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Abstract

We develop a benchmark model to study the equilibrium consequences of index-
ing in a standard rational expectations setting (Grossman and Stiglitz (1980); Hellwig
(1980); Diamond and Verrecchia (1981)). Individuals must incur costs to participate
in financial markets, and these costs are lower for individuals who restrict themselves
to indexing strategies. Individuals’ participation decisions exhibit strategic comple-
mentarity. As indexing becomes cheaper (1) indexing increases, while individual stock
trading decreases; (2) aggregate price efficiency falls, while relative price efficiency in-
creases; (3) the welfare of relatively uninformed traders increases; (4) for well-informed
traders, the share of trading gains stemming from market timing increases, and the
share of gains from stock selection decreases; (5) market-wide reversals become more

pronounced. We discuss empirical evidence for these predictions.
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1 Introduction

The standard investment recommendation that academic financial economists offer to indi-
vidual retail investors it to purchase a low-fee index mutual fund or exchange-traded fund
(ETF). An increasing number of such products are available, and are increasingly inexpen-
sive and accessible, and an increasing number of investors follow this advice. In this paper,
we develop a benchmark model to analyze the equilibrium consequences of an increase in
“indexing,” paying particular attention to consequences for welfare

To preview our results: First, and unsurprisingly, a reduction in the cost of indexing leads
to more indexing, and less trading of individual stocks. Second, this reduces price efficiency
of the aggregate stock market (i.e., market price movements become more divorced from
cash flow news), but increases the efficiency of the relative prices of individual securities.
Third, the welfare of relatively uninformed “retail” investors increases, precisely because
price efficiency has fallen. Fourth, and in contrast, the welfare of relatively well-informed
“institutional” investors may either increase or decrease: they gain more from aggregate
market timing trades, but less from individual security trades. Fifth, as indexing increases,
the extent to which high market-wide prices today forecast low market returns in the fu-
ture (reversal) increases. As we review below, these predictions are largely consistent with
empirical evidence.

The indexing recommendation is frequently justified by the observation that retail in-

vestors are unlikely to be the most informed traders in the market!] Because we want to

LOur focus on welfare differentiates us from related papers on index futures and exchange traded funds by
Subrahmanyam (1991), |Cong and Xu (2016), Bhattacharya and O’Hara (2017), all of which employ models
with exogenous “noise” trade.

2For example, (Cochrand (2013) writes: “The average investor theorem is an important benchmark: The
average investor must hold the value-weighted market portfolio. Alpha, relative to the market portfolio, is
by definition a zero-sum game. For every investor who over-weights a security or invests in a fund that earns
positive alpha, some other investor must underweight the same security and earn the same negative alpha.
Collectively, we cannot even rebalance. And each of us can protect ourselves from being the negative-alpha
mark with a simple strategy: hold the market portfolio, buy or sell only the portfolio in its entirety, and refuse
to trade away from its weights, no matter what price is offered. If every uninformed trader followed this
strategy, informed traders could never profit at our expense.” |[French (2008) makes a similar argument. At
the same time, note also that [Pedersen (forthcoming) documents that even indexing requires a considerable
amount of trading, consistent with the prediction of our model that even indexing agents care about price



characterize welfare, a necessary first step in our analysis is to characterize welfare in an econ-
omy of the type introduced by [Diamond and Verrecchia (1981). Like |Grossman and Stiglitz
(1980) and Hellwig (1980), these authors analyze trade between differentially informed
agents, but different from these papers, there are no exogenous “noise” or “liquidity” trades.
Instead, agents have heterogeneous and privately observed exposures to risk. Consequently,
financial markets hold the potential to increase welfare by allowing agents to redistribute risk.
Perhaps surprisingly, and although a model of this type has been analyzed by a significant
number of authors, results on welfare are scarce, as we review below.

Specifically, in the first part of the paper we analyze an economy of this type with par-
ticipation costs and heterogeneous precision levels of private signals, so that agents with
relatively imprecise signals correspond to retail investors. As one would expect, only agents
with sufficiently precise private signals participate, and a fall in participation costs increases
participation by reducing the cutoff level of precision associated with participation. In-
creased participation by relatively uninformed traders in turn reduces price efficiency. Our
main result in this first part of the paper is to show that increased participation leads to a
Pareto improvement in welfare, precisely because of the fall in price efficiency. Consequently,
individuals’ participation decisions exhibit strategic complementarity: the more other rela-
tively uninformed agents participate, the greater the gains of participation. This result is
related to the so-called “Hirshleifer effect” (Hirshleifer (1971)), but does not follow directly
from it (see subsection 2.2 below, and also related discussions in Marin and Rahi (1999) and
Dow and Rahi (2003)).

For transparency of exposition, we derive the above results in an economy with a single
risky asset. In the second part of the paper, we extend our model to one with multiple (specif-
ically, two) risky assets, and apply our results to understand the equilibrium consequences
of indexing.

A number of our predictions are consistent with empirical evidence. [Israeli, Lee, and Sridharan

efficiency.



(2017) document a negative correlation between ETF ownership and price efﬁciency Israeli, Lee, and Sridl
(2017) also document that analyst coverage of individual stocks declines in ETF activ-
ity, consistent with reduced participation by relatively well-informed investors in individual
securities. Consistent with our prediction that indexing increases the benefits that rela-
tively well-informed investors obtain from market-timing strategies, but reduce the ben-
efits they obtain from asset-selection strategies, AQR document that the correlation be-
tween hedge fund returns and market returns has risen from 0.6 to 0.9 over the last two
decadesH Related, [Stambaugh (2014) documents a decline in asset-selection strategies
by active mutual funds over the same period. Also related, and using data since 2000,
Gerakos, Linnainmaa, and Morse (2017) show that a significant fraction of returns gener-
ated by active mutual funds stem from market timing strategies.

Asides from its implications for the equilibrium effects of indexing, our paper also con-
tributes to the wider debate of the extent to which the financial sector contributes to so-
cial welfare (see, e.g, [Baumol (1965)). In particular, we work with a canonical model in
which a financial market exists because it facilitates risk-sharing, and show that informed
trading generally worsens this risk-sharing function, while uninformed trading improves it.
While we believe there is considerable value in isolating the effect of informed trading on
a specific function of the financial sector, we also fully acknowledge that our analysis is
silent on how informed trading affects other possible functions of the financial sector. For
example, we do not speak to the question of whether information produced be financial
markets is valuable in incentive contracts or in guiding resource allocation decisions (see

Bond, Goldstein, and Edmans (2012) for a survey).

Related literature: In addition to the papers noted in footnote[Il our paper is also related

toStambaugh (2014), who considers the implications of a decline in noise trade in individual

3For full disclosure, we note that |Glosten, Nallareddy, and Zou (2016) document just the opposite. As
discussed by [sraeli, Lee, and Sridharan (2017), the difference in results stems from the time period over
which changes in ETF ownership is measured.

4See “Hedge fund correlation risk alarms investors,” Financial Times, June 29th, 2014.



assets. In our paper, a somewhat analogous decline in trading by relatively uninformed
agents occurs. In contrast to Stambaugh’s paper, this decline is an endogenous reaction to
a decline in the cost of indexing strategies. Moreover, many of our results relate to welfare,
which is absent in Stambaugh’s analysis.

In an independent, contemporaneous, and complementary paper, Baruch and Zhang
(2017) likewise study the equilibrium consequence of indexing, though from a very differ-
ent perspective. They consider a multi-asset version of |Grossman (1976), so that without
indexing prices fully reveal agents’ private signals. In this setting they show that an exoge-
nous increase in indexing reduces the amount of information prices contain about individual
assets, while the amount of information prices contain about aggregates is unaffected.

