE)− c)µ
CFE

N
≥ f. (A.53)

Putting together (A.51) and (A.53) yields

f ≤ (φ(µCFE)− c)µ
CFE

N
< (φ(µCFE)− c)µCFE ≤ f,

a contradiction. Thus, we must have µCO > µCFE.

Now, since NFB = NCO = 1 ≤ NCFE, it follows that PFB > PCO > PCFE since

µFB > µCO > µCFE and P(µ, 1) is single-peaked at µFB and, all else constant, P(µ,N)

is decreasing in N . 2
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Proof of Proposition 7

Let µC(N) denote the total co-location capacity at a symmetric Cournot equilibrium

for a given number of exchanges N . The objective function of a planner that controls

entry can be written as follows:

P(µC(N), N) = Nπi(µ
C(N)) + ψ(µC(N)), (A.54)

where ψ(µC(N)) denotes the welfare of other market participants at the Cournot

solution:

ψ(µC(N)) = CESD(µC(N)) + CEL
1 (µC(N)) + CEL

2 (µC(N)).

Consider now the derivative of the planner’s objective function with respect to N , and

evaluate it at NCFE:

∂P(µC(N), N)

∂N

∣∣∣∣
N=NCFE

= πi(µ
C(N), N)︸ ︷︷ ︸

=0

∣∣∣∣
N=NCFE

(A.55)

+NCFE ∂πi(µ
C(N), N)

∂N︸ ︷︷ ︸
<0

∣∣∣∣∣∣∣
N=NCFE

+ ψ′(µC(N))
∂µC(N)

∂N︸ ︷︷ ︸
>0

∣∣∣∣∣∣∣
N=NCFE

.

The first term on the right hand side of (A.55) is null at NCFE (modulo the integer

constraint). At a stable, symmetric Cournot equilibrium, an increase in N has a

negative impact on the profit of each exchange, and a positive impact on the aggregate

technological capacity (see, e.g., Vives (1999)). Therefore, the second and third terms

are respectively negative and positive. Given our definitions, NCFE is the largest N

such that platforms break even. NST , instead, reflects the planner’s choice of N in

Cournot equilibria that keep exchanges from making negative profits and maximizes

welfare. Hence, it can only be that

NCFE ≥ NST and µCFE ≥ µST ,

since a planner can decide to restrict entry. At a UST , the planner can make side

payments to an unprofitable exchange. This has two implications: first, the planner
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can push entry beyond the level at which platforms break even, so that

NUST ≥ NST and µUST ≥ µST .

Additionally, depending on which of the two terms in (A.55) prevails, we have

∂P(µC(N), N)

∂N

∣∣∣∣
N=NCFE

≷ 0 =⇒ NCFE ≶ NUST .

Finally, µC(N) ≥ µM , for N ≥ 1 because at a stable CFE the total capacity is an

increasing function of the number of platforms. A similar argument holds at both the

STR and UST, since in this case the planner picks N subject to µ being a Cournot

equilibrium

We have that PUST ≥ PST , because STR imposes an additional constraint on the

planner’s objective function compared to STR. Finally, PST ≥ PCFE, because CFE

does not account for other traders’ welfare, and the planner may choose to favour these

market participants when at the margin this creates a larger increase in GW (µ). 2

Proof of Proposition 8

From Propositions 6 and 7 we have NCO = 1, µFB > µCO > µCFE ≥ µST , PFB >

PCO > PM , and by Cournot stability µST ≥ µM . Also, we have that P(µ, 1) =

GW (µ) − cµ − f is single-peaked in µ at µFB, which means that GW (µ) − cµ is so.

Thus, since µCO > µCFE ≥ µST we have:

PCO = GW (µCO)− cµCO − f > GW (µST )− cµST − f
≥ GW (µST )− cµST − fNST = PST

and so PCO > PST ≥ PCFE, where the weak inequality follows from the fact that the

CFE solution is always available in solving the STR problem. For the same reason,

PFB ≥ PUST ≥ PST ≥ PM . Thus, overall we have:

PFB > PCO > PST ≥ max
{
PCFE,PM

}
≥ min

{
PCFE,PM

}
.

Last, evaluate the derivative of welfare with respect to µ at the UST solution:

∂P(µ,N)

∂µ

∣∣∣∣
(µ,N)=(µUST ,NUST )

= [φ′(µ)µ+ φ(µ)− c]|µ=µUST
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The FOC of a firm i in UST reads:[
φ′(µ)µ

N
+ φ(µ)− c

]∣∣∣∣
(µ,N)=(µUST ,NUST )

= 0.

