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Abstract

We develop a benchmark model to study the equilibrium consequences of index-

ing in a standard rational expectations setting (Grossman and Stiglitz (1980); Hellwig

(1980); Diamond and Verrecchia (1981)). Individuals must incur costs to participate

in financial markets, and these costs are lower for individuals who restrict themselves

to indexing strategies. Individuals’ participation decisions exhibit strategic comple-

mentarity. As indexing becomes cheaper (1) indexing increases, while individual stock

trading decreases; (2) aggregate price efficiency falls, while relative price efficiency in-

creases; (3) the welfare of relatively uninformed traders increases; (4) for well-informed

traders, the share of trading gains stemming from market timing increases, and the

share of gains from stock selection decreases; (5) market-wide reversals become more

pronounced. We discuss empirical evidence for these predictions.
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1 Introduction

The standard investment recommendation that academic financial economists offer to indi-

vidual retail investors it to purchase a low-fee index mutual fund or exchange-traded fund

(ETF). An increasing number of such products are available, and are increasingly inexpen-

sive and accessible, and an increasing number of investors follow this advice. In this paper,

we develop a benchmark model to analyze the equilibrium consequences of an increase in

“indexing,” paying particular attention to consequences for welfare.1

To preview our results: First, and unsurprisingly, a reduction in the cost of indexing leads

to more indexing, and less trading of individual stocks. Second, this reduces price efficiency

of the aggregate stock market (i.e., market price movements become more divorced from

cash flow news), but increases the efficiency of the relative prices of individual securities.

Third, the welfare of relatively uninformed “retail” investors increases, precisely because

price efficiency has fallen. Fourth, and in contrast, the welfare of relatively well-informed

“institutional” investors may either increase or decrease: they gain more from aggregate

market timing trades, but less from individual security trades. Fifth, as indexing increases,

the extent to which high market-wide prices today forecast low market returns in the fu-

ture (reversal) increases. As we review below, these predictions are largely consistent with

empirical evidence.

The indexing recommendation is frequently justified by the observation that retail in-

vestors are unlikely to be the most informed traders in the market.2 Because we want to

1Our focus on welfare differentiates us from related papers on index futures and exchange traded funds by
Subrahmanyam (1991), Cong and Xu (2016), Bhattacharya and O’Hara (2017), all of which employ models
with exogenous “noise” trade.

2For example, Cochrane (2013) writes: “The average investor theorem is an important benchmark: The
average investor must hold the value-weighted market portfolio. Alpha, relative to the market portfolio, is
by definition a zero-sum game. For every investor who over-weights a security or invests in a fund that earns
positive alpha, some other investor must underweight the same security and earn the same negative alpha.
Collectively, we cannot even rebalance. And each of us can protect ourselves from being the negative-alpha
mark with a simple strategy: hold the market portfolio, buy or sell only the portfolio in its entirety, and refuse
to trade away from its weights, no matter what price is offered. If every uninformed trader followed this
strategy, informed traders could never profit at our expense.” French (2008) makes a similar argument. At
the same time, note also that Pedersen (forthcoming) documents that even indexing requires a considerable
amount of trading, consistent with the prediction of our model that even indexing agents care about price
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characterize welfare, a necessary first step in our analysis is to characterize welfare in an econ-

omy of the type introduced by Diamond and Verrecchia (1981). Like Grossman and Stiglitz

(1980) and Hellwig (1980), these authors analyze trade between differentially informed

agents, but different from these papers, there are no exogenous “noise” or “liquidity” trades.

Instead, agents have heterogeneous and privately observed exposures to risk. Consequently,

financial markets hold the potential to increase welfare by allowing agents to redistribute risk.

Perhaps surprisingly, and although a model of this type has been analyzed by a significant

number of authors, results on welfare are scarce, as we review below.

Specifically, in the first part of the paper we analyze an economy of this type with par-

ticipation costs and heterogeneous precision levels of private signals, so that agents with

relatively imprecise signals correspond to retail investors. As one would expect, only agents

with sufficiently precise private signals participate, and a fall in participation costs increases

participation by reducing the cutoff level of precision associated with participation. In-

creased participation by relatively uninformed traders in turn reduces price efficiency. Our

main result in this first part of the paper is to show that increased participation leads to a

Pareto improvement in welfare, precisely because of the fall in price efficiency. Consequently,

individuals’ participation decisions exhibit strategic complementarity: the more other rela-

tively uninformed agents participate, the greater the gains of participation. This result is

related to the so-called “Hirshleifer effect” (Hirshleifer (1971)), but does not follow directly

from it (see subsection 2.2 below, and also related discussions in Maŕın and Rahi (1999) and

Dow and Rahi (2003)).

For transparency of exposition, we derive the above results in an economy with a single

risky asset. In the second part of the paper, we extend our model to one with multiple (specif-

ically, two) risky assets, and apply our results to understand the equilibrium consequences

of indexing.

A number of our predictions are consistent with empirical evidence. Israeli, Lee, and Sridharan

efficiency.
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(2017) document a negative correlation between ETF ownership and price efficiency.3 Israeli, Lee, and Sridharan

(2017) also document that analyst coverage of individual stocks declines in ETF activ-

ity, consistent with reduced participation by relatively well-informed investors in individual

securities. Consistent with our prediction that indexing increases the benefits that rela-

tively well-informed investors obtain from market-timing strategies, but reduce the ben-

efits they obtain from asset-selection strategies, AQR document that the correlation be-

tween hedge fund returns and market returns has risen from 0.6 to 0.9 over the last two

decades.4 Related, Stambaugh (2014) documents a decline in asset-selection strategies

by active mutual funds over the same period. Also related, and using data since 2000,

Gerakos, Linnainmaa, and Morse (2017) show that a significant fraction of returns gener-

ated by active mutual funds stem from market timing strategies.

Asides from its implications for the equilibrium effects of indexing, our paper also con-

tributes to the wider debate of the extent to which the financial sector contributes to so-

cial welfare (see, e.g, Baumol (1965)). In particular, we work with a canonical model in

which a financial market exists because it facilitates risk-sharing, and show that informed

trading generally worsens this risk-sharing function, while uninformed trading improves it.

While we believe there is considerable value in isolating the effect of informed trading on

a specific function of the financial sector, we also fully acknowledge that our analysis is

silent on how informed trading affects other possible functions of the financial sector. For

example, we do not speak to the question of whether information produced be financial

markets is valuable in incentive contracts or in guiding resource allocation decisions (see

Bond, Goldstein, and Edmans (2012) for a survey).

Related literature: In addition to the papers noted in footnote 1, our paper is also related

to Stambaugh (2014), who considers the implications of a decline in noise trade in individual

3For full disclosure, we note that Glosten, Nallareddy, and Zou (2016) document just the opposite. As
discussed by Israeli, Lee, and Sridharan (2017), the difference in results stems from the time period over
which changes in ETF ownership is measured.

4See “Hedge fund correlation risk alarms investors,” Financial Times, June 29th, 2014.
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assets. In our paper, a somewhat analogous decline in trading by relatively uninformed

agents occurs. In contrast to Stambaugh’s paper, this decline is an endogenous reaction to

a decline in the cost of indexing strategies. Moreover, many of our results relate to welfare,

which is absent in Stambaugh’s analysis.

In an independent, contemporaneous, and complementary paper, Baruch and Zhang

(2017) likewise study the equilibrium consequence of indexing, though from a very differ-

ent perspective. They consider a multi-asset version of Grossman (1976), so that without

indexing prices fully reveal agents’ private signals. In this setting they show that an exoge-

nous increase in indexing reduces the amount of information prices contain about individual

assets, while the amount of information prices contain about aggregates is unaffected.

One contribution of our paper is to the understanding of welfare in economies of the type

introduced by Diamond and Verrecchia (1981). As we noted, such results are surprisingly

scarce. One significant algebraic complication in characterizing welfare is that, when com-

bined with the asset price, each agent’s private exposure shock contains information about

expected asset payoffs. To avoid this complication, Verrecchia (1982) and Diamond (1985)

both consider a sequence of economies in which the variance of each individual’s exposure

shock grows with the number of agents, and directly study the limit of this sequence. In

the limit economy, each agent’s exposure shock has infinite variance, and so expected utility

prior to the realization of the exposure shock is undefined, in turn making it impossible to

analyze participation decisions prior to the realization of exposure shocks.5

In an independent, contemporaneous, and complementary paper, Kawakami (2017) also

makes progress in characterizing welfare in a setting along the lines of Diamond and Verrecchia

(1981). Whereas we focus on an economy with a continuum of agents and allow for hetero-

geneity in the precision of signals about cash flows that agents observe, thereby allowing us

to consider the effect an increase in participation by relatively uninformed agents, Kawakami

instead considers a finite-agent economy with homogeneous signal precisions, in which an

5If instead one modeled participation decisions as being made after the exposure shock, then almost all
agents would participate, since their exposure shocks are so large.
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increase in the size of the market is associated with better diversification of individual ex-

posure shocks. Analytically, we make more explicit use than Kawakami of market-clearing

conditions, which allows us to incorporate heterogeneity in signal precisions in a tractable

way.

Maŕın and Rahi (1999) obtain welfare results in a relatively specialized setting: there are

two classes of agents, one class of which sees identical signals about asset payoffs and private

endowments, and another class of completely uninformed agents. Moreover, the traded asset

is in zero net supply. Dow and Rahi (2003) also analyze welfare, and obtain some tractability

by inserting a risk-neutral market maker into the economy, which reduces the applicability

of the model for analyzing aggregate financial markets.