One contribution of our paper is to the understanding of welfare in economies of the type
introduced by [Diamond and Verrecchia (1981). As we noted, such results are surprisingly
scarce. One significant algebraic complication in characterizing welfare is that, when com-
bined with the asset price, each agent’s private exposure shock contains information about
expected asset payoffs. To avoid this complication, Verrecchia (1982) and [Diamond (1985)
both consider a sequence of economies in which the variance of each individual’s exposure
shock grows with the number of agents, and directly study the limit of this sequence. In
the limit economy, each agent’s exposure shock has infinite variance, and so expected utility
prior to the realization of the exposure shock is undefined, in turn making it impossible to
analyze participation decisions prior to the realization of exposure shocks

In an independent, contemporaneous, and complementary paper, Kawakami (2017) also
makes progress in characterizing welfare in a setting along the lines of Diamond and Verrecchia
(1981)). Whereas we focus on an economy with a continuum of agents and allow for hetero-
geneity in the precision of signals about cash flows that agents observe, thereby allowing us
to consider the effect an increase in participation by relatively uninformed agents, Kawakami

instead considers a finite-agent economy with homogeneous signal precisions, in which an

5If instead one modeled participation decisions as being made after the exposure shock, then almost all
agents would participate, since their exposure shocks are so large.



increase in the size of the market is associated with better diversification of individual ex-
posure shocks. Analytically, we make more explicit use than Kawakami of market-clearing
conditions, which allows us to incorporate heterogeneity in signal precisions in a tractable
way.

Marin and Rahi (1999) obtain welfare results in a relatively specialized setting: there are
two classes of agents, one class of which sees identical signals about asset payoffs and private
endowments, and another class of completely uninformed agents. Moreover, the traded asset
is in zero net supply. [Dow and Rahi (2003) also analyze welfare, and obtain some tractability
by inserting a risk-neutral market maker into the economy, which reduces the applicability
of the model for analyzing aggregate financial markets.

In closely related settings, [Vives and Medrana (2004) argue that “the expressions for the
expected utility of a hedger ... are complicated,” whereas Kurlat and Veldkampl (2015) write

7 The complications, common

that “there is no closed-form expression for investor welfare.
to our model as well, stem from the role of exposure shocks as signals about asset cash flows,

on top of the standard risk sharing role that motivates trade.

2 Informed trading and welfare

As discussed above, we begin our analysis by characterizing welfare in an economy similar to
Diamond and Verrecchia (1981). The welfare results we obtain in this section are essential to
the analysis of indexing in Section Bl Although we obviously need an economy with multiple
risky assets in order to study indexing, in this section we consider an economy with just one

risky asset, in order to present our welfare analysis as transparently as possible.

2.1 The model

We work with a version of Diamond and Verrecchial (1981) in which there are a continuum of

agents (see (Ganguli and Yang (2009) and Manzano and Vives (2011)), indexed by the unit



interval, i € [0, 1]. Each agent i has preferences with constant absolute risk aversion (CARA)
over terminal W;, and a coefficient of absolute risk aversion of .

There is one risky asset available for trading, with a normally distributed payoff X, with
mean px and variance i The price of the asset is P, which is determined in equilibrium.
Agents are small relative to the market, and act as price-takers; we characterize a competitive
equilibrium of the economy.

The risky asset is in positive net supply, distributed equally among agents, with each
agent having an initial endowment 5. We denote by 6; agent i’s position in the risky asset
after trade.

In addition, agents also have other sources of income (e.g., labor income) that are cor-
related with the cash flow of the risky asset. For simplicity, we assume the correlation is
perfect, and write agent i’s income from sources other than the risky asset as e; X, where
e; is (privately) known to agent i at the trading date. Differences in “exposures” e; across
agents motivate trade in the risky asset.

Hence the terminal wealth of agent ¢ is determined by trading profits, along with the

combination of asset endowment s and other income e;X:
W; ;) =sP+eX+0,(X—P)=(5+e)P+(0;+¢)(X—P). (1)

Although each agent knows his own income exposure e;, he does not know that of other
agents. Specifically, we assume e; = Z + u;, where Z ~ N (O, %) and u; ~ N (O, %) Note
that total income thus has an aggregate component Z X, where both Z and X are unknown
to individual agents, although their own income exposures e; provide (private) signals about
Z.

Prior to trading, each agent i observes a private signal of the form

Y, = X +€i7
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where ¢; ~ N (O, i) Note that the precisions of private signals are heterogeneous across
agents, so that some agents are more informed than others. Without loss, we order agents
so that signal precision 7; is decreasing in 7; and for simplicity, we assume 7; is strictly
decreasing.

An agent’s information set at the time of trading is hence the triple (y;,e;, P), which
consists of his signal about cash flows y, his own exposure e;, and the price P.

Finally, agents incur a cost s of participating in financial markets, reflecting a combi-
nation of information collection and processing costs, psychic costs, expected trading costs,
and the cost of potentially trading in a less than optimal way. Agents make participation
decisions prior to observing any of (y;, e;, P). If an agent does not participate, 6; = 3.

The equilibrium definition is a straightforward extension of that used in competitive
rational expectations models (Grossman and Stiglitz (1980), Hellwig (1980)), with the par-

ticipation decision incorporated:

Definition 1 A rational expectations equilibrium is a set agents who choose to participate,

N C [0,1), trading strategies {6;}icn, and a price function P(X,Z) such that markets clear,

N
and (taking prices as given), agent i’s trading strategy is optimal,

0; € argmaxE [u (W, (0,)) |y;, e;, P], (3)

K3

and participation decisions are optimal,
Elu(W;(0;) — k)] >E[u((s+e)X)].

We emphasize that this is a canonical setting, in which risk-sharing benefits lead to gains

from trade, which in turn allows for informed trading.

7



Throughout, we assume

W ) < ()

72 > 47—07_u7 (5)

where 7 is the precision of agent 0’s information, i.e., the highest precision in the population
of agents. Condition () ensures that expected utility is well-defined for an agent who behaves
autarchicly, and does not trade. Without this condition, an autarchic agent is exposed
to so much risk that his expected utility is infinitely low. Condition (&) ensures that an
equilibrium exists at the trading stage (see Proposition [Il below). Loosely speaking, without
this condition there is too much trading based on information relative to trading based on

risk-sharing; (Ganguli and Yang (2009) impose essentially the same condition

2.2 Welfare benchmarks

It is useful to consider a couple of welfare benchmarks. First, in the (symmetric)H uncon-

strained solution to the social planner’s problem each agent ¢ has terminal wealth
W,=(5+2)X. (6)

That is, the aggregate endowment (5+ Z) X is simply split equally among agents. This is
the outcome that would be obtained if agents could pool risk before knowing their exposures
e;, and if contracts could be written contingent on the realizations of e;.

A second useful benchmark is the case in which all signals about X are public, with

all other aspects the same as in the model described above (in particular, exposures e; are

6The main extension in Manzano and Vives (2011) relative to/Ganguli and Yang (2009) is that they allow
for the error terms in the trader’s signals to be correlated. Non-zero correlation eliminates the existence
issues in our model. Since our focus is on welfare, we choose to study the slightly more tractable model with
conditionally independent estimation errors.

"In non-symmetric solutions, each agent has terminal wealth W; = (5 + Z) X + K;, where K; is a constant,
and [ K;di = 0.



private information, and trade occurs only after agents observe these exposures). In this
case, all agents have the same posterior of X at the trading stage, and so portfolios #; must
satisfy (see () below)

9i+€i:§+Z-

So each agent’s terminal wealth is

Wi=G+e)P+(5+2)(X —P)=uwP+(5+ 2)X. (7)

Note that in this second benchmark, each agent is exposed to an additional risk term, u;P.

The comparison of these two benchmarks illustrates the challenge of characterizing how
information about X affects welfare. For example, comparing (@) and (), one can see that
ceteris paribus agents prefer the price P to have low variance. In turn, P has low variance if
it relatively unaffected by both the realization of the cash flow X and the aggregate exposure
Z. But higher-precision signals about X may increase P’s dependence on X (increasing the
variance of P, and the Hirshleifer effect) but decrease P’s dependence on Z (reducing the

variance of P), so that the overall effect is unclear

2.3 Basic equilibrium properties

As standard in the literature, to characterize an equilibrium we first conjecture key equilib-
rium characteristics, and then verify that an equilibrium with these characteristics indeed
exists. More concretely, we characterize linear equilibria (i.e., the price is a linear function of

the cash flow X and the aggregate endowment Z) in which all agents with sufficiently precise

8Tt is worth noting that the limiting case of perfect information about X is straightforward. In this
case, the price P simply equals X, and so ([0 reduces to W; = (5+ e;) X, which is the autarchy outcome.
Hence welfare is minimized by perfect information about X, since in this case the financial market cannot
provide any risk sharing (the Hirshleifer effect). Our analysis below concerns the more relevant non-limit
case. Moreover, note that [Diamond (1985) characterizes how welfare changes as the precision of public
information changes, though with the mathematical compromises discussed earlier. Finally, in an online
appendix we show that welfare in this benchmark case indeed monotonically declines in the precision of
public information, though the proof is non-trivial, consistent with the discussion above.



signals participate. In such equilibria, there is a cutoff agent n such that all agents 1 < n
participate, and agents ¢ > n do not participate. In this subsection we establish some key
equilibrium properties that hold in any equilibrium of this type. To maximize transparency,
we establish these properties as directly as possible, making use primarily of the market
clearing condition (2]).

