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Abstract

I study how quantities of safe bonds affect asset prices and lending volumes in financial
markets. In a quantitative model, heterogeneous agents trade securities of different maturity
and risk exposure. Risk-tolerant investors issue collateralized bonds to obtain leverage and to
insure the risk-averse. Despite the presence of higher return assets, the most risk-tolerant hold
long-maturity safe assets, which they value as good collateral. The value of collateralizability
is high when safe bond quantities are low. Given measured variations in safe bond quantities
between 1990 and 2015, the model replicates the dynamics of lending volumes and generates
large, volatile credit spreads and excess return predictability. The model also predicts price
effects of high-frequency changes of government debt quantities around tax due dates. In
policy experiments, I use the model to study the effects of central bank asset purchases.
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1 Introduction

I study how quantities of safe bonds impact asset prices and lending volumes in financial markets.
The paper is motivated by an empirical literature that finds a relation between the level of
government debt and interest rates, and by the fact that the US central bank increased its holdings
of government-backed securities by about $3.5 trillion between 2008 and 2014, with the explicit
goal of lowering interest rates and raising asset prices. I start my analysis with two observations:
First, the government is not the only provider of safe investment opportunities. For example, safe
and short-maturity investors, like money market funds, hold government assets, such as 3-month
Treasuries, but they also lend safely and short-term in collateralized lending markets. Second,
long-maturity safe assets are held by a different group of market participants, namely, highly
leveraged investors like hedge funds, who use these assets as collateral.

To capture these observations, I develop a new quantitative model of financial markets with
collateralized lending. In the model, heterogeneous investors trade safe and risky assets of different
maturity. Moreover, they borrow and lend from each other against collateral. The model generates
an endogenous segmentation of the market for safe assets. Short-maturity safe assets are held by the
most risk-averse investors. Long-maturity safe assets are held by the most risk-tolerant investors,
despite the presence of corporate bonds and stocks with higher expected returns. In the model,
the exogenous quantities of safe assets determines the supply and demand for privately produced
short safe assets. Risk-tolerant investors pay a premium for long safe assets because these assets
are particularly useful as collateral. This “collateral premium” varies with safe bond quantities and
generates additional volatility of long-maturity interest rates. Risk premia are time-varying because
changes in the quantities of safe assets have quantitatively important effects on safe interest rates,
but not on the returns of equities and corporate bonds.

I use the model in two quantitative applications. In the first application, I study the effects of
measured variations in safe asset quantities over the business cycle. The goal of this exercise is
to see whether the model can match the dynamics of collateralized lending in financial markets,
and whether the variation of the collateral premium generates quantitatively important asset price
effects. In the second application, I study high-frequency changes in the level of government debt
around annual tax dates. I ask whether the model can predict the empirical asset price effects that
occur due to that variation. Finally, I undertake counterfactual policy experiments to analyze the
effects of large-scale asset purchases.

For the first application, I measure the evolution of the quantities of short-, medium- and
long-maturity safe assets between 1990 and 2015 using data from the Flow of Funds. I also estimate
the time series of the aggregate state of the economy using only macroeconomic data. Given these
data, the model replicates the dynamics of lending volumes in the repurchase market over time.
The time variation in the collateral premium provides a quantitatively important channel of interest
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rate volatility that creates excess return predictability, as documented in the empirical literature.
The model also generates a large and volatile credit spread that matches the data. In line with
previous research, the representative agent case of my model generates a low BAA credit spread
volatility of 0.09%, while the full model predicts a value of 0.64%, closer to the volatility of 0.78%
observed in the data.

In the high-frequency application, I study the response of asset prices to movements in the level
of government debt around annual tax dates. Before April 15, the US Treasury issues short-maturity
T-bills in anticipation of incoming tax receipts. After April 15, tax revenue repays outstanding
debt. This seasonal variation generates an anticipated variation in the amount of outstanding
short-maturity debt. Using issuance forecasts from the US Treasury, I show that there are also
often large unanticipated tax inflows which lead to unexpected persistent changes in the level of
government debt. The model replicates the observed asset price effects of the anticipated temporary
and unanticipated persistent variation in government debt.

In both applications of the model, I find that safe asset quantities have quantitatively important
effects on short- and long-maturity interest rates on safe bonds. This result has implications for
fiscal and monetary policy. Not only does the US Treasury have a direct effect on the level and
maturity structure of government debt, but also the Federal Reserve can change the quantity of
safe assets through large-scale purchases of government-backed securities. The three rounds of
quantitative easing (QE) after 2008, especially QE 2 and QE 3, had the explicit goal of changing
the level of interest rates and asset prices; the central bank attempted to lower long rates to spur
investment and economic activity.1 While conventional monetary policy directly changes the short
rate in the federal funds market, these unconventional market interventions targeted a much broader
range of asset prices.

My framework allows me to study the transmission mechanisms of large-scale asset purchases
because it incorporates private assets, like stocks and corporate bonds, as well as safe assets of
different maturities. I can therefore analyze the differential effects of asset purchases on interest
rates of all maturities, as well as on the prices of risky assets. In the quantitative model, a permanent
reduction in the total value of long-maturity government-debt by 5% of consumption in 2012,
approximately the magnitude of central bank purchases during QE 2, lowers the short-maturity
rate by 28 basis points, or 0.28 percentage points, and increases the term spread by 8bp. An
exchange of short safe assets for long safe assets in the same amount increases short rates by 17bp
and reduces the term spread by 6bp. In both cases, the price effects on corporate bonds and equity
are negligible.

The presence of collateralized lending is the key feature of the model to generate the above
results. In the data, the main venue for collateralized lending is the repurchase market, a term that

1As stated, for example, by Bernanke (2012).
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encompasses a system of several markets. This paper focuses on the end-users of the repo system:
cash investors are lenders and collateral providers are borrowers in this market. A typical cash
investor is a money market fund seeking short-maturity and safe investment opportunities, while a
typical collateral provider is a hedge fund that borrows in order to hold a leveraged portfolio of
long-maturity securities. Money market funds and hedge funds often do not interact directly, but
connect through a dealer bank that acts as an intermediary. The model abstracts from the role of
intermediaries, who maintain active repurchase markets among themselves and with hedge funds,
and instead focuses on the relationship among end-users.

I study the role of collateralized lending markets in an infinite horizon endowment economy.
Aggregate output is distributed through different assets that are in exogenous positive supply.
These assets represent equity, defaultable corporate bonds, default-free nominal bonds of various
maturities and labor income. The default-free bonds represent government debt and similarly safe
assets. Output and the nominal price level are exogenous stochastic processes.

Investors differ in their risk-aversion which creates gains from trade because the risk-tolerant
can insure the risk-averse. To do so, they issue one-period collateralized bonds. Risk-averse
investors hold these collateralized bonds because they provide a safe and short-maturity investment
opportunity. Risk-tolerant investors issue such bonds to maximize returns: by selling one-period
bonds, they are borrowing funds at the low short interest rate. They use the borrowed funds to
purchase long-maturity assets that earn, in expectation, a higher return. In the next period, they
have to repay the bondholders/lenders at the low interest rate, but, on average, receive the higher
returns on their portfolio of riskier, long-maturity securities.

Borrowers can only issue one-period bonds against collateral. Collateral constraints force the
value of the provided collateral to cover the promised bond payments in each state of the world
next period. Therefore, the lowest possible payoffs of the collateral assets determines how much
an investor can borrow. While portfolios of corporate bonds and equity earn higher returns, they
cannot guarantee large repayments because of their exposure to both aggregate and undiversified
idiosyncratic risk. Holding such portfolios therefore limits leverage. Long safe bonds are the optimal
collateral because they earn, on average, returns that are higher than the short rate. Moreover,
long safe bonds are not affected by idiosyncratic risk and are only subject to limited aggregate
risk, thus allowing for high leverage. I refer to this asset characteristic as collateralizability.2

Risk-tolerant borrowers are willing to pay a premium for assets that earn an excess return and are
highly collateralizable. Short- and medium-maturity safe assets are also useful as collateral, but
they earn little excess return. They are therefore held by the most risk-averse investors who consider
them as substitutes to collateralized bonds. In the absence of collateralized lending markets, the
risk-averse would also hold long safe assets.

2The corporate finance literature calls it “debt-capacity”; see, for example, Shleifer and Vishny (1992).
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The resulting market segmentation has implications for the level and dynamics of term and
credit spreads. In the model, there are fewer long safe bonds than the risk-tolerant would like to
use as collateral, given his net-worth. The next best collateral assets are corporate bonds, which are
priced by investors with intermediate risk-aversion who do not take on leverage. The risk-tolerant
investors bid up the price of long safe assets until they are indifferent between holding a leveraged
portfolio of long-maturity safe bonds or a leveraged portfolio of corporate bonds. The demand for
collateral thus creates a large credit spread between long safe bonds and corporate bonds. This
spread is not driven by default risk but by the collateral premium; it is therefore not present in the
representative agent model nor in the absence of collateralized lending.

When the quantity of short-maturity safe assets falls, the short rate falls and the strategy of
borrowing short-term to invest long-term becomes more attractive for the risk-tolerant. They then
further bid up the price of long safe bonds; this increases the credit spread because the corporate
bond price remains unchanged, since it is priced by the intermediate investors. The return on
long-maturity safe assets will not decline as much as the short rate because the price of the next
best collateral alternative, corporate bonds, does not change. The term spread therefore increases,
ensuring that the risk-tolerant remain indifferent between the use of long safe bonds and corporate
bonds as collateral. Changes in the quantities of safe assets thus generate additional variation in
term and credit spreads.

This paper contributes to the literature on collateralized lending and builds on the idea that
investors value assets, not only for their payoffs, but also for how useful they are as collateral. This
is the first quantitative model within that literature, and I find that the time-varying collateral
premium has sizable effects on long-maturity interest rates. Different from earlier papers, the model
features several different assets that can all be used as collateral. Therefore, the model provides a
microfoundation for how investors use collateral to trade with each other. Previous research studies
the effects of large-scale asset purchases in the presence of exogenous market segmentation. My
model generates an endogenous segmentation of the market for safe assets, and it therefore extends
the “preferred habitat” literature by determining which asset characteristics set market segments,
and why such segmentation plays an important role for safe assets but not riskier securities. The
model replicates several findings of the empirical asset pricing literature, in particular, excess return
predictability, as well as large and volatile credit spreads that are mostly unrelated to default risk.
Section 7 discusses the related literature in more detail.