In closely related settings, Vives and Medrano (2004) argue that “the expressions for the

expected utility of a hedger . . . are complicated,” whereas Kurlat and Veldkamp (2015) write

that “there is no closed-form expression for investor welfare.” The complications, common

to our model as well, stem from the role of exposure shocks as signals about asset cash flows,

on top of the standard risk sharing role that motivates trade.

2 Informed trading and welfare

As discussed above, we begin our analysis by characterizing welfare in an economy similar to

Diamond and Verrecchia (1981). The welfare results we obtain in this section are essential to

the analysis of indexing in Section 3. Although we obviously need an economy with multiple

risky assets in order to study indexing, in this section we consider an economy with just one

risky asset, in order to present our welfare analysis as transparently as possible.

2.1 The model

We work with a version of Diamond and Verrecchia (1981) in which there are a continuum of

agents (see Ganguli and Yang (2009) and Manzano and Vives (2011)), indexed by the unit
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interval, i ∈ [0, 1]. Each agent i has preferences with constant absolute risk aversion (CARA)

over terminal Wi, and a coefficient of absolute risk aversion of γ.

There is one risky asset available for trading, with a normally distributed payoff X , with

mean µX and variance 1
τX
. The price of the asset is P , which is determined in equilibrium.

Agents are small relative to the market, and act as price-takers; we characterize a competitive

equilibrium of the economy.

The risky asset is in positive net supply, distributed equally among agents, with each

agent having an initial endowment s̄. We denote by θi agent i’s position in the risky asset

after trade.

In addition, agents also have other sources of income (e.g., labor income) that are cor-

related with the cash flow of the risky asset. For simplicity, we assume the correlation is

perfect, and write agent i’s income from sources other than the risky asset as eiX , where

ei is (privately) known to agent i at the trading date. Differences in “exposures” ei across

agents motivate trade in the risky asset.

Hence the terminal wealth of agent i is determined by trading profits, along with the

combination of asset endowment s̄ and other income eiX :

Wi (θi) ≡ s̄P + eiX + θi (X − P ) = (s̄+ ei)P + (θi + ei) (X − P ) . (1)

Although each agent knows his own income exposure ei, he does not know that of other

agents. Specifically, we assume ei = Z +ui, where Z ∼ N
(

0, 1
τZ

)

and ui ∼ N
(

0, 1
τu

)

. Note

that total income thus has an aggregate component ZX , where both Z and X are unknown

to individual agents, although their own income exposures ei provide (private) signals about

Z.

Prior to trading, each agent i observes a private signal of the form

yi = X + ǫi,
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where ǫi ∼ N
(

0, 1
τi

)

. Note that the precisions of private signals are heterogeneous across

agents, so that some agents are more informed than others. Without loss, we order agents

so that signal precision τi is decreasing in i; and for simplicity, we assume τi is strictly

decreasing.

An agent’s information set at the time of trading is hence the triple (yi, ei, P ), which

consists of his signal about cash flows y, his own exposure ei, and the price P .

Finally, agents incur a cost κ of participating in financial markets, reflecting a combi-

nation of information collection and processing costs, psychic costs, expected trading costs,

and the cost of potentially trading in a less than optimal way. Agents make participation

decisions prior to observing any of (yi, ei, P ). If an agent does not participate, θi = s̄.

The equilibrium definition is a straightforward extension of that used in competitive

rational expectations models (Grossman and Stiglitz (1980), Hellwig (1980)), with the par-

ticipation decision incorporated:

Definition 1 A rational expectations equilibrium is a set agents who choose to participate,

N ⊂ [0, 1], trading strategies {θi}i∈N , and a price function P (X,Z) such that markets clear,

∫

N

(θi − s̄) di = 0, (2)

and (taking prices as given), agent i’s trading strategy is optimal,

θi ∈ argmax
θ̃i

E [u (Wi (θi)) |yi, ei, P ] , (3)

and participation decisions are optimal,

E [u (Wi (θi)− κ)] ≥ E [u ((s̄ + ei)X)] .

We emphasize that this is a canonical setting, in which risk-sharing benefits lead to gains

from trade, which in turn allows for informed trading.
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Throughout, we assume

4γ2(τ−1
Z + τ−1

u ) < τX (4)

γ2 > 4τ0τu, (5)

where τ0 is the precision of agent 0’s information, i.e., the highest precision in the population

of agents. Condition (4) ensures that expected utility is well-defined for an agent who behaves

autarchicly, and does not trade. Without this condition, an autarchic agent is exposed

to so much risk that his expected utility is infinitely low. Condition (5) ensures that an

equilibrium exists at the trading stage (see Proposition 1 below). Loosely speaking, without

this condition there is too much trading based on information relative to trading based on

risk-sharing; Ganguli and Yang (2009) impose essentially the same condition.6

2.2 Welfare benchmarks

It is useful to consider a couple of welfare benchmarks. First, in the (symmetric)7 uncon-

strained solution to the social planner’s problem each agent i has terminal wealth

Wi = (s̄+ Z)X. (6)

That is, the aggregate endowment (s̄+ Z)X is simply split equally among agents. This is

the outcome that would be obtained if agents could pool risk before knowing their exposures

ei, and if contracts could be written contingent on the realizations of ei.

A second useful benchmark is the case in which all signals about X are public, with

all other aspects the same as in the model described above (in particular, exposures ei are

6The main extension in Manzano and Vives (2011) relative to Ganguli and Yang (2009) is that they allow
for the error terms in the trader’s signals to be correlated. Non-zero correlation eliminates the existence
issues in our model. Since our focus is on welfare, we choose to study the slightly more tractable model with
conditionally independent estimation errors.

7In non-symmetric solutions, each agent has terminal wealthWi = (s̄+ Z)X+Ki, whereKi is a constant,
and

∫

Kidi = 0.
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private information, and trade occurs only after agents observe these exposures). In this

case, all agents have the same posterior of X at the trading stage, and so portfolios θi must

satisfy (see (8) below)

θi + ei = s̄+ Z.

So each agent’s terminal wealth is

Wi = (s̄+ ei)P + (s̄+ Z) (X − P ) = uiP + (s̄+ Z)X. (7)

Note that in this second benchmark, each agent is exposed to an additional risk term, uiP .

The comparison of these two benchmarks illustrates the challenge of characterizing how

information about X affects welfare. For example, comparing (6) and (7), one can see that

ceteris paribus agents prefer the price P to have low variance. In turn, P has low variance if

it relatively unaffected by both the realization of the cash flow X and the aggregate exposure

Z. But higher-precision signals about X may increase P ’s dependence on X (increasing the

variance of P , and the Hirshleifer effect) but decrease P ’s dependence on Z (reducing the

variance of P ), so that the overall effect is unclear.8

2.3 Basic equilibrium properties

As standard in the literature, to characterize an equilibrium we first conjecture key equilib-

rium characteristics, and then verify that an equilibrium with these characteristics indeed

exists. More concretely, we characterize linear equilibria (i.e., the price is a linear function of

the cash flow X and the aggregate endowment Z) in which all agents with sufficiently precise

8It is worth noting that the limiting case of perfect information about X is straightforward. In this
case, the price P simply equals X , and so (7) reduces to Wi = (s̄+ ei)X , which is the autarchy outcome.
Hence welfare is minimized by perfect information about X , since in this case the financial market cannot
provide any risk sharing (the Hirshleifer effect). Our analysis below concerns the more relevant non-limit
case. Moreover, note that Diamond (1985) characterizes how welfare changes as the precision of public
information changes, though with the mathematical compromises discussed earlier. Finally, in an online
appendix we show that welfare in this benchmark case indeed monotonically declines in the precision of
public information, though the proof is non-trivial, consistent with the discussion above.
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signals participate. In such equilibria, there is a cutoff agent n such that all agents i ≤ n

participate, and agents i > n do not participate. In this subsection we establish some key

equilibrium properties that hold in any equilibrium of this type. To maximize transparency,

we establish these properties as directly as possible, making use primarily of the market

clearing condition (2).

In a linear equilibrium, each agent i’s optimal portfolio has the standard mean-variance

form,

θi + ei =
1

γ

E [X − P |yi, ei, P ]

var (X − P |yi, ei, P )
=

1

γ

E [X|yi, ei, P ]− P

var (X|yi, ei, P )
. (8)

The form of the optimal portfolio (8) indicates that the reciprocal of conditional variance,

var (X|yi, ei, P )−1, is an important quantity. The following result uses market clearing (2) to

derive a useful relation between the average reciprocal of conditional variance in the economy,

and the (endogenous) covariance between returns X − P and cash flows X .

Lemma 1 In any linear equilibrium,

1

n

∫

N

1

var (X|yi, ei, P )
di =

1

cov (X − P,X)
. (9)

Note that Lemma 1 nests the special case in which no agent has any information about

the cash flow X , so that the price is unrelated to X , and so for any agent i, var (X|yi, ei, P ) =

var (X) = cov (X − P,X).

Lemma 1 turns out to be very important in our analysis, and since its proof is short, we

give it here. Differentiation of market clearing (2) with respect to X gives

∂

∂X

∫

N

θidi = 0.

