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1 Introduction

Many financial institutions trade derivatives in order to hedge risk. Such insurance, however,

can be effective only if their counterparties do not default. Optimal clearing mechanisms

could reduce that risk. Margin calls can increase the amount of resources available to make

payments. Centralized clearing enables investors to mutualize counterparty risk. Indeed,

regulators and policy makers have mandated centralized clearing of risky financial instru-

ments in the US (with the Dodd–Frank Wall Street Reform Act) as well as in Europe (with

the European Market Infrastructure Regulation.) There is considerable debate, however,

about the optimal design of market infrastructures (see, e.g., Bernanke (2011) and Roe

(2013)).

This paper studies how clearing should be designed to enable optimal risk–sharing via

derivatives trading. Our approach is based on the observation that derivatives trading and

clearing do not simply reallocate existing risk, they also affect the incentives of market

participants to control risk or engage in risk–taking. Clearing mechanisms should therefore

be designed subject to incentive compatibility constraints. Otherwise, derivatives trading

could lead protection sellers to engage in excessive risk–taking, and centralized clearing could

increase (instead of reducing) aggregate risk. Thus, we take an optimal contracting approach

to the design of derivative contracts and clearing mechanisms.

Our model features a population of protection buyers, a population of protection sellers,

and a central counterparty (hereafter CCP). The protection buyers’ assets (e.g., corporate

or real-estate loans held by commercial banks) are exposed to risk. Their portfolios may

be diversified across industries and geographic locations, but are still exposed to aggregate

risk, e.g., from nationwide business cycles or bubbles. Due to leverage or regulatory con-

straints, such as risk–weighted capital requirements, protection buyers would benefit from

hedging that risk. To do so, they turn to protection sellers, such as investment banks or

insurance companies selling Credit Default Swaps (CDS).1 Protection sellers, however, can

make insurance payments only if their assets are sufficiently valuable. Hedging, therefore,

can be effective only if protection sellers are incentivized to maintain the value of their assets.

1A prominent example was AIG. 72% of the CDS it had sold by December 2007 were used by banks for
capital relief (European Central Bank, 2009).

1



Otherwise, protection buyers are exposed to default risk.

To reduce downside risk on their assets, protection sellers must exert effort, e.g., to screen

out bad loans or monitor borrowers. Given the complex and opaque nature of the protection

sellers’ balance-sheets and the risks embedded therein, their risk–prevention effort is difficult

to observe and monitor for outside parties. At the same time, sound risk-management is

costly because it requires time and resources. One way to shirk on risk-management effort

(and reduce its cost) is to rely on easily available but superficial information such as ready-

made ratings instead of performing an own investigation of risk. Another way is to finance

long-term assets with short-term debt without taking into account the risk involved when

rolling over the debt. Thus, we consider a setting with unobservable but costly effort, i.e.,

moral hazard.2

The first contribution of this paper is to show that derivatives trading can undermine the

incentives of protection sellers and therefore create counterparty risk and contagion. Ex-ante,

when the protection seller enters the position, the derivative contract is neither an asset nor

a liability. For example, the seller of a CDS pays the buyer in case of credit events (default,

restructuring) but collects an insurance premium otherwise, and on average these costs and

benefits offset each other. But, upon observing a strong drop in real estate prices, sellers

of subprime-mortgage CDS anticipate to be liable for insurance payments. This liability

undermines their incentives to exert risk–prevention effort. Similar to the debt–overhang

effect analyzed by Myers (1977), the protection seller bears the full cost of such effort while

part of its benefits accrue to the protection buyer.3 It can then happen, in equilibrium,

that the protection seller stops exerting risk–prevention effort on his assets, which raises

counterparty default risk.4 Our analysis thus identifies a channel through which derivatives

trading can propagate risk. For simplicity, in our model, without moral hazard, the riskiness

of the assets of the protection sellers is independent from that of the protection buyers assets.

2In the present analysis, the unobservable action of the agent affects the cash-flows in the sense of first-
order stochastic dominance, as in Holmström and Tirole (1998). In a previous version of the paper, we
showed that qualitatively identical results hold when the unobservable action leads to an increase in risk in
the sense of second-order stochastic dominance (risk-shifting), in the spirit of Jensen and Meckling (1976).

3Note however that instead of exogenous debt as in Myers (1977) our model involves endogenous liabilities
pinned down in an optimal hedging contract.

4For example, Lehman Brothers and Bear Stearns defaulted on their CDS derivative obligations because
of losses incurred on their other investments, in particular sub-prime mortgages.

2



With moral hazard, in contrast, bad news about the risk of the protection buyers reduce

protection sellers’ risk-prevention effort, and increase downside risk for their assets. This

generates contagion (endogenous correlation) between the two asset classes.5

The second contribution of this paper is to analyze how margins and clearing affect the

effectiveness of hedging and the possibility of contagion. The optimal CCP stipulates not

only the transfers to (or from) protection buyers and sellers, but also the circumstances

under which protection sellers must liquidate a fraction of their risky assets and deposit the

resulting cash on a margin account. The cost of such liquidation is the wedge between what

the assets could have earned and the lower return on cash in a margin deposit. On the

other hand, the cash in the margin account is no longer under the control of the protection

seller, and therefore is ring–fenced from moral hazard. We show that it is optimal to call

margins (only) after bad news about the asset underlying the derivatives trade. After such

bad news, the derivative position of the protection sellers is a liability for them, reducing

their incentives to exert risk–prevention effort. It is under those circumstances that the

incentives of the protection sellers need to be maintained. This is achieved by liquidating

some of the protection sellers’ assets and depositing them in the margin account, which

reduces their temptation to shirk. Thus, variation margins relax incentive constraints and

therefore increase the ability to offer insurance without creating counterparty risk.

While this benefit of margins could be reaped with bilateral clearing, risk–sharing can be

further improved with centralized clearing. In particular, CCPs enable market participants

to mutualize counterparty default risk. Note however that insurance against counterparty

risk can generate additional moral hazard issues. Since margin deposits are costly, market

participants are reluctant to make them, especially when they are insured against coun-

terparty risk by the CCP. Thus our analysis implies that margin calls in CCPs should be

mandatory, rather than determined bilaterally. Our theory also implies that financial institu-

tions with lower pledgeable income should make larger margin deposits. Lower pledgeability

can arise due to insufficient equity capital, weak risk–management (see Ellul and Yerramili,

2010), or complex and opaque activities. Thus there is substitutability between i) margins

and ii) equity capital, effective risk–management and transparency.

5This incentive-based theory of contagion differs from the analyses of systemic risk offered by Freixas,
Parigi and Rochet (2000), Cifuentes, Shin and Ferrucci (2005), and Allen and Carletti (2006).

3



MAYBE NEED TO SAY A BIT MORE ON OUR RESULTS AND IMPLICATIONS

WE NEED TO SAY MORE ABOUT THE DIFFERENCE OF OUR MODEL TO

HOLMSTROM AND TIROLE. Our model delivers full risk-sharing conditional on the sig-

nal, i.e., our contract if ex-post Pareto efficient (both after the signal and after the effort

decision). Therefore, there is no scope for re-negotiation ex post. This is different from the

standard HT model and different from the debt overhang re-negotiation. Also, in our model,

the risk is borne by the risk-neutral party (in standard models, it si the risk-averse agent

that does the unobservable effort and one has to expose him to riks to incentivize him and

this is inefficient).

Our paper is related to the literature on financial risk insurance, on margins and clearing,

and on liquidation and collateral.

Thompson (2010) assumes moral hazard on the part of the protection seller. In his

model, however, i) the protection buyer is privately informed about his own risk and ii) his

hidden action affects the liquidity of the assets she invests in. In this context, moral hazard

alleviates adverse selection and therefore enhances the provision of insurances. This is very

different from our analysis, where there is no adverse selection and moral hazard impedes the

provision of insurance. Allen and Carletti (2006) and Parlour and Plantin (2008) analyze

credit risk transfer in banking. Again, their analyses are very different from ours, since the

friction in Allen and Carletti (2006) is cash-in-the-market pricing for long-term assets, while

in Parlour and Plantin (2008) it is moral hazard problem on the side of the insured. Bolton

and Oehmke (2013) borrow from our framework the mechanism by which posting collateral

or margins deters risk–taking. They use it to address another issue than the issue on which

we focus. They show that effective seniority for derivatives transfers to the firm’s debtholders

credit risk that could be borne more efficiently by the derivative market. Both Stephens and

Thompson (2011) and our paper analyze how market imperfection raise counterparty risk. In

their heterogeneous types model, increased competition leads to lower insurance premia and

riskier protection sellers’ types. In contrast, in our homogeneous types model, for any given

level of competition, bad news can undermine protection sellers’ risk prevention incentives.

Acharya and Bisin (2011) study the inefficiency which can arise between one protection
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seller and several protection buyers. In an over-the-counter market no buyer can control

the trades of the seller with other buyers. Yet, when the protection seller contracts with

an additional protection buyer, this exerts a negative externality on the other protection

buyers since it increases their counterparty risk (see also Parlour and Rajan, 2001). Acharya

and Bisin (2011) show how, with centralized clearing and trading, such externality can be

avoided, by implementing price schedules penalizing the creation of counterparty risk. In

contrast with the excessive positions analyzed by Acharya and Bisin (2011), the hidden action

generating a moral hazard problem in our model cannot be observed, and therefore cannot

be penalized with centralized clearing. Thus, while in Acharya and Bisin (2011) optimality

entails conditioning prices on all trades, in the present paper it entails constraints on the

quantities of insurance and assets under management.

Margins can be understood as collateral deposited by the agent to reduce the risk of the

principal. However, our focus on hedging and derivatives differs from that of papers studying

borrowing and lending (see, e.g, Bolton and Sharfstein (1990), Holmstrom and Tirole (1998),

Acharya and Viswanathan (2011)). In our analysis, as in derivative markets, the margin is

called before effort decisions are taken and output is realized. In contrast, collateral in a

financing context is liquidated after effort has been exerted and output realized (as, e.g., in

Holmstrom and Tirole (1998), Tirole (2006) and Acharya and Viswanathan (2011)). Margins

in derivative contracts differ from collateral in loan contracts precisely because they are

called before maturity or default. Our paper offers the first analysis of this essential feature

of margins and its incentive properties.

The model is presented in the Section 3, which also analyzes the benchmark case in which

effort is observable. Section 4 analyzes optimal contracting under moral hazard. Section 5

concludes. Proofs are in the Appendix.

2 Model and First–Best Benchmark

2.1 The model

There are three dates, t = 0, 1, 2, a mass–one continuum of protection buyers, a mass–one

continuum of protection sellers and a Central Clearing Platform, hereafter referred to as the
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CCP. At t = 0, the parties design and enter the contract. At t = 1, investment decisions are

made. At t = 2, payoffs are received.

Players and assets. Protection buyers are identical, with twice differentiable concave

utility function u, and are endowed with one unit of an asset with random return θ̃ at t = 2.

For simplicity, we assume θ̃ can only take on two values: θ̄ with probability π and θ with

probability 1 − π, and we denote ∆θ = θ̄ − θ. The risk θ̃ is the same for all protection

buyers.6

Protection buyers seek insurance against the risk θ̃ from protection sellers who are risk-

neutral and have limited liability. Each protection seller j has an initial amount of cash

A. At time t = 1, this initial balance sheet can be split between two types of assets: i)

low risk, low return assets such as Treasuries (with return normalized to 1), and ii) risky

assets returning R̃j per unit at t = 2. The protection seller has unique skills (unavailable to

the protection buyer or the CCP) to manage the risky assets and earn excess return. After

this initial investment allocation decision, the protection seller makes a risk-management

decision at t = 1. To model risk-management in the simplest possible way, we assume that

each seller j can undertake a costly effort to make her assets safer. If she undertakes the

effort, the per unit return R̃j is R with probability one. If she does not exert the effort, then

the return is R with probability p < 1 and zero with probability 1−p. The risk-management

process reflects the unique skills of the protection seller and is therefore difficult to observe

and monitor by outside parties. This opacity gives rise to moral hazard which we model by

assuming that the risk management effort decision is unobservable.

Exerting the effort costs C per unit of assets under management at t = 1 (we explain

below why there could be less assets under management at t = 1 than initial assets in place

at t = 0).7 Because protection seller assets are riskier without costly effort, we also call the

6At the cost of unnecessarily complicating the analysis, we could also assume that the risk has an id-
iosyncratic component. This component would not be important as protection buyers could hedge this risk
among themselves, without seeking insurance from protection sellers.

7We show later that our results are unchanged when we allow the unit cost C to increase (linearly) with
assets under management, which makes the overall cost of risk-management effort convex.

6



decision not to exert effort “risk-taking”.8 Undertaking risk-management effort is efficient,

R− C > pR, (1)

i.e., the expected net return is larger with risk-management effort than without it. We also

assume that when protection seller exerts risk management effort, return on his assets is

higher than the return on the safe asset,

R− C > 1, (2)

For simplicity, once protection sellers have decided whether or not to undertake risk-

management effort, the risk of their assets R̃j is independent across sellers and, moreover,

it is independent of protection buyers’ risk θ̃. To allow protection sellers that exert effort to

fully insure buyers, we assume AR ≥ π∆θ.

Advance information. At the beginning of t = 1, before investment and risk manage-

ment decisions are made, a public signal s̃ about protection buyers’ risk θ̃ is observed. For

example, when θ̃ is the credit risk of real estate portfolios, s̃ should be seen as real estate

price index. Denote the conditional probability of a correct signal with

λ = prob[s̄|θ̄] = prob[s|θ].

The probability π of a good outcome θ̄ for the protection buyer’s risk is updated to π̄ upon

observing a good signal s̄ and to π upon observing a bad signal s, where, by Bayes’ law,

π̄ = prob[θ̄|s̄] =
λπ

λπ + (1− λ)(1− π)
and π = prob[θ̄|s] =

(1− λ)π

(1− λ)π + λ(1− π)
.

We assume that λ ≥ 1
2
. If λ = 1

2
, then π̄ = π = π and the signal is completely

uninformative. If λ > 1
2
, then π̄ > π > π, i.e., observing a good signal s̄ increases the

probability of a good outcome θ̄ whereas observing a bad signal s decreases the probability

of a good outcome θ̄. If λ = 1, then the signal is perfectly informative.

Central counterparty, contracts and margins.

8Here risk-management effort makes protection sellers’ assets safer in the sense of first-order stochastic
dominance. In an earlier version of the paper we show that our results are robust when risk-management
effort improves risk in the sense of mean-preserving spreads.
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In practice, protection buyers and protections sellers contract bilaterally, and the CCP

then interposes between contracting parties. Thus, the contract between the protection

buyer and protection seller is transformed into two contracts, one between the seller and

the CCP and another one between the buyer and the CCP (a process called novation).

In our model, for simplicity, we by-pass the first step (bilateral contracting), and analyze

directly the contracts between the CCP and protection buyers and sellers. This enables us

to approach the problem from a mechanism design viewpoint in which the CCP designs an

optimal mechanism for buyers and sellers.