2 Safe asset holdings in the data

This section documents that short- and long-maturity safe assets are held by different types of
investors in the data. The quantitative model presented in the next section will replicate this
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segmentation. In the model, more risk-averse investors hold short and medium safe assets, while
risk-tolerant investors hold long safe assets, which they use as collateral to borrow. In the data,
short safe assets are, to a large extent, held by money market funds who are regulated to only
hold highly rated debt securities with short maturities.3 Data on other market participants are
more limited, but it is an uncontroversial claim that short safe assets are held for their safety and
liquidity.

I argue that long-maturity safe assets are held by hedge funds and other leveraged investors
based on three observations: First, in the Flow of Funds, the household sector, which includes hedge
funds and similar investment firms, has large direct holdings of Treasury and agency debt. Second,
data on general collateral repurchase markets show that almost all collateral assets are highly rated
securities. Because borrowers provide their asset holdings as collateral, one can conclude that
leveraged investors hold these safe assets. Third, the level of lending volumes in these markets is
large, and it comoves with the total quantity of long safe assets. The remainder of this section
discusses the three observations in more detail and provides a short introduction to collateralized
lending in repurchase markets in the data.

Safe asset holdings in the Flow of Funds: I use Treasury holdings as a proxy for a sectoral
prevalence to hold safe assets. I exclude foreign holdings, which are mostly held by foreign
institutions like central banks. Between 1990 and 2015, the single largest group to hold Treasury
debt were federal pension funds. During this time period, they owned on average about 30% of all
domestically held marketable Treasury debt. Regulation forces federal pensions funds to hold only
federal government debt. Private, local and state pension funds have more flexibility in choosing
their portfolios. They held, on average, less than 14% of outstanding Treasury securities, even
though they managed about five times as much net-worth as federal pension funds. Depository
institutions, money market funds and mutual funds each held 7-8% of all Treasury debt. The second
largest holder of Treasury securities is the household sector with an average direct holding share of
19%, a number that excludes non-marketable savings securities. I estimate a similar holding share
for agency debt.

To interpret the large direct holdings of agency and Treasury debt of the households sector, it is
important to note that the household sector aggregates all residual holdings that are unassigned to
any other sector in the Flow of Funds. Therefore, the household sector also includes hedge funds and
similar investment firms who do not file regulatory holding reports. In the data, hedge funds hold
long safe assets when following an interest rate carry strategy, under which they borrow short-term
to finance a leveraged portfolio of long-maturity securities. In the following, I discuss how hedge
funds obtain such a leveraged portfolio, and I present evidence that the safe asset holdings of the
household sector indeed represent portfolio holdings of such leveraged market participants.

3See rule 2a-7 of the Investment Company Act of 1940.
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Safe assets and collateralized lending: In the data, hedge funds and other leveraged investors
can borrow funds in multiple ways, all of which require collateral. They can borrow from their
prime broker, either through the means of a margin account or a bilateral repo agreement; they can
borrow from a third party, usually through a bilateral repo agreement; or they can obtain synthetic
leverage by entering derivative contracts. Even though such contracts also require collateral, I
abstract in this paper from derivative trading. Including such instruments provides an interesting
extension.

If a hedge fund obtains a loan from his prime broker or another security dealer, this lender will
himself turn to cash-providing institutions to borrow the needed funds. To do so, the lender will
rehypothecate the hedge fund’s assets and provide them as collateral in a repo agreement of his own.
A prime broker may also hold proprietary asset portfolios that are financed in repo markets. There
are several such markets in the data which differ in the details of the contracts, in who participates
and in which assets can be provided as collateral. In this paper, I am interested in how repo
markets produce safe investment opportunities. Therefore, I do not include repo contracts among
dealers, brokers and borrowing investors, and instead focus on their aggregate role as net-borrowers
from cash providers.4

Cash providers, such as money market funds, interact with the repo system through two types
of markets: Bilateral repo markets, in which the counterparties or their custodians are themselves
responsible for settling and clearing the contracted transactions, and tri-party repo markets, in
which a neutral third party provides clearing and settlement services. For a more detailed description
of the institutional details see Baklanova, Copeland, and McCaughrin (2015).

Data on repo markets are limited. In terms of sample length, the best data source are quarterly
regulatory filings by brokers and dealers. This data only contains repo transactions which include
a registered broker or dealer as a counterparty. The data suffers from double-counting of repo
transactions whenever both counterparties are brokers or dealers. Primary dealers have additional
reporting requirements on a weekly frequency. The Federal Reserve Bank of New York publishes
these data going back to 1998. Starting from 2010, there are additional data sources not based on
the reporting market participant, but on the market venue itself. The Federal Reserve Bank of
New York publishes monthly data on lending volumes in the tri-party repo market and the DTCC
publishes daily data on the GCF market, a repo market only among dealers. Data on the bilateral
repo market are at this point not available, and estimates on its size differ widely.5 The tri-party
repo data includes time series data on the assets borrowers use as collateral. Since 2010, about
80% of the collateral assets are government-backed securities. Since 2013, the primary dealer data

4 For the same reason, I focus on general collateral repo agreements that have the purpose of borrowing funds
rather than borrowing specific securities. Special repo and security lending agreements function in the same way, but
the main interest of the cash-providing counterparty is not to safely invest funds, but to obtain a specific security,
often for short-selling purposes.

5 See, for example, Copeland, Davis, LeSueur, and Martin (2012a) and Gorton and Metrick (2012).
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also differentiates repo agreements by collateral type. The share of government-backed securities
provided as collateral by primary dealers during that time is even higher, at nearly 90%.

These results show that leveraged institutions do indeed hold safe assets and that they provide
them as collateral in the repurchase market. The lending volume between the repo system and cash
providers could provide an estimate of how many such assets leveraged investors use as collateral to
borrow funds. The broker and dealer data has the disadvantage that it both over- and understates
lending volumes in collateralized lending markets. It understates lending volumes because dealers
are just one set of market participants that borrow from cash providers. The data overstates
net-borrowing in the repo market because it includes repo agreements among dealers, leading to
both double-counting and an overstatement of what is borrowed from cash-providers, rather than
within the dealer system. Krishnamurthy, Nagel, and Orlov (2014) estimate the size of the repo
market based on regulatory filings by money market funds only, thereby estimating the actual
cash provision from such cash investors. Gorton and Metrick (2012) argue that there are large
unregulated cash pools which are not captured in regulatory filing data.

Figure 1 compares the total value of repo borrowing by brokers and dealers to an estimate of
actively traded safe assets with a maturity of more than 3 years. The latter estimate is based on
Flow of Funds data on domestic asset holdings and its derivation is described in more detail in
Section 5.3. The quantity of safe assets comoves with lending volumes, and I interpret this as
suggestive evidence that the household sector’s holdings of Treasury debt largely represent holdings
of long-maturity safe assets by leveraged institutions. This comovement is not present for short- or
medium-maturity assets; the model will predict the use of long rather than short or medium assets
as collateral.

3 Model

I study the interaction of safe asset quantities and collateralized lending in an infinite-horizon
exchange economy. Time is discrete. Output is stochastic and exogenous, as is the inflation rate.
The economy is populated by a continuum of investors with time-varying risk-aversion. In each
period, there are M groups of investors that differ in their risk-aversion. These differences in
risk-aversion create gains from trade. Claims on output are traded in the form of different types
of assets: equity, corporate bonds, government debt of different maturities and a residual claim.
Investors are, in general, short-sale constrained, but they can issue collateralized bonds in order to
borrow. This section describes the model in detail. Section 4 discusses the individual assumptions
and Section 5 presents the connection of the model’s parameters and variables to the data.
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Figure 1: Comparison of long-maturity safe asset quantities with lending volume in repurchase
markets. Safe asset quantities with maturity of 3 years or more are estimated from Flow of Funds
data as described in Section 5.3. Repo volume data are repurchase agreement liabilities of brokers
and dealers from the Flow of Funds. Section 2 discusses the repo data in more detail.

3.1 Endowment and preferences

Aggregate state: Output growth gt is exogenous and stochastic, and the process of aggregate
output Yt is

Yt = exp(gt)Yt−1.

The nominal price level Pt is also exogenous and grows at a stochastic inflation rate πt:

Pt = exp(πt)Pt−1.

Growth and inflation are subject to transitory shocks and a common persistent component:

gt = µg + ξgzt + ηg,t,

πt = µπ + ξπzt + ηπ,t,

zt = φzt−1 + ηz,t,

(1)

where µg and µπ are the average growth and inflation rates, and ξg and ξπ are the individual loadings
on the persistent factor zt. I assume that ξg is positive, so that the growth rate is increasing in zt.
The three shocks ηg,t, ηπ,t and ηz,t have bounded support. Yt, Pt and zt summarize the aggregate
state of the economy.
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Preferences: There is a continuum of investors, i ∈ [0, 1], who derive utility from consumption
Ci,t. Investors have recursive utility with time-varying risk-aversion γi,t. Risk-aversion can take
M = 4 different values. At time t, the next period’s risk-aversion γi,t+1 is unknown and will take
value γm ∈ {γ1, γ2, γ3, γ4} with probability pm. These probabilities are independent of time and
state, and realizations of γi,t+1 are independent across investors. In the quantified model, investors
will have a small probability of becoming very risk-tolerant with a low γ1 or very risk-averse with
high γ3 and γ4. The large majority of investors will have intermediate risk-aversion γ2.

I denote by st = [Yt, Pt, zt, {γi,t}1
i=0] the current state of the economy, which collects the aggregate

state and the current investor specific risk-aversion coefficients. The history of the economy up to
period t is denoted st. Given a consumption plan {Ci(st)}∞t=0, agent i’s utility is defined recursively
as

Ui(st) =
(

(1− β)Ci(st)1−1/σ + βEt
[
Ui(st+1)1−γi,t

] 1−1/σ
1−γi,t

) 1
1−1/σ

, (2)

where σ is the intertemporal elasticity of substitution.