Combining this with the above we have:

∂P(µ,N)

∂µ

∣∣∣∣
(µ,N)=(µUST ,NUST )

= φ′(µ)µ
N − 1

N

∣∣∣∣
(µ,N)=(µUST ,NUST )

< 0

so the UST solution does not maximize welfare given that the FB solution is interior

(and thus, for the UST solution to maximize welfare the derivative above should have

been zero), so it must be PFB > PUST . 2
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B A model with a mass of SD at both rounds

In this appendix, we consider a different variation of the model presented in Section 3,

in which we assume that a mass ε of “committed” SD is in the market at each trading

round, and cannot choose to become FD–so that a total mass of 2ε SD is unable to

become FD. As a consequence, at the first round liquidity is supplied by µ FD, and a

mass

ε︸︷︷︸
Committed SD

+ 1− ε− µ︸ ︷︷ ︸
SD

= 1− µ

of SD. At the second round, instead, we have a total mass µ FD and ε SD of liquidity

suppliers (see Figure B.1 for the modified timeline of the model).

−1

− Exchanges

make costly

entry decision;

N enter.

1

− Liquidity
traders receive
u1 and submit
market order xL1 .

− FD submit
limit order
µxFD1 .

− SD submit
limit order
(1− µ)xSD1 .

0

− Dealers

acquire FD

technology.

− Platforms

make techno-

logical capacity

decisions (µi).

2

− New cohort of
liquidity traders
receives u2,
observes p1, and
submits market
order xL2 .

− FD submit
limit order
µxFD2 .

− Committed
SD submit limit
order εxSD2 .

Liquidity determination
stage (virtual single
platform)

Entry and ca-
pacity determi-
nation stage

3

− Asset liquidates.

Figure B.1: Timeline in the model with committed SD.

In the following, we provide the proof for Proposition 9.

To obtain the equilibrium of the liquidity provision model in this case, we start by

assuming that equilibrium prices are as follows:

p1 = −Λ̃1u1 (B.1a)

p2 = −Λ̃2u2 + Λ̃21u1. (B.1b)

where Λ̃21, Λ̃t, t ∈ {1, 2} denote the price coefficients to be determined at equilibrium.
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The market clearing conditions are then given by:

µxFD1 + (1− µ)xSD1 + xL1 = 0 (B.2a)

(xFD2 − xFD1 )µ+ εxSD2 + xL2 = 0. (B.2b)

We now obtain the equilibrium strategies of market participants. For a second period

liquidity trader, (A.5) holds:

xL2 = ã2u2 + b̃u1, (B.3)

where

ã2 = γLτvΛ̃2 − 1 (B.4a)

b̃ = −γLτvΛ̃21, (B.4b)

denote the coefficient of a second period liquidity trader in the current version of

the liquidity provision model. Based on the arguments developed in the proof of

Proposition 1, for a SD who is in the market at round t, we have:

xSDt = −γτvpt, (B.5)

whereas for a FD at the second round,

xFD2 = −γτvp2. (B.6)

For a first period liquidity trader (A.16) holds:

xL1 = ã1u1 (B.7a)

ã1 = γLτvΛ̃1 − 1. (B.7b)

Finally, for a FD at the first trading round (A.22) holds.

Solving the first period market clearing condition (B.2a) for −xFD1 and replacing

it in the second period market clearing condition (B.2b) yields

µxFD2 + (1− µ)xSD1 + xL1 + xL2 + εxSD2 = 0. (B.8)

We can now replace SD, FD and liquidity traders’ strategies from (B.5), (B.6), (B.3),

and (B.7a) in the market clearing condition (B.8), and identify the second period price
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equilibrium coefficients:

p2 =
(1− µ)γτvΛ̃1 + ã1 + b̃

(ε+ µ)γτv︸ ︷︷ ︸
Λ̃21

u1 +
ã2

(ε+ µ)γτv︸ ︷︷ ︸
Λ̃2

u2. (B.9)

Finally, using (B.4a), (B.4b), and (B.7b) in the expressions for Λ̃2 and Λ̃21 in (B.9),

we identify the second period price coefficients, obtaining:

Λ̃2 =
1

((ε+ µ)γ + γL)τv
(B.10a)

Λ̃21 = −(1− ((1− µ)γ + γL)τvΛ̃1)Λ̃2. (B.10b)

Therefore, the model with a fixed mass of SD at both rounds induces a lower Λ̃2, as

one would expect.