In a linear equilibrium, each agent ¢’s optimal portfolio has the standard mean-variance

form,

0 +e = — =
te yvar (X — Ply;,e;, P) v var (X|y;, e, P)

(8)

The form of the optimal portfolio (8) indicates that the reciprocal of conditional variance,
var (X|y;, e;, P)"", is an important quantity. The following result uses market clearing (2) to
derive a useful relation between the average reciprocal of conditional variance in the economy;,

and the (endogenous) covariance between returns X — P and cash flows X.

Lemma 1 In any linear equilibrium,

1 / 1 di 1 (9)
— 1 = .
n Jn var (X|y;, e;, P) cov(X — P, X)

Note that Lemma [Il nests the special case in which no agent has any information about
the cash flow X, so that the price is unrelated to X, and so for any agent i, var (X|y;, ¢;, P) =
var (X) =cov (X — P, X).

Lemma [I] turns out to be very important in our analysis, and since its proof is short, we

give it here. Differentiation of market clearing (2]) with respect to X gives

0 .

Substituting in the portfolio #; from (8); recalling the property of multivariate normality

that conditional variances do not depend on the realizations of random variables; and noting

10



that g—)lz = C‘i;gf )’())(), it follows that

cov(P,X)

iE X 7 zP var
/M'[m“]mz/ (EIN] (10)
~ var (X|y;, e;, P) ~ var (X|y;, e;, P)

Because the information set (y;, €;, P) consists of a set of normally distributed random vari-

ables,

var (X |y;, e;, P)

0
—E[X\yl,el,P]zl— Var(X)

X (11)

(See Lemma [A-] for a formal proof.) Substitution of (1) into (I0O) yields

(1 - %) | e ot e et

which is equivalent to (), completing the proof of Lemma [Il

Among other things, we use Lemma [ to characterize the equilibrium risk premium

E[X — P]. Taking the unconditional expectation of (8]) gives

1 E[X-P
E10:] = §Var (X|yi, €i, P)

Combined with market clearing (@) (specifically, £ [, E [6;] di = 5), we obtain:

Corollary 1 In a linear equilibrium,
E[X — P] =~v3cov (X — P, X).

As for Lemma (Il it may help to note that Corollary [l nests the special case in which no
agent has any information, and so E[X — P] = ysvar(X).

Both prices and endowment shocks play two distinct roles in determining an agent’s
demand: they directly affect demand, and separately, they also affect an agent’s beliefs
about the cash flow X, thereby indirectly affecting demand. To clarify this dual role, write

0; (yi, €;, €, P, ]5> for the demand of an agent who has exposure e; and can trade at price

11



P, but who evaluates his conditional distribution over X using the the information set
(yi, €is ]5) Even though é; = e; and P=P, keeping separate track of the two roles of prices
and endowment shocks is conceptually useful.

To further exploit the equilibrium market clearing condition (2l), note that differentiation

with respect to X and Z respectively yields:

oP [ 06 . oP [ 06 . [ 06 .

ax Jyort T ax J,op T ar ™ = 0 (12)
oP [ 80, . OP [ 96, . [ 90 [ 96 .
or op [ 96: , d g = 0. 13
2z |vor™ "oz Jyop” T | oM |, 96" (13)

One immediate consequence is that, in equilibrium, g—g = (0. To see this, note that if instead

g—g = 0, then Z and ¢; provide no information about the cash flow X, so that g—gi = 0 for
all agents. In contrast, the non-informational effect of endowment shocks on the portfolio
decision is certainly negative (formally, see Lemma [2]). But then the lefthand side of (I3) is
strictly negative, a contradiction.

As typical for this class of models, an important equilibrium quantity is the relative

sensitivity of price to X and Z, which we denote by p:

or
— _ 90X

0z

We refer to p as the price efficiency of the risky asset, since

var(X|P)™' = 7x + p’1y (14)

var(X|y;, e, P)™t = x4+ p*(15 + ) + T (15)

These expressions (derived in the proof of Lemma ) measure the ability of an outside
observer and agent ¢, respectively, to forecast the cash flow X.
The following properties of individual demand follow only from Bayesian updating. They

hold whenever price P is a linear function of X and Z, regardless of whether P is an

12



equilibrium price.

Lemma 2 If P is a linear function of X and Z then the effects of non-informational factors

on demand 0; are given by

00, 06, 1 1

de; 0 OP  yvar(X|ysenP)

while the effects of informational factors on demand 60; satisfy

Note that the informational effects of &; and Z (as reflected in the price P) on demand are

related by the precisions of the idiosyncratic and aggregate components of exposure shocks:

Corollary 2 In a linear equilibrium, for any agent i,

op 00, Ty + T,

oz 7Z u

BT T (16)
= = 7 17
9Z ob 6, i a7

In equilibrium g—IZ) < 0 and p > 0 (see Lemma [3 immediately below). So a higher Z is
associated with lower prices, which in turn are associated with lower estimates of X. Holding
u; fixed, a higher Z also leads to a higher value of ¢;, thereby raising an agent’s estimate of
Z, and hence (given equilibrium prices) an agent’s estimate of X. Equation () shows that
the first of these effects dominates.

We next establish the basic result that aggregate demand for the risky asset is decreasing
in the price. Because of the informational content of prices, this is not completely obvi-
ous. At the same time, we show that the price is increasing in the asset’s payoff, and the
price is decreasing in the aggregate endowment shock. We highlight that the proof of this

result makes use only of the market clearing condition (2l), along with the signs (but not

13



magnitudes) established in Lemma [21

Lemma 3 In a linear equilibrium, the aggregate demand curve slopes down, i.e.,

00; 00,
’d'+/ “di < 0, 18
N OP ! N OP ! (18)

and the price is an increasing function of X, and a strictly decreasing function of Z,

or orP
- > N
0 = 0 and 8Z<0’

and so in particular p > 0.

A further immediate implication of Lemmas [I] and [ is the following expression for the

non-informational effect of prices on aggregate demand:

Corollary 3 In a linear equilibrium, the non-informational effect of prices on aggregate

demand, i.e., [\ 2%di, satisfies

106, 1 1
nfyoP" T yeov(X —PX)

(19)

Knowledge of individual exposure e; contains information about X only because it helps
agent 7 interpret the price (for example, it provides information about whether a high price
is due to a high cash flow X or a low aggregate exposure Z). Because the information in
exposure is subsidiary to the information in prices, it is intuitive that prices contain more

information than exposures, as formalized in the following result:

Lemma 4 In a linear equilibrium, the ratio of the informational to non-informational effect
of prices on demand exceeds the ratio of the informational to non-informational effect of

exposures on demand,

S| | S
20; 7 R
| [ 5Rdil ‘fN g—i:dz

. (20)

14



Lemma M turns out to be critical to the analysis of welfare below. We again highlight
that its proof makes use only of basic equilibrium properties established above, along with

the signs (but not magnitudes) established in Lemma [2] and Corollary 2

2.4 Equilibrium at the trading stage

Ganguli and Yang (2009) and Manzano and Vives (2011) give conditions for equilibrium
existence, taking the set of trading agents as given. We follow Manzano and Vives (2011)
and focus on the equilibrium with lower price efficiency, since the one with higher price
efficiency is unstableH The following result contains a minor extension of these papers to
cover heterogeneity in information precision, and then uses results from the previous section

to give an explicit expression for the risk premium E[X — P].

Proposition 1 There is unique stable linear equilibrium, in which price efficiency p is given

211
p=—L (L) - ——/ Tdi. (21)
2T, 2T, TuT JN

Price efficiency p is decreasing in participation n. The unconditional risk premium is given

by

by

S
ElX — P| = . 22
[ ] Tx+p2(TZ—|—Tu)—|—%fNTidi ( )

From Proposition[l] price efficiency is determined by the average information precision of
agents who actively trade. As participation increases, newly participating agents lower this
average. Even though these agents bring more information to the market, they also bring

more trade motivated by risk-sharing concerns, which function in the same way as noise.