3.2 Assets

Claims on aggregate output Yt are traded in the form of six different assets: equity; default-free
short-, medium- and long-maturity bonds; defaultable long-maturity bonds and a claim on residual
payoffs. The net-payments to these asset classes add up to total output. The capital structure of
the economy, meaning the way in which output is divided into payments to the different assets, is
exogenous.

Equity: Equity pays a fraction αt of the total tree payoff, such that dividends Dt are

Dt = αtYt.

A logistic function of the persistent component zt in Equation 1 defines the dividend share αt:

αt = ᾱ

1 + exp (−κD · (zt − z̄D)) .

The dividend share varies between 0 and ᾱ. If the parameter κD is positive, the dividend share αt is
below 0.5ᾱ when zt is lower than z̄D. The parameter κD governs the cyclicality of dividends. This
specification makes dividend growth more volatile than aggregate consumption growth, because
dividends are particularly low when current growth is low and vice versa. The real price of equity
is QE

t .
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Safe bonds: Bonds pay nominal coupons. Default-free bonds promise an infinite stream of
geometrically declining coupon payments, as in Woodford (2001). There are three different types
of such bonds: short-, medium and long bonds, indexed by j ∈ {S,M,L}. A unit of any safe bond
purchased at time t promises to pay one nominal unit in period t + 1, or 1

Pt+1
in real terms. A

deterministic fraction (1− δj) of the bond will disappear, while a fraction δj survives. Given this
geometric decline, the coupon payment T periods from t is given by δT−1

j , or 1
Pt+T

δT−1
j in real terms.

The parameter δj therefore governs the duration of a default-free bond, and the survival rates will
be set such that δS < δM < δL. I set δS = 0, such that the short bond is a one-period bond.

The amount of outstanding default-free bonds j ∈ {S,M,L} is exogenous and given as a fixed
fraction of current nominal output:

Ājt = ājPtYt.

A fraction δj of all bonds of type j that were issued in period t, survive in period t + 1 and are
therefore part of the new bond supply. Given a supply of ājt−1 at t− 1, an issuance of ājt − δj ājt−1

achieves a new supply of ājt . At each point in time t, previously issued bonds receive their coupon
payments, and new bonds are issued to reach the exogenous level of supply. The part of output
that is paid to default-free bonds is

τt =
∑

j={S,M,L}

(
Ājt−1

1
Pt
−
(
Ājt − δjĀjt−1

)
Qj
t

)
,

which is the sum of coupon payments minus the revenue from the sales of newly issued bonds. One
can interpret the net-payment τt as the output tax that an unmodeled government has to levy in
order to finance its debt holdings. I will refer to default-free bonds as “government bonds”, and
call the one-period bond “T-bill”.

Risky bond: The risky long-maturity bond represents a diversified portfolio of corporate bonds
that can default. It has a similar structure as the default-free long bond, but its survival rate δ̃t is
stochastic. Similar to the dividend share, δ̃t is a logistic function of the persistent factor zt:

δ̃t = δL
1 + exp(−κB · (zt − z̄B)) .

When z̄B is far enough below 0, δ̃t is close to δL whenever zt is around or above its mean. When
zt is very low, the survival rate δ̃t will be lower than δL, representing the defaults of a fraction of
the bonds in the portfolio. The nominal coupon payment T periods from t is ∏t+T−1

s=t+1 δ̃s and the
real price of this bond is QB

t . As for the default-free bonds, the amount of outstanding defaultable
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bonds ājt is a fixed fraction of current nominal output,

ĀBt = āBPtYt.

The part of output paid to this type of bond is

ιt = ĀBt−1
1
Pt
−
(
ĀBt − δ̃tĀBt−1

)
QB
t ,

which is the difference between coupon payments and the revenue from new bond issuance. Bond
issuance relative to aggregate consumption is higher in bad times, because a smaller fraction of
the outstanding bonds from last period survives. I will refer to the defaultable bond as “corporate
bond”.

Residual claim: At this point, three slices of total output have been assigned to financial assets:
A slice Dt = αtYt is paid as dividends to equity holders, a slice τt is paid to default-free bonds, and
a slice ιt is paid to defaultable bonds. The remainder Nt = Yt−αtYt− τt− ιt is paid to a final asset,
the residual claim. While all other assets are traded in a single competitive market, the residual
claim can only be traded among investors with the same current risk-aversion coefficient γm. The
asset is therefore traded in four separate markets at different real prices QN

m,t. This assumption
ensures that every group of investors holds a fixed portion of the residual claim. I therefore label
that asset “non-tradable”.

3.3 Asset trading and collateralized lending

Investors trade the above assets in competitive markets. All trading is, in general, subject to
short-sale constraints, but investors can borrow funds by issuing default-free one-period bonds S.
By selling one unit of such a bond at time t, the borrower promises to pay one nominal unit to the
buyer of the bond in the next period t+ 1.

Borrowing is subject to a collateral constraint which states that the value of the provided
collateral cannot fall below the promised repayment in any state in the next period. Since the
promised repayment is in nominal terms, the relevant variable is the lowest possible nominal payoff
of the collateral in the next period. All assets, except the residual claim, can be used as collateral,
and I assume that the collateralizability of each asset is evaluated individually. The collateral
constraint is then

− aSi,t ≤
∑

j∈{M,L}
aji,t+1 min

st+1

[
Pt+1Πj

t+1

]
+ ζ

∑
j∈{E,B}

aji,t+1 min
st+1

[
Pt+1Πj

t+1

]
(3)
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where aji,t denotes agent i’s holdings of asset j, and where I define the real payoffs of asset j as
Πj
t+1, so

ΠE
t+1 = Dt+1 +QE

t+1,

ΠS
t+1 = 1

Pt+1
,

ΠB
t+1 = 1

Pt+1
+ δ̃t+1Q

B
t+1,

ΠM
t+1 = 1

Pt+1
+ δMQ

M
t+1,

ΠN
m,t+1 = Nt+1 +QN

m,t+1,

ΠL
t+1 = 1

Pt+1
+ δLQ

L
t+1.

The parameter ζ allows for the possibility that the value of equity and corporate bond collateral is
below the market value of the assets to incorporate unmodeled idiosyncratic risk in a reduced form.
The constraint counts all of agent i’s asset holdings as collateral. The assumption that borrowers
can never default on their promised repayment implies that overcollateralization is irrelevant. I
therefore assume that the borrower always provides his entire asset portfolio as collateral. Issuance
of collateralized bonds (aSi,t < 0) is only possible if the lowest possible collateral value in the next
period is strictly positive. The previous assumption of a bounded support of the shocks ηg,t, ηz,t,
and ηπ,t ensures that such a positive lower bound exists.

Issuance of collateralized bonds is costly and the borrower has to pay an issuance fee Ft to an
unmodeled intermediation sector outside of the economy. The fee is computed as a fraction f of
the promised repayment, and hence the seller of a bond receives only QS

t − f for each sold unit.

3.4 Investor problem and equilibrium

In the following, I denote with J = {S,M,L,E,B,N} the set of all assets. Given a history of the
economy st, as well as corresponding asset prices Qj

t and investors’ asset holdings aji,t−1 of all assets
j ∈ J , investor i with γi,t = γm chooses a portfolio plan to maximize his utility defined in Equation
2. His choice is subject to his budget constraint

Wi,t ≥ Ci,t +
∑

j∈J\{N}
aji,tQ

j
t + aNi,tQ

N
m,t − Ft, (4)

where the issuance fee is Ft = max
[
0,−fa0

i,t

]
and where wealth Wi,t is

Wi,t =
∑

j∈J\{N}
aji,t−1Πj

t + aNi,t−1Πj
m,t.

Furthermore, the optimization is subject to the short-sale constraints

aji,t ≥ 0 ∀j ∈ J\{S}, (5)
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and subject to the collateral constraint (3). With the optimization problem at hand, I define the
equilibrium as follows:

Definition 3.1 (Equilibrium) Given initial levels of output Y−1, price level P−1, and of the
persistent factor z−1, as well as initial of asset holdings aji,−1 for all investors i and assets j, and
given a path of aggregate shocks {ηt}∞t=0 and idiosyncratic realizations of risk aversion coefficients
{γi,t}∞t=0, the equilibrium is defined as the paths of

• asset prices {QE
t , Q

S
t , Q

M
t , Q

L
t , Q

B
t , Q

N
t }∞t=0,

• consumption choices {Ci,t}∞t=0,

• and asset holdings {aEi,t, aSi,t, aMi,t , aLi,t, aBi,t, aNi,t}∞t=0,

such that in each period t ≥ 1

1. Yt, Pt and zt evolve according to (1),

2. each investor maximizes his utility (2) subject to the constraints (3)-(5),

3. all common asset markets clear,
∫ 1

i=0
aSi,tdi = āSPtYt,∫ 1

i=0
aEi,tdi = 1,

∫ 1

i=0
aMi,tdi = āMPtYt,∫ 1

i=0
aBi,tdi = āBPtYt,

∫ 1

i=0
aLi,tdi = āLPtYt,∫ 1

i=0
aLi,tdi= āLPtYt

4. and the group-specific markets of the residual claim clear,
∫
i:γi,t=γm

aNi,tdi =
∫
i:γi,t=γm

aNi,t−1di ∀m ∈ {1, 2, 3, 4} and with
∫ 1

i=0
aNi,t−1di = 1.

Solving for equilibrium prices and portfolio holdings is simpler than this definition suggests.
The investors’ maximization problem is homogeneous in wealth because of the homotheticity of the
utility function and the fact that all constraints scale in wealth. Given a wealth distribution Wi,t,
one can therefore aggregate all those agents that share the same risk aversion coefficient γm. The
wealth of group m is Wm,t =

∫
i:γi,t=γmWi,tdi and the portfolio problem is only solved four times for

each group m ∈ {1, 2, 3, 4}.

Furthermore, the probability pm of having risk aversion γm is constant and independent across
time and investors. Invoking a law of large numbers, a fraction pm of all those agents that had risk
aversion γn in period t− 1 will have risk aversion γm in period t. Given the holdings of the residual
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claim aNn,t−1 of each group n at the end of period t− 1, the aggregate holding of all agents with risk
aversion γm at time t are then

aNm,t = pm
3∑

n=1
aNn,t−1 = pm,

where I have used the market clearing condition for the residual claim. By the same argument,
the members of each group m enter period t with a fraction pm of all other assets, such that their
wealth is given as

Wm,t = pm

Yt +
∑

j∈J\{N}
ājt−1Q

j
t

+ pmQ
N
m,t.