Correspondingly, the CCP is modeled as a public utility designed to maximize the welfare

of its members (i.e., it acts as the social planner). For simplicity, we assume the CCP

maximizes expected utility of protection buyers subject to the participation constraint of

the protection sellers.9

At t = 0, the CCP specifies transfers τS between protection sellers and the CCP at

t = 2, and transfers τB between protection buyers and the CCP at t = 2. Positive transfers

τS, τB > 0 represent payments from the CCP to sellers and buyers, while negative transfers

represent payments from sellers and buyers to the CCP. The transfers τS and τB at t = 2

are contingent on all available information at that time. This information consists of the

buyers’ risk θ̃, the signal s̃ and the set of all the protections sellers’ asset returns R̃. Hence,

we write τS(θ̃, s̃, R̃) and τS(θ̃, s̃, R̃). Since the transfers are contingent on final asset values

as well as advance public information about those values (that could be conveyed, e.g., by

asset prices), we can think of them as transfers specified by derivative contracts.

The transfers between the CCP and its members reflect the initial underlying bilateral

contract, which is novated, and mutualization across all bilateral contracts. Hence, the

transfers depend not only on a protection seller individual asset return R̃j, as would be the

case in a bilateral contract without the CCP, but depend on all sellers’ asset returns R̃.

This is because the latter affect the amount of resources available to the CCP to insure its

members against counterparty risk.

Figure 1 illustrates how the CCP sits in between protection buyers and sellers.

9While this is only one point on the Pareto frontier, in the first-best all other Pareto optima would entail
the same real decisions, i.e., the same risk–sharing and productive efficiency. In the second-best, changing
the bargaining would change the structure of the risk sharing, without altering our qualitative results.
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Insert Figure 1 here

The contract between the CCP and its members not only specifies transfers, it can also

request margin deposits. Because the CCP has no ability to manage risky, opaque assets,

it only accepts as margin deposits safe, transparent ones, such as cash or Treasuries that

are not subject to information asymmetry problems.10 One can therefore interpret margins

as an institutional arrangement that affects the split of the seller’s balance sheet between

transparent assets and opaque investments. Margins “ring-fence” a fraction of the protection

sellers’ assets from moral-hazard. However, margins incur the opportunity cost of foregoing

the excess return of the risky asset, R − C − 1. The margin can be contingent on all

information available at time 1, i.e., the signal s̃. We denote the fraction of the protection

seller’s balance sheet deposited on the margin account by α(s̃).

The CCP is subject to budget-balance, or feasibility, constraints at t = 2. For each joint

realization of buyers’ risk θ̃, the signal s̃ and sellers’ asset returns R̃, aggregate transfers to

protection buyers cannot exceed aggregate transfers from protection sellers (the CCP has no

resources of its own):

τB(θ, s, R) ≤ −τS(θ, s, R), ∀(θ, s, R). (3)

Transfers from protection sellers are constrained by limited liability,

−τS(θ, s, R) ≤ α(s)A+ (1− α(s))AR, ∀(θ, s, R). (4)

A protection seller cannot make transfers larger than what is returned by the fraction (1−
α(s)) of assets under her management and by the fraction α(s) of assets she deposited on

the margin account. Finally, the fraction of assets deposited must be between zero and one,

α(s) ∈ [0, 1] ∀s. (5)

The sequence of events is summarized in Figure 2.

Insert Figure 2 here

10That assets with low information sensitivity are used as collateral is in line with Gorton and Pennacchi
(1990).
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2.2 First-best: observable effort

In this subsection we consider the case in which protection sellers’ risk-management effort is

observable, so that there is no moral hazard and the first-best is achieved. While implausible,

this case offers a benchmark against which we will identify the inefficiencies arising when

protection seller’s risk-management effort is not observable.

Protection sellers are requested to exert risk-management effort when offering protection

since doing so increases the resources available for risk-sharing (see (1)). Margins are not

used since they are costly (see (2)) and offer no benefit when risk-management effort is

observable. The CCP chooses transfers to buyers and sellers, τB(θ̃, s̃, R̃) and τS(θ̃, s̃, R̃), to

maximize buyers’ utility

E[u(θ̃ + τB(θ̃, s̃, R̃)] (6)

subject to the feasibility (3) and limited liability (4) constraints, as well as the constraint

that protection sellers participate and join the CCP. By joining (and exerting effort), sellers

obtain E[τS(θ̃, s̃, R̃)] + A(R − C). If they do not join and thus do not sell protection, they

obtain A(R−C).11 The protection sellers’ participation constraint in the first-best therefore

is

E[τS(θ̃, s̃, R̃)] ≥ 0. (7)

Proposition 1 states the first-best outcome. Since protection sellers exert risk-management

effort, the return R̃ is always equal to R and we drop the reference to the return in the trans-

fers τB and τS for ease of notation.

Proposition 1 When effort is observable, the optimal contract entails effort, provides full

insurance, is actuarially fair and does not react to the signal. Margins are not used. The

transfers are given by

τB(θ̄, s̄) = τB(θ̄, s) = E[θ̃]− θ̄ < 0

τB(θ, s̄) = τB(θ, s) = E[θ̃]− θ > 0

τB(θ, s) = −τS(θ, s),∀(θ, s)
11Without derivative trading, protection sellers always exert effort since it is efficient to do so (see condition

(2)).
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The first-best contract fully insures protection buyers. Their marginal utility, and hence

their consumption, is the same across all realizations of their risky asset θ and the signal

s. The transfers are independent of the signal and ensure a consumption level equal to the

expected value of the risky asset, E[θ̃]. The first-best insurance contract is actuarially fair

since the expected transfer from protection sellers to protection buyers is zero, E[τB(θ̃, s̃)] =

−E[τS(θ̃, s̃)] = 0. We assume

AR > π∆θ, (8)

so that, in the first–best, the aggregate resources of the protection sellers are large enough

to fully insure the protection buyers.

In our simple model, when effort is observable, each transfer to a protection buyer τB is

matched by an opposite transfer from a protection seller and margins are not needed. Thus

the contract can be implemented bilaterally and the CCP is not needed. Of course, this

reflects our simplifying assumption that, under effort, R is obtained for sure. If protection

sellers could default, even with high effort, the CCP would be useful, in the first best, to

mutualize default risk. As shown in the next sections, even in the simple case where effort

precludes default, with moral hazard, the CCP plays a useful role.

The first best transfers, τB(θ, s) and τS(θ, s), can be implemented with forward contracts.

The protection buyer sells the underlying asset forward, at price F = E[θ̃]. When the final

value of the asset is worth θ̄, the protection buyer must deliver at the relatively low forward

price F . But, when the final value of the asset is low θ, the forward price is relatively high.

This provides insurance to the protection buyer.

While we only consider transfers at t = 2, and not explicitly at t = 1, this is without

loss of generality, because any other trading arrangement can be replicated with transfers

at t = 2 and margins. Consider for example spot trading in which at t = 1, before the

realization of the signal, the protection seller uses some of his initial assets A to acquire

the protection buyers’ asset at price S. Because there is no discounting, this is equivalent

for the protection buyer to a constant transfer S at time 2. This can be achieved within

the mechanism we analyze, by depositing S on the margin account at t = 1 and letting

τB(θ, s) = S, irrespective of the realization of θ and s. Proposition 1 shows, however, that

this is dominated by forward trading. Forward trading is more efficient, because it makes it
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possible to keep the assets under the management of the protection seller until t = 2 and

earn a larger return (R− C) than when investing in the risk free asset.

3 Protection-seller moral-hazard

In the previous section, we examined the hypothetical case in which protection sellers’ risk-

management effort is observable and can therefore be requested by protection buyers. We

now move on to the more realistic situation in which risk-management effort is not observable

and there is moral-hazard on the side of protection sellers.

If protection buyers want protection sellers to exert risk-management effort, then it must

be in sellers’ own interest to do so after observing the signal s about buyers’ risk θ̃. The

incentive compatibility constraint under which a protection seller exerts effort after observing

s is:

E[τS(θ̃, s̃, R̃) + α(s̃)A+(1− α(s̃))A(R̃− C)|e = 1, s̃ = s]

≥ E[τS(θ̃, s̃, R̃) + α(s̃)A+ (1− α(s̃))AR̃|e = 0, s̃ = s].

The left-hand side is a protection seller’s expected payoff if she exerts risk-management

effort. The effort costs C per unit of assets she still controls, (1 − α(s))A. The right-hand

side is her (out-of-equilibrium) expected payoff if she does not exert effort and therefore does

not incur the cost C.

Without effort, her assets under management return R with probability p and zero with

probability 1 − p. In order to relax the incentive constraint, the CCP requests the largest

possible transfer from a protection seller when R̃ = 0: −τS(θ̃, s̃, 0) = α(s̃)A. This rationalizes

the stylized fact that, in case of default of the protection seller, the CCP seizes her deposits

and uses them to pay protection buyers.

With effort, the protection seller’s assets under management are safe, with R̃ = R. For

brevity, we write τS(θ̃, s̃, R) as τS(θ̃, s̃). The incentive constraint after observing s is then

E[τS(θ̃, s̃)|s̃ = s] + α(s)A+(1− α(s))A(R− C)

≥ p
(
E[τS(θ̃, s̃)|s̃ = s] + α(s)A+ (1− α(s))AR

)
,
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or, using the notion of “pledgeable return” P (see Tirole, 2006),

P ≡ R− C

1− p
, (9)

the incentive compatibility constraint rewrites as

α(s)A+ (1− α(s))AP ≥ E[−τS(θ̃, s̃)|s̃ = s]. (10)

The right–hand side is what protection sellers expect to pay to the CCP after seeing the

signal about buyers’ risk. The left-hand side is the amount that protection sellers’ can pay (or

pledge) to the CCP without undermining their incentive to exert risk-management effort.

The left-hand side is positive since the assumption that effort is efficient, condition (1),

ensures positive pledgeable return, P > 0. The right–hand side is positive when, conditional

on the signal, a protection seller expects, on average, to make transfers to the CCP. If

after seeing the signal she expects, on average, to receive transfers from the CCP, then the

right-hand side is negative and the incentive constraint does not bind. This is an important

observation to which we return later.

When the pledgeable return P is sufficiently high, then protection sellers’ incentive prob-

lem does not matter because the first-best allocation (stated in Proposition 1) satisfies the

incentive-compatibility constraint (10) after any signal. The exact condition is given in the

following lemma.

Lemma 1 When risk–management effort is not observable, the first-best can be achieved if

and only if the pledgeable return on assets is high enough:

AP ≥ (π − π)∆θ = E[θ̃]− E[θ̃|s̃ = s]. (11)

The threshold for the pledgeable return on assets, beyond which full risk-sharing is pos-

sible despite protection seller moral-hazard, is given by the difference between the uncondi-

tional expectation of buyers’ risk θ̃ and the conditional expectation of this risk after a low

signal (indicating a bad outcome is more likely). The threshold increases, making it more

difficult to attain the first-best, when buyers’ assets are riskier (larger ∆θ) and, interestingly,

when there is better information about this risk (larger λ leading to a lower π). Thus, Lemma

1 has the following corollary.
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Corollary 1 When the signal is uninformative, λ = 1
2
, the first-best is always reached since

(π − π)∆θ = 0.

In what follows, we focus on the case in which protection seller moral-hazard matters

and full insurance is not feasible, as (11) does not hold.

3.1 Effort after both signals

In this section, we study the contract providing the protection seller the incentives to exert

risk-management effort both after positive and after negative signals. While margins were

not useful without moral-hazard (as discussed in Subsection 2.2), they may be useful now.

When a protection seller exerts risk-management effort after both signals, her participation

constraint is

E[α(s̃)A+ (1− α(s̃))A(R̃− C) + τS(θ̃, s̃, R̃)|e = 1] ≥ A(R− C).

Since, on the equilibrium path, the protection sellers exert effort, we have R̃ = R and again,

for brevity, we write the transfer to a protection seller as τS(θ̃, s̃). Collecting terms, the

participation constraint is

E[τS(θ̃, s̃)] ≥ E[α(s̃)]A(R− C − 1), (12)

The expected transfers from the CCP to a protection seller (left-hand-side) must be high

enough to compensate her for the opportunity cost of the expected use of margins (right-

hand-side). Thus, if margins are used, the contract is not actuarially fair.

The CCP chooses transfers to protection buyers τB(θ̃, s̃) and protection sellers, τS(θ̃, s̃),

as well as margins α(s̃), to maximize buyers’ utility (6) subject to the feasibility constraints

(3), the constraint that the fraction α be in [0, 1] (5), and the incentive (10), limited liability

(4), and participation (12) constraints.

The next proposition collects first results on how resources are optimally transferred

between protection sellers and protection buyers.

Proposition 2 In the optimal contract with risk-management effort, the feasibility con-

straints (3) bind for all (θ, s), the limited liability constraints (4) are slack in state (θ̄, s) for

each s, and the participation constraint (12) binds.
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Protection sellers earn no rents and all resources available for insurance are passed on

to protection buyers. Protection sellers’ limited liability is not an issue when the value of

the protection buyers’ asset is θ̄, since in that state risk-sharing implies positive transfers to

protection sellers.

Using the binding feasibility constraints, we can rewrite the incentive constraint (10) as

α (s)A+ (1− α (s))AP ≥ E[τB(θ̃, s̃)|s̃ = s] (13)

Incentive compatibility implies that the expected transfers to the protection buyer be no

larger than the sum of the returns on i) the assets deposited on the margin account and on

ii) those left under the protetction seller’s management. The pledgeable return on assets

under management is smaller than the physical net return, P < R − C, because there is

moral hazard when exerting effort to manage the risk of those assets. The pledgeable return

on assets deposited on the margin account is equal to their physical return of one since they

are “ring-fenced” from moral-hazard in risk-management. When the moral hazard is severe,

P < 1, then depositing assets on the margin account relaxes the incentive constraint and

thus allows for higher transfers to protection buyers. This is the benefit of margins. But

assets deposited on the margin account incur an opportunity cost R − C − 1 to protection

sellers. This basic tradeoff leads to the following proposition:

Proposition 3 In the optimal contract with risk-management effort, margins are not used

after s if the incentive constraint given s is slack or if the moral-hazard is not severe, i.e.,

P ≥ 1.

When the incentive constraint after s is slack, then depositing assets on the margin

account offers no incentive benefit and only incurs the opportunity cost. When the pledgeable

return of assets under management (weakly) exceeds the pledgeable return of assets deposited

on the margin account, then margins also do not offer any incentive benefit since they actually

tighten the incentive constraint.

To keep the next steps of the analysis tractable, we make the following simplifying as-

sumption:

AR > π̄∆θ − prob[s]

prob[s̄]
AP , (14)
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The assumption guarantees, as we will show, a slack limited liability constraint for trans-

fers from a protection seller to the CCP when there is a good signal, s̄, but buyers’ asset

return is low, θ. We discuss this assumption in more detail once we have solved for the opti-

mal transfers, τB(θ̃, s̃) and τS(θ̃, s̃). Given (14) and Proposition 2, we only need to consider

the limited liability constraint in state (θ, s).