Substituting in the portfolio θi from (8); recalling the property of multivariate normality

that conditional variances do not depend on the realizations of random variables; and noting
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that ∂P
∂X

= cov(P,X)
var(X)

, it follows that

∫

N

∂
∂X

E [X|yi, ei, P ]

var (X|yi, ei, P )
di =

∫

N

cov(P,X)
var(X)

var (X|yi, ei, P )
di. (10)

Because the information set (yi, ei, P ) consists of a set of normally distributed random vari-

ables,

∂

∂X
E [X|yi, ei, P ] = 1− var (X|yi, ei, P )

var (X)
. (11)

(See Lemma A-1 for a formal proof.) Substitution of (11) into (10) yields

(

1− cov (P,X)

var (X)

)
∫

N

1

var (X|yi, ei, P )
di =

∫

N

1

var (X)
di,

which is equivalent to (9), completing the proof of Lemma 1.

Among other things, we use Lemma 1 to characterize the equilibrium risk premium

E [X − P ]. Taking the unconditional expectation of (8) gives

E [θi] =
1

γ

E [X − P ]

var (X|yi, ei, P )
.

Combined with market clearing (2) (specifically, 1
n

∫

N
E [θi] di = s̄), we obtain:

Corollary 1 In a linear equilibrium,

E [X − P ] = γs̄cov (X − P,X) .

As for Lemma 1, it may help to note that Corollary 1 nests the special case in which no

agent has any information, and so E[X − P ] = γs̄var(X).

Both prices and endowment shocks play two distinct roles in determining an agent’s

demand: they directly affect demand, and separately, they also affect an agent’s beliefs

about the cash flow X , thereby indirectly affecting demand. To clarify this dual role, write

θi

(

yi, ei, ẽi, P, P̃
)

for the demand of an agent who has exposure ei and can trade at price
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P , but who evaluates his conditional distribution over X using the the information set
(

yi, ẽi, P̃
)

. Even though ẽi = ei and P̃ = P , keeping separate track of the two roles of prices

and endowment shocks is conceptually useful.

To further exploit the equilibrium market clearing condition (2), note that differentiation

with respect to X and Z respectively yields:

∂P

∂X

∫

N

∂θi
∂P

di+
∂P

∂X

∫

N

∂θi

∂P̃
di+

∫

N

∂θi
∂Yi

di = 0 (12)

∂P

∂Z

∫

N

∂θi
∂P

di+
∂P

∂Z

∫

N

∂θi

∂P̃
di+

∫

N

∂θi
∂ei

di+

∫

N

∂θi
∂ẽi

di = 0. (13)

One immediate consequence is that, in equilibrium, ∂P
∂Z

6= 0. To see this, note that if instead

∂P
∂Z

= 0, then Z and ei provide no information about the cash flow X , so that ∂θi
∂ẽi

= 0 for

all agents. In contrast, the non-informational effect of endowment shocks on the portfolio

decision is certainly negative (formally, see Lemma 2). But then the lefthand side of (13) is

strictly negative, a contradiction.

As typical for this class of models, an important equilibrium quantity is the relative

sensitivity of price to X and Z, which we denote by ρ:

ρ ≡ −
∂P
∂X
∂P
∂Z

.

We refer to ρ as the price efficiency of the risky asset, since

var(X|P )−1 = τX + ρ2τZ (14)

var(X|yi, ei, P )−1 = τX + ρ2(τZ + τu) + τi. (15)

These expressions (derived in the proof of Lemma 2) measure the ability of an outside

observer and agent i, respectively, to forecast the cash flow X .

The following properties of individual demand follow only from Bayesian updating. They

hold whenever price P is a linear function of X and Z, regardless of whether P is an
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equilibrium price.

Lemma 2 If P is a linear function of X and Z then the effects of non-informational factors

on demand θi are given by

∂θi
∂ei

= −1;
∂θi
∂P

= −1

γ

1

var (X|yi, ei, P )
;

while the effects of informational factors on demand θi satisfy

∂θi
∂yi

=
τi
γ
;

∂θi
∂ẽi

=
ρ

γ
τu;

∂P

∂Z

∂θi

∂P̃
= −ρ

γ
(τZ + τu) ;

∂P

∂X

∂θi

∂P̃
=

ρ2

γ
(τZ + τu) .

Note that the informational effects of ẽi and Z (as reflected in the price P̃ ) on demand are

related by the precisions of the idiosyncratic and aggregate components of exposure shocks:

Corollary 2 In a linear equilibrium, for any agent i,

∂P
∂Z

∂θi
∂P̃

∂θi
∂ẽi

= −τZ + τu
τu

, (16)

∂P

∂Z

∂θi

∂P̃
+

∂θi
∂ẽi

= −ρ

γ
τZ . (17)

In equilibrium ∂P
∂Z

< 0 and ρ ≥ 0 (see Lemma 3 immediately below). So a higher Z is

associated with lower prices, which in turn are associated with lower estimates of X . Holding

ui fixed, a higher Z also leads to a higher value of ei, thereby raising an agent’s estimate of

Z, and hence (given equilibrium prices) an agent’s estimate of X . Equation (17) shows that

the first of these effects dominates.

We next establish the basic result that aggregate demand for the risky asset is decreasing

in the price. Because of the informational content of prices, this is not completely obvi-

ous. At the same time, we show that the price is increasing in the asset’s payoff, and the

price is decreasing in the aggregate endowment shock. We highlight that the proof of this

result makes use only of the market clearing condition (2), along with the signs (but not
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magnitudes) established in Lemma 2.

Lemma 3 In a linear equilibrium, the aggregate demand curve slopes down, i.e.,

∫

N

∂θi
∂P

di+

∫

N

∂θi

∂P̃
di < 0, (18)

and the price is an increasing function of X, and a strictly decreasing function of Z,

∂P

∂X
≥ 0 and

∂P

∂Z
< 0,

and so in particular ρ ≥ 0.

A further immediate implication of Lemmas 1 and 2 is the following expression for the

non-informational effect of prices on aggregate demand:

Corollary 3 In a linear equilibrium, the non-informational effect of prices on aggregate

demand, i.e.,
∫

N
∂θi
∂P

di, satisfies

1

n

∫

N

∂θi
∂P

di = −1

γ

1

cov (X − P,X)
. (19)

Knowledge of individual exposure ei contains information about X only because it helps

agent i interpret the price (for example, it provides information about whether a high price

is due to a high cash flow X or a low aggregate exposure Z). Because the information in

exposure is subsidiary to the information in prices, it is intuitive that prices contain more

information than exposures, as formalized in the following result:

Lemma 4 In a linear equilibrium, the ratio of the informational to non-informational effect

of prices on demand exceeds the ratio of the informational to non-informational effect of

exposures on demand,
∣

∣

∣

∫

N
∂θi
∂P̃

di
∣

∣

∣

∣

∣

∫

N
∂θi
∂P

di
∣

∣

>

∣

∣

∣

∫

N
∂θi
∂ẽi

di
∣

∣

∣

∣

∣

∣

∫

N
∂θi
∂ei

di
∣

∣

∣

. (20)
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Lemma 4 turns out to be critical to the analysis of welfare below. We again highlight

that its proof makes use only of basic equilibrium properties established above, along with

the signs (but not magnitudes) established in Lemma 2 and Corollary 2.

2.4 Equilibrium at the trading stage

Ganguli and Yang (2009) and Manzano and Vives (2011) give conditions for equilibrium

existence, taking the set of trading agents as given. We follow Manzano and Vives (2011)

and focus on the equilibrium with lower price efficiency, since the one with higher price

efficiency is unstable.9 The following result contains a minor extension of these papers to

cover heterogeneity in information precision, and then uses results from the previous section

to give an explicit expression for the risk premium E[X − P ].

Proposition 1 There is unique stable linear equilibrium, in which price efficiency ρ is given

by

ρ =
γ

2τu
−
√

(

γ

2τu

)2

− 1

τu

1

n

∫

N

τidi. (21)

Price efficiency ρ is decreasing in participation n. The unconditional risk premium is given

by

E[X − P ] =
γs̄

τX + ρ2(τZ + τu) +
1
n

∫

N
τidi

. (22)

From Proposition 1, price efficiency is determined by the average information precision of

agents who actively trade. As participation increases, newly participating agents lower this

average. Even though these agents bring more information to the market, they also bring

more trade motivated by risk-sharing concerns, which function in the same way as noise.

9Manzano and Vives (2011) give a mathematical definition of stability. One way to think about stability
is in terms of condition (A-7) in the proof of Proposition 1. The right hand side (RHS) describes agents’
demands, which in turn depend on price efficiency (this can be seen explicitly from (A-8)). The left hand
side (LHS) of (A-7) describes how prices must behave to clear the market, given agents’ demands on the
RHS. Equilibrium price efficiency is a fixed point of this relation. Moreover, the RHS is increasing in ρ, at
least in the neighborhood of any solution. If the RHS crosses the 45o line from below, the corresponding
equilibrium is unstable in the following sense: A small upwards perturbation in agents’ beliefs about price
efficiency affects agents’ demands and shifts the RHS up (for any value of ρ). To preserve market clearing,
this then pushes ρ up, and precisely because the RHS crosses the 45o line from below, the change in ρ is
greater than the original perturbation in agents’ beliefs about ρ, i.e., instability.
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The risk premium E[X −P ] is driven by the amount of aggregate risk, as measured by s̄

and τX , as well as the risk tolerance in the economy, γ. The risk premium also reflects the

average conditional precision (see (15)) of participating agents. As participation increases,

this decreases, both directly, as discussed immediately above, and also indirectly, as price

efficiency falls. Consequently, agents bear more risk when they hold the asset, and the risk

premium increases with participation.