Independent of state and prices, group m therefore always holds a fixed fraction of tradable wealth
(as given in the bracket) and a fixed fraction of the non-tradable residual claim.

In each state of the world, I only need to solve the maximization problem defined in equations
(2)-(5) for the four different groups of investors m ∈ {1, 2, 3, 4} who have constant tradable wealth
shares pm, fixed holdings pm of the residual claim, and risk aversion coefficient γm. The state st
reduces to the output level Yt, the price level Pt and the level of the persistent factor zt. Appendix
A.1 further reduces the state space by defining an equivalent stationary economy in which only zt
remains as a state variable.

3.5 Assets in ε-supply

The slicing of aggregate output determines the span and supply of tradable assets. because short-sale
constraints prohibit the issuance of additional assets, However, I introduce additional assets in
net-supply ε, where ε is positive but arbitrarily close to 0. These assets leave the equilibrium
unchanged, but are still priced by those investors with the highest marginal valuation. This allows
me to not only study the prices of the three government bonds with δS, δM and δL, but to determine
the prices Qt(δ) for any δ. I use this to study the model implications for, for example, yields of
δ3m-bond that targets the duration of a 3-month T-Bill.

4 Discussion of the model

This section discusses the structure and assumptions of the model presented in the last section.
The goal of the framework is to capture the price and quantity effects of the interaction between
the supply of safe assets and collateralized lending markets. All assumptions are made in order to
achieve that goal, while maintaining computational tractability.
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4.1 Asset structure

Endowment economy: I study the effects of changes in the supply of safe assets in an endowment
economy. The model therefore does not make any direct predictions on the real effects of such
supply changes. Introducing a real sector provides an interesting extension to the current model.
Such an extension does not change the decision problem faced by investors, but it endogenizes the
supply of risky private assets. As the results will show, the supply of safe assets has quantitatively
small effects on the returns of corporate bonds and equity, because the intermediate investor who
is neither a marginal investor of short- nor long-maturity safe assets, prices these riskier assets in
equilibrium.

Capital structure: In a representative agent endowment economy, the supply of individual
assets is irrelevant because any security is priced using a pricing kernel derived from aggregate
consumption. In this heterogeneous agent framework, markets are incomplete because of short-sale
and collateral constraints. The supply and characteristics of assets determine to what extent
agents can share risk. I model the different assets by slicing aggregate consumption into different
payoff streams. This approach is closely related to models that are populated by several Lucas
trees, as in Santos and Veronesi (2006), Cochrane, Longstaff, and Santa-Clara (2008) and Martin
(2013). Different from these papers, the payoff shares are herein not each additional stochastic
state variables, but are instead determined as functions of the aggregate state. This allows me to
model a rich asset structure within a computationally tractable framework. Each asset in the model
represents a diversified portfolio of the corresponding asset class in the data. The payoff functions
are chosen to capture the payoff characteristics that determine pricing and collateralizability.

Equity: Early work on consumption-based asset pricing in an exchange economy, as in Lucas
(1978) and Mehra and Prescott (1985), assumes that aggregate payoffs themselves represent dividend
payments. However, in the data, dividend growth is more volatile than aggregate consumption.
Some authors, for example Abel (1999), therefore assume that dividends are given by consumption
raised to a power, or, relatedly, model dividend growth directly as subject to shocks with higher
variance, as in Bansal and Yaron (2004). While tractable in a representative agent economy, these
assumptions imply that the dividend share becomes non-stationary. In the present framework, in
which the relative supplies of assets are of key interest, it is important that asset shares remain
stationary. I therefore propose a new functional form that models the dividend share as a function
of the aggregate state. Dividend growth is then more volatile because the dividend share is smaller
in bad times and higher in good times. As discussed in more detail in Section 5, the functional
form also allows the targeting of dividend growth skewness and kurtosis.
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Safe bonds: Bond payments in the model are subject to nominal risk. In the data, the vast
majority of issued bonds is denoted in nominal terms. In the model, I introduce three types of
nominal default-free bonds in positive net-supply. All three bonds are infinitely lived and pay
geometrically decaying nominal coupon payments, but they differ in their deterministic rate of
survival δj . Bonds are usually finitely lived in the data, with fixed coupon payments and repayment
of the principal at maturity. Introducing such bonds in the present framework is computationally
unfeasible because it would require tracking each non-matured vintage. I borrow the concept of
geometrically declining bonds from Woodford (2001). In Section 5, the parameter δ is chosen to
match the Macaulay duration of representative bonds in the data, as in Hatchondo and Martinez
(2009).

Corporate bonds: Geometrically decaying bonds are also used in the sovereign debt literature,
as in Hatchondo and Martinez (2009) and Arellano and Ramanarayanan (2012). While these
frameworks study default, a default event triggers an immediate maturation of all outstanding
bonds with limited repayment. In contrast, the present model does not study the default decision
of a single issuer, but is interested in the credit risk of a diversified portfolio of corporate bonds.
A small fraction of such a portfolio may default in each period, but never the whole set of bonds
within it. I capture the partial reduction in duration and repayment through default by making the
survival rate δ̃t a stochastic function of the aggregate state. As discussed in more detail in Section
5, the functional form is well suited to capture the variance and skewness in default rates in the
data.

Residual claim: The residual claim ensures that all payoffs are distributed despite the specific
payoff models for stocks and bonds. In equilibrium, each agent will hold this asset because of the
constraint that it can only be traded within risk aversion groups. The residual claim therefore
captures background risk that investors have to hold, and it represents labor income in the later
quantification.

4.2 Asset trading

Short-sale constraints: In the model, the structure and supply of assets matters because short-
sale constraints prohibit the creation of additional assets, importantly also of those that are in
zero-net supply. This restriction matters with respect to the possible gains from trade. In a
complete market setting, risk-tolerant investors sell state-dependent insurance contracts to more
risk-averse agents. They cannot do so in the present framework, but they can use short-maturity
bonds as the second-best asset to provide that insurance. This relates to the data, in which the
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number of traded assets is limited, resulting in an incomplete payoff span.6 In repurchase markets,
nominal short bonds are the focal trading instrument between risk-averse investors, like money
market funds, and more risk tolerant investors, such as hedge funds and investment banks. By
relaxing the short-sale constraint for one-period bonds, the model captures the important role of
such trades in the data. Extending the model to allow for collateralized short-sales of equity and
bonds has limited quantitative effects, since such trades are largely orthogonal to the gains from
trade arising from differences in risk aversion.

Limited commitment: In general, investors in the model are subject to short-sale constraints,
but they can borrow funds to take on leverage by issuing collateralized bonds. The collateral
constraint is necessary because investors have limited commitment with respect to promised
repayments. In the data, collateral is used in numerous markets to limit credit risk exposure. For
example, homeowners provide their house as collateral in order to obtain a mortgage, derivative
traders post and demand cash collateral to ensure contractual payments, and borrowers provide
collateral to credibly promise loan repayment in repurchase markets. The prevalence of collateral
in credit relations highlights the importance of limited commitment in financial markets, which I
therefore also assume by introducing collateral constraints. I assume no such constraint for the
lender. In the tri-party repo market, collateral is held by the neutral third party, such that there is
no opportunity for the lender to walk away with the collateral.

Default-free lending: I impose that collateralized lending contracts are default-free. While
this is an endogenous outcome in binomial models, as shown by Geanakoplos (2010), there exists
no such result for frameworks with more than two states. Endogenizing the default risk would
complicate the model solution without obvious benefit. Given that the production of safety is a
central goal of the lending agreement, and a primary focus of this paper in general, it is natural
to assume the safety of collateralized loans. In the data, this safety is imposed with respect to a
presumed worst-case scenario, which I capture by bounding the support of aggregate shocks.

Collateralizability: While I assume the production of safety in repurchase markets, the choice
of collateral is an endogenous outcome of the model. Just as in the data, equity, corporate bonds
and government-backed assets can be used as collateral. Given the assumption that there can
be no default on collateralized loan, the model determines the collateralizability of each asset
through the lowest possible nominal asset payoff in the next period. This stands in contrast to
a specification in which haircuts are fixed and state-independent. The collateralizability of each
asset class is calculated individually. This relates to the calculation of haircuts in the tri-party

6The question of why this is the case is outside of the scope of this paper. See for an introduction Duffie and
Rahi (1995).
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repo market in the data, where haircuts are defined for each class of collateral rather than each
investor’s portfolio. The model abstracts from the idiosyncratic risk of provided collateral. In the
tri-party repo market, collateral provision is subject to concentration constraints that limit the
idiosyncratic risk of collateral portfolios. The parameter ζ incorporates remaining idiosyncratic risk
in a reduced form in the collateral constraint (3).

4.3 Investors

Time-varying risk aversion: The investors’ preferences differ from the usual recursive utility
framework of Epstein and Zin (1989) by assuming time-varying risk aversion. The differences in
risk aversion generate gains from trade. For various reasons, including financial regulation, market
participants in the data differ in their risk tolerance. This framework captures such differences in
a reduced form. The risk aversion groups in the model represent financial institutions that are
directly or indirectly held by households. The assumption of i.i.d. changes in risk aversion is one
particular assumption of how earnings and portfolios are distributed across these institutions; it
makes the model tractable by fixing the distribution of tradable wealth. Different from other work
on collateralized lending, such as Brumm, Grill, Kubler, and Schmedders (2015) and Chabakauri
(2014), my model abstracts from changes in the wealth distribution and instead highlights the
quantitative importance of the asset supply for prices and lending volumes.

5 Quantification

I use the model to study how the supply of safe assets affects asset prices and portfolio decisions
within the US financial market, with a particular focus on the repurchase market. This section
discusses the quantification of the model parameters with respect to that goal. Section 6 presents
two applications based on this calibration. All parameters, apart from those that govern the supply
of safe bonds, remain fixed across these applications. The model is solved on a weekly frequency.