The next proposition states that moral-hazard problem matters only after a bad signal.

Proposition 4 In the optimal contract with risk-management effort, the incentive constraint

(13) binds after a bad signal, but is slack after a good signal. Hence there is no margin call

after a good signal, i.e., α(s̄) = 0.

After observing a bad signal about the underlying risk, a protection seller’s position

is a liability to her, E[τS(θ̃, s̃)|s̃ = s] < 0. This undermines her incentives to exert risk-

management effort. She has to bear the full cost of effort while the benefit of staying solvent

accrues in part to protection buyers in the form of the (likely) transfer to the CCP. This is

in line with the debt-overhang effect (Myers, 1977).

In contrast, there is no moral-hazard problem for a protection seller after observing a

good signal. A good signal indicates that her position is an asset at this point of time,

E[τS(θ̃, s̃)|s̃ = s̄] > 0. This strengthens her incentives to exert risk-management effort. In a

sense, after a good signal, since the protection seller’s position has become an asset for her,

it increases the income she can pledge. In contrast, the loss she expects after a bad signal

reduces her pledgeable income.

We are now ready to characterize the optimal contract between the CCP, protection

buyers and protections seller that exert risk management effort. It is convenient to first

characterize optimal transfers as a function of the margin after a bad signal, α(s), and later

examine the optimal margin call after a bad signal. Expected transfers conditional on the

signal (as a function of α(s)) are given by the binding participation constraint (Proposition

2) and the incentive constraint after a bad signal (Proposition 4),

E[τB(θ̃, s̃)|s̃ = s] = A [α(s) + (1− α(s))P ] (15)

E[τB(θ̃, s̃)|s̃ = s̄] = −prob[s]

prob[s̄]
A [α(s) (R− C) + (1− α(s))P ] (16)

The next proposition characterizes the transfers in each possible state:
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Proposition 5 The transfers to protection buyers are

τB(θ̄, s̄) = (E[θ̃|s̄]− θ̄)− prob[s]

prob[s̄]
A [α(s) (R− C) + (1− α(s))P ] < 0, (17)

τB(θ, s̄) = (E[θ̃|s̄]− θ)− prob[s]

prob[s̄]
A [α(s) (R− C) + (1− α(s))P ] > 0,

so that (14) implies the limited liability constraint does not bind in state (θ, s̄). Furthermore,

if the limited liability constraint is slack in state (θ, s), the transfers to protection buyers

after a bad signal are

τB(θ̄, s) = (E[θ̃|s]− θ̄) + A [α(s) + (1− α(s))P ] < 0 (18)

τB(θ, s) = (E[θ̃|s]− θ) + A [α(s) + (1− α(s))P ] > 0.

Otherwise, the transfers after a bad signal are

τB(θ̄, s) = α(s)A− (1− α(s))A
(1− π)R− P

π
(19)

τB(θ, s) = α(s)A+ (1− α(s))AR > 0.

In the optimal contract, if the limited liability constraint is slack in state (θ, s), then

there is full risk sharing given the signal. That is, for a given signal s, the consumption

of the protection buyer is the same irrespective of whether θ̄ or θ realizes. On the other

hand, in contrast with the first best, transfers vary with the signal. This is because, after

a bad signal, it is difficult to provide incentives to the agent. Thus, incentive compatibility

reduces the transfers that can be requested from the protection seller. Correspondingly, due

to incentive problems, the protection buyer is exposed to signal risk, as her consumption

is larger after a good signal than after a bad signal. Cross–subsidization across signals

mitigates that effect, but only imperfectly, due to incentive constraints. Cross–subsidization

across realizations of the signal is possible because the parties commit to the contract at time

0, before advance information is observed. If the contract was written after that information

had been observed, such cross–subsidization would be not be possible. This would reduce

the scope for insurance, in the line with the Hirshleifer (1971) effect.

To further analyze these effects consider the structure of the transfers in Proposition (5).

Each of the transfers in (17) has two components. The first one is the transfer implementing
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full risk–sharing conditional on a good signal. The second one reflects cross–subsidization

across signals. Transfers in (18) have the same structure except that the first component

now reflects full risk–sharing conditional on a bad signal.

The expectation of the first component of these transfers, taken over signals and final

realizations of θ is 0. This is what would arise with actuarially fair insurance. But the

insurance offered by the protection seller is not actuarially fair. It involves a premium, to

compensate the protection seller for the efficiency loss induced by margins: prob[s]α(s)(R−
C − 1). This premium is equal to the expectation of the second component of the transfers

in (17) and (18).

The structure of the transfers in (19) is different. When limited liability binds in state

(θ, s), full risk–sharing conditional on the signal is no longer possible, as protection sellers’

resources in state (θ, s) are insufficient. Conditional on a bad signal, the transfers in (19)

implement whatever risk–sharing is still possible given the binding limited liability constraint.

Now, turn to the determination of the optimal margin call after a bad signal. We first

note that putting all the assets of the protection seler in the margin account cannot be

optimal.

Proposition 6

α∗(s) < 1. (20)

The logic underlying Proposition 6 is the following. When assets are put in the margin

account, they earn lower return than under the management of the protection seller exerting

effort. This reduces the resources available to pay insurance to the protection buyer. To

cope with this dearth of resources, when α∗(s) = 1 all the assets in the margin account

must be transferred to the protection buyer when θ realizes. In this case, as can be seen

by inspecting (19) for α∗(s) = 1, the structure of transfers is highly constrained. In fact, it

is so constrained that very little risk sharing can be achieved. Hence, a contract requesting

α∗(s) = 1 is suboptimal.

To analyze the precise amount of margin the calls, it is useful to consider the ratio of the

marginal utility of a protection buyer after a bad and a good signal. Denoting this ratio by
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ϕ, we have

ϕ =
u′(θ̄ + τB(θ̄, s))

u′(θ̄ + τB(θ̄, s̄))
(21)

In the first-best, there is full insurance and ϕ is equal to 1. With moral hazard, the protection

buyer is exposed to signal risk. This makes insurance imperfect and drives ϕ above one.

Given the transfers in Proposition 5, ϕ is a known function of exogenous variables and

α(s). (17) implies that τB(θ̄, s̄) is decreasing in α(s). Hence the denominator of φ is increasing

in α(s). On the other hand, the numerator of is decreasing in α(s) (irrespective of whether

the limited liability condition in state (θ, s̄) binds or not). Hence, ϕ is decreasing in α(s).

Higher margins reduce ϕ, as they reduce the wedge between consumption after a good signal

and after a bad one, i.e., they improve insurance against signal risk. Optimal margins tradeoff

this benefit with their cost: assets in the margin account are less profitable than under the

management of the protection seller exerting effort. This tradeoff gives rise to the following

proposition.

Proposition 7 If P > 1, margins are not used. Otherwise, we have the following: If

ϕ (0) < 1 + R−C−1
1−P , then it is optimal not to use margins. Otherwise, there are two cases. If

ϕ(1− π∆θ

A (R− P)
) < 1 +

R− C − 1

1− P
, (22)

the limited liability constraint is slack in state (θ, s) and the optimal margin solves

ϕ(α∗(s)) = 1 +
R− C − 1

1− P
, (23)

while, if (22) does not hold, the optimal margin solves

ϕ(α∗(s)) = 1 +
R− C − 1

1− P
+

1− π
1− P

u′(θ + τB(θ, s))− u′(θ̄ + τB(θ̄, s))

u′(θ̄ + τB(θ̄, s̄))
. (24)

The right-hand side of (23) reflects the tradeoff between the costs and benefits of margins.

The numerator, R−C−1, is the opportunity cost of depositing a margin. The denominator

goes up as P decreases, i.e., as the incentive problem gets more severe.

When margins are as in (23), consistency requires that there be enough resources to

provide full insurance conditional on the signal. This is the case if (22) holds. Consistent

19



with intuition, this is the case if R is large enough. When there is full risk sharing conditional

on the signal, the last term on the right hand–side of (24) is 0. In that case, (24) simplifies

to (23). This case is illustrated in Figure 3. The figure is useful to examine graphically

the effect an increase in p, reducing pledgeable income P . The decrease in P shifts curve ϕ

upwards while shifting 1 + R−C−1
1−P downwards. This raises the optimal margin in (23). When

incentive problems become more severe, margins are needed more, to relax the incentive

constraint.

Insert Figure 3 here

On the other hand, when the limited liability constraint binds in state (θ, s), full risk–

sharing conditional on the signal is not achievable, so that u′(θ+ τB(θ, s)) > u′(θ̄+ τB(θ̄, s)).

The last term on the right hand–side of (24) is strictly positive, and, correspondingly, margins

are lower than when the limited liability condition is slack. Again, this is because (taking

as given that there is effort) margins reduce the amount of resources eventually available

to pay insurance. When limited liability binds, these resources are sorely needed. So it is

perferable to reduce margins, in order to increase the amount of resources available. The

following corollary gives a sufficient condition for (22) to hold.

Corollary 2 A sufficient condition for the limited liability condition to be slack in state

(θ, s) is

1− π∆θ

A (R− P)
>

(1− π)R− P
π + (1− π)R− P

. (25)

Condition (25) holds if π∆θ is not too large. In that case, full risk–sharing after a bad

signal does not request too large resources, and can thus be implemented.

In the first-best the transfers depend only on the realization of θ and the optimal contract

can be implemented with a simple forward contract. In contrast, with moral-hazard and risk-

management effort after both signals, the transfers depend on the realizations of θ and s.

The optimal contract can be implemented by the sale of a forward contract on the underlying

asset θ by protection buyers (as in the first-best) together with the purchase of a forward

contract on the signal s. The forward contract on s generates a gain for protection sellers
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in state s. This gain increases their pledgeable income after a bad signal and thus restores

incentive compatibility in the light of the liability from the forward contract on θ.12

One may wonder whether the optimal contract that is contingent on the signal s can

be replicated by renegotiating - after s is observed - a contract that is initially independent

of the signal, τB(θ). Suppose, for example, that the parties initially agree on the transfers

τB(θ) = τB(θ, s̄). These are the optimal transfers in case of a good signal so there is no

scope for renegotiation after observing s̄. But what about after observing a bad signal s?

Is it a Pareto improvement to renegotiate and switch to the optimal contract after a bad

signal, τB(θ, s)?

Sticking to τB(θ, s̄) after a bad signal violates protection sellers’ incentive compatibility

constraint. They do not exert risk-management effort, fail with probability 1− p and expect

to obtain

πp
(
AR− τB(θ̄, s̄)

)
+ (1− π)p

(
AR− τB(θ, s̄)

)
.13

Although the expected payoffs from τB(θ, s̄) render the contract an asset when the good

signal occurred, the expected payoffs from this contract after a bad signal render the contract

a liability. The only benefit of sticking with the contract is that it avoids payment to

protection buyers with probability 1− p.
If protection sellers switch to τB(θ, s), they exert risk-management effort and expect to

obtain

π
(
AR− τB(θ̄, s)

)
+ (1− π)

(
AR− τB(θ, s)

)
− AC

By switching, protection sellers increase the expected payoff on their assets since effort is

more productive than no effort (see condition (1)). Moreover, switching reduces the payment

to the protection buyers as τB(θ, s) < τB(θ, s̄).

Substituting for the transfers and re-arranging, it follows that protection sellers renego-

tiate if and only if

AP < E[θ]− prob[s̄]E[θ̃|s] (26)

which is always satisfied since AP < E[θ]− E[θ̃|s] (see Lemma 1).

12While this implementation is plausible, it is not unique. Other financial contracts with gains for protec-
tion sellers after s such as options can be used.

13Recall that with probability 1− p, R̃j = 0 and τB(θ, s̃, 0) = 0.
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For protection buyers, the renegotiation decision is determined by two factors. First,

sticking to τB(θ, s̄) after a bad signal implies higher transfers from the CCP. But - and

this is the second factor - it exposes them to counterparty risk. With the CCP insuring

against counterparty risk, there is no downside to sticking to the original contract as the

protection buyers do not internalize the benefits of the switch to τB(θ, s). Thus, with a

CCP, the optimal contract cannot be implemented by renegotiation. But suppose trading

occurs over-the-counter and contracting is bilateral. Then a protection buyer is exposed to

the potential failure of his protection seller when he does not renegotiate the contract after

a bad signal and his expected utility is

πu(θ̄ + τB(θ̄, s̄)) + (1− π)pu(θ + τB(θ, s̄))

If the protection buyer renegotiates, his expected utility is

πu(θ̄ + τB(θ̄, s)) + (1− π)u(θ + τB(θ, s)).

Substituting for the transfers, a protection buyer renegotiates the bilateral contract when

counterparty risk is sufficiently large:

p <

u(E(θ|s)+AP)

u(E(θ|s̄)−prob[s]
prob[s̄]

AP)
− π

1− π

If the condition holds, then the optimal bilateral contract can be implemented by a simple

renegotiation game in which the contract itself does not depend on the realization of the

signal. At time 0, each protection buyer makes a protection seller a take-it-or-leave-it offer

and at time 1, after observing the realization of the signal, he can make another take-it-or-

leave-it offer. In this game, a protection buyer finds it optimal to offer τB(θ, s̄) at time 0

and τB(θ, s) at time 1 if s is observed.

3.2 No effort after a bad signal (risk-taking)

Incentive compatibility after a bad signal reduces risk–sharing. Protection buyers may find

this reduction in insurance too costly. They may instead choose to accept shirking on risk

prevention effort (risk-taking) by protection sellers in exchange for a better sharing of the risk
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associated with θ̃. In this subsection, we characterize the optimal contract with risk-taking

after a bad signal.

After a good signal, protection sellers exert risk-management effort so that R̃j = R for

all j. After a bad signal, protection sellers do not not exert risk-management effort so that

R̃j = R for a proportion p of sellers and R̃j = 0 for a proportion 1− p of sellers. Hence, the

transfer τS from the CCP to a protection seller must now be contingent on the realization

of R̃j. By contrast, the transfer τB from the CCP to a protection buyer does not have to be

contingent on the realization of a particular R̃j. The CCP can mutualize counterparty risk

and provide insurance to risk-averse protection buyers. However, the aggregate amount of

resources protection sellers generate differs after a good signal and after a bad signal. After

a bad signal, only proportion p of protection sellers generate return R while proportion 1−p
of sellers generate a zero return and cannot make any payments to the CCP as they are

protected by limited liability.

The CCP chooses transfers to buyers and sellers, τB(θ̃, s̃, R̃) and τS(θ̃, s̃, R̃), to maximize

buyers’ utility

πλu(θ̄ + τB(θ̄, s̄, R)) + (1− π)(1− λ)u(θ + τB(θ, s̄, R)) (27)

+ π(1− λ)u(θ̄ + τB(θ̄, s, pR)) + (1− π)λu(θ + τB(θ, s, pR))

where, after a bad signal, τB is written as a function of pR to indicate mutualization of

counterparty risk by the CCP.