2.5 Welfare and participation

We next turn to agents’ participation decisions. To do so, we first characterize an agent’s

expected utility from participation. As noted in the introduction, a concise representation of

expected utility in economies of this type has proved challenging to obtain in related work.

Looking ahead, a concise representation is important for analyzing comparative statics in

the participation cost κ.

Proposition 2 In a linear equilibrium, agent i’s expected utility from participation, condi-

tional on the realization of his exposure shock ei, is given by

E [u(Wi − κ)|ei] = − (diD)−
1

2 exp

(

−γ(s̄+ ei)µX +
γ2(s̄+ ei)

2

2τX
− 1

2
Λe2i + γκ

)

(23)

where

di =
var(X|ei, P )

var(X|yi, ei, P )
, (24)

D =
var (X − P |ei)
var (X|ei, P )

, (25)

Λ =

(

cov(P,ei)
var(ei)

+ γcov(X − P,X)
)2

var(X − P |ei)
. (26)

The key step in the proof of Proposition 2 is the substitution of Corollary 1’s expression

for the unconditional risk premium E[X − P ].

16



To interpret Proposition 2, note that an agent’s expected utility from non-participation

is simply

E [u ((s̄+ ei)X) |ei] = − exp

(

−γ(s̄+ ei)µX +
γ2(s̄+ ei)

2

2τX

)

.

So an agent’s expected gain from participation is reflected in the benefits D and Λ which stem

from risk-sharing and are the same for all agents, no matter how precise or imprecise their

private information; and the advantages stemming from more precise private information,

represented by di. These gains must be balanced against the cost of participation, κ.

An immediate and intuitive implication of Proposition 2 is that expected utility is increas-

ing in the precision of an agent’s information, τi. So consistent with our initial conjecture,

linear equilibria are characterized by some n such that agents i ≤ n participate, and agents

i > n do not.

Next, we show that agents’ individual participation decisions exhibit strategic comple-

mentarity:

Proposition 3 As participation n increases, each individual agent’s gain from participation

increases.

Economically, the key driving force behind strategic complementarity is that, as partici-

pation n increases, price efficiency ρ drops (see Proposition 1 and related discussion). Loosely

speaking, lower price efficiency increases the amount of risk-sharing that the financial market

enables. Specifically, the risk sharing function of the financial market is to enable agents

with high idiosyncratic exposures ui to share cash flow risk uiX with other agents with low

idiosyncratic exposures.

Lower price efficiency corresponds to agents having less information about the cash flow

X , which makes risk sharing easier to sustain as in Hirshleifer (1971). However, and as

discussed in the context of the public information benchmark of subsection 2.2, the risk

sharing benefits of less efficient prices must be compared to the potential costs that arise

from more volatile prices, since if prices are less efficient, they are relatively more exposed to
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the aggregate exposure shock Z (essentially, the discount rate), and this can easily lead to

greater volatility. Proposition 3 establishes that the benefits of lower price efficiency always

dominate the potential costs.

Because Proposition 3 is central to our analysis, we give the structure of the argument

here, focusing as much as possible on interpretable economic properties, while relegating

algebraic details to the appendix.

To establish the result, we show that each of the three terms di, D, and Λ are increasing

in participation n. We start with the term di, which corresponds to an agent’s expected

gains from the precision of his private signal yi. Substitution of (15) delivers

di =
τX + ρ2(τZ + τu) + τi
τX + ρ2(τZ + τu)

.

Because price efficiency ρ is decreasing in participation n, the private gains from information,

di, are increasing in participation. Economically, when prices convey less information about

cash flows X , an agent’s private information about X is more valuable.

Next, we consider the risk-sharing terms Λ and D. As a first step, note that straight-

forward algebraic manipulation and the basic equilibrium property Corollary 3 combine to

deliver

Λ =

var(Z)2

var(ei)
2

(

1
n
∂P
∂Z

∫

N
∂θi
∂P

di− var(ei)
var(Z)

)2

1
γ2

1
var(X)

+
(

1
n
∂P
∂Z

∫

N
∂θi
∂P

di
)2

var (Z|ei)
(27)

D = 1 +

(

−ρ+ γvar (Z|ei) 1
n
∂P
∂Z

∫

N
∂θi
∂P

di
)2

γ2var (Z|ei) var (X)
(

1
n

∫

N
∂θi
∂P

di
)2 . (28)

Given these expressions, it is clearly important to understand the term 1
n
∂P
∂Z

∫

∂θi
∂P

di. On the

one hand, from Lemma 2 and (15),

1

n

∫

N

∂θi
∂P

di = −1

γ

1

n

∫

N

1

var (X|yi, ei, P )
di = −τX + ρ2(τZ + τu) +

1
n

∫

N
τidi

γ
.
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So as participation n increases,
∣

∣

1
n

∫

N
∂θi
∂P

di
∣

∣ declines, both because price efficiency declines, as

discussed above; and because the average signal precision of participating agents, 1
n

∫

N
τidi,

declines. Economically, both forces mean that the average participating agent is exposed to

more risk when they trade, and so
∣

∣

∂θi
∂P

∣

∣ increases. On the other hand, greater price efficiency

is typically associated with prices that depend less on Z, corresponding to a reduction in
∣

∣

∂P
∂Z

∣

∣. However, substitution of (17) of Corollary 2 into the market clearing condition (13),

along with the very basic property that the non-informational effect of exposure shocks on

demand is ∂θi
∂ei

= −1, yields

1

n

∂P

∂Z

∫

N

∂θi
∂P

di = 1 +
ρ

γ
τZ . (29)

Hence the former effect is the dominant one, and 1
n
∂P
∂Z

∫

N
∂θi
∂P

di is increasing in price efficiency

ρ, and hence (by Proposition 1) is decreasing in participation n.

It then clear from (27) that Λ is indeed increasing in participation n if

1

n

∂P

∂Z

∫

N

∂θi
∂P

di− var (ei)

var (Z)
< 0. (30)

This is indeed the case, since (16) of Corollary 2 and ∂θi
∂ei

= −1 imply that (30) is equivalent

to fact that the prices contain more information than endowments in the sense of (20), as

established in Lemma 4.

Turning to the determinant term D, it is immediate that the denominator var (X|ei, P )

is decreasing price efficiency ρ. Loosely speaking, one would also expect the numerator

var (X − P |ei) to fall: as prices become more efficient, P is more closely related to X , and

so X −P is less volatile. Below, we establish that the numerator indeed falls, and moreover,

that effect dominates the fall in var (X|ei, P ).

Substituting for ∂P
∂Z

∫

∂θi
∂P

di in (28) using (29), and noting that var (Z|ei) = 1
τZ+τu

, we

obtain

D = 1 +
(γ − ρτu)

2 var (Z|ei)
γ2var (X)

(

1
n

∫

N
∂θi
∂P

di
)2 . (31)
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As discussed above, both price efficiency ρ and the sensitivity of demand to price,
∣

∣

1
n

∫

N
∂θi
∂P

di
∣

∣,

are decreasing in participation n. So D is indeed decreasing in participation n if γ−ρτu > 0,

which using the equality of (28) and (31) and the fact that 1
n
∂P
∂Z

∫

∂θi
∂P̃

di = − ρ
γvar(Z|ei) (see

Lemma 2) is equivalent to the aggregate demand curve sloping down, i.e., inequality (18),

as is established in Lemma 3.

Finally, and for use below, note that the above arguments establish that the benefits

to agent i of financial market participation depend on the participation decisions of other

agents, summarized by n, only via the the average precision of participating agents, 1
n

∫ n

0
τidi,

and the associated price efficiency ρ (see Proposition 1). Accordingly, define

T (n) ≡ 1

n

∫ n

0

τidi

f (n) ≡ γ

2τu
−
√

(

γ

2τu

)2

− T (n)

τu
.

2.6 Equilibrium and the effects of changes in participation costs

To establish both equilibrium existence, and to evaluate comparative statics with respect to

participation costs, we define the function

g (n, κ) = sup {i ∈ [0, 1] : agent i participates in the financial market if

the average signal precision of participating agents is T (n)

and price efficiency is f (n)}.

That is, g (n, κ) gives agents’ participation decisions in response to an average signal precision

in the market of T (n), and price efficiency ρ = f (n). By Proposition 3, g (n, κ) is increasing

in the argument n, while clearly it is decreasing in the cost argument κ.

An equilibrium participation level is then simply a solution to the fixed point relation

g (n, κ) = n. Hence existence is immediate from Tarski’s fixed point theorem, and compara-
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tive statics are immediate from Milgrom and Roberts (1994):

Proposition 4 An equilibrium exists. As the participation cost κ increases, participation

declines, price efficiency increases, and the welfare of participating agents declines.10

Given Propositions 1 and 3, the economics behind Proposition 4 are relatively straight-

forward. As participation costs decline, there is a direct increase in the utility of any agent

who participates in the financial market. This direct increase in utility in turn leads to more

participation, which by Proposition 1 reduces price efficiency, and by Proposition 3 further

increases the utility of participation, in turn leading to further increases in participation.