9Manzano and Vives (2011) give a mathematical definition of stability. One way to think about stability
is in terms of condition (A=7)) in the proof of Proposition [l The right hand side (RHS) describes agents’
demands, which in turn depend on price efficiency (this can be seen explicitly from (A=8)). The left hand
side (LHS) of (AZ7) describes how prices must behave to clear the market, given agents’ demands on the
RHS. Equilibrium price efficiency is a fixed point of this relation. Moreover, the RHS is increasing in p, at
least in the neighborhood of any solution. If the RHS crosses the 45° line from below, the corresponding
equilibrium is unstable in the following sense: A small upwards perturbation in agents’ beliefs about price
efficiency affects agents’ demands and shifts the RHS up (for any value of p). To preserve market clearing,
this then pushes p up, and precisely because the RHS crosses the 45° line from below, the change in p is
greater than the original perturbation in agents’ beliefs about p, i.e., instability.

15



The risk premium E[X — P] is driven by the amount of aggregate risk, as measured by §
and Ty, as well as the risk tolerance in the economy, . The risk premium also reflects the
average conditional precision (see ([I3])) of participating agents. As participation increases,
this decreases, both directly, as discussed immediately above, and also indirectly, as price
efficiency falls. Consequently, agents bear more risk when they hold the asset, and the risk

premium increases with participation.

2.5 Welfare and participation

We next turn to agents’ participation decisions. To do so, we first characterize an agent’s
expected utility from participation. As noted in the introduction, a concise representation of
expected utility in economies of this type has proved challenging to obtain in related work.
Looking ahead, a concise representation is important for analyzing comparative statics in

the participation cost k.

Proposition 2 In a linear equilibrium, agent i’s expected utility from participation, condi-

tional on the realization of his exposure shock e;, is given by

i 2(3 ; 2 1
B[V — w)le] = = (@D) " exp (oo + e + LD Tt an)  aa)
X
where
var(X|e;, P)
di = ) 24
var(X|y;, e;, P) (24)
var (X — Ple;)
D = 25
var (Xle;, P) (25)
2
(7(:3;523) +ycov(X — P, X ))
A = : (26)
var(X — Ple;)

The key step in the proof of Proposition Pl is the substitution of Corollary [II's expression

for the unconditional risk premium E[X — P].

16



To interpret Proposition 2], note that an agent’s expected utility from non-participation

is simply
(5 + ei)2)

Blu (5 e X) e = —exp (=105 + e +
So an agent’s expected gain from participation is reflected in the benefits D and A which stem
from risk-sharing and are the same for all agents, no matter how precise or imprecise their
private information; and the advantages stemming from more precise private information,
represented by d;. These gains must be balanced against the cost of participation, k.

An immediate and intuitive implication of Proposition2lis that expected utility is increas-
ing in the precision of an agent’s information, 7;. So consistent with our initial conjecture,
linear equilibria are characterized by some n such that agents i < n participate, and agents
1 > n do not.

Next, we show that agents’ individual participation decisions exhibit strategic comple-

mentarity:

Proposition 3 As participation n increases, each individual agent’s gain from participation

mcreases.

Economically, the key driving force behind strategic complementarity is that, as partici-
pation n increases, price efficiency p drops (see Proposition[[land related discussion). Loosely
speaking, lower price efficiency increases the amount of risk-sharing that the financial market
enables. Specifically, the risk sharing function of the financial market is to enable agents
with high idiosyncratic exposures wu; to share cash flow risk u; X with other agents with low
idiosyncratic exposures.

Lower price efficiency corresponds to agents having less information about the cash flow
X, which makes risk sharing easier to sustain as in [Hirshleifer (1971). However, and as
discussed in the context of the public information benchmark of subsection 2.2], the risk
sharing benefits of less efficient prices must be compared to the potential costs that arise

from more volatile prices, since if prices are less efficient, they are relatively more exposed to
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the aggregate exposure shock Z (essentially, the discount rate), and this can easily lead to
greater volatility. Proposition [3 establishes that the benefits of lower price efficiency always
dominate the potential costs.

Because Proposition [ is central to our analysis, we give the structure of the argument
here, focusing as much as possible on interpretable economic properties, while relegating
algebraic details to the appendix.

To establish the result, we show that each of the three terms d;, D, and A are increasing
in participation n. We start with the term d;, which corresponds to an agent’s expected

gains from the precision of his private signal y;. Substitution of (&) delivers

x + A (17 + 7)) + T

d; =
7x + P77 + T)

Because price efficiency p is decreasing in participation n, the private gains from information,
d;, are increasing in participation. Economically, when prices convey less information about
cash flows X, an agent’s private information about X is more valuable.

Next, we consider the risk-sharing terms A and D. As a first step, note that straight-

forward algebraic manipulation and the basic equilibrium property Corollary B combine to

deliver
var(Z)2 (l oP 00; di — var(e;) ) 2
ei ndoZ JN OP var(Z
A= 1 1( ) 10P 801d : )Z (27)
~2 var(X) (n 0z fN Z) VaI' |el)
+ yvar (Z]e; Lob 99: 1
D — 1+( P lei) 57 Jn o7 ) (28)
v2var (Zle;) var (X) (£ [y gﬁ;dz)
Given these expressions, it is clearly important to understand the term * gIZ) 891 =di. On the
one hand, from Lemma 2] and (I3,
a0; . 11/ 1 di Tx+p2(Tz+Tu)+%fNTidi
— = ——— 1= — .
N OP yn Jn var (X|y;, e;, P) ~y
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So as participation n increases, }% N %dz" declines, both because price efficiency declines, as
discussed above; and because the average signal precision of participating agents, % f N Tidi,
declines. Economically, both forces mean that the average participating agent is exposed to

increases. On the other hand, greater price efficiency

: 96
more risk when they trade, and so ‘8_P
is typically associated with prices that depend less on Z, corresponding to a reduction in
}g—]ZD . However, substitution of ([I7) of Corollary [2 into the market clearing condition (I3),

along with the very basic property that the non-informational effect of exposure shocks on

demand is g—zz = —1, yields
- di=14 —714. 2
n aZ N (9P ! + ')/TZ ( 9)

10P [ 06

=57 Jn spdi is increasing in price efficiency

Hence the former effect is the dominant one, and
p, and hence (by Proposition [I]) is decreasing in participation n.
It then clear from (27)) that A is indeed increasing in participation n if
10P 89id, var (e;)
—_— Z JE—
noZ Jy OP var (Z)

<0. (30)

This is indeed the case, since ([I6]) of Corollary 2l and g—ij = —1 imply that (B0) is equivalent
to fact that the prices contain more information than endowments in the sense of (20), as
established in Lemma [l

Turning to the determinant term D, it is immediate that the denominator var (X |e;, P)
is decreasing price efficiency p. Loosely speaking, one would also expect the numerator
var (X — Ple;) to fall: as prices become more efficient, P is more closely related to X, and
so X — P is less volatile. Below, we establish that the numerator indeed falls, and moreover,

that effect dominates the fall in var (X|e;, P).

Substituting for 22 g(j;’di in (28) using (29), and noting that var (Z|e;) = Tz%m, we

obtain
(v — pr.)’ var (Zle;)

y2var (X) (% N %dz’f.

D=1+

(31)
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As discussed above, both price efficiency p and the sensitivity of demand to price, ‘% N %di},
are decreasing in participation n. So D is indeed decreasing in participation n if v — p7, > 0,
which using the equality of ([28) and (BI) and the fact that 122 %di = —m (see
Lemma () is equivalent to the aggregate demand curve sloping down, i.e., inequality (I8]),
as is established in Lemma [Bl

Finally, and for use below, note that the above arguments establish that the benefits
to agent ¢ of financial market participation depend on the participation decisions of other
agents, summarized by n, only via the the average precision of participating agents, % fon T;dt,
and the associated price efficiency p (see Proposition [Il). Accordingly, define

1 n
T (n) — / Tzdl
0

Gy

2.6 Equilibrium and the effects of changes in participation costs

k’\
S
1

To establish both equilibrium existence, and to evaluate comparative statics with respect to

participation costs, we define the function

g(n,k) = sup{i € [0,1]: agent ¢ participates in the financial market if
the average signal precision of participating agents is 1" (n)

and price efficiency is f (n)}.