The analysis of the first round does not change compared to the baseline model,

since in that case too a mass µ of SD is in the market. To determine Λ̃1 we replace

the strategies of liquidity providers (FD and SD), and liquidity traders in the first

period market clearing equation (B.2a), solve for p1, and identify Λ̃1 which, according

to (A.23) is given by:

Λ̃1 =

((
1 +

µγLτu

Λ̃2 + µγτu

)
γ + γL

)−1
1

τv
. (B.11)

We only need to keep in mind the change in Λ̃2, which implies the following closed

form expression for the first period price impact:

Λ̃1 =
1 + γµτuτv(γ

L + γ(µ+ ε))

(γ + γL + γµτuτv(γ + 2γL)(γL + γ(µ+ ε)))τv
> 0. (B.12)

Note that since Λ̃2 is decreasing in ε, based on (B.12), and (B.10b) it follows that Λ̃1

is also decreasing in ε, and differentiating Λ̃21:

∂Λ̃21

∂ε
=

γ2µ
(
(γ + γL)/τv + γµτ 2

uτv(γ + 2γL)(γµ+ γL)(γL + γ(µ+ ε))2 + 2γµτu(γ + 2γL)(γL + γ(µ+ ε))
)

(γL + γ(µ+ ε))2(γ + γL + γµτuτv(γ + 2γL)(γL + γ(µ+ ε)))2

> 0,
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implying that |Λ̃21|, and b̃ are decreasing in ε.

Furthermore, since Λ̃t is decreasing in ε, due to (B.4a) and (B.7b), |ãt| is increas-

ing in ε, and since by inspection Λ̃1 < Λ̃2, |ã1| > |ã2|, this concludes the proof of

Proposition 9

Committed dealers improve the risk bearing capacity of the market, increasing

its liquidity at both rounds, and leading traders to hedge a larger fraction of their

endowment shock. As second period traders face heightened competition in speculating

against the propagated endowment shock, a larger ε reduces their response to u1 (b̃).

Next, we compute the payoff functions for the different market participants which,

based on the analysis of the baseline case explained in the paper, are given by:

CESD
1 =

γ

2
ln

(
1 +

Λ̃2
1τv
τu

)
. (B.13a)

CEFD = =
γ

2

(
ln

(
1 +

Λ̃2
1τv
τu

+

(
Λ̃21 + Λ̃1

Λ̃2

)2)
+ ln

(
1 +

Λ̃2
2τv
τu

))
, (B.13b)

where we note that, in view of Proposition 9, CESD
1 is decreasing in µ, and since

∂

∂µ

Λ̃21 + Λ̃1

Λ̃2

= − γγLτuτv(γ + 2γL + γε)(2γµ+ γL + γε)

(γ + γL + γµτuτv(γ + 2γL)(γL + γ(µ+ ε)))2
< 0,

CEFD is also decreasing in µ. Also, we have

CEL
1 =

γL

2
ln

(
1 +

Var[E[v − p1|p1]]

Var[v − p1|p1]
+ 2

Cov[p1, u1]

γL

)
(B.14a)

CEL
2 =

γL

2
ln

(
1 +

Var[E[v − p2|p1, p2]]

Var[v − p2|p1, p2]
+ (B.14b)

2
Cov[p2, u2|p1]

γL
+

Var[E[v − p2|p1]]

Var[v]
−
(

Cov[p2, u1]

γL

)2)
,

and a substitution similar to the one made in the case ε = 0 allows to express traders’

payoffs in terms of the equilibrium coefficients and conclude that they CEL
t is increas-

ing in µ.

Finally, since the strategy of a second round SD, bar the time index, is identical to
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that of a SD at the first round, we have:

CESD
2 =

γ

2
ln

(
1 +

Var[p2|p1]

Var[v]

)
=
γ

2
ln

(
1 +

Λ̃2
2τv
τu

)
, (B.15)

which, in view of Proposition 9, is decreasing in µ.

Comparing (B.13b) with (B.13a) we see that CEFD > CESD
1 , and, consistently

with what we have done in the baseline case, we define the demand for technological

services as the difference between the payoff of a FD and the one of a first period SD:

φ(µ) = CEFD − CESD
1 .

Differentiating the above expression with respect to µ yields ∂φ/∂µ > 0. This and the

above comparative statics results prove Corollary 7.

The above result confirms that an increase in the mass of FD is harmful (beneficial)

to liquidity providers (consumers). We then define the gross welfare function:

G(µ) = µCEFD + (1− µ)CESD
1 + εCESD

2 + CEL
1 + CEL

2

= µ(CEFD − CESD
1 )︸ ︷︷ ︸

FD surplus

+ CESD
1 + εCESD

2 + CEL
1 + CEL

2︸ ︷︷ ︸
Welfare of other market participants

,

which, according to our simulations, is increasing in µ.