The ultimate equilibrium effect of the initial reduction in participation costs is characterized

by the fixed point equilibrium condition g (n, κ) = n.

Agents with information of all precision levels benefit from the reduction in participation

costs, though for slightly different reasons. Agents with low precisions of private information

benefit both directly (lower participation costs), and indirectly, because greater participation

improves risk sharing. It it worth reiterating that the better risk sharing is not a direct

consequence of more agents in the market—after all, each agent brings more risk that needs to

be shared, as well as more risk-sharing capacity. Instead, better risk sharing is a consequence

of the fall in equilibrium price efficiency.

Agents with high levels of precision of private information additionally benefit from more

profitable trading opportunities, again a consequence of lower equilibrium price efficiency.

The following result sheds light on the trading behavior and profits of agents with different

precisions of private information.

Proposition 5 Fix an equilibrium with participation level n, along with an arbitrary ñ ∈

(0, n). Then for any realization of X and Z, the average position of “smart” agents [0, ñ]

10Given strategic complementarity of participation decisions, it is possible that there are multiple solutions
to the equilibrium condition g (n, κ) = n. In such cases, Proposition 3 should be understood in the sense of
Milgrom and Roberts (1994), i.e., as applying to the equilibria with minimum and maximum participation.
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differs from the average position of “dumb” agents [ñ, n] by an amount

1

γ

(

1

ñ

∫ ñ

0

τidi−
1

n− ñ

∫ n

ñ

τidi

)

(X − P ) . (32)

Moreover, E [X − P |P ] is decreasing in P . Hence the price P is positively correlated with

holdings of the asset by “dumb” agents in [ñ, n], and negatively correlated with subsequent

returns.

Proposition 5 follows straightforwardly from earlier analysis. Equation (32) says that

better informed (“smart”) agents buy more of the asset than worse informed (“dumb”)

agents precisely when the asset is undervalued (X > P ). This follows immediately from

the explicit evaluation of (8) (formally, see (A-2) in the proof of Lemma 2). The fact that

E [X − P |P ] is decreasing in P follows from the fact that, by market-clearing (2),

1

γ
E [X − P |P ]

1

n

∫ n

0

1

var (X|yi, ei, P )
= s̄+ E [Z|P ] , (33)

along with the fact that E [Z|P ] is decreasing in P (since ∂P
∂Z

< 0 by Lemma 3).11

The prediction of Proposition 5 that assets are reallocated from informed to uninformed

investors as the prices rise, and that subsequent returns are then low, is consistent with the

empirical evidence in Ben-Rephael, Kandel, and Wohl (2012) and Jiang, Verbeek, and Wan

(2017).12

11Consequently, if an investor observes a low price for an asset, and has no exposure to economic shocks,
he should take a long position in the asset, since its conditional expected return is high. That is, an investor
can profit from buying “value” stocks. Although this point is often overlooked, it is nonetheless a standard
implication of models of the type we consider here (see, e.g., Biais, Bossaerts, and Spatt, 2010).

12There is a sizable empirical literature studying the relation between flows between different types of
investors and subsequent returns. Results depend significantly on how flows are measured.
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3 The equilibrium consequences of indexing

In order to explicitly analyze the equilibrium consequences of indexing, we now extend our

basic model to allow for multiple (specifically, two) risky assets. We model a rise in indexing

as stemming from a fall in participation costs for agents who trade assets only in the same

proportions as they are present in the market. We note that results of this section all follow

straightforwardly from our earlier analysis.

3.1 The model

There are now two risky assets available for trading, with payoffs X1 and X2, where we

assume that both assets are normally distributed.13 The assets are symmetric, and both

have mean µX and variance 1
τX
. We denote the price of asset j = 1, 2 by denoted Pj. The

two assets are again in positive net supply, initially distributed equally among agents, so

that each agent i starts with an endowment s̄ of each of assets 1, 2. Let θij denote agent i’s

position in asset j after trade.

Similar to before, agents also have other sources of income, now correlated with the cash

flows of both assets X1 and X2. Specifically, agent i has income ei1X1 + ei2X2, where ei1

and ei2 are privately known at the time of trading. For example, cash flows X1 and X2 may

correspond to two sectors of the economy, or two aggregate sources of risk (e.g., retail versus

technology, or value versus growth stocks), and agents differ in the extent to which their

non-trading income is exposed to these two sources of risk. Similar to before, eij = Zj + uij

for j = 1, 2, where Zj ∼ N
(

0, 1
τZ

)

and uij ∼ N
(

0, 1
τu

)

. Hence agent i’s wealth after trading

(and excluding information acquisition costs, described below) is

∑

j=1,2

(s̄Pj + eijXj + θij (Xj − Pj)) .

13In other words, we extend Diamond and Verrecchia (1981) to multiple assets, just as Admati (1985) ex-
tends Hellwig (1980). Note that in Admati (1985) and other analyses of multiple-asset economies, “liquidity”
trades are entirely exogenous.
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As in the single-asset economy, each agent i observes private signals about the future

cash flows of the two assets, yij = Xj + ǫij , for j = 1, 2. The precision of these signals again

varies across agents, with var (ǫij) =
1
τi

for assets j = 1, 2.

The most significant change relative to the single-asset economy is that each agent now

faces a choice between full participation in trading both assets 1 and 2; limited participation,

meaning that an agent is restricted to “indexing” strategies; and no participation.

By indexing, we mean a portfolio strategy in which each asset’s weight in an agent i’s

portfolio matches the asset’s weight in market as a whole, i.e., a portfolio θi1, θi2 such that

θi1P1

θi1P1 + θi2P2

=
s̄P1

s̄P1 + s̄P2

.

So given our symmetry assumptions, an indexing strategy is simply one with θi1 = θi2.

Participation that is limited to indexing strategies has a lower cost than full participation.

Specifically, the costs of full participation, indexing participation, and no participation are

respectively κ, κm, and 0, where κm ∈ (0, κ). The lower participation cost of indexing reflects

lower trading costs (because of the availability of low cost index mutual funds and exchange

traded funds (ETFs)); lower cognitive demands and attention costs; and lower information

costs, since as we will see shortly below, a sufficient statistic for an agent’s private information

if he is indexing is the sum of the two signals, yi1 + yi2 = (X1 +X2) + (ǫi1 + ǫi2), which can

be interpreted as agent i simply paying attention to broad economic aggregates, instead of

individual stocks.

3.2 Disentangling assets 1 and 2

Although the fundamentals of assets 1 and 2 are independent in all dimensions, the potential

presence of indexing agents introduces a link between the prices of the two assets, since, for

example, an indexing agent’s exposure ei1 to cash flow risk X1 affects the agent’s demand

for asset 2 as well as for asset 1.
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Because of this entanglement that indexing produces between assets 1 and 2, analytically

it is very convenient to effectively change basis and study the economy in terms of a “market”

asset that pays Xm ≡ 1√
2
(X1 +X2), and a “spread” asset that pays Xs =

1√
2
(X1 −X2).

14

Importantly, note that that the cash flows of these assets are uncorrelated, i.e.,

cov(Xm, Xs) = 0. (34)

Indexing is then simply a restriction that an agent can trade only the market asset, and not

the spread asset. We write Pm and Ps for the price of the market and spread assets.

Note that var (Xm) = var (Xs) = 1
τX
, E[Xm] =

√
2µX and E[Xs] = 0. Each agent has

an endowment s̄m ≡
√
2s̄ of the market asset, and no endowment of the spread asset (i.e.,

s̄s ≡ 0).

Define also yim ≡ 1√
2
(yi1 + yi2), yis ≡ 1√

2
(yi1 − yi2), Zm ≡ 1√

2
(Z1 + Z2), Zs ≡ 1√

2
(Z1 − Z2),

eim ≡ 1√
2
(ei1 + ei2), and eis ≡ 1√

2
(ei1 − e2i). Note that cov(yim, yis) = cov(Zm, Zs) =

cov(eim, eis) = 0; var(Zm) = var(Zs) = 1
τZ
; var(eim) = var(eis) = 1

τZ
+ 1

τu
; and E[Zm] =

E[Zs] = E[eim] = E[eis] = 0.

Write θim and θis for agent i’s positions in the market and spread asset. Then agent i’s

terminal wealth Wi is given by an analogous expression to (1). As before, Wi is determined

by trading profits combined with initial asset endowments and other income:

Wi (θim, θis) =
∑

j=m,s

((s̄j + eij)Pj + (θij + eij) (Xj − Pj)) . (35)

The equilibrium definition for the two-asset economy exactly parallels the equilibrium defi-

nition for the single-asset economy (see Definition 1).

Because the market and spread assets trade independently, even in the presence of in-

dexing agents, there is an equilibrium of the trading stage in which the price of the market

14The multiplicative constant 1√
2
in these expressions is simply a normalization that leads to simpler

algebraic expressions.
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asset Pm is a linear function of Xm and Zm only, while the price of the spread asset Ps is a

linear function of Xs and Zs only.