That is, g (n, k) gives agents’ participation decisions in response to an average signal precision
in the market of T'(n), and price efficiency p = f (n). By PropositionBl g (n, ) is increasing
in the argument n, while clearly it is decreasing in the cost argument k.

An equilibrium participation level is then simply a solution to the fixed point relation

g (n, k) = n. Hence existence is immediate from Tarski’s fixed point theorem, and compara-
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tive statics are immediate from Milgrom and Roberts (1994):

Proposition 4 An equilibrium exists. As the participation cost k increases, participation

declines, price efficiency increases, and the welfare of participating agents declines.

Given Propositions [I] and [3], the economics behind Proposition [ are relatively straight-
forward. As participation costs decline, there is a direct increase in the utility of any agent
who participates in the financial market. This direct increase in utility in turn leads to more
participation, which by Proposition [l reduces price efficiency, and by Proposition 3] further
increases the utility of participation, in turn leading to further increases in participation.
The ultimate equilibrium effect of the initial reduction in participation costs is characterized
by the fixed point equilibrium condition g (n, k) = n.

Agents with information of all precision levels benefit from the reduction in participation
costs, though for slightly different reasons. Agents with low precisions of private information
benefit both directly (lower participation costs), and indirectly, because greater participation
improves risk sharing. It it worth reiterating that the better risk sharing is not a direct
consequence of more agents in the market—after all, each agent brings more risk that needs to
be shared, as well as more risk-sharing capacity. Instead, better risk sharing is a consequence
of the fall in equilibrium price efficiency.

Agents with high levels of precision of private information additionally benefit from more
profitable trading opportunities, again a consequence of lower equilibrium price efficiency.
The following result sheds light on the trading behavior and profits of agents with different

precisions of private information.

Proposition 5 Fix an equilibrium with participation level n, along with an arbitrary n €

(0,n). Then for any realization of X and Z, the average position of “smart” agents [0, 7]

10Given strategic complementarity of participation decisions, it is possible that there are multiple solutions
to the equilibrium condition g (n,x) = n. In such cases, Proposition [ should be understood in the sense of
Milgrom and Roberts (1994), i.e., as applying to the equilibria with minimum and maximum participation.
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differs from the average position of “dumb” agents [n,n] by an amount

%(%/jndi—niﬁ/ﬁnﬁdi) (X — P). (32)

Moreover, E[X — P|P] is decreasing in P. Hence the price P is positively correlated with

holdings of the asset by “dumb” agents in [n,n|, and negatively correlated with subsequent

returns.

Proposition [ follows straightforwardly from earlier analysis. Equation ([B2) says that
better informed (“smart”) agents buy more of the asset than worse informed (“dumb”)
agents precisely when the asset is undervalued (X > P). This follows immediately from
the explicit evaluation of () (formally, see (A-2) in the proof of Lemma ). The fact that

E[X — P|P] is decreasing in P follows from the fact that, by market-clearing (2I),

1 [ 1
—E|X — P|P]— =5+E[Z|P
EX - PPl [ g — 5+ EIIP (33)

along with the fact that E [Z|P] is decreasing in P (since 22 < 0 by Lemma B])

The prediction of Proposition [0 that assets are reallocated from informed to uninformed
investors as the prices rise, and that subsequent returns are then low, is consistent with the
empirical evidence in [Ben-Rephael, Kandel, and Wohl (2012) and |Jiang, Verbeek, and Wan

(2017)

1 Consequently, if an investor observes a low price for an asset, and has no exposure to economic shocks,
he should take a long position in the asset, since its conditional expected return is high. That is, an investor
can profit from buying “value” stocks. Although this point is often overlooked, it is nonetheless a standard
implication of models of the type we consider here (see, e.g., [Biais, Bossaerts, and Spatt, 2010).

12There is a sizable empirical literature studying the relation between flows between different types of
investors and subsequent returns. Results depend significantly on how flows are measured.
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3 The equilibrium consequences of indexing

In order to explicitly analyze the equilibrium consequences of indexing, we now extend our
basic model to allow for multiple (specifically, two) risky assets. We model a rise in indexing
as stemming from a fall in participation costs for agents who trade assets only in the same
proportions as they are present in the market. We note that results of this section all follow

straightforwardly from our earlier analysis.

3.1 The model

There are now two risky assets available for trading, with payoffs X; and X5, where we
assume that both assets are normally distributed The assets are symmetric, and both
have mean px and variance i We denote the price of asset j = 1,2 by denoted P;. The
two assets are again in positive net supply, initially distributed equally among agents, so
that each agent ¢ starts with an endowment 5 of each of assets 1,2. Let 6;; denote agent 7’s
position in asset j after trade.

Similar to before, agents also have other sources of income, now correlated with the cash
flows of both assets X; and X5. Specifically, agent ¢ has income e;; X7 + €;5X5, where e;;
and e;o are privately known at the time of trading. For example, cash flows X; and X, may
correspond to two sectors of the economy, or two aggregate sources of risk (e.g., retail versus
technology, or value versus growth stocks), and agents differ in the extent to which their
non-trading income is exposed to these two sources of risk. Similar to before, e;; = Z; + u;;
for j = 1,2, where Z; ~ N (0, %) and u;; ~ N (0, %) Hence agent i’s wealth after trading

(and excluding information acquisition costs, described below) is

> (5P + ey X+ 05 (X; — F))).

j=1,2

13Tn other words, we extend Diamond and Verrecchia (1981) to multiple assets, just as Admati (1985) ex-
tends Hellwig (1980). Note that in|Admati (1985) and other analyses of multiple-asset economies, “liquidity”
trades are entirely exogenous.
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As in the single-asset economy, each agent i observes private signals about the future
cash flows of the two assets, y;; = X, + €, for 7 = 1,2. The precision of these signals again
varies across agents, with var (¢;;) = Ti for assets 7 =1, 2.

The most significant change relative to the single-asset economy is that each agent now
faces a choice between full participation in trading both assets 1 and 2; limited participation,
meaning that an agent is restricted to “indexing” strategies; and no participation.

By indexing, we mean a portfolio strategy in which each asset’s weight in an agent i’s
portfolio matches the asset’s weight in market as a whole, i.e., a portfolio #;1, 0; such that

HilPl - §P1
0:P, + 0Py,  SP,+ 3P,

So given our symmetry assumptions, an indexing strategy is simply one with 6;; = ;5.
Participation that is limited to indexing strategies has a lower cost than full participation.
Specifically, the costs of full participation, indexing participation, and no participation are
respectively K, k,,, and 0, where k,, € (0, k). The lower participation cost of indexing reflects
lower trading costs (because of the availability of low cost index mutual funds and exchange
traded funds (ETFs)); lower cognitive demands and attention costs; and lower information
costs, since as we will see shortly below, a sufficient statistic for an agent’s private information
if he is indexing is the sum of the two signals, y;1 + yio = (X7 + X32) + (€1 + €:2), which can
be interpreted as agent i simply paying attention to broad economic aggregates, instead of

individual stocks.

3.2 Disentangling assets 1 and 2

Although the fundamentals of assets 1 and 2 are independent in all dimensions, the potential
presence of indexing agents introduces a link between the prices of the two assets, since, for
example, an indexing agent’s exposure e;; to cash flow risk X; affects the agent’s demand

for asset 2 as well as for asset 1.
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Because of this entanglement that indexing produces between assets 1 and 2, analytically
it is very convenient to effectively change basis and study the economy in terms of a “market”
asset that pays X,, = % (X1 4+ X5), and a “spread” asset that pays X, = % (X1 — X))

Importantly, note that that the cash flows of these assets are uncorrelated, i.e.,
cov(Xpm, Xs) = 0. (34)

Indexing is then simply a restriction that an agent can trade only the market asset, and not
the spread asset. We write P, and P, for the price of the market and spread assets.

Note that var (X,,) = var (X;) = %, E[X,,] = V2ux and E[X,] = 0. Each agent has
an endowment 3, = v/25 of the market asset, and no endowment of the spread asset (i.e.,
5, =0).