The feasibility constraints of the CCP after good and a bad signal, respectively, are given

by

τB(θ, s̄) ≤ −τS (θ, s̄, R) ∀(θ, s̄) (28)

τB(θ, s) ≤ −pτS (θ, s, R)− (1− p)τS (θ, s, 0) ∀(θ, s) (29)

The limited liability constraints for sellers whose assets generate R and for those whose

assets generate 0, respectively, are given by:

−τS(θ, s, R) ≤ α(s)A+ (1− α(s))AR for Rj = R (30)

−τS(θ, s, 0) ≤ α(s)A for Rj = 0 (31)

23



The seller’s incentive constraint after a good signal is, as before,

α (s̄)A+ (1− α (s̄))AP ≥ −E[τS(θ, s̄, R)], (32)

whereas after a bad signal, the seller must prefer not to exert effort

E[τS(θ, s, R)] + α (s)A+ (1− α (s))A (R− C) ≤

pE[τS(θ, s, R)] + (1− p)E[τS(θ, s, 0)] + α (s)A+ (1− α (s))pAR,

or, equivalently,

(1− α (s))AP ≤ −E[τS(θ, s, R)] + E[τS(θ, s, 0)]. (33)

Finally, the seller’s participation constraint with risk-taking is

prob[s̄]α (s̄)A (R− C − 1) + prob[s]α (s)A(pR− 1) + prob[s](1− p)AP (34)

≤ prob[s̄]E[τS(θ, s̄, R)] + prob[s](pE[τS(θ, s, R)] + (1− p)E[τS(θ, s, 0)])

The expected transfer from the CCP to a protection seller (right-hand side) is positive. If a

seller enters the position, she must be compensated for the potential efficiency loss (left-hand

side). The loss is due to two factors: 1) costly margins after good and a bad signal (where

R − C − 1 is the opportunity cost of margins when a seller exerts effort and pR − 1 is the

opportunity cost of margins when she does not) and 2) the loss of pledgeable income in the

event of default, which occurs with probability prob[s](1 − p). Thus, the contract with no

effort after a bad signal is actuarially unfair. The higher the pledgeable income, the greater

the efficiency loss generated by risk-taking after a bad signal, the more actuarially unfair the

contract.

We can re-write the seller’s participation constraint with risk-taking as

Aprob[s̄]α (s̄) (R− C − 1) + Aprob[s] [R− C − (α (s) + (1− α (s))pR)] (35)

≤ prob[s̄]E[τS(θ, s̄, R)] + prob[s](pE[τS(θ, s, R)] + (1− p)E[τS(θ, s, 0)])

On the left-hand side, there is again the efficiency loss from entering the contract with

risk-taking. After a good signal, the seller exerts effort but there is an opportunity cost

of margins, given by R − C − 1. After a bad signal, the seller does not exert effort and
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the efficiency loss is given by the difference between R − C, the return on assets when not

entering the contract and doing effort, and α (s) + (1− α (s))pR, the expected return under

the contract with risk-taking.

We first show that in the optimal contract with risk-taking, the feasibility constraints and

the participation constraint must bind, i.e., protection sellers earn no rents and all resources

available for insurance are passed on to protection buyers.

Proposition 8 In the optimal contract with risk-taking after a bad signal, the feasibility

constraints bind for all (θ, s) and the participation constraint binds.

The next proposition characterizes the use of margins in the contract with risk-taking and

narrows down the parameter space for which risk-taking after a bad signal can be optimal:

Proposition 9 In the optimal contract with risk-taking after a bad signal, margins are not

used after signal s̄ if the incentive constraint given s̄ is slack or if the moral-hazard is not

severe, i.e., P ≥ 1. After signal s, margins are not used if pR ≥ 1. If pR < 1, then

α∗(s) = 1. Such contract is, however, dominated by the one with effort after a bad signal.

Without effort after a bad signal, the expected per-unit return on the seller’s balance sheet

is pR. If pR < 1, this is lower than what assets return on the margin account. Hence, it is

more profitable to deposit all of the protection seller’s assets in the margin account, α = 1,

where they earn a greater return and are ring-fenced from moral hazard. But protection

buyers can do at least as well by requesting effort after a bad signal since, there too, α = 1

can be selected (but, as we know from Proposition 6, it is never optimal). It follows that the

contract with margins and no effort after a bad signal can only be strictly optimal if pR ≥ 1.

The next proposition characterizes the optimal transfers in the contract with risk-taking

after a bad signal.

Proposition 10 If pR < 1, then risk–taking is suboptimal. Otherwise, the optimal contract

with risk-taking after a bad signal provides full insurance to protection buyers if and only if

pAR ≥ π∆θ − (1− p) prob[s]AP . (36)
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The transfers are given by

τB(θ̄, s̄) = τB(θ̄, s) = −(1− π)∆θ − prob[s](1− p)AP < 0,

τB(θ, s̄) = τB(θ, s) = π∆θ − prob[s](1− p)AP > 0.

In contrast to the contract with effort after a bad signal, the contract with risk-taking

does not react to the signal, i.e., τB(θ̃, s̄) = τB(θ̃, s). The consumption of the buyer is

equalized across states (i.e., there is full insurance, as in the first-best) as long as the amount

of resources generated under risk-taking (by the protection sellers who succeed), equal to

pAR, is sufficiently high. However, since protection buyers must compensate protection

sellers for the efficiency loss due to risk-taking (given by the loss of pledgeable income in

the event of default after a bad signal, prob[s](1 − p)AP), the consumption of protection

buyers falls short of the first-best consumption levels. Condition (36) ensures that the limited

liability constraints are slack under full insurance. On the left-hand side are the aggregate

resources generated by protection sellers. On the right–hand side is the transfer that would

be paid in the first-best, minus the payment requested by protection–sellers to offset the

efficiency loss they incur due to risk–taking.

Risk–taking can be optimal only if it is not too inefficient, i.e., if pR ≥ 1. In that

case, margins are not used. Since protection sellers engage in risk–taking after a bad signal,

margins do not help with incentives. Margins are also not needed to insure buyers against

counterparty risk since it is mutualized by the CCP. Thus, mutualization tackles ex–post

counterparty risk in the contract with risk-taking, while margins tackle ex–ante incentives

in the contract with effort.

Condition (36) can be re-written as

A [(1− prob[s]) pR + prob[s] (R− C)] ≥ π∆θ.

Since R − C > 1 and pR ≥ 1 (the latter condition is necessary for the contract with risk-

taking to be optimal), it follows that

A [(1− prob[s]) pR + prob[s] (R− C)] > A.

Hence, a sufficient condition for (36) to hold is

A ≥ π∆θ. (37)
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In the optimal contract with risk-taking after bad news, thanks to the mutualization

of counterparty risk by the CCP, transfers are not contingent on signals or on individual

protection seller’s returns. Hence the optimal contract can be implemented with a single

forward contract (as in the first-best) provided it is insured by the CCP (unlike in the first–

best). The forward contract, however, is sold at a discount relative to the expected value of

the underlying risk, in order to compensate the protection sellers for the loss of pledgeable

income in default.

3.3 Risk-sharing and risk-taking

The contract under which protection sellers exert effort after both signals entails limited risk-

sharing for buyers but entails no risk-taking by sellers (Subsection 3.1), while the contract

with no effort after a bad signal entails full risk-sharing for protection buyers but is actuarially

unfair and falls short of the first-best due to the loss of resources in default (Subsection 3.2).

The next proposition characterizes the optimal choice between the two contracts as a function

of the probability of success under risk-taking, p.

Proposition 11 Assume (37) holds. There exists a threshold value of the success probability

under no effort p̂ such that risk–prevention effort after bad news is optimal if and only if

p ≤ p̂.

The logic of the proposition is illustrated in Figure 4. Consider the expected utility of the

protection buyer when effort is requested after bad news. It decreases when p increases. For

this contract, indeed, the only effect of an increase in p is to tighten the incentive constraint,

and thus reduce risk–sharing. Now turn to the expected utility of the protection buyer when

effort is not requested after bad news. In contrast with the previous case, it increases when

p increases. Indeed, for this contract, the only effect of an increase in p is to increase the

amount of resources available after bad news. Hence the result, stated in the proposition,

that risk–prevention effort after bad news is optimal if and only if p is lower than a threshold.

Insert Figure 4 here
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4 Non-linear cost of risk-management effort

In this Section, we examine a non-linear cost of risk-management effort. Specifically, we

assume a per-unit cost of

C = c+ γ(1− α(s))A, (38)

where (1−α(s))A denotes assets under management after a margin call at t = 1 . Previously,

we had γ = 0.

With γ = 0 and P < 1, margins relax the incentive constraint and allow more risk-

sharing. We show that this result still holds, and actually strengthens, when the cost of

risk-management effort is convex, i.e. when γ > 0.14

We showed that larger margins ring-fence assets from moral-hazard in risk-management.

If the cost is convex (γ > 0), there is an additional effect: the cost of controlling the risk of

those assets still under the management of protection seller decreases when margins increase.

If cost is concave (γ < 0), however, then this cost increases, which works against the ring-

fencing effect. Moreover, the optimization problem may become ill-behaved when the cost

of risk-management effort is concave.

Since margins do not play any role in the contract without risk-management effort after a

bad signal, we only need to re-consider the contract with effort. We know from our previous

analysis (Section 3.1) that the feasibility constraints as well as the participation constraint

bind: there is no reason to have idle resources or to leave rents to protection sellers.15

Moreover, the incentive constraint is slack after a good signal (and there is no margin call)

while it binds after a bad signal, in which case there may be a margin call. This logic does

not depend on the shape of the cost of effort function.

The (binding) incentive constraint after a bad signal now is:

E[τS(θ̃, s̃)|s̃ = s] + α(s)A+(1− α(s))A(R− c− γ(1− α(s))A)

= p
(
E[τS(θ̃, s̃)|s̃ = s] + α(s)A+ (1− α(s))AR

)
,

14Berk and Green (2004) model the active management of a portfolio of financial assets and assume the
cost of doing so is increasing and convex in the amount of funds under management (which corresponds to
γ > 0). For example, as the size of an active fund grows it becomes more and more difficult to gather the
information to add value over a passively management fund.

15For brevity, we ignore the limited liability constraints in this extension. This does not affect our conclu-
sions.
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which, as in Section 3, simplifies to

α(s)A+ (1− α(s))AP(α(s)) = E[τB(θ̃, s̃)|s̃ = s], (39)

where the pledgeable return now depends on the size of the margin call after a bad signal:

P(α(s)) ≡ R− c+ γ(1− α(s))A

1− p
. (40)

Margins improve risk-sharing when they relax the incentive constraint after a bad signal

(39). With a non-linear cost of effort, this is the case when

P(α(s))− (1− α(s))P ′ < 1. (41)

In the case of a linear cost of effort, γ = 0, we have P(α(s)) = R − c
1−p and P ′ = 0 so

that condition (41) simplifies to the condition on the severity of the moral-hazard P < 1 in

Section 3.1. When the cost of effort is convex, γ > 0, it is easier to satisfy condition (41).

Margins now have an additional benefit. They reduce the cost of managing the risk of those

assets still under the control of protection sellers. The opposite happens when the cost of

effort in concave, γ < 0. Then it is more difficult to satisfy (41).

To determine the optimal margin when the cost of effort is non-linear, we proceed as

in Section 3.1. We focus on the convex cost case since we cannot be sure the first-order

condition identifies a local maximum when the cost is concave (see the proof of Proposition

12 for details). The transfers τB and τS have the same structure as in Proposition 5, except

that P is now given by (40). We obtain the following Proposition (where, as before, ϕ

denotes the ratio of the marginal utility of a protection buyer after a bad and a good signal).

Proposition 12 With a convex cost of risk-management effort, γ > 0, an optimal interior

margin after a bad signal α∗(s) is given by

ϕ(α∗(s)) = 1 +
R− C − 1

1− [P(α∗(s))− (1− α∗(s))P ′]
.

As in Proposition 7, the optimal interior margin solves the tradeoff between more risk-

sharing across signals and the opportunity cost of margin deposits. Unlike in Proposition

7, however, the extra pledgeable return of margins (relative to those assets still under the
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control of protection sellers) now depends on the size of the margin call. With a convex

risk-management cost, larger margins make it easier to manage the risk of those assets still

under the control of protection sellers. This makes margins more attractive compared to the

linear cost of effort case. Consequently, we obtain the following comparative static result:

Proposition 13 Suppose γ ≥ 1 and 1 > R − c
1−p . The stronger decreasing returns to scale

in risk-management lead to larger margin calls after a bad signal, dα∗(s)
dγ

> 0.

With a convex cost of risk-management effort, margins not only ring-fence assets from

moral-hazard but also have a beneficial scale effect for the risk management of those assets

still subject to moral-hazard. Our baseline model did not have any scale effects and focused

exclusively on the ring-fencing effect of margins.

5 Empirical implications

According to our theory, a strong and pledgeable asset base (AP) maintains risk-management

incentives in the presence of derivative exposures.16 Asset pledgeability decreases when the

cost of risk-management effort increases. Pledgeability therefore suffers when insufficient

resources are devoted to risk-management or when the power of risk-managers is limited.

Pledgeability also suffers when financial institutions and their activities become more com-

plex and opaque. Consistent with these predictions, Ellul and Yerramili (2013) find cross-

sectional differences in banks’ risk-taking behaviour as a function of the strength and in-

dependence of banks’ risk-management. Specifically, U.S. bank holding companies with a

higher Risk Management Index (indicating better risk-management) before the onset of the

2007-09 financial crisis have lower tail-risk exposures and better overall performance during

the financial crisis.

Asset pledgeability also depends on the macroeconomic and financial environment in

which financial institutions operate. For example, an environment characterized by a low

probability of failure even when there is no risk-management effort (high p) can be viewed

as a “benign”/low-risk economic situation. In our analysis, derivatives contracts that offer

16While for simplicity protection sellers have no initial debt in our model, to gauge this implication
empirically one should consider assets net of liabilities.
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ample insurance but undermine risk-management incentives are (privately) optimal in such

a benign environment (see Proposition 11). This implication resonates with the idea of

excessive risk building up in “good” times - an idea that figures prominently in accounts of

the recent global financial crisis (see for example Borio, 2011). [note that the build up of

leverage in good times also features prominently in Acharya-Vish, except that the mechanism

is different: something to mention in the intro?]

A related implication of our model is contagion across seemingly unrelated assets when

bad shocks hit (see, e.g., Billio et al., 2012). The reason why there is contagion in our

analysis is the desire to hedge risk. Protection buyers want to diversify the aggregate com-

ponent of their risk and thus turn to protection sellers. Conditional on protection sellers’

risk-management effort, their balance-sheet risk is independent, which makes them suitable

insurers of protection buyers’ risk. Moreover, in a benign economic environment protection

buyers seek ample insurance and accept the lack of risk-management incentives of protection

sellers in case of negative news about the insured risk. When such news do occur, e.g.,

slowing house prices when mortgage default is insured, then protections sellers become more

likely to default. One would then observe an increased correlation between the mortgage

values and the values of financial institutions without direct exposure to mortgage default.