Note also that it is straightforward to recover prices of the underlying assets 1 and 2

from the prices of the market and spread asset. Specifically, since X1 = 1√
2
(Xm +Xs) and

X2 =
1√
2
(Xm −Xs) , it follows that

(P1, P2) =

(

1√
2
(Pm + Ps) ,

1√
2
(Pm − Ps)

)

. (36)

3.3 Equilibrium

Given a linear equilibrium at the trading stage, expected utility takes the same form as in

Proposition 2, but with separate expressions capturing the gains from trading the market and

spread assets. Specifically, the expected utility of an agent who chose to restrict participation

to indexing strategies is

E [u(Wi − κm)|eim, eis] = − (dimDm)
− 1

2 exp

(

−γ(s̄m + eim)µX +
γ2(s̄m + eim)

2

2τX
− 1

2
Λme

2
im + γκm

)

× exp

(

γ2eis
2

2τX

)

,

where dim, Dm and Λm are all defined in exactly an analogous way as in Proposition 2.

Similarly, the expected utility of an agent who chose full participation is

E [u(Wi − κ)|eim, eis] = − (dimDm)
− 1

2 exp

(

−γ(s̄m + eim)µX +
γ2(s̄m + eim)

2

2τX
− 1

2
Λme

2
im + γκm

)

× (disDs)
− 1

2 exp

(

γ2eis
2

2τX
− 1

2
Λse

2
is + γ (κ− κm)

)

,

where dis, Ds and Λs are again all defined in exactly an analogous way as in Proposition 2.

Note that if agent i prefers full participation to the alternatives of limited indexing

participation, and no participation, then the same is true for any other agent ĩ < i. Hence

an equilibrium is characterized by an n ∈ [0, 1] and an nm ∈ [n, 1] such that agents [0, n]
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fully participate, agents (n, nm] index, and agents (nm, 1] do not participate at all.

A useful property to note is that an equilibrium can be characterized by first solving for

total participation in the market asset, nm, given participation cost κm; and then solving

for participation in the spread asset, n, given participation cost κ − κm. Consequently, an

equilibrium straightforwardly exists, by analogous arguments to those in the single-asset

economy.

3.4 The rise of indexing

Our main comparative static is to consider the effects of a fall in κm the participation cost

associated with indexing. This corresponds to falling fees, greater availability, and greater

awareness of products such as low-cost index funds and ETFs. It may also reflect an increase

in public awareness of the standard advice given by finance academics.

We consider the effects of a drop in κm while holding the cost of full participation, κ,

fixed. Although trading costs for individual assets have also fallen in recent decades, holding

κ fixed allows us to focus on the market change most directly responsible for a rise in indexing.

However, we would obtain similar results if κ fell also, provided it falls more slowly than κm.

The following result, which is immediate given our prior analysis, summarizes the effects

of a fall in κm:

Proposition 6 As the participation cost of indexing κm falls:

(i) Participation nm in the market asset increases.

(ii) Participation n in the spread asset falls.

(iii) Indexing nm − n increases.

(iv) Price efficiency for the market as a whole, ρm, falls.

(v) Relative price efficiency ρs increases.

(vi) Expected utility for existing indexers increases, while the effect for agents who fully

participate is ambiguous.
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The increase in indexing has two distinct components. First, given the lower cost κm,

some agents who previously did not participate at all in financial markets now index. Second,

as the cost of the indexing κm falls, the marginal cost κ− κm of full participation increases,

leading some agents who previously fully participated in financial markets to switch to in-

dexing.

As with the single-asset economy, participation decisions are strategic complements, so

these direct effects in turn generate additional changes: indexing increases still more, while

full participation drops still further.

For agents with precise private signals, who fully participate in financial markets, there

are offsetting effects in terms of expected utility. On the one hand, the utility derived from

trading the market asset increases. But on the other hand, the utility derived from trading

the spread asset decreases, because the price efficiency of the spread asset is now higher. As

discussed, higher price efficiency both leads to worse risk-sharing, and to lower profits for

relatively informed traders.

With the caveat that expected utilities are distinct objects from expected profits, this

prediction is consistent with evidence that the share of profits for hedge funds (typically

viewed as agents with precise information) stemming from aggregate trading strategies has

increased (see discussion in introduction).

Similarly, the increase in the price efficiency of the market as a whole is consistent with

empirical evidence in Israeli, Lee, and Sridharan (2017).

In Proposition 5 we noted that the expected return is decreasing in the price P , i.e.,

reversal. The steepness of the negative slope of E [X − P |P ] captures the strength of reversal,

i.e., when this relation is strongly negative, the expected returns following high prices are

much lower than following low prices. Our next result shows that, in equilibrium, this

relation becomes stronger as κm falls (and hence indexing increases).

Lemma 5 ∂
∂Pm

E [Xm − Pm|Pm] is negative, and decreasing (i.e., becomes further from 0) as

κm falls.
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This is consistent with the empirical findings of Baltussen, van Bekkum, and Da (2017).

4 Discussion

In Section 3 we analyze what we believe is the most direct impact of a decline in the costs of

indexing, namely those that stem from the entry of new participants into financial markets in

response to lower costs, along with substitution of other traders away from full participation

to index-only strategies.

Nonetheless, our analysis inevitably omits other potentially important forces. In par-

ticular, we have held constant the precision of agents’ private signals (beyond the basic

question of whether or not to acquire information at all, which is one possible interpretation

of participation decisions). In an earlier draft of this paper we fully analyzed a model that

includes this force. In brief, consider the consequences of an exogenous increase in indexing

among agents with low-precision private signals. The direct effect is an increase in the price

efficiency of the spread asset, with no effect on price efficiency of the market asset (because,

by assumption, the increase in indexing simply consists of agents with low-precision signals

stopping trading the spread asset, with no increase in trade of the market asset). Allowing

agents to reoptimize the precision of their private signals, these changes in price efficiency

in turn induce agents to acquire less precise signals about the spread asset, since this infor-

mation is now less valuable; and in turn to substitute their information collection activities

towards acquiring information about economic aggregates. The net effect is price efficiency

increases in both the market and spread assets. The same economic forces as in our current

analysis then lead to a reduction in expected utility, since (exactly as in Proposition 2) agents

prefer to participate in financial markets where price efficiency is low.

So to summarize: by themselves, information acquisition decisions in response to an

exogenous rise in indexing end up reducing rather than increasing the welfare of agents with

low-precision private signals, who can be interpreted as retail investors.
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More generally, our analysis highlights that the welfare consequences of shifts in index-

ing—or, indeed, or other changes to financial markets—depend critically on how such shifts

affect price efficiency. At least when the gains from trade that underpin financial markets

are driven by the benefits from risk sharing, as is the case of many standard models, agents

generally prefer low levels of price efficiency.

(Of course, price efficiency may be desirable for other reasons, such as for the efficient

allocation of capital in primary financial markets, or because of information conveyed by

markets that provides incentives and guides “real” productive decisions).15

5 Conclusion

We develop a benchmark model to study the equilibrium consequences of indexing in a stan-

dard rational expectations setting (Grossman and Stiglitz (1980); Hellwig (1980); Diamond and Verrecchia

(1981)). Individuals must incur costs to participate in financial markets, and these costs are

lower for individuals who restrict themselves to indexing strategies. Individuals’ participa-

tion decisions exhibit strategic complementarity. As indexing becomes cheaper (1) indexing

increases, while individual stock trading decreases; (2) aggregate price efficiency falls, while

relative price efficiency increases; (3) the welfare of relatively uninformed traders increases;

(4) for well-informed traders, the share of trading gains stemming from market timing in-

creases, and the share of gains from stock selection decreases; (5) market-wide reversals

become more pronounced. We discuss empirical evidence for these predictions.

15See Bond, Goldstein, and Edmans (2012) for a survey.
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Appendix

Results omitted from main text

Lemma A-1 Suppose that the information set Fi consists of a set of normally distributed

random variables. Then

∂

∂X
E

[

X̃|Fi

]

= 1−
var
(

X̃|Fi

)

var
(

X̃
) .

Proof of Lemma A-1 Let Σ22 be the variance matrix of the random variables in Fi; and

Σ12 be the row vector of covariances between X and the random variables in Fi. By the

properties of multivariate normality

∂

∂X
E

[

X̃|Fi

]

= Σ12Σ
−1
22

Σ′
12

var
(

X̃
)

var
(

X̃|Fi

)

= var[X̃ ]− Σ12Σ
−1
22 Σ

′
12.

Combining these two equations yields the result, completing the proof.

Lemma A-2 Let ξ ∈ R
n be a normally distributed random vector with mean µ and variance-

covariance matrix Σ. Let b ∈ R
n be a given vector, and A ∈ R

n×n a symmetric matrix. If

I − 2ΣA is positive definite, then E
[

exp(b⊤ξ + ξ⊤Aξ)
]

is well defined, and given by:

E
[

exp
(

(b⊤ξ + ξ⊤Aξ
)]

= |I−2ΣA|−1/2 exp

(

b⊤µ+ µ⊤Aµ+
1

2
(b+ 2Aµ)⊤(I − 2ΣA)−1Σ(b+ 2Aµ)

)

.

(A-1)

Proof of Lemma A-2: Standard result.

Proofs of results stated in main text

Proof of Lemma 2: Consider first the case in which ∂P
∂X

6= 0. The information content of

(yi, ei, P ) is the same as the information content of

(

yi,
P − E [P ]

∂P
∂X

+ µX ,
P − E [P ]

∂P
∂X

+ µX + ρ−1ei

)

=
(

X + ǫi, X − ρ−1Z,X + ρ−1ui

)

.