5.1 Growth and inflation process

To estimate the stochastic process defined in (1), I assume that the temporary shocks ηg,t and ηπ,t
are linear combinations of two serially uncorrelated i.i.d. shocks, ε1,t and ε2,t: ηg,t

ηπ,t

 =
 λ11 λ12

λ21 0

 ε1,t

ε2,t

 .
The persistent shock ηz,t is also serially uncorrelated, and furthermore uncorrelated with the two
temporary shocks. ε1,t, ε2,t and ηz,t are truncated standard-normally distributed. The truncation
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ensures that there is a lower bound of possible payoff risk that is taken into account when calculating
the collateralizability of individual assets in the model.

To choose the truncation level, I use results from a survey among financial market participants
that was undertaken by the Committee on the Global Financial System (2010), a committee of the
Bank for International Settlements. According to the survey report, haircuts are usually calculated
by estimating the value-at-risk over a 10-day liquidation period at a 95-99% confidence level. In
the model, two periods represent 10 business days. Instead of calculating the value-at-risk over two
periods, I estimate the value-at-risk using bounds within a single period that represent twice the
size of the 99% confidence band. I therefore employ a symmetric truncation at ±5.15 standard
deviations. I assume that the worst case scenario is calculated individually over each shock.

Given these distributional assumptions, I estimate the stochastic process using quarterly
consumption and price data from the National Income and Product Accounts (NIPA), provided by
the BEA. The sample period is 1947:Q1 to 2016:Q2.7 I use a method of simulated moments to
directly fit data moments to the numerical simulation of the stochastic process. The process has
eight parameters, and I estimate 25 target moments from the data: the average quarterly growth
rates of consumption and price index, the respective standard deviations, the contemporaneous
correlation and the first 10 autocorrelations of both consumption and price growth. Panel A in
Table 1 and Figure 2 summarize the fit of the estimated process to the target moments, and Panel
B reports the estimated parameters.

Having estimated the parameters of the process, I use a Kalman filter to estimate the aggregate
state of the economy. This estimate ẑt will serve as an input to the model when studying its
conditional asset price implication for the time period 1990 to 2015. To match the collateralizability
of equity in the data, I assume an additional rare payoff shock η

g
= −5% that occurs in expectation

every 50 years.

5.2 Asset payoffs

The asset structure in the model is defined by the dividend payoff parameters ᾱ, κD and z̄D, the
supply of short-, medium- and long-maturity government bonds, āS, āM and āL, the corresponding
duration parameters δM and δL, as well as the supply of corporate bonds āB and their payoff
parameters κB and z̄B.

Dividend parameters: The two parameters κD and z̄D govern variance, skewness and kurtosis
of dividend growth gd = log(Dt+1/Dt). I use monthly data on stock market returns and T-bill
rates from the Center for Research in Security Prices (CRSP) to estimate these three moments in

7 Appendix C.1 describes the used data and methodology in more detail.
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Table 1: Stochastic process of consumption growth and inflation.

Panel A: Estimated moments Panel B: Estimated parameters

Data Model

ḡ 0.45% 0.45%
π̄ 0.85% 0.85%
σg 0.53% 0.53%
σπ 0.68% 0.68%
ρg,π −16.10% −15.95%

Parameters

λ11 1.44× 10−3 ξg 2.44× 10−5

λ12 7.30× 10−4 ξπ −6.21× 10−5

λ21 8.33× 10−4 µg 1.82%/52
φ 0.661/52 µπ 3.37%/52

Note: Panel A: Empirical and estimated moments of quarterly consumption growth and inflation. Data: NIPA;
Model: Numerical simulation of stochastic process on weekly frequency. Moments estimated based on aggregated
quarterly growth and inflation rates. Panel B: Parameters of the stochastic process estimated using the numerical
simulation and SMM.

the data. Following Hodrick (1992), I construct an annualized dividend series and calculate real
dividend growth rates using the BEA CPI series. The sample period is December 1926 to December
2015. The left column of Table 2 presents the estimated moments. As before, I use a method of
simulated moments to directly target moments of the numerical simulation of the stochastic process.
The estimated model moments are in the right column of Table 2. The estimated parameters are
κD = −0.1915 and z̄D = 17.03.

Table 2: Dividend growth in data and model.

Data Model

std(gd) 11.22% 11.03%
skew(gd) −91.29% −33.78%
kurt(gd) 826.88% 827.89%

The estimates of κD and z̄D are independent of the choice of the third dividend parameter
ᾱ. Together with the endogenous payments to government bonds τt, and corporate bonds ιt, this
parameter determines what fraction of aggregate output is paid to the residual claim. Every
investor holds in equilibrium a fixed share of the residual claim, and I therefore associate it with
non-tradable labor income in the data. As is common in macroeconomics, I target a labor-share of
2/3. The bond payments τt and ιt depend on several other parameters, in particular on the bond
supply parameters ājt , but for all used calibrations, a choice of ᾱ = 0.33 matches the labor-income
share reasonably well.
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Figure 2: Empirical and estimated autocorrelations of quarterly consumption growth and inflation.

Government bonds There are three types of safe bonds in positive net-supply: short-, medium-
and long-maturity. The short bond represents default-free bonds in the data with a maturity of less
than 6 months, the medium bond represents such bonds with a maturity of more than 6 months
and less than 3 years, and the long bond represents all default-free bonds with a maturity greater
than 3 years. Following Hatchondo and Martinez (2009), I choose δM and δL to target Macaulay
duration measures. Given a stream of payments {Πt}Tt=1, the Macaulay duration is given as

MD =
∑T
t=1 t · PV (Πt)

Qj

=
∑T
t=1 te

−ytΠt

Qj

,

where Qj is the price of the asset, and where I assume that the present value PV (Πt) is calculated
using a constant yield y. I use the 10-year Treasury as the representative long-maturity bond in
the data. Government bonds in the data pay semi-annual coupon payments and I assume that
the coupon rate equals the yield, which I assume to be 5%. The Macaulay duration of the 10-year
Treasury in the data is then 7.5 years. The duration of the geometrically declining bonds in the
model is

MD(δ) =
∑∞
t=1

t
52e
− y

52 tδt−1∑∞
t=1 e

− y
52 tδt−1

= 1
52

1
1− δe− y

52
.

Given the annual yield of 5%, a choice of δL = 0.9986 yields the empirical duration of 7.5 years.8 I
choose δM = 0.9881 to target a duration of 1.5 years.

Corporate bond The difference between the default-free decay rate δ and the stochastic decay
rate δ̃t represents credit losses of the diversified corporate bond portfolio in the model. I choose

8 To understand the importance of the assumed yield, consider an alternative yield of 4%. The duration of the
10-year bond is 8.33 years and the duration parameter is then δL = 0.9985.
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lower investment grade corporate bonds as the corresponding bond category in the data, which
are bonds that carry a BAA rating in Moody’s rating scale, or a BBB rating in the rating scales
of S&P and Fitch. In the data, credit losses occur when an issuer defaults and recovery rates are
below 100%. I choose the parameters κB and z̄B to match the level and distribution of loss rates in
the data. Moody’s (2016) provides historic transition and recovery rates in its “Annual Default
Study”. Using loss rates only within the BAA rating category would underestimate credit risk,
because part of the credit risk of a BAA bond is the possibility of a downgrade to lower rating
categories with higher loss rates. Instead, I use Moody’s transition matrix to estimate the credit
losses of a diversified portfolio of 20-year BAA bonds over its lifetime. I use a constant yield of 6.4%
to calculate the present value of these losses, which is the average yield of the 10-year Treasury
between 1962 and 2015.9 The corresponding model moment is

E[`∞] = E0

[ ∞∑
t=1

e−yt
(
δt−1
L −

t−1∏
s=1

δ̃t

)]
,

which defines the present value of credit losses relative to the default-free long-maturity bond.

Default rates in the data are highly skewed. In many years, no BAA rated bond defaults, but
during economics downturns, default rates and downgrades spike. The skewness of annual loss
rates within the BAA rating category is 1.69 between 1983 and 2015. I assume that this is a
representative measure of the skewness, even though this measure does not capture the risk of
downgrades. I define the annual loss rate in the model as

`t = log
(
δ52
)
− log

( 52∏
s=1

δ̃t+s

)
,

and estimate its skewness using the numerical simulation. The estimated parameters are κB =
−0.0886 and z̄B = 105.51. Table 3 reports the fit of the model for the two targeted moments and
the untargeted kurtosis of the annual loss rate.

Table 3: Estimated moments of default risk in data and model.
Data Model

E[`∞] 4.15% 4.15%
skew(`t) 169.64% 169.64%
kurt(`t) 408.87% 484.75%

9 Source: Constant maturity series, Table H.15, Board of Governors of the Federal Reserve Board.
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5.3 Asset supply

Government bonds in the model represent nominal default-free securities in the data. I assume
that all securities that are bearing explicit guarantees of the US government fall into this category,
which includes all US Treasury debt as well as bonds issued by the Government National Mortgage
Association (GNMA). Debt securities issued by other government-sponsored enterprises (GSEs)
are not explicitly guaranteed by the US government, but at least until 2008, investors assumed
an implicit government guarantee for these assets.10 I therefore also consider all senior debt
and mortgage-backed securities that are issued or guaranteed by GSEs as default-free. Only few
corporate bond issuers bear an AAA rating, and I therefore abstract from default-free medium-
and long-maturity corporate debt.11 There are substantial amounts of short-maturity private debt
that are considered default-free, such as highly rated commercial paper, and I therefore include a
measure for these assets when estimating the supply of safe assets in the data. Before 2008, large
amounts of asset-backed securities (ABS) were considered default-free, and I include an estimate of
the supply AAA-rated ABS.

Given the above classification, I estimate the supply of the three default-free bonds in the data
using Financial Accounts data provided by the Federal Reserve. I consider asset holdings by all
domestic non-bank sectors. The Financial Accounts provide only limited detail on asset maturities,
and I therefore create an estimate of the maturity distribution using data on outstanding Treasury
debt from TreasuryDirect and CRSP.12 I assume that agency debt not held by money market
funds is equally divided between medium- and long-maturity debt, which approximates the average
maturity structure of Treasury debt. Figure 3 summarizes the estimated values of safe assets
relative to aggregate consumption. Because these estimates are based on the value of assets, they
conflate changes in units and prices.