Another set of factors affecting risk-management incentives relates to the type of deriva-

tives contracts sold by protection sellers. Since a protection seller’s incentives are jeopardized

when a derivative position turns into an expected liability for her, the accuracy of advance

information about how the underlying asset will perform matters. In particular, an increase

in the precision of the advance signal (λ) unambiguously worsens the incentive problem of

protection sellers. For example, information about the performance of mortgage-backed se-

curities and CDS contracts written on them was unavailable before 2006 even though the

issuance of mortgage-backed securites was around $ 2 trillion in every year from 2002 until

2006 (see, e.g., Fender and Scheicher, 2008). The ABX.HE indices that provide this infor-

mation were introduced only in January 2006. Moreover, as of early 2007, the prices for the

index on AAA securitizations and those on BBB securitizations, which were virtually iden-

tical until then, started to diverge. In the light of our analysis, this increase in the precision

of information made it more difficult to have incentive-compatible insurance of mortgage
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defaults and contributed to the development of the financial crisis: To the extent that ample

insurance kept being written, it came at the expense of risk-taking incentives for insurers.

In addition to the quality of advance information about the asset underlying the deriva-

tive, the structure of the derivative’s payoffs plays a role as well. First, more risk to be hedged

(higher ∆θ) worsens the incentive problem, ceteris paribus. For example, an interest-rate

swap, where only interest payments are at stake, hedges less risk and leads to less incentive

problems than a credit-default swap, where also the principal payment is at stake.

Second, the symmetry of the hedged risk matters, too. For example, while the payoff

from an interest rate swap is more like a symmetric coin-flip, the payoff from a credit-default

swap is highly skewed: most of the time, protection sellers collect a small insurance premium

but in the rare case of default, they have to make large payments to protection buyers. To

analyze the effect of an increase in the skewness of the hedged risk on incentives, we increase

the probability π of a good outcome for the protection buyer’s risk θ while keeping its mean

and the standard deviation constant.17 An increase of π increases the amount of risk to

be hedged, ∆θ. Consequently, protection buyers demand more insurance, which increases

the incentive problem for protection sellers. There is, however, a counterveiling effect when

the skewness π is already large. In that case, the good outcome of the hedged risk is quite

likely and the information content of a bad signal s is low. At high levels of π, a further

increase of skewness mutes the negative effect of bad news on incentives.18 As long as π < λ

(the precision of the signal s), the negative effect on incentives from larger amounts of risk

dominates and more skewness leads to more severe incentive problems. In sum, it is more

difficult to maintain risk-management incentives when protection sellers insure credit risk

compared to interest rate risk.

Finally, the use of margins depends on their opportunity cost and the degree to which

they alleviate protection sellers’ incentive problem. The opportunity cost of margins depends

on the risk-free rate (normalized to one in our analysis) since this is the rate assets on the

17The mean µ and the standard deviation σ of θ̃ are µ = πθ̄+(1− π) θ and σ =
√
π (1− π)∆θ, respectively.

We can therefore write θ̄ and θ as a function of π as follows: θ̄ = µ+ σ
√

1−π
π and θ = µ− σ

√
π

1−π . Holding

the mean and standard deviation constant, an increase in π leads to more skewness (when π > 1
2 ).

18Formally, the size of the incentive problem depends on E[θ] − E[θ|s], which is the product of ∆θ and
(π − π), where the latter captures the effect of bad news.
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margin account earn. When risk-free rates are low compared to the return on productive

investment opportunities, the opportunity cost of margins increases and the optimal margin

is lower. In terms of alleviating the incentive problem, margins are particularly beneficial

when the cost of risk-management effort is convex, and the optimal margin is higher the

more convex risk-management costs are (see Proposition 13).

6 Policy implications

6.1 Margins and equity capital

We showed that margins allow for more incentive-compatible insurance as they ring-fence

assets from protection seller moral-hazard. What could be alternative mechanisms to reduce

moral-hazard? In particular, what about a capital requirement so that protection sellers

have “skin-in-the-game”? What are the similarities and the differences between margins

and equity capital in the context of our analysis? These questions are particularly relevant

since the regulatory overhaul in the aftermath of the 2007-2009 financial crisis includes both

margin and capital requirements.

Our optimal contracting framework in fact allows for equity capital. At t = 0, protection

sellers have assets A and no liabilities. Hence, their equity capital (the difference between

assets and liabilities) is equal to A. At t = 1, after a good signal, the derivative position

is an expected asset for a protection seller and the value of her equity increases. After a

bad signal, however, the derivative position is an expected liability for a protection seller.

The optimal contract with effort limits this liability to A[α(s) + (1 − α(s))P)] to preserve

protection seller’s incentives to exert risk-management effort (see (15)). The value of a

protection seller’s equity capital after a bad signal at t = 1 is

(1− α(s)) (R− P)A > 0, (42)

which is the difference between the value of protection seller’s assets, A [α(s) + (1− α(s))R],

and the value of her liability. Therefore, one interpretation of the optimal contract with

effort is that it does require protection sellers to hold a minimum amount of equity.

If margin calls could not be made (e.g., if there was no enforcement mechanism for

margins), then the amount of equity protection sellers must hold would increase (see (42)).
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Margins allow protection sellers to engage in incentive-compatible financial contracting with

less equity. Margins improve incentives by making the asset side of the balance sheet less

susceptible to moral-hazard. With less moral-hazard, the assets can support larger liabilities.

Another way to increase the size of the incentive-compatible liability after a bad signal,

and thus increase risk-sharing, is to increase the size of a protection seller’s balance-sheet A.

Since protection sellers are 100% equity financed, more equity capital upfront increases the

amount of incentive-compatible insurance.

The cost of using margins is the net loss of the return R−C−1 on the assets a protection

seller no longer controls. If increasing equity capital was costless for protection sellers, then

they would of course substitute capital for margins. But increasing equity capital is costly for

a number of reasons. Issuing equity carries well-known dilution costs. New equity-holder may

also demand control rights that reduce the value of existing equity-holders’ stake. Finding

new equity capital can be time-consuming. Finally, there can be substantial transaction

costs when issuing new equity.

Both margins and equity capital can relax the incentive constraint of protection sellers.

But there are differences. Margins only improve incentives when the moral-hazard problem

is sufficiently severe (P < 1). More equity capital (larger A) always improves incentives.

Moreover, margins, unlike equity, are linked to individual derivative positions. A margin call

only occurs when the derivative position turns into a liability (which depends on information

about the underlying asset). An increase in equity is not contingent on the development of

derivative positions. This can be quite wasteful since the equity capital is present also when

derivative positions are assets. Finally, higher equity capital also benefits other existing

claim-holders. Margins in contrast are ear-marked to cover the risk of the specific derivative

positions.

6.2 CCP design

The key benefit of CCPs in our paper is the mutualization of counterparty risk. Trading

partners are therefore more willing to accept counterparty risk when trades are centrally

cleared than when they occur over-the-counter (OTC). Nevertheless, the optimal contract

and margins in our model are the constrained-efficient outcome on which a regulator cannot
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improve.

But suppose we modify the model slightly and add the possibility of losses L ≥ 0 when

protection sellers default. Such losses can occur when protection sellers have other claim-

holders (depositors, debt-holders) or when their default spills over to other parts of the

financial system (e.g., via disruptions in interbank markets or payment systems). Social

(utilitarian) welfare is given by the sum of protection buyers’ utility and the protection

sellers’ profits net of expected losses L. Since protection sellers are protected by limited

liability, the cost of their default L will not be taken into account in the privately optimal

design of the contract and margins. We can therefore think of L as a reduced-form measure

of the externality a default of protection sellers imposes on the rest of the financial system.

Since the losses occur more often when protection sellers fail to exert risk-management

effort (risk-taking), there exists a threshold level of losses, L∗, such that for losses larger than

L∗, social optimality requires the avoidance of risk-taking even though it may be privately

optimal. Because of the mutualization of counterparty risk, risk-taking is more attractive

and the case for regulation is stronger for centrally cleared than for OTC trades.

The mutualization of counterparty risk through a CCP can lead to free-riding among

protection buyers. Since protection buyers are no longer exposed to risk of protection seller

default, they have no incentive to insist on transfers and margins that lead to protect sellers’

risk-management effort and reduce the risk of default. The cost of insisting on the optimal

contract (e.g., monitoring derivative positions) would be borne privately, while the benefit

of better incentives and hence lower risk would be mutualized.

We also showed that protection buyers are less likely to renegotiate a sub-optimal contract

when trades are centrally cleared than when they occur bilaterally in an over-the-counter

market (see Section 3.1). The insurance against counterparty risk through a CCP hurts

protection buyers incentives to renegotiate a contract that has large insurance payments but

leads to risk-taking by protection sellers. The lack of renegotiation is optimal from the point

of view of a single protection buyer but harmful from the point of view of all protection

sellers since it leads to a loss of overall resources when protection sellers default.

To prevent such free-riding problems, it is the CCP and not the contracting parties who

must set and mandate the optimal transfers and margin calls, and make them contingent
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on the development of derivative positions (e.g, monitor real estate prices for CDS contracts

written on mortgage loans or written on institutions with large exposures to such loans).

To be up to this task, CCPs must be well-governed and have the resources to carry out the

necessary monitoring.

7 Conclusion

We analyze optimal contracts in the context of hedging using derivatives. We show how

contracts designed to engineer risk-sharing generate incentives for risk-taking. When the

position of the protection seller becomes a liability for her, it undermines her incentives to

exert risk prevention effort. The failure to exert such effort may lead to the default of the

protection seller. Thus, a bad signal about derivative positions can propagate to other lines

of business of financial institutions and, when doing so, create endogenous counterparty risk.

When the seller’s moral hazard is moderate, margins enhance the scope for risk-sharing.

Our emphasis on the positive consequence of margins contrasts with the result that margins

can be destabilizing, as shown by Gromb and Vayanos (2002) and Brunnermeier and Pedersen

(2009). The contrast stems from differences in assumptions. Gromb and Vayanos (2002)

and Brunnermeier and Pedersen (2009) take margin constraints as given and, for these

margins, derive equilibrium prices. Greater margins force intermediaries to sell more after

bad shocks, which pushes prices down and can generate spirals. In contrast, we endogenize

margins, but take as given the value of assets a protection seller deposits on a margin

account. It would be interesting in future research to combine the two approaches and study

how endogenous margins could destabilize equilibrium prices. Destabilization could arise if

the margin requirement that is privately optimal for a protection buyer and his counterparty

had external effects on other investors via equilibrium prices, as in Gromb and Vayanos

(2002) and Brunnermeier and Pedersen (2009). This would be in line with the analysis of

equilibrium investment and asset pricing with endogenous financial constraints by Acharya

and Viswanathan (2011) and Lorenzoni (2008).

IMPORTED FROM INTRO:

Gromb and Vayanos (2002) show how margin constraints lead to a destabilizing behavior
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of arbitrageurs that exacerbates price volatility. Brunnermeier and Pedersen (2009) show

that margins constraints can generate downward price spirals. Margin calls force asset sales,

which depress prices and lower asset values, triggering further margin calls. Both these

analyses, however, take the existence of margin constraints as given. To the best of our

knowledge, our paper is the first to study the emergence of margin deposits as a feature of

an optimal contract.

ALSO IMPORTED FROM INTRO

Because the context we study is different, the inefficiencies we uncover differ from those

analyzed in a borrowing and lending context. Acharya and Viswanathan (2011) offer an

insightful analysis of the equilibrium price at which borrowers liquidate assets and the corre-

sponding fire-sales negative externality. This is beyond the scope of our paper. Instead, we

show that optimal contracting between protection buyers and sellers can generate endoge-

nous counterparty risk and contagion from negative shocks on the assets of the protection

buyer to those of the protection seller. These inefficiencies do not arise in Acharya and

Viswanathan (2011).

37



References

Acharya, V. and A. Bisin, 2011, “Counterparty Risk Externality: Centralized versus

Over-the-counter Markets,” NBER working paper No. 17000.

Acharya, V. and S. Viswanathan, 2011, “Leverage, moral hazard and liquidity,” Journal

of Finance, 66 (1), 99-138.

Allen, F. and E. Carletti, 2006, “Credit Risk Transfer and Contagion,” Journal of Mon-

etary Economics, 53 (1), 89-111.

Berk, J. and R. Green, 2004, “Mutual Fund Flows and Performance in Rational Markets,”

Journal of Political Economy, 112 (6), 1269-1295.

Biais, B. and C. Casamatta, 1999, “Optimal Leverage and Aggregate Investment,” Jour-

nal of Finance, 54 (4), 1291-1323.

Billio, M., M. Getmansky, A. Lo and L. Pelizzon, 2012,“Econometric measures of con-

nectedness and systemic risk in the finance and insurance sectors,”Journal of Financial

Economics, 104 (3), 535-559.

Bolton, P. and M. Oehmke, 2011, “Credit Default Swaps and the Empty Creditor Prob-

lem,”Review of Financial Studies, forthcoming.

Bolton, P. and M. Oehmke, 2011, “Should Derivatives be Senior?,” working paper,

Columbia University.

Bolton, P. and D. Scharfstein, 1990, “A Theory of Predation Based on Agency Problems

in Financial Contracting,” American Economic Review, 80, 93–106.

Borio, C., 2011. Rediscovering the macroeconomic roots of ı̈¬nancial stability policy:

journey, challenges and a way forward. Annual Review of Financial Economics 3, 87âe“117.
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8 Appendix

Proof of Proposition 1 Form the Lagrangian using the objective (6), the feasibility

constraints (3) with multiplier µFC and the participation constraint (7) with multiplier µ. For

the moment we ignore the limited liability constraints (4) in the first-best. We then show

that first-best transfers do not violate limited liability given our assumption AR > π∆θ.

Since R̃ = R under effort, we do not explicitly write the dependence of the transfers on R̃.

The first-order conditions of the Lagrangian with respect to τB(θ, s) and τS(θ, s) are,

respectively,

prob[θ, s]u′(θ + τB(θ, s))− µFC (θ, s) = 0 ∀(θ, s) (43)

µprob[θ, s]− µFC (θ, s) = 0 ∀(θ, s). (44)

Since marginal utility is strictly positive, it follows from (43) that µFC (θ, s) > 0 for all

(θ, s) and hence the feasibility constraints bind. Since µFC (θ, s) > 0, it follows from (44)

that the participation constraint binds. After substituting (43) into (44), it follows that

buyers’ marginal utility is the same across all states. That is, there is full risk-sharing.