Define also yin, = % (yi1 + Yi2), Yis = % (Yir — Yiz), Zm = % (Z1+ Za), Zs = 55 (21 — Za),
Cim = % (ei1 +e2), and e = % (€1 — €9;). Note that cov(Yim, yis) = cov(Zm, Zs) =

cov(€eim, €is) = 0; var(Z,,) = var(Z;) = %

; var(e;,) = var(e;) = % + %; and E[Z,,] =
E[Z;] = Eleim] = Eless] = 0.
Write 6;,,, and 6;, for agent i’s positions in the market and spread asset. Then agent i’s

terminal wealth W; is given by an analogous expression to ([Il). As before, W; is determined

by trading profits combined with initial asset endowments and other income:

Wi (i, 0s) = Y (55 + €5) P+ (0 + €3) (X; = F))) . (35)
j=m,s
The equilibrium definition for the two-asset economy exactly parallels the equilibrium defi-
nition for the single-asset economy (see Definition [I]).
Because the market and spread assets trade independently, even in the presence of in-

dexing agents, there is an equilibrium of the trading stage in which the price of the market

14The multiplicative constant % in these expressions is simply a normalization that leads to simpler
algebraic expressions.
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asset P, is a linear function of X, and Z,, only, while the price of the spread asset P; is a
linear function of X and Z; only.

Note also that it is straightforward to recover prices of the underlying assets 1 and 2
from the prices of the market and spread asset. Specifically, since X; = % (Xm + Xs) and

X, = % (Xm — Xs) , it follows that

1 1
(P Py) — (ﬁ (Pa+ P, 5 (P - Ps>) . (36)

3.3 Equilibrium

Given a linear equilibrium at the trading stage, expected utility takes the same form as in
Proposition 2], but with separate expressions capturing the gains from trading the market and
spread assets. Specifically, the expected utility of an agent who chose to restrict participation
to indexing strategies is

V2 (8m + €im)? 1

E [u(W; — kim)|eim: €is] = — (dimDum) 7 exp | =(5m + €am)pix +
2TX 2

2, 2
€is
X exp (WQTX ) s

where d;,,, D,, and A,, are all defined in exactly an analogous way as in Proposition 2

Similarly, the expected utility of an agent who chose full participation is

7 (5 + €im)”

1
- _Am 2 m
27x 5 AmCim TR )

E [u(W; — K)|€im, €is]) = — (dimDm)_% exp (—v(sm + eim)pix +

2 2
Y €is
2’7‘X

1 1
X (disl)s)_§ €xXp ( - 5/\56?8 + Y (K' - K’m)) )

where d;s, D, and A, are again all defined in exactly an analogous way as in Proposition [2]
Note that if agent ¢ prefers full participation to the alternatives of limited indexing
participation, and no participation, then the same is true for any other agent i < i. Hence

an equilibrium is characterized by an n € [0,1] and an n,, € [n,1] such that agents [0, n]
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fully participate, agents (n,n,,| index, and agents (n,,, 1] do not participate at all.

A useful property to note is that an equilibrium can be characterized by first solving for
total participation in the market asset, n,,, given participation cost k,,; and then solving
for participation in the spread asset, n, given participation cost Kk — k,,. Consequently, an
equilibrium straightforwardly exists, by analogous arguments to those in the single-asset

economy.

3.4 The rise of indexing

Our main comparative static is to consider the effects of a fall in x,, the participation cost
associated with indexing. This corresponds to falling fees, greater availability, and greater
awareness of products such as low-cost index funds and ETFs. It may also reflect an increase
in public awareness of the standard advice given by finance academics.

We consider the effects of a drop in k,, while holding the cost of full participation, &,
fixed. Although trading costs for individual assets have also fallen in recent decades, holding
k fixed allows us to focus on the market change most directly responsible for a rise in indexing.
However, we would obtain similar results if x fell also, provided it falls more slowly than x,,.

The following result, which is immediate given our prior analysis, summarizes the effects

of a fall in k,,:

Proposition 6 As the participation cost of indexing k,, falls:
(i) Participation n,, in the market asset increases.
(ii) Participation n in the spread asset falls.
(i4i) Indexing n,, —n increases.
(iv) Price efficiency for the market as a whole, p,,, falls.
(v) Relative price efficiency ps increases.
(vi) Expected utility for existing indezers increases, while the effect for agents who fully

participate s ambiguous.
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The increase in indexing has two distinct components. First, given the lower cost k,,,
some agents who previously did not participate at all in financial markets now index. Second,
as the cost of the indexing k,, falls, the marginal cost k — k,, of full participation increases,
leading some agents who previously fully participated in financial markets to switch to in-
dexing.

As with the single-asset economy, participation decisions are strategic complements, so
these direct effects in turn generate additional changes: indexing increases still more, while
full participation drops still further.

For agents with precise private signals, who fully participate in financial markets, there
are offsetting effects in terms of expected utility. On the one hand, the utility derived from
trading the market asset increases. But on the other hand, the utility derived from trading
the spread asset decreases, because the price efficiency of the spread asset is now higher. As
discussed, higher price efficiency both leads to worse risk-sharing, and to lower profits for
relatively informed traders.

With the caveat that expected utilities are distinct objects from expected profits, this
prediction is consistent with evidence that the share of profits for hedge funds (typically
viewed as agents with precise information) stemming from aggregate trading strategies has
increased (see discussion in introduction).

Similarly, the increase in the price efficiency of the market as a whole is consistent with
empirical evidence in [sraeli, Lee, and Sridharan (2017).

In Proposition Bl we noted that the expected return is decreasing in the price P, i.e.,
reversal. The steepness of the negative slope of E [X — P|P] captures the strength of reversal,
i.e., when this relation is strongly negative, the expected returns following high prices are
much lower than following low prices. Our next result shows that, in equilibrium, this

relation becomes stronger as k,, falls (and hence indexing increases).

Lemma 5 %E (X — Pn|Pn) is negative, and decreasing (i.e., becomes further from 0) as

Km falls.
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This is consistent with the empirical findings of Baltussen, van Bekkum, and Da (2017).

4 Discussion

In Section Bl we analyze what we believe is the most direct impact of a decline in the costs of
indexing, namely those that stem from the entry of new participants into financial markets in
response to lower costs, along with substitution of other traders away from full participation
to index-only strategies.

Nonetheless, our analysis inevitably omits other potentially important forces. In par-
ticular, we have held constant the precision of agents’ private signals (beyond the basic
question of whether or not to acquire information at all, which is one possible interpretation
of participation decisions). In an earlier draft of this paper we fully analyzed a model that
includes this force. In brief, consider the consequences of an exogenous increase in indexing
among agents with low-precision private signals. The direct effect is an increase in the price
efficiency of the spread asset, with no effect on price efficiency of the market asset (because,
by assumption, the increase in indexing simply consists of agents with low-precision signals
stopping trading the spread asset, with no increase in trade of the market asset). Allowing
agents to reoptimize the precision of their private signals, these changes in price efficiency
in turn induce agents to acquire less precise signals about the spread asset, since this infor-
mation is now less valuable; and in turn to substitute their information collection activities
towards acquiring information about economic aggregates. The net effect is price efficiency
increases in both the market and spread assets. The same economic forces as in our current
analysis then lead to a reduction in expected utility, since (exactly as in Proposition [2]) agents
prefer to participate in financial markets where price efficiency is low.

So to summarize: by themselves, information acquisition decisions in response to an
exogenous rise in indexing end up reducing rather than increasing the welfare of agents with

low-precision private signals, who can be interpreted as retail investors.
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More generally, our analysis highlights that the welfare consequences of shifts in index-
ing—or, indeed, or other changes to financial markets—depend critically on how such shifts
affect price efficiency. At least when the gains from trade that underpin financial markets
are driven by the benefits from risk sharing, as is the case of many standard models, agents
generally prefer low levels of price efficiency.

(Of course, price efficiency may be desirable for other reasons, such as for the efficient
allocation of capital in primary financial markets, or because of information conveyed by

markets that provides incentives and guides “real” productive decisions)

5 Conclusion

We develop a benchmark model to study the equilibrium consequences of indexing in a stan-
dard rational expectations setting (Grossman and Stiglitz (1980); Hellwig (1980); Diamond and Verrecchia
(1981)). Individuals must incur costs to participate in financial markets, and these costs are
lower for individuals who restrict themselves to indexing strategies. Individuals’ participa-
tion decisions exhibit strategic complementarity. As indexing becomes cheaper (1) indexing
increases, while individual stock trading decreases; (2) aggregate price efficiency falls, while
relative price efficiency increases; (3) the welfare of relatively uninformed traders increases;
(4) for well-informed traders, the share of trading gains stemming from market timing in-
creases, and the share of gains from stock selection decreases; (5) market-wide reversals

become more pronounced. We discuss empirical evidence for these predictions.