Figure 3 highlights that the asset supply of those three asset classes varies widely between 1990
and 2015. I subdivide this period into 13 episodes, each with a length of two years. When studying
changes in the supply of safe assets over the business cycle in Section 6, I solve for the stochastic
equilibrium separately for each episode. I set the asset supply parameters āS, āM and āL such that
within each episode the average value of safe assets, conditional on the aggregated state, matches
the estimated asset supply in the data. Connecting the episodes, I derive time-series implications
for lending volumes, asset prices and portfolio holdings. Incorporating a stochastic model of the
dynamics of the safe asset supply provides an interesting extension, but I cannot provide a confident
estimate of a stationary stochastic process governing these supply changes. Investors in the data

10See, for example, Frame and White (2005).
11 Since April 2016, there are only two AAA-rated corporations, Microsoft Corp. and Johnson & Johnson. See

Ailworth and Hufford (2016).
12 Using System Open Market Account (SOMA) holding data, I exclude Treasury securities held by the Federal

Reserve.
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face the same challenge, and I therefore assume that they expect the asset supply to stay constant
as a share of nominal consumption. In the second quantitative application, I analyze the effects of
a fully anticipated variation in the safe asset supply.
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0

0.2

0.4
Short-term

1990 2000 2010
0

0.2

0.4
Medium-term

1990 2000 2010
0

0.2

0.4
Long-term

Treasury Debt

Non-Treasury

Figure 3: Estimated value of short-, medium- and long-maturity safe bonds relative to aggregate
consumption of non-durables and services. Estimates are based on asset holdings of all US non-bank
sectors (except federal pension funds) in the Financial Accounts. Safe bonds sum estimates for
Treasury debt, agency debt, AAA-rated ABS, as well money market fund holdings of commercial
paper.

To choose āB, I estimate the defaultable bond supply using Financial Accounts data on corporate
and municipal bond holdings in all domestic non-bank sectors. I also include commercial paper not
held by money market funds, because I abstract from a separate introduction of short-maturity
risky debt. Between 1990 and 2015, the value of corporate bonds relative to aggregate consumption
increases from 80% to 115%, and averages 95%. The increase is driven by changes in the Flow
of Funds, in particular the reporting of municipal bonds, and by an increase in corporate bond
issuance. Rather than adjusting āB across episodes, which would also require a change in the
dividend share parameter ᾱ over time, I hold this parameter fixed and target an average value
of 95% across episodes. Because both corporate bonds and equity will always be priced by the
intermediate agent with γ2, this assumption has little quantitative importance.
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5.4 Preferences and Frictions

Collateralized lending The collateralizability of assets in period t depends on the endogenous
distribution of payoffs in period t+ 1 as well as the parameter ζ, which determines what fraction
of the next period’s payoffs of equity and corporate bonds can be pledged as collateral. In the
data, investors face concentration limits when providing portfolios of stocks or corporate bonds
as collateral.13 These constraints reduce idiosyncratic risk, but cannot fully eliminate it. I choose
ζ = 0.97 to match haircuts of corporate bonds and equity in the data. In the data, government
bond portfolios are not subject to idiosyncratic risk and liquidity risk is small; I assume therefore
that all payoffs of government bonds can be pledged as collateral. I choose the issuance fee f to
be 3bp. Given all other parameters, this choice matches the spread between the repo rate and the
T-bill rate in the data.

Preference parameters There are nine preference parameters. The four risk aversion coefficients,
γ1, γ2, γ3 and γ4, the discount factor β, the intertemporal elasticity of substitution ρ, as well as the
three type probabilities p1, p2 and p3. These parameters have no direct equivalent in the data, and I
identify them through their effect on asset prices. To do so, I pick two episodes in the data, 1992-93
and 1994-95, and target average conditional interest rates in the model and data. I choose these
two episodes because they provide some variation in the asset supply and because the estimated
aggregate state is close to its steady state value during those years. While there is no one-to-one
relation between a single parameter and a specific data moment, the risk aversion coefficients have
a direct effect on the interest rates of both defaultable and and non-defaultable bonds. Table 4
summarizes the chosen risk aversion coefficients and related moments.

The intertemporal elasticity of substitution σ has a direct impact on the slope of the yield curve.
As noted by Piazzesi and Schneider (2006), the average real yield curve is downward sloping in
an expected utility model with persistent growth. Periods of low expected growth are associated
with low real rates, and therefore high values of long-maturity bonds, making such securities a
hedge against consumption risk. A low value of σ steepens the downward slope of the yield curve,
because it increases the elasticity of real rates with respect to expected consumption growth. When
estimating the stochastic process, I find, as Piazzesi and Schneider, that periods of high inflation
are associated with low expected growth. This force counteracts the downward sloping real yield
curve for nominal bonds because in bad times, inflation reduces the value of future nominal coupons
payments. Given all other parameters, the latter effect induces an unconditionally upward sloping
yield curve if the intertemporal elasticity of substitution is high enough. I find that a value of
σ = 1.5 explains term spreads in the data well. There is substantial disagreement on the best
choice of σ, but recent work on asset pricing with Epstein-Zin utility and time-varying consumption

13See Copeland, McLaughlin, Duffie, and Martin (2012b).
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volatility suggests that the IES should be greater than 1.14

The type probabilities determine how much wealth is held by each investor group. I choose p1

as the lowest value that still ensures that the most risk-tolerant investor is always able to purchase
all long-maturity safe assets using leverage. Anticipating the application in the next section, this
minimal value is chosen such that this criterion holds true given the asset supplies in all 13 episodes
and given all values of the aggregate state within an interval of ±2.5 standard deviations. The
choice of p2 determines the wealth of the group with intermediate risk aversion, which represents
the large majority of investors. This value determines how limited the supply of safe assets is
relative to the size of the risk-averse groups with γ3 and γ4, and it will therefore have an immediate
impact on the price of the medium-maturity assets for which the marginal money market fund
investor is sometimes, but not always, marginal. Finally, the parameter p3 determines the wealth
of the marginal money market investor with γ3. I choose this parameter just large enough such
that the investor group with γ4 is never the marginal investor for any asset.

The time-discount factor β affects all interest rates. It also affects the price-dividend ratio in
the model, because it determines the current valuation of future dividend payments. The model
does not incorporate any force that induces large price-dividend volatility. A choice of β = 0.97
leads to an average PD ratio of about 30 across the two episodes, which is close to the average PD
ratio of 32 between 1948 and 2015 that I measure using stock index return data from CRSP. Table
4 summarizes all chosen preference parameters and related moments, where it is important to note
that all parameters affect all moments.

Table 4: Calibration of preference parameters.

Parameter Moment Data Model

IES σ 1.5 10y-3m spread (92-93) 3.1% 3.0%
time discount β 0.97 PD ratio (48-15) 32.2 29.3
risk aversion γ1 0.25 10y-3m spread (94-95) 1.8% 2.3%

γ2 30 BAA (92-93) 8.4% 8.9%
γ3 80 3m T-bill (92-93) 3.3% 3.0%
γ4 120 3m T-bill (94-95) 4.9% 4.8%

type probabilities p1 0.1% min. s.t. γ1 holds all L - -
p2 93.2% 2y T-note (92-93) 4.3% 4.7%
p3 2.6% min. s.t. γ3 always holds some S - -

14 For a summary of the debate on the right IES value, see section 4.6 in Bansal, Kiku, and Yaron (2012).
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5.5 Numerical solution

The solution of the model poses several computational challenges. There are seven assets, one of
them in endogenous supply. All prices are equilibrium objects that depend on the portfolio choices
of four groups of agents who solve dynamic, constrained optimization problems. There are three
stochastic shocks and the model is solved on a weekly frequency, which means that convergence is
slow. It also implies that the stochastic process z has very high persistence, requiring a dense grid.
The solution is simplified by the fact that the optimization problems are homogeneous in wealth,
which allows me to aggregate agents with the same current risk aversion. The assumption that risk
aversion type changes are i.i.d. further simplifies the problem by fixing the distribution of tradable
wealth.

Given the high persistence of the state variable z, I solve the model on a grid with 36 nodes,
covering ±2.5 standard deviations of the unconditional process. Expectations are formed based on
a three-dimensional quadrature rule, and I use linear inter- and extrapolation for points not on the
grid. The quadrature rule takes the assumed truncation into account, following Burkardt (2014).

6 Results

Given the calibration described in the previous section, I use the model to study variations in
the supply of safe assets in the data. In a first application, I analyze the effects of changes in the
supply of short-, medium- and long-maturity safe assets over the period 1990-2015. In a second
application, I study high-frequency variations around annual tax dates. Finally, I use the model to
undertake counterfactual policy experiments in the time period after 2008.

6.1 Safe asset supply variation from 1990 to 2015

As depicted in Figure 3, the supply of safe assets varies over time and across maturities. These
dynamics, together with the estimated time series of the aggregate state, provide a source of
exogenous variation. In the model, the asset supply is determined by the exogenous parameters āj
and is fixed as a share of nominal output. To capture the variation in the data, I subdivide the
sample period 1990-2015 into periods of two years. In each episode, I measure the average values of
safe assets in the data. The quantity parameters āj match the average supply of short-, medium-
and long-maturity safe assets.

6.1.1 Lending volumes and asset holdings

The model generates a time series of lending volumes. Figure 4 compares collateralized lending
in the model to the lending volume in repurchase markets in the data. Collateralized lending
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using long safe assets matches the dynamics of repo lending in the data. In the model, there is
additional collateralized lending using corporate bonds. In the data, corporate bonds and stocks
are rarely used as collateral in the general collateral repurchase markets. For a leveraged portfolio
of such assets, hedge funds use margin accounts with their prime broker and bilateral repurchase
agreements; such borrowing is therefore not captured in the data on brokers’ and dealers’ repo
liabilities in the Flow of Funds.
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Figure 4: Comparison of collateralized lending volume in the model with volume in repurchase
markets in the data. Total value relative to aggregate consumption. Data: Repurchase agreement
liabilities of brokers and dealers from the Flow of Funds. Section 2 discusses the data in more
detail.