From equal marginal utility across all states, we obtain, first, that θ + τB(θ, s̄) = θ +

τB(θ, s) and hence τB(θ, s̄) = τB(θ, s) for θ = θ̄, θ. Second, we obtain that θ̄ + τB(θ̄, s) =

θ + τB(θ, s) and hence τB(θ, s)− τB(θ̄, s) = ∆θ for s = s̄, s.

Using τS(θ, s) = −τB(θ, s) (from the binding feasibility constraints) and τB(θ, s̄) =

τB(θ, s), we can write the binding participation constraint as

−(prob[θ̄, s̄] + prob[θ̄, s])τB(θ̄, s̄)− (prob[θ, s̄] + prob[θ, s])τB(θ, s̄) = 0 (45)

Using τB(θ, s̄)−τB(θ̄, s̄) = ∆θ to substitute for τB(θ̄, s̄) and since prob[θ̄, s̄]+prob[θ̄, s] =

prob[θ̄] = π (and similarly for 1− π), the binding participation constraint yields

τB(θ, s̄) = π∆θ (46)

from which the remaining transfers in the proposition follow immediately. QED

Proof of Lemma 1 Plugging the first-best transfers from Proposition 1 into the in-

centive conditions (10) and using α(s̃) = 0 yields AP ≥ (π − π̄)∆θ and AP ≥ (π − π)∆θ.
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When the signal is informative, λ > 1
2
, we have π̄ > π > π. The result in the lemma follows.

QED

Proof of Proposition 2 Form the Lagrangian using the objective (6), the feasibility

constraints (3) with multiplier µFC (θ, s), the limited liability constraints (4) with multipliers

µLL (θ, s), the feasibility constraints on margins (5) with µ0 (s) for α (s) ≥ 0 and µ1 (s)

for α (s) ≤ 1, the incentive compatibility constraints (10) with multipliers µIC(s) and the

participation constraint (12) with multiplier µ.

The first-order conditions of the Lagrangian with respect to τB(θ, s) and τS(θ, s) are

prob[θ, s]u′(θ + τB(θ, s))− µFC (θ, s) = 0 ∀(θ, s) (47)

µprob[θ, s] + µLL(θ, s) + prob[θ|s]µIC(s)− µFC (θ, s) = 0 ∀(θ, s). (48)

Since marginal utilities are positive, it follows from (47) that µFC (θ, s) > 0 and hence

all feasibility constraints bind:

τB(θ, s) = −τS(θ, s),∀(θ, s). (49)

Using (47) to substitute for µFC (θ, s) in (48) and rearranging, we obtain

u′(θ + τB(θ, s)) = µ+
µLL(θ, s)

prob[θ, s]
+
µIC(s)

prob[s]
∀(θ, s) (50)

where we used that prob[θ|s]prob[s] = prob[θ, s].

We next show that the limited liability constraint in state (θ̄, s) is slack for each s. The

proof proceeds in two steps. First, we show that the limited liability constraints cannot

bind for both the state (θ̄, s) and the state (θ, s). Suppose not. Since both limited liability

constraints after the signal s bind, we have−τS(θ̄, s) = α(s)A+(1−α(s))AR and−τS(θ, s) =

α(s)A+ (1− α(s))AR. Hence,

E[−τS(θ̃, s̃)|s̃ = s] = α(s)A+ (1− α(s))AR ∀s

But since R > P , this violates the incentive compatibility constraint (10) after the signal s.

Hence, at least one limited liability constraint after the signal s must be slack.

Second, we show that the limited liability constraint in state (θ̄, s) is always slack for

each s. Suppose not, so that −τS(θ̄, s) = α(s)A+(1−α(s))AR. We have just shown that at
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least one limited liability constraint after the signal s must be slack. Hence, we must have

that −τS(θ, s) < α(s)A + (1 − α(s))AR and µLL(θ, s) = 0. Using the binding feasibility

constraints (49), we therefore have

τB(θ̄, s) > τB(θ, s) ∀s,

which implies

u′(θ̄ + τB(θ̄, s)) < u′(θ + τB(θ, s)) ∀s

since θ̄ > θ. However, using µLL(θ, s) = 0 in (50) implies

u′(θ̄ + τB(θ̄, s)) ≥ u′(θ + τB(θ, s)) ∀s.

A contradiction. Hence, the limited liability constraint is slack in state (θ̄, s) and µLL(θ̄, s) =

0 for all s.

Finally, we show by contradiction that the participation constraint (12) binds. Suppose

not. Plugging µ = 0 and µLL(θ̄, s) = 0 (just shown above) into (50) implies that µIC(s) > 0

for all s. Hence, both incentive constraints bind, −E[τS(θ̃, s̃)|s̃ = s] = α(s)A+(1−α(s))AP
for s = s̄, s. Therefore,

E[τS(θ̃, s̃)] = E[E[τS(θ̃, s̃)|s̃]] = −E[α(s̃)A+ (1− α(s̃))AP ] (51)

From the participation constraint, we have

0 ≤ E[τS(θ̃, s̃)]− E[α(s̃)]A(R− C − 1)

= −E[α(s̃)A+ (1− α(s̃))AP ]− E[α(s̃)]A(R− C − 1) [using (51)]

= −E[(1− α(s̃))AP + α(s̃)A(R− C)].

The last expression is strictly negative since R − C > P > 0 and 0 ≤ α(s̃) ≤ 1. A

contradiction. Hence, the participation constraint binds and also µ > 0. QED

Proof of Proposition 3

The first-order conditions of the Lagrangian from the proof of Proposition 2 with respect

to α(s) are

µ0 (s)− µ1 (s)

A
+ µIC(s)(1− P) = µprob[s] (R− C − 1) + (R− 1)µLL(θ, s) ∀s, (52)

43



where we have used µLL(θ̄, s) = 0 for all s (Proposition 2).

The right-hand side of (52) is strictly positive since R−C > 1 and µ > 0 (see the end of

the proof of Proposition 2). If the incentive constraint is slack for a signal s, then µs = 0,

implying that µ0 (s) > 0 must hold and α(s) = 0. Similarly, if P ≥ 1, then µ0 (s) > 0 for

each s must hold and α(s) = 0 for all s. QED

Proof of Proposition 4

It cannot be that both incentive constraints are slack since we assume that the first-best

is not attainable, AP < (π − π)∆θ. It also cannot be that both incentive constraints bind

(see the argument that the participation constraint binds in the proof of Proposition 2).

We now show by contradiction that the incentive constraint following a bad signal binds.

Suppose not and hence µIC (s) = 0. After the good signal, the limited liability constraints

are slack, µLL(θ̄, s̄) = 0 by Proposition 2 and µLL(θ, s̄) = 0 since we are considering a relaxed

problem - see condition (14)). Equations (50) for s = s̄ then imply that

u′(θ̄ + τB(θ̄, s̄)) = u′(θ + τB(θ, s̄)).

There is full risk-sharing conditional on the good signal. For transfers after a good signal we

thus have

τB(θ, s̄)− τB(θ̄, s̄) = ∆θ > 0 (53)

After the bad signal, limited liability constraint in state (θ̄, s) is slack, µLL(θ̄, s) = 0

by Proposition 2. In state (θ, s), we have two cases to consider, depending on whether the

limited liability constraint is slack or whether it binds.

Consider first the case when the limited liability constraint in state (θ, s) is slack, µLL(θ, s) =

0. Equations (50) for s = s then imply that there is also full risk-sharing conditional on the

bad signal,

u′(θ̄ + τB(θ̄, s)) = u′(θ + τB(θ, s)).

and thus

τB(θ, s)− τB(θ̄, s) = ∆θ > 0 (54)

Since µIC (s) = 0 and µLL(θ, s) = µLL(θ, s̄) = 0, it follows from equations in (50) that

u′(θ + τB(θ, s)) ≤ u′(θ + τB(θ, s̄))
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and thus

τB(θ, s) ≥ τB(θ, s̄). (55)

From the binding participation constraint

prob[s̄]E[τS(θ̃, s̃)|s̃ = s̄] + prob[s]E[τS(θ̃, s̃)|s̃ = s] = E[α(s̃)]A(R− C − 1) ≥ 0

and E[τS(θ̃, s̃)|s̃ = s̄] < 0 (binding incentive constraint after a good signal), we know that

E[τS(θ̃, s̃)|s̃ = s] > 0 (56)

Using full risk-sharing conditional on the signal (equations (53) and (54)) we can write

E[τS(θ̃, s̃)|s̃ = s] = πτS(θ̄, s) + (1− π) τS(θ, s)

= τS(θ, s) + π
[
τS(θ̄, s)− τS(θ, s)

]
= τS(θ, s) + π

[
τS(θ̄, s̄)− τS(θ, s̄)

]
Using (55) and the binding feasibility conditions (49), we have τS(θ, s) ≤ τS(θ, s̄). And since

π < π̄ (the signal is informative), we have

E[τS(θ̃, s̃)|s̃ = s] ≤ τS(θ, s̄) + π
[
τS(θ̄, s̄)− τS(θ, s̄)

]
< τS(θ, s̄) + π̄

[
τS(θ̄, s̄)− τS(θ, s̄)

]
and thus E[τS(θ̃, s̃)|s̃ = s] < E[τS(θ̃, s̃)|s̃ = s̄]. But since E[τS(θ̃, s̃)|s̄] < 0 (by the binding

incentive constraint after a good signal), we have a contradiction with (56).

Now, consider the case when the limited liability constraint in state (θ, s) binds. Since

µLL(θ̄, s) = 0 (by Proposition 2) and µIC(s) = 0, equations (50) for s = s imply that

u′(θ + τB(θ, s)) ≥ u′(θ̄ + τB(θ̄, s))

and thus

τB(θ, s)− τB(θ̄, s) ≤ ∆θ. (57)

Since α(s) = 0 (incentive constraint after a bad signal is slack in contradiction), the

binding limited liability constraint is AR = −τS(θ, s). Together with (57) in conjunction
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with the binding feasibility constraints (49), we then have

−E[τS(θ̃, s̃)|s̃ = s] = −
[
πτS(θ̄, s) + (1− π) τS(θ, s)

]
= −τS(θ, s)− π

[
τS(θ̄, s)− τS(θ, s)

]
≥ AR− π∆θ

Since π < π (informative signal) and AR > π∆θ (limited liability constraints are slack in

the first-best), we have −E[τS(θ̃, s̃)|s̃ = s] > (π − π)∆θ. But since the incentive constraint

after a bad signal is slack, AP > −E[τS(θ̃, s̃)|s̃ = s], this would mean that AP > (π− π)∆θ

and the first-best can be reached, which is a contradiction.

Consequently, the incentive constraint after a bad signal binds and the incentive con-

straint after a good signal must be slack. QED

Proof of Proposition 5

After a good signal, we have full risk-sharing (see the derivation of equation (53) in the

proof of Proposition 4). Using (53) and (16), we obtain the transfers τB(θ̄, s̄) and τB(θ, s̄).

After a bad signal, we have to distinguish two cases, depending on whether the limited

liability constraint in state (θ, s) is slack or not. If it is slack, then we have full risk-sharing

(see the derivation of equation (54) in the proof of Proposition 4). Using (54) and (15), we

obtain the transfers τB(θ̄, s) and τB(θ, s). If the limited liability constraint binds, we have

α(s)A+ (1− α(s))AR = −τS(θ, s), which we plug into (15) to obtain τB(θ̄, s).

Finally, we check that, under (14), the limited liability constraint in (θ, s̄) is slack. Since

α(s̄) = 0, the limited liability constraint (4) writes as τB(θ, s̄) < AR. Now, Proposition 5

implies that τB(θ, s̄) decreases in α(s). So τB(θ, s̄) < AR for all α(s) if and only if it is for

α(s) = 0. After simplifications, τB(θ, s̄) < AR for α(s) = 0 is equivalent to (14).

QED

Proof of Proposition 6

We claim that α∗(s) < 1. Suppose not and α∗(s) = 1. First, note that µLL(θ, s) > 0 must

hold in this case. Suppose not, and µLL(θ, s) = 0. Then, equations (50) for s = s imply that

that there is full risk-sharing conditional on the bad signal. Hence, the individual transfers

after the bad signal are given by (18) so that τB(θ, s) = −τS(θ, s) = π∆θ+A > A. But the

limited liability constraint requires −τS(θ, s) ≤ A, a contradiction. Since µLL(θ, s) > 0, the
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limited liability constraint binds and the individual transfers after a bad signal are as in (19).

In particular, τB(θ̄, s) = A > 0. Equations (50) and binding incentive constraint after a bad

signal imply that τB(θ̄, s̄) ≥ τB(θ̄, s) = A > 0. However, by equation (17), τB(θ̄, s̄) < 0. A

contradiction.

QED

Proof of Proposition 7

Since the incentive constraint after a good signal is slack (see Proposition 4), it follows

from Proposition 3 that α∗(s̄) = 0. It remains to characterize the optimal margin after a

bad signal.

We now derive the optimal margin after a bad signal, α∗(s). Using equations (50) to

subsitute for µ, µIC (s) and µLL(θ, s) in equation (52), we get

u′(θ̄ + τB(θ̄, s))

u′(θ̄ + τB(θ̄, s̄))
= 1 +

R− C − 1

1− P
+

µ1 (s)− µ0 (s)

u′(θ̄ + τB(θ̄, s̄))prob[s] (1− P)A
(58)

+
1− π
1− P

u′(θ + τB(θ, s))− u′(θ̄ + τB(θ̄, s))

u′(θ̄ + τB(θ̄, s̄))

where we used µIC (s̄) = 0 (Proposition 4).

Denote the RHS of (58) by ϕ. Note that ∂τB(θ̄,s̄)
∂α

= −prob[s]
prob[s̄]

A (R− C − P) < 0. For P < 1,
∂τB(θ̄,s)

∂α
> 0. (When the limited liability constraint is slack, we have ∂τB(θ̄,s)

∂α
= A (1− P) > 0

and when the limited liability constraint binds, we have ∂τB(θ̄,s)
∂α

= A
[
1 + (1−π)R−P

π

]
> 0

since R− P > R− 1 > π(R− 1)). Hence, ϕ is decreasing in α. If ϕ (0) < 1 + R−C−1
1−P , then

ϕ (0) < 1 +
R− C − 1

1− P
+

1− π
1− P

u′(θ + τB(θ, s))− u′(θ̄ + τB(θ̄, s))

u′(θ̄ + τB(θ̄, s̄))

for any α ∈ [0, 1] (since the last term is non-negative). By equation (58) we have µ0 > 0 and

hence α∗(s) = 0.