15See Bond, Goldstein, and Edmans (2012) for a survey.
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Appendix

Results omitted from main text

Lemma A-1 Suppose that the information set F; consists of a set of normally distributed

random variables. Then

var (qu,-) |
var (%)

Proof of Lemma [A-1] Let Y9 be the variance matrix of the random variables in F;; and

aiXE [Xm} —1-

Y12 be the row vector of covariances between X and the random variables in F;. By the

properties of multivariate normality

aiXE [qu,} — DLy

/
Z12

var (f(|]:,> = var[X] — L1555 Y.
Combining these two equations yields the result, completing the proof.

Lemma A-2 Let& € R™ be a normally distributed random vector with mean v and variance-
covariance matrix 3. Let b € R™ be a given vector, and A € R™"™ a symmetric matriz. If
I — 2¥ A is positive definite, then E [exp(bT§ + £TA§)] is well defined, and given by:

E [exp ((bTE + STAE)] = |I—-2%A| Y2 exp (bT,u + " Ap+ %(b +2Ap) " (I —25A)71S(b + 2A,u)) .
(A-1)

Proof of Lemma [A-2} Standard result.

Proofs of results stated in main text

Proof of Lemma [2: Consider first the case in which g—P

+ 7 0. The information content of

(yi, €5, P) is the same as the information content of

P—-E[P P—-E|P
(yiaT[]+UXaT[]+MX+p_16i) =(X+e,X—p ' Z,X+p ).
X X

Since €;, Z, and u; are independent, the conditional variance expressions (I4]) and (I3]) follow

by standard normal-normal updating. Using g—; = —pg—g, the corresponding conditional
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expectation E [X|y;, e;, P| is given by

E [X]yi, e, P] P —E[P]
var (X |y;, e;, P) = 7xpx —p(Tz + ) gfg"‘,uX + pruei + Ty (A-2)

Finally, if 8—; = 0 then neither the price nor the endowment e; contains any information

about X; and p = 0; so (I4), (I3), and ([A-2)) are all immediate.
The expressions in Lemma 2] are then immediate from the demand equation (8), com-

pleting the proof.

Proof of Lemma [3: From Lemma [2] % < 0 for all agents.

If gp = 0, then P contains no information about X, so | N D 90, Zdi = 0, and (I8) is then
immediate.

If instead 92 £ 0, then 2£ [\ 2%dj > 0 by Lemma @l By (I2) and Lemma 2]

oxX JN P
oP [ 09, = OP [ 06, 06,
ox Jyapt T ox v ap® T T oy, (A-3)

Hence 8 > 0, which (again using (A-3)) implies (I8).

Note that the above arguments also establish that aP > O

The main text establishes that aP - 7 0. So to estabhsh < 0, suppose to the contrary
that 22 > 0. Then p < 0, and Lemma 2 implies [, 2 1dz < 0and [, 5 %_dz < 0. Com-
bined with (I8]), this in turn implies that the lefthand 81de of ([I3]) is strictly negative. The

contradiction completes the proof.

Proof of Lemma [4: At various points in the proof, we make use of p < 0 and < 0 (by
Lemma [3]), and % > 0 (by Lemma [2).

Re-arranging market-clearing ([3)) gives

oP 7 [y 5pdi 00; .
= 1 : A-4
"=z /a d+< Ngzzdz N A
By Lemma Bl and market-clearing (I3]), we know
a0; . 00
| Gedi+ | Gadi<o. (A-5)
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From () of Corollary [2] g—g% + g—gj < 0, which together with g—gj > 0 implies

oP 00; 7-
oz fN aﬁdz

———— +1<0.
90; 1
NagidZ
So substituting (A-5l) into (A-4]) gives
oP [ 99, . 00, (%5 [y Lidi 90; .
— -d R e | “d
0> 57 ), ap% " | 5 ( NV N

oP [ 06, . 0P [ 06, Sy S&di

- 1 — —= = A1l .
07 |y OP 0Z JyoP [, Sedi

(A-6)

Using 22 < 0 and the signs established in Lemma [ inequality (A=) is equivalent to

- 00; 7-

N %dz N Oe; di
o0, g: ~ [ g
vopdt  Jyaedi

which is in turn equivalent to (20)), completing the proof.

Proof of Proposition I} From (I2)) and (I3),

op %% i
— 99X — IV ov; (A-7)
oP 90; 1, 90; 1.
97z N a_eidl + fN a—éid'l
Substituting in from Lemma [2]
% fN TZdZ
p= (A-8)

Iy <1 — %Tu> di

and so .
P°Ty — P + —/ T;di = 0,
nJn

leading to (2I)). The comparative statics of price efficiency is immediate from the fact that

+ [ Tidi is decreasing in n. To derive (22), note that Corollaries [ and Bl combine to give

S

EX—-P]=——7—,

T
and so by Lemma [2] -
E[X - P| = 78

1 1 -
n f vaur(X|y%-,ei,P)dZ
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Substituting in (I3]) completes the proof.

Proof of Proposition 2 The final wealth of agent i, given optimal trading (g]), is

E[X — Ply;, e;, P] (X — P)

Wi=(s+e)P
(5+e) P+ yvar (X |y;, e;, P)

So by the standard expression for the expected utility of an agent with CARA utility facing
normally shocks, combined with simple manipulation, agent i’s expected utility at the time

of trading is

i 1E[X — Ply;, e;, PJ?
. . Pl B VPt — . (A-
[u (Wi = K) |ys, €, P] exp ( v <(S +e) P 2 var(X|y;, e;, P) " A

To obtain (23]), we use (A-9), and proceed in two stages. First, we integrate out possible
realizations of the private signal y;. Second, we integrate out possible realizations of the price
P. Note that the first stage is relatively standard, and closely related algebraic arguments
can be found in the related literature. Readers familiar with these arguments should proceed
directly to the second stage.

For the first stage, define §; = E[X — P|y;, e;, P and A; = —1/ (2var(X|y;, e;, P)). Minor

algebraic manipulation of Lemma [A-2] implies

A;
1 —2A,var(&le;, P)

E [exp (f?AZ) e, P} = (1 — 2A,var(&le;, P))_% exp < E[&ei, P]z) )
(A-10)

By the law of total variance,
var(X — Ple;, P) = var(E[X — P|y;, ;, Pl|ei, P) + E[var(X — Ply;, e;, P)le;, P|

which implies
var(&;le;, P) = var(X|e;, P) — var(X|y;, e;, P)
and so
var(X|e;, P)
var(X|y;, e;, P)

1 —2A;var(&le;, P) = = d;,

where d; is as defined in (24). Substitution and straightforward manipulation implies that

expression (A-I0) equals
oo (LELX = Plei, P’
i P\ e (X e, P) )
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and so

1E[X — Ple;, PJ?
2 var(Xle;, P)

_1
Eu(W; — k) |e;, P] = —d; * exp (—7 (s+e)P + ’}/H) : (A-11)
completing the first stage.
In the second stage, we integrate out possible realizations of P. Since P = (P — E[P|e;])+

E[X |e;] — E[X — Pl|e;], the expression in the exponent of (A=11)) equals

_1E[X — Ple,, P
2 var(Xle;, P)

—(5+e)(P—E[Plei]) ~1(5-+ ) ELX ei] +7(5+ ) E[X — Plelei + s

(A-12)
Denote the expected return X — P given exposure e; by a., i.e.,
Pe;
0. = E[X — Ple]] = B[x — p| — <Vte) (A-13)
var(e;)
and note that
cov (X — P, Ple;)
E|X — Ple;, P| = P —E|Ple; e A-14
X = Pleg ) = 220 (il + o (A1)
By substitution and Lemma [A-2] (A-T1]) equals
—d; * D% exp (—(5 + ;) (jx — o) + k) (A-15)
Y ex 1 o? n 1 aecov(X — P, Ple;) Gt 2 var(P|e;)
P 2% (X e, P) T 2 \Var(Plesvar(X e, P) V0T D
where (X P.Ple,)?
cov (X — e;
D=1 L A A-16
* var (X |e;, P) var (P|e;) ( )
The law of total variance and (A=14]) together yield
X — P, Ple;)”
var (B[X — Ples, P |er) = var (X — Plez) — var (X]es, P) = <2 Ple” )

var (Ple;) ’

and substitution into (A-I6) delivers (25).
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For use below, note also that ([A-17)) implies that

var (Ple;)  var (Ple;) var(Xle;, P)  var (Ple;) var (X — Ple;) — cov (X — P, Ple;)’
D B Dvar(X|e;, P) B Dvar(X|e;, P)
var (X|e;) var (X — Ple;) — cov (X — P, X|e;)”
Dvar(X|e;, P)
cov (X — P, X|e;)?
Dvar(X|e;, P)