As observed in the data, the model predicts a segmentation of the market for safe assets. Short-
maturity safe assets are held by investors with the highest risk aversion, γ3 and γ4; long-maturity
safe assets are held by the most risk-tolerant investors with γ1, despite the higher expected returns
of risky assets. The most risk-tolerant investor group with γ1 is small, but leverage gives it a
disproportionate importance in the market for safe assets: these investors hold all long-maturity
safe assets and they produce a large fraction of short-maturity safe assets. The risk-tolerant group
with γ1 prefers to hold long safe assets because these assets have relatively high payoffs in all states
and are therefore good collateral, which allows for high leverage. The most risk-averse agents lend
funds by buying the safe one-period collateralized bonds. Collateralized lending produces all asset
holdings of the most risk-averse group with γ4 and, on average, 15% of the asset holdings of the
second-most risk-averse group with γ3. The intermediate agent with γ2 holds equity and corporate
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bonds.15

6.1.2 Yield and spread volatility

In the model, short-maturity rates vary not only with the aggregate state zt, but they are also
affected by the supply of safe assets. If the exogenous supply of short safe assets falls, the marginal
agent γ2 holds a more risky portfolio and values safety more, such that the short rate falls. Even
though long-maturity safe assets are, as in the data, held by a different group of agents, their
supply also affects the short rate, because risk-tolerant agents use those assets in the production of
short-term safety. The model therefore creates an additional channel for volatility of the short rate
that is driven by the supply of all safe assets.

The additional short rate volatility is best seen in the first row of Table 5 which compares the
yield volatility of the Treasury bill across data, the full model and the representative agent case
for the period 1990 to 2015. For the representative agent case, I solve a single agent version of
the model with risk aversion γ̄ = ∑4

m=1 pmγm = 34.5. The volatility numbers of the representative
agent are virtually the same as the volatilities in the full model with a fixed asset supply. As
discussed in more detail below, the elasticity of the short rate is highest with respect to changes
in the supply of short safe assets, because the collateral usage of long safe assets can be partially
substituted by riskier securities like corporate bonds.

Table 5: Yield volatilities 1990-2015.
Data Model Rep. A.

σ3m 2.33% 1.13% 0.76%
σ10y 1.81% 0.62% 0.22%
σ10−3m 1.14% 0.66% 0.53%
σBAA−10 0.78% 0.64% 0.09%

Note: Row 1 based on constant maturity 3-month T-bill yield in the data, short bond in full and representative
agent model. Row 2 based on yield spread between constant maturity 10-year Treasury yield in the data, long bond
in full and representative agent model. Row 3 based on yield spread between constant maturity 10-year and 3-month
Treasury yield in the data, yield spread between long and short bond in the model. Row 4 based on yield spread
between Moody’s BAA corporate bond yield and constant maturity 10-year yield in the data, yield spread between
risky bond and safe long bond in the model. Representative agent has γ̄ =

∑4
m=1 pmγm. All data: Selected Interest

Rates (H.15), Federal Reserve Board, accessed through FRED.

The market segmentation also induces additional volatility for term and credit spreads. The
risk-tolerant agents prefer long-maturity safe assets because they offer a small but positive term-

15 Table 6 in Appendix B.1 reports the average portfolio holdings of each investor relative to their net-worth, as
well as the average expected returns of each asset class.
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premium and high collateralizability. However, there are less long safe assets than they can hold
using leverage and given their net-worth, and the risk-tolerant agents therefore also hold corporate
bonds. They bid up the price of long safe assets until they are indifferent between using long
safe assets or corporate bonds as collateral. When the short rate falls, borrowing becomes more
attractive and the risk-tolerant bid up the price of long safe assets even more, thereby reducing
their yield. Corporate bonds are largely held (and therefore priced) by the intermediate agents,
who do not take leverage. The price of corporate bonds is therefore unaffected by a change in the
short rate, such that the spread between the corporate bond yield and the long safe yield increases.
This mechanism leads to additional credit spread volatility that is not driven by default risk, but
by the relative value of collateralizability. The fourth line of Table 5 compares the credit spread
volatility between data, the full model and the representative agent case.

Because corporate bond rates are largely unaffected by changes in the short rate, they become a
more attractive substitute for the risk-tolerant agent when borrowing rates fall. Long safe interest
rates can therefore not fall as much as the short rate and the term spread therefore increases. This
mechanism leads to additional volatility of term spreads, as seen in row 3 of Table 5.

6.1.3 Excess return predictability

Several authors, for example Fama and Bliss (1987), Campbell and Shiller (1991) and Cochrane
and Piazzesi (2005), have noted that yield spreads and forward rates predict bond excess returns
with a high R2. This predictability violates the expectation hypothesis, which states that long
rates represent the expected future path of short rates. The additional volatility in term spreads
produced by the full model replicates this excess return predictability. I calculate expected excess
returns in data and model as the realized expected excess return of a 2-year zero coupon bond
relative to a 1 year zero coupon bond. I use CRSP data on zero coupon bond prices over the period
1964 to 2015. To derive zero coupon bond prices in the model, I use implied yields of geometrically
decaying bonds with corresponding durations. I regress excess returns on the yield spread and find
that in the model a 1% higher yield spread corresponds to 1.56% higher excess return over the next
year. The R2 of that regression is 11%. This corresponds well to the data, where I find a slope
coefficient of 1.66 with an R2 of 12%.

In the model, this excess return predictability is driven by changes in the relative value of
collateralizability. When the supply of short-maturity safety is low, the short rate is low, because
the marginal risk-averse investor holds a more risky asset portfolio and therefore values safety
more. This implies that the short-term lending rate is lower and any long-short investment strategy
becomes more attractive to a risk-tolerant investor. While he is now willing to pay a higher price
for the long-maturity safe asset, he also more greatly values a leveraged portfolio of corporate
bonds and equities. The latter assets are priced by the intermediate group of investors who are not
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using leverage. These assets will therefore not adjust in price, and hence become more attractive
collateral assets. For the risk-tolerant investor to remain indifferent between corporate bonds and
long-maturity safe bond, the expected return on long safe assets must not adjust as much as the
short rate. This increases the term-spread and the expected excess return of long safe bonds. At
the same time, excess returns of corporate bonds and equity are also higher, a feature that is further
discussed in the following subsection.

6.1.4 Credit spreads in model and data

In the data, spreads between corporate bond rates and Treasury rates are large and volatile.
Collin-Dufresne, Goldstein, and Martin (2001) study the empirical determinants of credit spreads
and find that default risk has limited explanatory power. Similarly, Huang and Huang (2012)
document that structural models of default can only explain a small fraction of the observed credit
spread. Chen, Collin-Dufresne, and Goldstein (2009) replicate the results by Huang and Huang and
note that this “credit spread puzzle” resembles the well known “equity premium puzzle”. They study
whether a pricing kernel reverse-engineered to explain the equity premium can also explain credit
spreads. The authors find that a pricing kernel based on a utility function with habit formation, as
in Campbell and Cochrane (1999), can do so. Key to this result are time-varying Sharpe ratios,
which are not present in the long-run-risk literature with Epstein-Zin utility following Bansal and
Yaron (2004).

My model proposes a new channel for large and volatile credit spreads that comove with
expected excess returns. This channel is generated by the time-varying value of collateralizability.
When the supply of short-maturity assets is low, the short rate is low, which makes a long-short
investment strategy particularly attractive. Therefore, the price of long safe bonds rises, which
lowers their yield and increases the credit spread. These are also periods of high expected excess
returns on equity, because just as corporate bonds, equity is priced by intermediate agents who do
not take leverage. Sharpe ratios are time-varying because excess returns are driven by the supply
of safe assets. The supply of safe assets provides an additional source of variation that is separate
from any variation in aggregate risk.

Figure 5 depicts the credit spread predicted by the model for the time period 1990 to 2015. The
figure also reports the corresponding BAA spread in the data, as well as the credit spread predicted
by the representative agent model. Confirming the “credit spread puzzle”, the credit spread in the
representative agent model is small and exhibits low volatility, while credit spreads in the data are
large and volatile. The full model predicts the data well, except for the episode 2008-2009. It is
important to highlight that both assets underlying this spread, the corporate and the long-maturity
safe bond, are held and priced by the least risk-averse agent at all times. This agent has a risk
aversion coefficient of 0.25, while the representative agent has a risk aversion coefficient of 34.5.
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Figure 5: Comparison of BAA spreads in model and data. Repo crisis sets ζ = 0 in 08-09.

The large and volatile spread in the full model is driven by the differential collateral value of the
two assets, and not by default risk.

During the financial crisis of 2008, the functioning of repurchase markets was impaired. I test
whether such a failure of repo markets can help us understand the large credit spreads observed
during that period. To that extent, I assume that corporate bonds and equity are not collateralizable
(ζ = 0) in this episode. While this is a simplified view of the events of 2008, it captures the idea that
collateralized borrowing using non-government-backed securities was limited during that period.
The “Repo crisis” line in Figure 5 shows that such a repo failure can generate large credit spreads.

6.2 High-frequency supply variation around tax-due dates

The previous application used the model to study low-frequency changes in the supply of safe
assets. The results showed that the model replicates the observed market segmentation and the
dynamics in lending volumes over time. They also highlighted that the model provides a new and
quantitatively important channel for generating yield and spread volatility, as well as time-varying
risk premia. By the nature of macroeconomic time series data, the identification of these results is
limited. I therefore turn to high-frequency supply variations that will not only better identify the
studied mechanism, but also provide additional measures of the quantitative performance of the
model.

6.2.1 Anticipated temporary deviations in the supply of T-bills

I exploit the fact that government debt varies around tax due dates, as documented in Greenwood,
Hanson, and Stein (2015). Before tax-due dates, the Treasury issues short-maturity bills in
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anticipation of tax receipt inflows. After the due date, it uses tax income to repay Treasury bills.
Figure 6 depicts this seasonal variation in the supply of T-bills around the mid-April tax date. The
picture is based on auction data from TreasuryDirect. Based on that data, I measure the value
of outstanding Treasury bills between 1986 and 2015. I compute the daily percentage deviation
from the 120-day mean around the mid-April tax date in each year. The figure shows the average
deviations over the time period. All other figures in this section are derived in the same manner.
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Figure 6: Average deviation from 120-day mean around mid-April tax date in percent.