Otherwise, there are two cases depending on whether or not the limited liability constraint

in state (θ, s) is slack. If it is slack, then marginal utilities after the bad signal are equalized

(equation (54)), and the last term in equation (58) vanishes. The optimal margin α∗(s) ∈
(0, 1) is given by ϕ (α∗(s)) = 1 + R−C−1

1−P in this case. If the limited liability constraint binds,

then the optimal margin α∗(s) ∈ (0, 1) solves

u′(θ̄ + τB(θ̄, s))

u′(θ̄ + τB(θ̄, s̄))
− 1− π

1− P
u′(θ + τB(θ, s))− u′(θ̄ + τB(θ̄, s))

u′(θ̄ + τB(θ̄, s̄))
= 1 +

R− C − 1

1− P
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We now check under what conditions the limited liability constraints are slack. By Propo-

sition 2, we only need to check limited liability constraints in states (θ, s̄) and (θ, s). First,

consider the case when P ≥ 1 and margins are not used. The limited liability constraints

are slack if and only if:

AR > −τS(θ, s, R) = τB(θ, s, R), ∀(θ, s, R)

Since τB(θ, s̄) ≥ τB(θ, s), we only need to check when the limited liability constraint is slack

in state (θ, s̄). It is slack if and only if:

π̄∆θ − prob[s]

prob[s̄]
AP < AR (59)

or, equivalently,

AR− π∆θ >
prob[s]

prob[s̄]
[(π − π) ∆θ − AP ] > 0.

Now consider the case when P < 1. The limited liability constraints in this case are slack

if and only if:

α(s)A+ (1− α(s))AR > −τS(θ, s, R) ∀(θ, s, R)

with α∗ (s̄) = 0 and α∗(s) ≥ 0. The limited liability constraint in state (θ, s̄) is slack if and

only if:

π̄∆θ − prob[s]

prob[s̄]
A [α∗(s) (R− C) + (1− α∗(s))P ] < AR

Since R− C > P > 0, we have:

π̄∆θ − prob[s]

prob[s̄]
A [α∗(s) (R− C) + (1− α∗(s))P ] < π̄∆θ − prob[s]

prob[s̄]
AP

Hence, condition (59) is sufficient for the limited liability constraint to be slack in state (θ, s̄).

The limited liability constraint in state (θ, s) is slack if and only if:

α∗(s) < 1− π∆θ

A (R− P)

Since the optimal interior margin when the limited liability constraint is slack is given by

α∗(s) = ϕ−1

(
1 +

R− C − 1

1− P

)
,
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the constraint in state (θ, s) is slack if and only if

ϕ−1

(
1 +

R− C − 1

1− P

)
< 1− π∆θ

A (R− P)
.

Note that if the limited liability constraint in state (θ, s) is slack, it must be that

τB(θ̄, s) < 0 (equation (18)) implying that

α∗(s) <
(1− π)∆θ − AP

A (1− P)

must hold if the limited liability constraint in state (θ, s) is slack.

In case the limited liability constraint binds, it also must be that τB(θ̄, s) < 0. This is

because equations (19) imply that

τB(θ, s) = α(s)A+ (1− α(s))AR >

E[τB(θ̃, s̃)|s̃ = s] = α(s)A+ (1− α(s))AP [since R > P and α∗(s) < 1]

> 0 > τB(θ̄, s) [since E[τB(θ̃, s̃)|s̃ = s] = πτB(θ̄, s) + (1− π) τB(θ, s)]

For τB(θ̄, s) to be negative if the limited liability constraint in state (θ, s) binds, it must be

that

α∗(s)

[
1 +

(1− π)R− P
π

]
<

(1− π)R− P
π

or, equivalently,

α∗(s) <
(1− π)R− P

π + (1− π)R− P
< 1

It follows that a sufficient condition for the limited liability constraint in state (θ, s) to

be slack is

1− π∆θ

A (R− P)
>

(1− π)R− P
π + (1− π)R− P

.

QED

Proof of Proposition 8

Form the Lagrangian using the objective (27), the feasibility constraints (28) and (29)

with multipliers µFC (θ, s), the limited liability constraints (30) and (31) with multipliers

µLL (θ, s, R), the feasibility constraints on margins (5) with µ0 (s) for α (s) ≥ 0 and µ1 (s)

for α (s) ≤ 1, the incentive compatibility constraints (32) and (33) with multipliers µIC(s)

and the participation constraint (34) with multiplier µ.
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The first-order conditions of the Lagrangian with respect to τB(θ, s) are

prob[θ, s]u′(θ + τB(θ, s))− µFC (θ, s) = 0 ∀(θ, s) (60)

The first-order conditions of the Lagrangian with respect to τS(θ, s̄, R), τS(θ, s, R) and

τS(θ, s, 0) are

µprob[θ, s̄] + µLL(θ, s̄, R) + prob[θ|s̄]µIC(s̄)− µFC (θ, s̄) = 0 ∀(θ, s̄, R) (61)

µprob[θ, s] +
µLL(θ, s, R)

p
− prob[θ|s]µIC(s)

p
− µFC (θ, s) = 0 ∀(θ, s, R) (62)

µprob[θ, s] +
µLL(θ, s, 0)

1− p
+ prob[θ|s]µIC(s)

1− p
− µFC (θ, s) = 0 ∀(θ, s, 0) (63)

Since marginal utilities are positive, it follows from (60) that µFC (θ, s) > 0 and hence

the feasibility constraints (28) and (29) bind.

Using (60) to substitute for µFC (θ, s) in (61)-(63) and rearranging, we obtain

u′(θ + τB(θ, s̄)) = µ+
µLL(θ, s̄, R)

prob[θ, s̄]
+
µIC(s̄)

prob[s̄]
∀(θ, s̄, R) (64)

u′(θ + τB(θ, s)) = µ+
µLL(θ, s, R)

pprob[θ, s]
− µIC(s)

pprob[s]
∀(θ, s, R) (65)

u′(θ + τB(θ, s)) = µ+
µLL(θ, s, 0)

(1− p) prob[θ, s]
+

µIC(s)

(1− p) prob[s]
∀(θ, s, 0) (66)

where we used that prob[θ|s]prob[s] = prob[θ, s].

Combining (65) and (66) yields

(1− p)µLL(θ, s, R)− pµLL(θ, s, 0) = prob[θ|s]µIC(s) ∀(θ, s) (67)

We next show that the limited liability constraint in state (θ̄, s̄, R) is slack. The proof

proceeds in two steps. First, we show that the limited liability constraints cannot bind for

both the state (θ̄, s̄, R) and the state (θ, s̄, R). Suppose not. Since both limited liability

constraints after the signal s̄ bind, we have −τS(θ̄, s̄, R) = α(s̄)A + (1 − α(s̄))AR and

−τS(θ, s̄, R) = α(s̄)A+ (1− α(s̄))AR. Hence,

E[−τS(θ, s̄, R)] = α(s̄)A+ (1− α(s̄))AR

But since R > P , this violates the incentive compatibility constraint (32) after the good

signal. Hence, at least one limited liability constraint after the signal s̄ must be slack.
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Second, we show that the limited liability constraint in state (θ̄, s̄, R) is always slack.

Suppose not, so that −τS(θ̄, s̄, R) = α(s̄)A+(1−α(s̄))AR. We have just shown that at least

one limited liability constraint after the signal s̄ must be slack. Hence, we must have that

−τS(θ, s̄, R) < α(s̄)A + (1 − α(s̄))AR and µLL(θ, s̄, R) = 0. Using the binding feasibility

constraints (28), we have

τB(θ̄, s̄, R) > τB(θ, s̄, R),

which implies

u′(θ̄ + τB(θ̄, s̄, R)) < u′(θ + τB(θ, s̄, R))

since θ̄ > θ. However, using µLL(θ, s̄, R) = 0 in (64) implies

u′(θ̄ + τB(θ̄, s̄, R)) ≥ u′(θ + τB(θ, s̄, R)).

A contradiction. Hence, the limited liability constraint is slack in state (θ̄, s̄, R) and µLL(θ̄, s̄, R) =

0.

Third, we show by contradiction that µ > 0 and the participation constraint (34) binds.

Suppose not, i.e. µ = 0. Using µ = 0 in (65), it follows that µLL(θ, s, R) > 0 must hold

for θ = θ̄, θ. Using µ = 0 and µLL(θ̄, s̄, R) = 0 (just shown above) in (64), it follows that

µIC(s̄) > 0 and the incentive constraint in state s̄ binds. Now, there are two possibilities in

state s: either the incentive constraint binds or it is slack.

Consider first the case when the incentive constraint in state s binds. Using the binding

limited liability constraints in states (θ̄, s, R) and (θ, s, R) in the incentive constraint in state

s, we get

(1− α (s))AP = α(s)A+ (1− α(s))AR + πτS(θ̄, s, 0) + (1− π)τS(θ, s, 0)

or, equivalently,

α(s)A+ (1− α (s))A (R− P) = −πτS(θ̄, s, 0)− (1− π)τS(θ, s, 0) (68)

If the limited liability constraints (31) are slack, we have−τS(θ̄, s, 0) < α(s)A and−τS(θ, s, 0) <

α(s)A so that the right-hand side of (68) is strictly smaller than α(s)A. Since (1−α (s))A (R− P) ≥
0, the left-hand side of (68) is greater or equal to α(s)A. A contradiction. If the limited

liability constraints (31) are binding, then all limited liability constraints in state s bind.
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Using the binding limited liability constraints in state s and the binding incentive constraint

in state s̄ in the (weakly slack) participation constraint (34), we get

prob[s̄]α (s̄)A (R− C − 1) + prob[s]α (s)A(pR− 1) + prob[s](1− p)AP

≤ −prob[s̄] (α(s̄)A+ (1− α(s̄))AP)− prob[s](p (α(s)A+ (1− α(s))AR) + (1− p)α(s)A)

Simplifying yields

prob[s̄] [α (s̄)A (R− C) + (1− α(s̄))AP ] + prob[s]A [(1− p)P + pR] ≤ 0 (69)

Since both terms on the right-hand side of (69) are strictly positive, we have a contradiction.

Now consider the case when the incentive constraint in state s is slack so that µIC(s) =

0. Since µLL(θ̄, s, R) > 0 and µLL(θ, s, R) > 0, using µIC(s) = 0 in (67) implies that

µLL(θ̄, s, 0) > 0 and µLL(θ, s, 0) > 0 must hold. Hence, all limited liability constraints in

state s bind. But we have just shown in the previous step that this is incompatible with the

weakly slack participation constraint. A contradiction.

We conclude that µ > 0 and the participation constraint must bind.

Fourth, we show that µLL(θ̄, s, R) = 0 and −τS(θ̄, s, R) ≤ α(s)A + (1 − α(s))AR. The

proof proceeds in two steps. First, we show that it cannot be that both µLL(θ̄, s, R) > 0 and

µLL(θ, s, R) > 0. Suppose not. When both µLL(θ̄, s, R) > 0 and µLL(θ, s, R) > 0, then

−τS(θ̄, s, R) = −τS(θ, s, R) = α(s)A+ (1− α(s))AR (70)

Using (70) in the incentive constraint after a bad signal (33) yields

−E[τS(θ, s, 0)] + (1− α (s))AP < α(s)A+ (1− α(s))AR

since −E[τS(θ, s, 0)] ≤ α(s)A and P < R. Hence, the incentive constraint after a bad signal

is slack and µIC(s) = 0. Since µLL(θ̄, s, R) > 0 and µLL(θ, s, R) > 0, using µIC(s) = 0 in

(67) implies that µLL(θ̄, s, 0) > 0 and µLL(θ, s, 0) > 0 must hold. Hence, all limited liability

constraints in state s bind. Using the binding limited liability constraints in state s in the

binding participation constraint (34), we get

prob[s̄]α (s̄)A (R− C − 1) + prob[s]α (s)A(pR− 1) + prob[s](1− p)AP

= prob[s̄]E[τS(θ, s̄, R)]− prob[s](p (α(s)A+ (1− α(s))AR) + (1− p)α(s)A)
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Simplifying yields

prob[s̄]α (s̄)A (R− C − 1) + prob[s]ApR + prob[s](1− p)AP = prob[s̄]E[τS(θ, s̄, R)] (71)

For equation (71) to hold, it must be that E[τS(θ, s̄, R)] > 0. By the binding feasibil-

ity constraint (28), this is equivalent to E[τB(θ, s̄, R)] < 0. There can be two cases:

either the incentive constraint after a good signal binds or it is slack. First, consider

the case when the incentive constraint after a good signal binds. Then, E[τS(θ, s̄, R)] =

− (α(s̄)A+ (1− α(s̄))AP) < 0. A contradiction with (71). Second, consider the case when

the incentive constraint after a good signal is slack. Then, µIC(s̄) = 0. Using µLL(θ, s̄, R) = 0

and µIC(s̄) = 0 in (64) and µLL(θ̄, s, R) > 0 and µIC(s) = 0 in (65), we have

u′(θ̄ + τB(θ̄, s̄)) < u′(θ̄ + τB(θ̄, s))

implying that τB(θ̄, s̄) > τB(θ̄, s). So, we have:

τB(θ̄, s̄) > τB(θ̄, s) = −pτS(θ̄, s, R)− (1− p)τS(θ̄, s, 0) [using binding feasibility constraint]

= p [α(s)A+ (1− α(s))AR] + (1− p)α(s)A [using binding LL constraints in state s]

= α(s)A+ p(1− α(s))AR > 0 (72)

Now, there are two cases to consider: either the limited liability constraint in state (θ, s̄, R)

binds or it is slack. If it binds, then τB(θ, s̄) = α(s̄)A + (1 − α(s̄))AR > 0. Together with

(72), this implies that E[τB(θ, s̄, R)] > 0, a contradiction with (71). If the limited liability

constraint in state (θ, s̄, R) is slack, then µ(θ, s̄, R) = 0. Then, there is full risk-sharing after

a good signal, θ̄ + τB(θ̄, s̄, R) = θ + τB(θ, s̄, R), and τB(θ, s̄, R) = τB(θ̄, s̄, R) + ∆θ > 0.

Together with (72), this implies that E[τB(θ, s̄, R)] = −E[τS(θ, s̄, R)] > 0, a contradiction

with (71).

Hence, we showed that at least one of the µLL(θ, s, R)’s must be zero. We now show

that it is µLL in state (θ̄, s, R). Suppose not, i.e., µLL(θ̄, s, R) > 0 and µLL(θ, s, R) = 0.

Using µLL(θ, s, R) = 0 in (67), it follows that µLL(θ, s, 0) = 0 and µIC(s) = 0. Using

µLL(θ̄, s, R) > 0 and µIC(s) = 0 in (67), it follows that µLL(θ̄, s, 0) > 0. Hence,

τB(θ̄, s) = p (α(s)A+ (1− α(s))AR) + (1− p)α(s)A (73)
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Using µLL(θ̄, s, R) > 0 and µLL(θ, s, R) = 0 in (65), we have

u′(θ̄ + τB(θ̄, s)) > u′(θ + τB(θ, s))

implying that θ̄ + τB(θ̄, s) < θ + τB(θ, s). Since θ̄ > θ, this means that

τB(θ̄, s) < τB(θ, s) (74)

must hold. However, we also have that

τB(θ, s) = −pτS(θ, s, R)− (1− p)τS(θ, s, 0) [using binding feasibility constraint]

≤ p (α(s)A+ (1− α(s))AR) + (1− p)α(s)A [using limited liability constraints]

= τB(θ̄, s) [using (73)]

which contradicts (74). Hence, we must have that µLL(θ̄, s, R) = 0.