Finally, we obtain the following additional comparative statics results for the effect

of an increase in ε:

1. Numerical simulations show that GW (µ) is increasing in ε.

2. Simulations also show that CEFD, CEL
t and φ(µ) are increasing in ε. The effect

on FDs payoff comes from the term that captures the payoff these traders obtain

from short-term speculation which, based on (B.13b), is given by

Λ̃21 + Λ̃1

Λ̃2

.
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This term is increasing in ε:

∂

∂ε

Λ̃21 + Λ̃1

Λ̃2

=

γ
(
γ + γL + γ2µ2τ 2

uτ
2
v (γ + 2γL)(γL + γ(µ+ ε))2 + γµτuτv(γµ(2γ + 3γL) + (γ + γL)(γL + 2γε))

)
(γ + γL + γµτuτv(γ + 2γL)(γL + γ(µ+ ε)))2

> 0,

while the remaining terms of FD payoff (based on the results of the liquidity pro-

vision model), are decreasing in ε. Therefore, the positive effect of an additional

mass of SD for FD comes from improved risk sharing opportunities. With a larger

ε, FD have more traders with whom to share the risk loaded at the first round.

For liquidity traders, the effect is due the fact that they can get cheaper liquidity

provision at both rounds (see (B.10a) and (B.12)).

3. Finally, owing to (B.13a), we have that CESD
t is decreasing in ε.

Summarizing: qualitatively, in terms of impact on (1) liquidity, (2) market partici-

pants’ payoffs and (3) gross welfare, the addition of a mass ε of standard dealers who

are always in the market does not affect our main results. However, as argued in the

main text (see Numerical Result 3), as committed dealers augment the risk-bearing

capacity of the market, they potentially increase the value of technological services, in

this way affecting the planner’s preferred second best intervention policy.
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C Market shares in Europe

Figure C.1 replicates the one that appears in the OECD Business and Finance Outlook

2016 (Ch. 4, Figure 4.4), with data that reflect the volume for 2018. The purpose of

the figure is to illustrate the degree of market fragmentation in Europe, showing the

fraction of volume for securities that are listed on a given exchange that is captured

by the listing and competing venues. As noted in the OECD report, for the US the

exercise is facilitated by the existence of a consolidated tape, which offers aggregate

information on traded volume on- and off-exchange, and allows to use venue “owner-

ship” as a classification criterion. For Europe, on the other hand, the lack of a public,

consolidated tape, implies that one has to resort to data provided by private institu-

tions. Specifically, for Europe, as in the OECD report, we made use of data provided

by “BATS for stocks listed on 12 European major exchanges” in 2018. To interpret:

for the UK, BATS data shows that about 63% of the trading in stocks listed at the

LSE takes place on that exchange, while about 22% occurs on BATS (CBOE), 9% on

Turquoise, and the remaining 6% is split between other lit and dark venues.
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(a) Classification of European trading venues

Trading venue Venue category

CBOE Europe CBOE
CBOE Europe APA CBOE
Instinet Blockmatch Dark volume
ITG Posit Dark volume
Liquidnet Dark volume
SIGMA X MTF Dark volume
UBS MTF Dark volume
Aquis Other lit venue
Equiduct Other lit venue
Bolsa de Madrid Primary
Euronext Primary
LSE Group Primary
Nasdaq OMX Primary
Oslo Primary
SIX Swiss Exchange Primary
Wiener Börse Primary
Xetra Primary
Turquoise Turquoise

(b) Classification of US trading venues

Trading venue Venue category

EDGX Equities CBOE
BZX Equities CBOE
BYX Equities CBOE
EDGA Equities CBOE
IEX IEX
NASDAQ NASDAQ
NASDAQ BX NASDAQ
NASDAQ PSX NASDAQ
NYSE NYSE
NYSE Arca NYSE
NYSE Chicago NYSE
NYSE American NYSE
NYSE National NYSE
NASDAQ TRF Carteret Off-exchange
NYSE TRF Off-exchange
NASDAQ TRF Chicago Off-exchange

Table 1: Trading venues classification for Figure 1.

Initial parametrization
Alternative parameter values
c γ γL

c = 0.002, γ = 0.5, γL = 0.25, τu = 100, τv = 25 0.001 {0.45, 0.35, 0.3, 0.25} 0.15
c = 0.002, γ = 0.5, γL = 0.25, τu = 100, τv = 3 0.003 {0.45, 0.35, 0.3, 0.25} 0.15
c = 2, γ = 25, γL = 12, τu = 0.1, τv = 0.1 2.5 {22.5, 17.5, 15, 12.5} 18

Table 2: Parametrizations used in the simulations.
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Figure 3: Panels (a) and (c) illustrate two cases in which insufficient entry occurs. In
Panel (b) and (d), entry is always excessive.
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Figure 5: The effect of committed dealers on µFD (panel (a), left), the number of
platforms (panel (a), right), and the welfare of market participants (panel (b)).
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Figure C.1: Market shares among trading venues in Europe in 2018. Source: CBOE
Global Markets, own calculations (See Table 1 (Panel (a)) for venues’ classification).
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