Since ǫi, Z, and ui are independent, the conditional variance expressions (14) and (15) follow

by standard normal-normal updating. Using ∂P
∂X

= −ρ∂P
∂Z

, the corresponding conditional
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expectation E [X|yi, ei, P ] is given by

E [X|yi, ei, P ]

var (X|yi, ei, P )
= τXµX − ρ (τZ + τu)

(

P − E [P ]
∂P
∂Z

+ µX

)

+ ρτuei + τiyi. (A-2)

Finally, if ∂P
∂X

= 0 then neither the price nor the endowment ei contains any information

about X ; and ρ = 0; so (14), (15), and (A-2) are all immediate.

The expressions in Lemma 2 are then immediate from the demand equation (8), com-

pleting the proof.

Proof of Lemma 3: From Lemma 2, ∂θi
∂P

< 0 for all agents.

If ∂P
∂X

= 0, then P contains no information about X , so
∫

N
∂θi
∂P̃

di = 0, and (18) is then

immediate.

If instead ∂P
∂X

6= 0, then ∂P
∂X

∫

N
∂θi
∂P̃

di > 0 by Lemma 2. By (12) and Lemma 2,

∂P

∂X

∫

N

∂θi
∂P

di+
∂P

∂X

∫

N

∂θi

∂P̃
di = −

∫

N

∂θi
∂Yi

di < 0. (A-3)

Hence ∂P
∂X

> 0, which (again using (A-3)) implies (18).

Note that the above arguments also establish that ∂P
∂X

≥ 0.

The main text establishes that ∂P
∂Z

6= 0. So to establish ∂P
∂Z

< 0, suppose to the contrary

that ∂P
∂Z

> 0. Then ρ ≤ 0, and Lemma 2 implies
∫

N
∂θi
∂ei

di < 0 and
∫

N
∂θi
∂ẽi

di ≤ 0. Com-

bined with (18), this in turn implies that the lefthand side of (13) is strictly negative. The

contradiction completes the proof.

Proof of Lemma 4: At various points in the proof, we make use of ρ < 0 and ∂P
∂Z

< 0 (by

Lemma 3), and ∂θi
∂P̃

> 0 (by Lemma 2).

Re-arranging market-clearing (13) gives

0 =
∂P

∂Z

∫

N

∂θi
∂P

di+

∫

N

∂θi
∂ei

di+

(

∂P
∂Z

∫

N
∂θi
∂P̃

di
∫

N
∂θi
∂ẽi

di
+ 1

)

∫

N

∂θi
∂ẽi

di. (A-4)

By Lemma 3 and market-clearing (13), we know

∫

N

∂θi
∂ei

di+

∫

N

∂θi
∂ẽi

di < 0. (A-5)
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From (17) of Corollary 2, ∂P
∂Z

∂θi
∂P̃

+ ∂θi
∂ẽi

< 0, which together with ∂θi
∂ẽi

> 0 implies

∂P
∂Z

∫

N
∂θi
∂P̃

di
∫

N
∂θi
∂ẽi

di
+ 1 < 0.

So substituting (A-5) into (A-4) gives

0 >
∂P

∂Z

∫

N

∂θi
∂P

di+

∫

N

∂θi
∂ei

di−
(

∂P
∂Z

∫

N
∂θi
∂P̃

di
∫

N
∂θi
∂ẽi

di
+ 1

)

∫

N

∂θi
∂ei

di

=
∂P

∂Z

∫

N

∂θi
∂P

di− ∂P

∂Z

∫

N

∂θi

∂P̃
di

∫

N
∂θi
∂ei

di
∫

N
∂θi
∂ẽi

di
. (A-6)

Using ∂P
∂Z

< 0 and the signs established in Lemma 2, inequality (A-6) is equivalent to

∫

N
∂θi
∂P

di
∫

N
∂θi
∂P̃

di
>

∫

N
∂θi
∂ei

di
∫

N
∂θi
∂ẽi

di
,

which is in turn equivalent to (20), completing the proof.

Proof of Proposition 1: From (12) and (13),

−
∂P
∂X
∂P
∂Z

= −
∫

N
∂θi
∂Yi

di
∫

N
∂θi
∂ei

di+
∫

N
∂θi
∂ẽi

di
. (A-7)

Substituting in from Lemma 2,

ρ =

1
γ

∫

N
τidi

∫

N

(

1− ρ
γ
τu

)

di
, (A-8)

and so

ρ2τu − γρ+
1

n

∫

N

τidi = 0,

leading to (21). The comparative statics of price efficiency is immediate from the fact that
1
n

∫

N
τidi is decreasing in n. To derive (22), note that Corollaries 1 and 3 combine to give

E [X − P ] = − s̄
1
n

∫

∂θi
∂P

di
,

and so by Lemma 2,

E [X − P ] =
γs̄

1
n

∫

1
var(X|yi,ei,P )

di
.
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Substituting in (15) completes the proof.

Proof of Proposition 2: The final wealth of agent i, given optimal trading (8), is

Wi = (s̄+ ei)P +
E[X − P |yi, ei, P ] (X − P )

γvar(X|yi, ei, P )
.

So by the standard expression for the expected utility of an agent with CARA utility facing

normally shocks, combined with simple manipulation, agent i’s expected utility at the time

of trading is

E [u (Wi − κ) |yi, ei, P ] = − exp

(

−γ

(

(s̄ + ei)P +
1

2

E[X − P |yi, ei, P ]2

γvar(X|yi, ei, P )
− κ

))

. (A-9)

To obtain (23), we use (A-9), and proceed in two stages. First, we integrate out possible

realizations of the private signal yi. Second, we integrate out possible realizations of the price

P . Note that the first stage is relatively standard, and closely related algebraic arguments

can be found in the related literature. Readers familiar with these arguments should proceed

directly to the second stage.

For the first stage, define ξi = E [X − P |yi, ei, P ] and Ai = −1/ (2var(X|yi, ei, P )). Minor

algebraic manipulation of Lemma A-2 implies

E
[

exp
(

ξ2iAi

)

|ei, P
]

= (1− 2Aivar(ξi|ei, P ))−
1

2 exp

(

Ai

1− 2Aivar(ξi|ei, P )
E[ξi|ei, P ]2

)

.

(A-10)

By the law of total variance,

var(X − P |ei, P ) = var(E[X − P |yi, ei, P ]|ei, P ) + E[var(X − P |yi, ei, P )|ei, P ]

which implies

var(ξi|ei, P ) = var(X|ei, P )− var(X|yi, ei, P )

and so

1− 2Aivar(ξi|ei, P ) =
var(X|ei, P )

var(X|yi, ei, P )
= di,

where di is as defined in (24). Substitution and straightforward manipulation implies that

expression (A-10) equals

d
− 1

2

i exp

(

−1

2

E[X − P |ei, P ]2

var(X|ei, P )

)

,
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and so

E [u (Wi − κ) |ei, P ] = −d
− 1

2

i exp

(

−γ (s̄+ ei)P − 1

2

E[X − P |ei, P ]2

var(X|ei, P )
+ γκ

)

, (A-11)

completing the first stage.

In the second stage, we integrate out possible realizations of P . Since P = (P − E[P |ei])+
E[X|ei]− E[X − P |ei], the expression in the exponent of (A-11) equals

− 1

2

E[X − P |ei, P ]2

var(X|ei, P )
−γ(s̄+ei)(P −E[P |ei])−γ(s̄+ei)E[X|ei]+γ(s̄+ei)E[X−P |ei]|ei+γκ.

(A-12)

Denote the expected return X − P given exposure ei by αe, i.e.,

αe ≡ E[X − P |ei] = E[X − P ]− cov(P, ei)

var(ei)
ei, (A-13)

and note that

E[X − P |ei, P ] =
cov (X − P, P |ei)

var (P |ei)
(P − E[P |ei]) + αe. (A-14)

By substitution and Lemma A-2, (A-11) equals

−d
− 1

2

i D
1

2 exp (−γ(s̄ + ei) (µX − αe) + γκ) (A-15)

× exp

(

−1

2

α2
e

var(X|ei, P )
+

1

2

(

αecov(X − P, P |ei)
var(P |ei)var(X|ei, P )

+ γ(s̄+ ei)

)2
var(P |ei)

D

)

where

D = 1 +
cov (X − P, P |ei) 2

var (X|ei, P ) var (P |ei)
. (A-16)

The law of total variance and (A-14) together yield

var (E [X − P |ei, P ] |ei) = var (X − P |ei)− var (X|ei, P ) =
cov (X − P, P |ei)2

var (P |ei)
, (A-17)

and substitution into (A-16) delivers (25).
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For use below, note also that (A-17) implies that

var (P |ei)
D

=
var (P |ei) var(X|ei, P )

Dvar(X|ei, P )
=

var (P |ei) var (X − P |ei)− cov (X − P, P |ei)2
Dvar(X|ei, P )

=
var (X|ei) var (X − P |ei)− cov (X − P,X|ei)2

Dvar(X|ei, P )

= var (X|ei)−
cov (X − P,X|ei)2
Dvar(X|ei, P )

(A-18)

where the penultimate equality follows from the fact that for any random variables r1 and

r2,

cov (r1 − r2, r1)
2 − cov (r1 − r2, r2)

2 = var (r1 − r2) (var (r1)− var (r2)) ,

and the final equality follows from (25).