Fifth, we claim that µLL(θ̄, s, 0) = 0 and µIC(s) = 0. This claim follows immediately

from substituting µLL(θ̄, s, R) = 0 in (67).

QED

Proof of Proposition 9

The first-order conditions of the Lagrangian from the proof of Proposition 8 with respect

to α(s̄) and α(s) are

µ0 (s̄)− µ1 (s̄)

A
+ µIC(s̄)(1− P) = µprob[s̄] (R− C − 1) + (R− 1)µLL(θ, s̄, R) (75)

µLL(θ, s, 0) +
µ0 (s)− µ1 (s)

A
= µprob[s] (pR− 1) + (R− 1)µLL(θ, s, R) (76)

where we have used µLL(θ̄, s̄, R) = 0, µLL(θ̄, s, R) = 0, µLL(θ̄, s, 0) = 0 and µIC(s) = 0 (all

shown in the previous Proposition).

Consider first state s̄. The right-hand side of (75) is strictly positive since R − C > 1

and µ > 0 (see Proposition 8). If the incentive constraint is slack after a good signal, then

µIC(s̄) = 0 , implying that µ0 (s̄) > 0 must hold and α∗(s̄) = 0. Similarly, if P ≥ 1, then

µ0 (s̄) > 0 must hold and α∗(s̄) = 0.

Consider now state s. Using µIC(s) = 0 (as shown in the previous Proposition) in (67)

yields

µLL(θ, s, 0) =
1− p
p

µLL(θ, s, R)
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Substituting for µLL(θ, s, 0) in (76) yields

µ0 (s)− µ1 (s)

A
= (pR− 1)

[
µprob[s] +

µLL(θ, s, R)

p

]
(77)

If pR ≥ 1, then the right-hand side of (77) is non-negative, implying that µ0 (s) ≥ 0 and

α∗(s) = 0. If pR < 1, then the right-hand side of (77) is negative, implying that µ1 (s)) > 0

and α∗(s) = 1. We now claim that the contract with risk-taking and α∗ (s) = 1 is dominated

by the contract with effort after a bad signal. Note that α (s) = 1 is also feasible under the

contract with effort. However, it is never chosen (Proposition 6), implying that the optimal

contract with effort is strictly preferred to the contract with risk-taking and α (s) = 1.

QED

Proof of Proposition 10

The optimal transfers follow from asserting full risk-sharing across all states and using

the binding participation constraint. Condition (36) follows from checking that all limited

liability constraints are satisfied for these transfers. It remains to check that, in the proposed

contract, the incentive constraint after a good signal is slack and margins are not used. Using

α(s̄) = 0 and the transfers in state s̄ in the incentive constraint (32) we have:

AP > 0 > − (π̄ − π) ∆θ − prob[s](1− p)AP =E[τB(θ, s̄, R)] = −E[τS(θ, s̄, R)]

so that the incentive constraint after s̄ is indeed slack at α(s̄) = 0. Since pR ≥ 1, it is not

optimal to use margins after a bad signal either (Proposition 9).

QED

Proof of Proposition 11

We first show that for p < max
{
R−C−1
R−1

, 1
R

}
the contract with effort is optimal. First,

consider p ≤ R−C−1
R−1

. In this case, we have that P ≥ 1. Combining with condition (37) yields

AP ≥ A ≥ π∆θ > (π − π)∆θ

By Lemma 1, the first-best (which entails effort) is reached. Second, consider p < 1
R

. By

Proposition 9, the contract with effort strictly dominates the contract with risk-taking in

this case.

We now consider the case when p ≥ max
{
R−C−1
R−1

, 1
R

}
. Note that p must always be lower

than R−C
R

since we require that P > 0.
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We now show that the expected utility of the contract with effort is decreasing in p.

Consider first the case when the limited liability constraint in state (θ, s) is slack. Then,

there is full risk-sharing conditional on the signal and, using Proposition 5, the expected

utility of the protection buyer under effort is given by

prob[s̄]u

(
E[θ̃|s̄]− prob[s]A [α∗(s) (R− C) + (1− α∗(s))P ]

prob[s̄]

)
+

prob[s]u
(
E[θ̃|s] + A [α∗(s) + (1− α∗(s))P ]

)
The derivative of the expected utility with respect to p is given by

− prob[s̄]ú

(
E[θ̃|s̄]− prob[s]A [α∗(s) (R− C) + (1− α∗(s))P ]

prob[s̄]

)
prob[s]

prob[s̄]
A(1−α∗(s))∂P

∂p
+

prob[s]ú
(
E[θ̃|s] + A [α∗(s) + (1− α∗(s))P ]

)
A(1− α∗(s))∂P

∂p
= prob[s]A(1− α∗(s))∂P

∂p
×[

ú
(
E[θ̃|s] + A [α∗(s) + (1− α∗(s))P ]

)
− ú

(
E[θ̃|s̄]− prob[s]A [α∗(s) (R− C) + (1− α∗(s))P ]

prob[s̄]

)]
where we have used the envelope theorem to claim ∂α∗(s)

∂p
= 0. We know that 1− α∗(s) > 0

since α∗(s) < 1 (Proposition 6). Due to the binding incentive constraint after a bad signal

(Proposition 4), the protection buyer’s consumption is larger after a good signal than after a

bad signal implying that the term in the square brackets above is positive. Since P = R− C
1−p ,

we have ∂P
∂p
< 0 implying that the expected utility under effort decreases in p when the limited

liability constraint in state (θ, s) is slack.

Now consider the other possibility, i.e., that the limited liability constraint in state (θ, s)

is binding. Then, there is still full risk-sharing conditional on a good signal but there is no

longer full risk-sharing conditional on a bad signal. Using Proposition 5, the expected utility

of the protection buyer is given by

prob[s̄]u

(
E[θ̃|s̄]− prob[s]A [α∗(s) (R− C) + (1− α∗(s))P ]

prob[s̄]

)
+

π (1− λ)u

(
θ̄ + α∗(s)A− (1− α∗(s))A(1− π)R− P

π

)
+(1− π)λu (θ + α∗(s)A+ (1− α∗(s))AR)
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The derivative of the expected utility with respect to p is given by

− prob[s̄]ú

(
E[θ̃|s̄]− prob[s]A [α∗(s) (R− C) + (1− α∗(s))P ]

prob[s̄]

)
prob[s]

prob[s̄]
A(1−α∗(s))∂P

∂p
+

π (1− λ)

π
ú

(
θ̄ + α∗(s)A− (1− α∗(s))A(1− π)R− P

π

)
A(1−α∗(s))∂P

∂p
= prob[s]A(1−α∗(s))∂P

∂p
×[

ú

(
θ̄ + α∗(s)A− (1− α∗(s))A(1− π)R− P

π

)
− ú

(
E[θ̃|s̄]− prob[s]A [α∗(s) (R− C) + (1− α∗(s))P ]

prob[s̄]

)]
where we used π(1−λ)

π
=prob[s] and we again made use of the envelope theorem to claim

∂α∗(s)
∂p

= 0. Since α∗(s) < 1 (Proposition 6), 1−α∗(s) > 0. Using (50), and the fact that the

limited liability constraints in states (θ̄, s̄) and (θ̄, s) are always slack (Proposition 2) and the

incentive constraint after a bad signal binds (Proposition 4), we have that ú
(
θ̄ + τ(θ̄, s)

)
>

ú
(
θ̄ + τ(θ̄, s̄)

)
or, equivalently, that the term in the square brackets above is positive. Since

∂P
∂p
< 0, the expected utility under effort decreases in p when the limited liability constraint

in state (θ, s) is binding.

We now show that the expected utility of the contract with risk-taking is increasing in

p. Under risk-taking, the consumption of the protection buyer is equalized across all states.

Therefore, using the optimal transfers from Proposition 10 in (27), the expected utility of

the protection buyer under no effort is given by:

u
(
E[θ̃]− prob[s](1− p)AP

)
Using (1 − p)AP = R − C − pR, we have that the derivative of the expected utility with

respect to p is given by

prob[s]ARú
(
E[θ̃]− prob[s](1− p)AP

)
> 0

Lastly, note that as p → R−C
R

(or, equivalently, as P → 0), the expected utility under

risk-taking is strictly higher than the expected utility under effort. This is because the

expected utility under risk-taking is approaching u
(
E[θ̃]

)
, which is the first-best level of

utility, while the expected utility under effort is strictly smaller than the first-best level of

utility since AP < (π − π)∆θ and hence it is not possible to reach the first-best with effort

after bad news (Lemma 1).
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In sum, for p < max
{
R−C−1
R−1

, 1
R

}
, the contract with effort is optimal. For p→ R−C

R
, the

contract with risk-taking is optimal. For max
{
R−C−1
R−1

, 1
R

}
≤ p < R−C

R
, the expected utility

under effort is decreasing in p while the expected utility under risk-taking is increasing in p.

Therefore, there exists a threshold value of p, denoted by p̂, such that effort after bad news

is optimal if and only if p ≤ p̂.

QED

Proof of Proposition 12

With protection seller effort, there is full risk-sharing conditional on the realization of

the signal s̃ and we can write the objective function (6) as

U = prob[s̄]u(E[θ̃ + τB(θ̃, s̃)|s̃ = s̄]) + prob[s]u(E[θ̃ + τB(θ̃, s̃)|s̃ = s]). (78)

Using the binding incentive and participation constraints, equations (15) and (16) express

the expected transfer to protection buyers conditional on the signal, E[τB(θ̃, s̃)|s̃ = s] and

E[τB(θ̃, s̃)|s̃ = s̄], as a function of the margin α(s) (recall that there is no margin call after a

good signal). Writing the problem in terms of the expected transfers after a signal simplifies

the exposition of the proof.

The first partial derivative of the objective function with respect to the margin is (for

notational ease, we drop the reference to the s in α(s)):

∂U

∂α
= prob[s̄]

∂E[τB(θ̃, s̃)|s̃ = s̄]

∂α
ū′ + prob[s]

∂E[τB(θ̃, s̃)|s̃ = s]

∂α
u′, (79)

where u′ and ū denote the marginal utility conditional on the bad and the good signal,

respectively. The partial derivative of the expected transfer after a bad signal with respect

to the margin is

∂E[τB(θ̃, s̃)|s̃ = s]

∂α
= A [1− P(α) + (1− α)P ′(α)] . (80)

When the derivative is positive, margins relax the incentive constraint. Define

X ≡ 1− P(α) + (1− α)P ′(α) (81)

The derivative is positive if and only if X > 0. This is condition (41) in the text.
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The partial derivative of the expected transfer after a good signal with respect to the

margin is
∂E[τB(θ̃, s̃)|s̃ = s̄]

∂α
= −prob[s]

prob[s̄]
A [(R− C − 1) +X] (82)

The derivative is negative when X > 0 since R − C > 1 (condition (2)). When X < 0,

then the derivative may either be positive or negative, depending on how X compares to the

opportunity cost of margins, R− C − 1.

Combining (80), (81) and (82), we can write (79) as

∂U

∂α
= prob[s]Aū′

[
u′

ū′
−
(
R− C − 1

X
+ 1

)]
X

When X > 0 then ∂U
∂α

= 0 yields the condition for an optimal interior margin in the

proposition (when X < 0 then ∂U
∂α

< 0 for sure since u′

ū′
≥ 1). (Note that as in the linear cost

case, it may be optimal not to use margins).

We now show that when γ < 0, then the optimization problem may not be well-behaved.

The second partial derivative of the objective function (78) with respect to margins is

∂2U

∂α2
= prob[s̄]

ū′′(∂E[τB(θ̃, s̃)|s̃ = s̄]

∂α

)2

+ ū′
∂2E[τB(θ̃, s̃)|s̃ = s̄]

∂α2


+ prob[s]

u′′(∂E[τB(θ̃, s̃)|s̃ = s]

∂α

)2

+ u′
∂2E[τB(θ̃, s̃)|s̃ = s]

∂α2


The first term in each squared bracket is negative (because of concave utility). A sufficient

condition for a local maximum is therefore

prob[s̄]ū′
∂2E[τB(θ̃, s̃)|s̃ = s̄]

∂α2
+ prob[s]u′

∂2E[τB(θ̃, s̃)|s̃ = s]

∂α2
≤ 0

Using (80), (81) and (82) the condition becomes

prob[s]A
∂X

∂α
(u′ − ū′) ≤ 0.

Since u′ − ū′ ≥ 0 (protections buyers may bear signal risk), the sufficient condition holds

when ∂X
∂α
≤ 0 or, equivalently, when γ ≥ 0. When γ < 0 we cannot be sure that the

first-order condition identifies a local maximum.
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Finally, note that when γ ≥ 0 then 1 > R− c
1−p is sufficient for X > 0 for all α.

QED

Proof of Proposition 13

The first-order condition stipulates ∂U(α∗,γ)
∂α

= 0 (for simplicity we consider only interior

solutions, α∗ ∈ (0, 1)). After total differentiation of this implicit function we obtain

dα∗

dγ
= −

∂2U
∂α∂γ

∂2U
∂α2

When α∗ is a local maximum, then a more convex cost of effort leads to larger optimal

margins, dα∗

dγ
> 0, if and only if ∂2U

∂α∂γ
> 0. This cross-partial derivative is

∂2U

∂α∂γ
= prob[s̄]

[
ū′′
∂E[τB(θ̃, s̃)|s̃ = s̄]

∂γ

∂E[τB(θ̃, s̃)|s̃ = s̄]

∂α
+ ū′

∂2E[τB(θ̃, s̃)|s̃ = s̄]

∂α∂γ

]

+ prob[s]

[
u′′
∂E[τB(θ̃, s̃)|s̃ = s]

∂γ

∂E[τB(θ̃, s̃)|s̃ = s]

∂α
+ u′

∂2E[τB(θ̃, s̃)|s̃ = s]

∂α∂γ

]

Using (80), (81) and (82), the cross-partial derivative becomes

∂2U

∂α∂γ
= prob[s]A×[
−ū′′∂E[τB(θ̃, s̃)|s̃ = s̄]

∂γ
[(R− C − 1) +X] + u′′

∂E[τB(θ̃, s̃)|s̃ = s]

∂γ
X +

∂X

∂γ
(u′ − ū′)

]

Moreover,

∂E[τB(θ̃, s̃)|s̃ = s̄]

∂γ
=

prob[s]

prob[s̄]

(1− α)2A2

1− p
> 0

∂E[τB(θ̃, s̃)|s̃ = s]

∂γ
= −(1− α)2A2

1− p
< 0

∂X

∂γ
= 2

(1− α)A

1− p
> 0

When γ ≥ 0 then α∗ is a local maximum and 1 > R − c
1−p is sufficient for X > 0. And

when X > 0, the cross-partial derivative is positive.

QED
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