= var (X|e;) —

(A-18)

where the penultimate equality follows from the fact that for any random variables r; and
Tro,

cov (11 — 7o, 7“1)2 — cov (r] — 1, 7’2)2 = var (r; — o) (var (ry) — var (ry)),

and the final equality follows from (25]).
By expanding and then re-arranging the quadratic, (A=15]) equals

2

. ) 1 a cov(X — P, Ple;)?
—(d;D)" - i 5 ] !
( ) exp ( fY(S +e )/J’X + YK + 5 VaI'(X|P’ ei) <Dvar(P|6i)VaI‘(X|€i, P)

cov(X — P, Pley) 1) zyggfjgg>

1
+ _’72(5 + 62')

X exp <7(s+ €;) Qe <

Dvar(Xle;, P) 2 D
2
= —(d:D) " exp —%§+@mx+7ﬁ—3 S
2 Dvar(Xle;, P)

Dvar(X|e;, P) 2 Dvar(X|e;, P)
2(s 2
+é
vl )
2TX

X — P, Xl|e; 1 X — P, X|e;)?
X exp (7(S+e,-) aeCOV( - Xle) + =% (5 4 ¢;)? (Var(X|e,-) _ vl  Xle:) ))

= — (diD)_% exp (—7(3 +e)pux +

Y oxp (_ 1 (o — cov(X — P, X)1(5+ ei))2> |

2 Dvar(Xle;, P) (A-19)

where the first equality follows from ([A-16]), ([25)), and (A-18). Substituting Corollary [II's

expression for E[X — P] into (A-I3)’s expression for a, and then in turn substituting into
(A-19) yields (26). This completes the proof.

Proof of Proposition B: The main steps are given in the main text. Here, we give the
cov(X,P) 9P __ cov(Z,P)

details for a few of the steps. For use below, recall that g_)lz = w0 07 = e #) and
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note that

2 2

var (Z|e;) ,
var (X)? var (Z)° (Zles)

(A-20)

var (X — Ple)) — (COV (X~ B X))zvar (X)+ <M)2var(2|e,.). (A-21)

var (X) var (Z)

Details for the argument that A is decreasing in price efficiency p: Substituting (A=21)) into

(26]) gives

var(Z)? cov(P el var(e;) 2
A = var(e;)? < var( —yeov ( ) var( Z))
<7°°Vg()gx ) var (X) + (Cizrfzz ) var (Z|e;)
var(Z)? ( cov(P,Z) . Var(el))2
var(e;)? var(Z) 'ycov(X P,X) var(Z)

3 .
1 1 cov(P,Z) 1
~2 var(X) + <_ var(Z) ’\/COV(X—P,X)) var (Z‘el)

Substitution (I9) of Corollary B into (A=22)) yields (21).
By Corollary @ and L [, 2% rdi = —1,

var(e;) Tz +T. fN Pidi  19pP 9; . In gil di
var (Z) 1. N g(f?dz T noz N OP fN aeldl.

(A-22)

(A-23)

Hence (30) is equivalent to ([A-6)) in the proof of Lemma [ which itself is equivalent to (20]).
Details for the argument that D is decreasing in price efficiency p: Using the law of total

variance,

cov (X, Ple;)?

var (X |e;, P)var (Ple;) = <Var (X|e;) — W) var (P|e;)

= var (X|e;) var (Ple;) — cov (X, Ple;)”.

Substituting in (A=20) gives

Z,P)’
var (X|e;, P)var (Ple;) = Mvar(ﬂei) var (X) .

var (Z)
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Also by ([A-20), and making use of (I9) of Corollary [3]

cov (X — P, Ple;) = cov(X,Ple;) —var (Ple;)
cov (X,P) cov(Z P)
= ———— (var(X) —cov (X, P _—
var (X) (var (X) ( )= var (Z)?
(CXE&I;) szag(zél)))var (Z |€i)> cov (Z, P)

cov(Z,P) cov (X — P’ X) var (Z) ¢

var(Z)
) 10P [ 86; .\ cov(Z,P) 1
_ ( —p + yvar (Z|e;) — 8Z/ apdz) var (Z) ( Ve Jn o8 JZ} ?

Substitution of (A-24) and (A-26)) into (A-16]) yields (28]).
To establish the equivalence of yp — 7, > 0 with (I§]), note that the equality of (28) and
1) and igg | N3 90; Adi = m imply that vp — 7, > 0 is equivalent to

fN Sudi
fN 802 di

var (Zle;)  (A-25)

ov(X — P, X)

1+ <0,

which given 2 aej > 0 is equivalent to (IS).
Proof of Lemma B For transparency of notation, we establish the result for a single-asset
economy. From (B3), Lemma 2, and (29),

s+E[Z|P] s+E[Z|P]  s+E[Z|P]oP

E[X — P|P] = =

yn fo Var(X\ll/mEi,P) - ; fN aeldl N 1+ £ ~Tz 8Z'
Note that
0 cov(Z,P) cov(Z,P)var(Z) OP var (Z)
b AP = Py (Z) (P)  0Z (2F op)? '
var var var (_X) var (X) + (ﬁ) var (Z)

Hence (and using the fact that 22 is independent of Z)

, 1
8—PE [X - P‘P] - <1 + %TZ> (p%?r(()z{)) T 1)'

We know that as k,, falls, p,, likewise falls, completing the proof.
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Online appendix

Proposition A-1 Consider the benchmark economy described in subsection [2.2, in which
agents do not possess any private information about the asset’s cash flow X, but instead all
observe a public signal of the formY = X + ¢, where ¢ ~ N (0,771). For generality, agents
potentially differ in their asset endowments, with agent i possessing s; units of the asset
before trade. Let 5§ = [ s;di. In such a setting, each agent’s expected utility is decreasing in

the precision of the public signal, ..
Proof: Agent i’s terminal wealth is
WZ‘: (sl+el)P+(«9@+eZ)(X—P),

and he optimally chooses the portfolio

1EX|Y]-P
92' + €= -
v var (X|Y)
So agent i’s expected utility at the trading stage is

CE[X[Y]-P
var(xy) X >) ‘Y}
)

(E[X]Y]-P)*  1(E[X]|Y]- P)Q)

E[-exp(—Wi)[Y] = E {— exp (—v (s +e) P

= = - i i) P —
exp( v (si+e) var (XY) 2 var (X[Y)

1(E[X]Y] - P)’
2 var(X]Y) |-

= —exp (—7 (si+e) P —

We evaluate

E

2 var (X|Y)

— exp (—7 (s;i +e;) P — LE[X]Y] = P) ) |e,~] : (A-1)

Expanding, this expression equals

L (E[X]Y] - P)*

E —exp(—wsﬁei)E[Xm+v<si+ei><E[X|Y]—P>—§ (YT )\]

By market clearing,
1E (X|Y]-P

=54+ 7
v var (X]Y) 5+ 4



ie.,

E[X|Y]— P =~var (X|Y)(5+ Z),
and so (A=I) equals

y2var (X1]Y)
2

E {— exp (—7 (s +e) E[X|Y] + (2(54+2Z)(si+e)— (5+ Z)z)) \ei] .

Moreover,

E[X|V] = TXETE(JLZQY _ Tg—llf)z[f(ltjley _ (var(Y) —var (j;)ﬂ)(;E/;)[X] + var (X) Y.

Hence (A=) equals

—exp <—’7 (Si + ei) E [X] + i (Si;_ ei) \:?;I'(g)) )

2 XY
v E {exp (%m (2(G+2) (si+e)— (5+ 2)2)) |ez} .
By the law of total variance,

var (X)?
var (V)

var (X)) = var (X|Y) + var (E [X|Y]) = var (X|Y) +

So (A-I)) equals

— exp (—7 (si+e)E[X]+ mf—i_ei)var (X))

x E [exp (w 2G+2)(site)—(+2)° —(si+ ei)2)) |ei]
= [-ew (vt e x - TR (e - (54 27 .

This expression is increasing in var (X|Y), completing the proof.