By expanding and then re-arranging the quadratic, (A-15) equals

− (diD)−
1

2 exp

(

−γ(s̄ + ei)µX + γκ+
1

2

α2
e

var(X|P, ei)

(

cov(X − P, P |ei)2
Dvar(P |ei)var(X|ei, P )

− 1

))

× exp

(

γ (s̄+ ei)αe

(

cov(X − P, P |ei)
Dvar(X|ei, P )

+ 1

)

+
1

2
γ2(s̄+ ei)

2var(P |ei)
D

)

= − (diD)−
1

2 exp

(

−γ(s̄ + ei)µX + γκ− 1

2

α2
e

Dvar(X|ei, P )

)

× exp

(

γ (s̄+ ei)αe
cov(X − P,X|ei)
Dvar(X|ei, P )

+
1

2
γ2(s̄+ ei)

2

(

var(X|ei)−
cov(X − P,X|ei)2
Dvar(X|ei, P )

))

= − (diD)−
1

2 exp

(

−γ(s̄ + ei)µX +
γ2(s̄+ ei)

2

2τX
+ γκ

)

× exp

(

−1

2

(αe − cov(X − P,X)γ(s̄+ ei))
2

Dvar(X|ei, P )

)

. (A-19)

where the first equality follows from (A-16), (25), and (A-18). Substituting Corollary 1’s

expression for E[X − P ] into (A-13)’s expression for αe and then in turn substituting into

(A-19) yields (26). This completes the proof.

Proof of Proposition 3: The main steps are given in the main text. Here, we give the

details for a few of the steps. For use below, recall that ∂P
∂X

= cov(X,P )
var(X)

, ∂P
∂Z

= cov(Z,P )
var(Z)

, and
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note that

var (P |ei) =
cov (X,P )2

var (X)2
var (X) +

cov (Z, P )2

var (Z)2
var (Z|ei) , (A-20)

var (X − P |ei) =

(

cov (X − P,X)

var (X)

)2

var (X) +

(

cov (P, Z)

var (Z)

)2

var (Z|ei) . (A-21)

Details for the argument that Λ is decreasing in price efficiency ρ: Substituting (A-21) into

(26) gives

Λ =

var(Z)2

var(ei)
2

(

− cov(P,ei)
var(Z)

− γcov (X − P,X) var(ei)
var(Z)

)2

(

cov(X−P,X)
var(X)

)2

var (X) +
(

cov(P,Z)
var(Z)

)2

var (Z|ei)

=

var(Z)2

var(ei)
2

(

− cov(P,Z)
var(Z)

1
γcov(X−P,X)

− var(ei)
var(Z)

)2

1
γ2

1
var(X)

+
(

− cov(P,Z)
var(Z)

1
γcov(X−P,X)

)2

var (Z|ei)
. (A-22)

Substitution (19) of Corollary 3 into (A-22) yields (27).

By Corollary 2 and 1
n

∫

N
∂θi
∂ei

di = −1,

var (ei)

var (Z)
=

τZ + τu
τu

= −
∂P
∂Z

∫

N
∂θi
∂P̃

di
∫

N
∂θi
∂ẽi

di
=

1

n

∂P

∂Z

∫

N

∂θi

∂P̃
di

∫

N
∂θi
∂ei

di
∫

N
∂θi
∂ẽi

di
. (A-23)

Hence (30) is equivalent to (A-6) in the proof of Lemma 4, which itself is equivalent to (20).

Details for the argument that D is decreasing in price efficiency ρ: Using the law of total

variance,

var (X|ei, P ) var (P |ei) =

(

var (X|ei)−
cov (X,P |ei)2
var (P |ei)

)

var (P |ei)

= var (X|ei) var (P |ei)− cov (X,P |ei)2 .

Substituting in (A-20) gives

var (X|ei, P ) var (P |ei) =
cov (Z, P )2

var (Z)2
var (Z|ei) var (X) . (A-24)
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Also by (A-20), and making use of (19) of Corollary 3,

cov (X − P, P |ei) = cov (X,P |ei)− var (P |ei)

=
cov (X,P )

var (X)
(var (X)− cov (X,P ))− cov (Z, P )2

var (Z)2
var (Z|ei) (A-25)

=

( cov(X,P )
var(X)

cov(Z,P )
var(Z)

−
cov(Z,P )
var(Z)

var (Z|ei)
cov (X − P,X)

)

cov (Z, P )

var (Z)
cov (X − P,X)

=

(

−ρ+ γvar (Z|ei)
1

n

∂P

∂Z

∫

N

∂θi
∂P

di

)

cov (Z, P )

var (Z)

(

− 1

γ 1
n

∫

N
∂θi
∂P

di

)

.(A-26)

Substitution of (A-24) and (A-26) into (A-16) yields (28).

To establish the equivalence of γρ− τu > 0 with (18), note that the equality of (28) and

(31) and 1
n
∂P
∂Z

∫

N
∂θi
∂P̃

di = − ρ
γvar(Z|ei) imply that γρ− τu > 0 is equivalent to

1 +
∂P
∂Z

∫

N
∂θi
∂P

di
∂P
∂Z

∫

N
∂θi
∂P̃

di
< 0,

which given ∂θi
∂P̃

> 0 is equivalent to (18).

Proof of Lemma 5: For transparency of notation, we establish the result for a single-asset

economy. From (33), Lemma 2, and (29),

E [X − P |P ] =
s̄+ E [Z|P ]

1
γ
1
n

∫ n

0
1

var(X|yi,ei,P )

= − s̄ + E [Z|P ]
1
n

∫

N
∂θi
∂P

di
= − s̄ + E [Z|P ]

1 + ρ
γ
τZ

∂P

∂Z
.

Note that

∂

∂P
E [Z|P ] =

cov (Z, P )

var (P )
=

cov (Z, P )

var (Z)

var (Z)

var (P )
=

∂P

∂Z

var (Z)
(

∂P
∂X

)2
var (X) +

(

∂P
∂Z

)2
var (Z)

.

Hence (and using the fact that ∂P
∂Z

is independent of Z)

∂

∂P
E [X − P |P ] = − 1

(

1 + ρ
γ
τZ

)(

ρ2 var(X)
var(Z)

+ 1
) .

We know that as κm falls, ρm likewise falls, completing the proof.
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Online appendix

Proposition A-1 Consider the benchmark economy described in subsection 2.2, in which

agents do not possess any private information about the asset’s cash flow X, but instead all

observe a public signal of the form Y = X + ǫ, where ǫ ∼ N (0, τ−1
ǫ ). For generality, agents

potentially differ in their asset endowments, with agent i possessing si units of the asset

before trade. Let s̄ =
∫

sidi. In such a setting, each agent’s expected utility is decreasing in

the precision of the public signal, τǫ.

Proof: Agent i’s terminal wealth is

Wi = (si + ei)P + (θi + ei) (X − P ) ,

and he optimally chooses the portfolio

θi + ei =
1

γ

E [X|Y ]− P

var (X|Y )
.

So agent i’s expected utility at the trading stage is

E [− exp (−γWi) |Y ] = E

[

− exp

(

−γ (si + ei)P − E [X|Y ]− P

var (X|Y )
(X − P )

)

|Y
]

= − exp

(

−γ (si + ei)P − (E [X|Y ]− P )2

var (X|Y )
+

1

2

(E [X|Y ]− P )2

var (X|Y )

)

= − exp

(

−γ (si + ei)P − 1

2

(E [X|Y ]− P )2

var (X|Y )

)

.

We evaluate

E

[

− exp

(

−γ (si + ei)P − 1

2

(E [X|Y ]− P )2

var (X|Y )

)

|ei
]

. (A-1)

Expanding, this expression equals

E

[

− exp

(

−γ (si + ei)E [X|Y ] + γ (si + ei) (E [X|Y ]− P )− 1

2

(E [X|Y ]− P )2

var (X|Y )

)

|ei
]

.

By market clearing,
1

γ

E [X|Y ]− P

var (X|Y )
= s̄+ Z,

1



i.e.,

E [X|Y ]− P = γvar (X|Y ) (s̄+ Z) ,

and so (A-1) equals

E

[

− exp

(

−γ (s+ ei)E [X|Y ] +
γ2var (X|Y )

2

(

2 (s̄+ Z) (si + ei)− (s̄+ Z)2
)

)

|ei
]

.

Moreover,

E [X|Y ] =
τXE [X ] + τǫY

τX + τǫ
=

τ−1
ǫ E [X ] + τ−1

X Y

τ−1
X + τ−1

ǫ

=
(var (Y )− var (X))E [X ] + var (X)Y

var (Y )
.

Hence (A-1) equals

− exp

(

−γ (si + ei)E [X ] +
γ2 (si + ei)

2

2

var (X)2

var (Y )

)

× E

[

exp

(

γ2var (X|Y )

2

(

2 (s̄ + Z) (si + ei)− (s̄+ Z)2
)

)

|ei
]

.

By the law of total variance,

var (X) = var (X|Y ) + var (E [X|Y ]) = var (X|Y ) +
var (X)2

var (Y )
.

So (A-1) equals

− exp

(

−γ (si + ei)E [X ] +
γ2 (si + ei)

2

2
var (X)

)

× E

[

exp

(

γ2var (X|Y )

2

(

2 (s̄+ Z) (si + ei)− (s̄ + Z)2 − (si + ei)
2)
)

|ei
]

= E

[

− exp

(

−γ (si + ei)X − γ2var (X|Y )

2
((si + ei)− (s̄+ Z))2

)

|ei
]

.

This expression is increasing in var (X|Y ), completing the proof.
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