There are other tax dates in the data, that create similar variations of smaller magnitude. In
particular, corporate tax dates occur in mid-March, -June, -September and -December. The first
two of those dates are visible in the aforementioned figure. These patterns are not present for
Treasuries with longer maturity. I focus here on the mid-April tax date because it provides the
largest variation in the data. The April variation in the supply of T-bills is a known phenomenon
among market participants; see for example Skyrm (2013). Therefore, I study this effect as a fully
anticipated variation in my model.

Effect on short-maturity Treasury yields: As documented by Greenwood et al. (2015), the
variation in the supply of T-bills has an effect on short-term Treasury yields. Figure 7 depicts the
average deviation of the 3-month T-bill rate from its mean during an 18 week window around the
April tax date. The rate is high before the tax due date, when the supply of T-bills is high, and
the rate falls as the period with a low T-bill supply approaches.

Figure 7 also depicts the same path of the average deviation of the 3m rate from its 18 week
mean for model implied 3 month interest rate. I assume here that investors in the model anticipate
a temporary deviation from of the period-specific asset supply which is equivalent in magnitude to
the estimated average deviation in the data. To do so, I assume that investors in the model are the
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Figure 7: Treasury bill rates around the April tax date in data and model (1990-2015).

marginal investors in Treasury bills in the data, and therefore bear the total variation in absolute
value observed in the data. The model creates yield deviations of the same order of magnitude and
dynamic as the data.

Effect on collateralized lending rates: Using data from the GCF repo market, I also study
the effects on collateralized lending rates. Because of the short sample, I remove noise by studying
the spread between the collateralized GCF repo rate and the unsecured federal funds rate. As
shown in Figure 8, the spread between the repo rate and the federal funds rate is high in the period
before the tax date, when the supply of short-maturity safety is high. This higher spread suggests
a lower premium for short-maturity safety. After April 15, market participants value the safety of
secured lending relatively more than unsecured lending, so that the spread falls. These patterns
are again well captured by the collateralized lending rate in the model.

6.2.2 Unanticipated government debt issuance

Even though there are no significant effects on long-maturity yields, I observe a significant variation
in the corporate bond spread around April 15, as shown in Figure 9. This deviation represents
large price changes because of the long maturity of the underlying assets. The temporary variation
in the supply of T-bills cannot explain such large movements in the prices of long-maturity assets.

Using issuance forecasts of the US Treasury between 1992 and 2015, I document that there is
substantial uncertainty in the total amount of tax receipts ahead of the tax due date. Unexpected
tax inflows lead to a permanent change in government debt, and therefore a permanent shift in

35



Days

-60 -40 -20 0 20 40 60

Y
ie
ld

d
ev

ia
ti
on

in
%

-0.04

-0.02

0

0.02

0.04

0.06

0.08
Data

Model

Figure 8: Collateralized lending rates around the mid-April tax date in data and model. The
sample period is 2005 to 2015, excluding 2008 due to the disruptions in repo markets during that
year.

the supply of safe assets. The model predicts that such changes have effects on the credit spread,
because persistent variations in government debt change the collateral premium and therefore
the relative value of good collateral, such as Treasuries, relative to less good collateral, such as
corporate bonds. In the model, a permanent increase in the total value of short safe assets by 1%
relative to total consumption reduces the credit on average by 4.1 basis points. This average is
measured over the years 1992 to 2015 to capture the same time period as in the data. I regress
changes in the BAA spread between the week before and after the tax due date on unexpected debt
issuance. I find a significant negative relationship between the two series, as depicted in Figure 10.
The slope of this relationship is 4.9 basis points.

6.3 Policy analysis

Between 2008 and 2014, the Federal Reserve implemented three rounds of quantitative easing
during which it increased its holdings of US Treasuries, government agency debt and agency-insured
mortgage-backed securities by about $3.5 trillion. Between the second round of quantitative easing
(QE 2, 2010-2011) and the third round (QE 3, 2012-2014), the US central bank sold short-maturity
asset holdings and in exchange purchased assets with longer maturities. The latter policy is often
referred to as “Operation Twist”. The explicit goal of these policies was to lower yields and raise
asset prices.16 There is a large empirical and a smaller theoretical literature studying the effects

16See, for example, Bernanke (2012).
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Figure 9: BAA spread around mid-April tax date.

of these market interventions, which I discuss in detail in the next section. In my framework,
the supply of safe assets has effects on asset prices and, importantly, the supply of safe assets
of different maturities has differential effects. Given the quantitative success documented in the
previous sections, my model can be used for policy experiments to study the effects of changes in
the supply of safe assets.

As an example of such policy experiments, I study the effect of changes in the supply of safe
assets in the episode 2012-13. In a first experiment, I reduce the supply of long-maturity safe assets,
such that the value of outstanding long safe assets falls by 5% of consumption. Such an experiment
can be interpreted as a reduction in government debt and the chose quantity is similar in magnitude
to the asset purchases during QE 2. Relative to the original yields, the T-bill yield falls by 28bp,
the long safe yield falls by 20bp, while the corporate bond yield increases by 1bp. The decline in the
supply of long safe assets reduces the production of short-maturity safety by risk-tolerant investors.
Because of the reduction in the endogenous supply of short-maturity safety, this intervention lowers
short rates. It increases credit spreads through the increased value of collateralizability, and it
also increases term spreads because of the partial substitutability of long safe assets and corporate
bonds. The effect on the returns of risky assets is limited because they are priced by the large
group of investors with intermediate risk aversion.

In a second experiment, I reduce the supply of long safe assets such that their outstanding value
decreases by 5%, and increase the value of outstanding short safe assets by the same amount. This
experiment represents an exchange of long-maturity government debt with short-maturity T-bills.
Relative to the original yields, the T-bill yield now increases by 17bp, the long safe yield rises by
11bp, and the BAA yield falls by less than 1bp. The effects of this experiment are reversed, because
such an intervention actually increases the supply of short-maturity safety. While there are less
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Figure 10: Unexpected debt issuance and changes in BAA spread before and after mid-April tax
date.

long safe assets, there are now even more T-bills than the long safe assets previously produced
in the collateralized lending market. Risk-tolerant investors substitute towards holding corporate
bonds and produce additional short safety using those assets. It is unlikely that large-scale asset
purchases of long safe assets in exchange for central bank reserves are equivalent to the above
experiment in the short-term, because reserves can only be held by banks that have an account with
the Federal Reserve. However, in the medium-term, reserves can be used to back deposits, which
are short-maturity safe assets. The results in this section suggest that the effects of quantitative
easing depend on specific implementation of such market interventions. A purchase of long safe
assets not only reduces the supply of purchased long-maturity assets, but it also increases the
supply of those assets that the central bank pays with. The nature of these assets determines not
only the magnitude, but also the direction of the effects on asset prices.

7 Related Literature

My work is motivated by an empirical literature that documents a relation of the level of govern-
ment debt and asset prices. Krishnamurthy and Vissing-Jorgensen (2012) show that the level of
government debt is negatively correlated with yield spreads between corporate bonds and Treasury
bonds. Greenwood and Vayanos (2014) find that a maturity-weighted measure of debt-to-GDP is
positively correlated with the slope of the yield curve. Duffee (1996) finds a positive relationship
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between the supply of Treasury bills and the Treasury bill yield. This relation is further analyzed
by Greenwood et al. (2015), who document that the supply of Treasury bills is positively correlated
with deviations of the short-maturity yield from a yield predicted by a fitted yield curve model.
The authors argue that the supply of short-maturity government debt has a larger effect on yields
than changes in long-maturity government debt. They also highlight that private short-maturity
debt in the form of commercial paper can substitute for short-maturity Treasury debt.17

My quantitative model replicates these findings. In the model, a low supply of safe assets
induces high credit spreads because of the high collateral value of long safe bonds relative to risky
bonds. The supply of short-maturity safe assets has a more direct effect on the level of short rates,
because leveraged investors can also produce short-maturity safety using corporate bonds, instead of
long safe assets as collateral. For the same reason, yield spreads and credit spreads are higher when
the average maturity of government debt lengthens. My model features an endogenous substitution
of safe assets with privately produced bonds. I study the same high-frequency, temporary variation
of the T-bill supply around tax due dates, also analyzed by Greenwood et al. (2015). The model
can explain the observed asset price effects on short rates documented by Greenwood et al. I also
document additional price effects on collateralized lending rates and credit spreads. Using debt
issuance forecasts by the US Treasury, I find that large unexpected tax inflows around tax due
dates lead to permanent changes in the level of government debt. The model replicates the effects
of these unanticipated, permanent shifts in the supply of safe assets on credit spreads.

My framework can be used to analyze the effects of large-scale purchases of safe assets by central
banks. Estimates on the effects of such market interventions are either based on the empirical
relations discussed above,18 or on high-frequency studies that analyze price effects around the
announcement of central bank purchases. Krishnamurthy and Vissing-Jorgensen (2011, 2013) find
that QE 1 and QE 2 announcements lowered the yields of government-backed securities. Effects on
corporate bonds were more limited, in particular during QE 2. Gagnon, Raskin, Remache, and Sack
(2011) and D’Amico, English, Lopez-Salido, and Nelson (2012) also find that QE announcements
lowered the yield of long-maturity treasuries. Swanson (2011) studies the effects of Operation Twist
in 1961, a coordinated effort by the Treasury and the Federal Reserve to reduce the relative supply
of long government debt. Also using a high-frequency event study approach, the author finds a
moderate effect on long rates around announcement dates.

While such high-frequency studies provide additional identification, the results are based on a
small number of observations with several concurrent policy announcements. It is also unclear to
what extent short-term announcement studies can capture long-term effects of quantitative easing.
My model complements the empirical results by providing a quantitative, structural model to study

17 See also Greenwood, Hanson, and Stein (2010), Reinhart, Sack, and Heaton (2000), Cortes (2003) and Nagel
(2016).

18 See, for example, Hamilton and Wu (2012) and Li and Wei (2013).
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the effects of large-scale asset purchases. The results are broadly consistent with the empirical
literature, but my policy experiments highlight that the effects of large-scale asset purchases depend
on how exactly the policy is implemented. In particular, a purchase of long-term safe assets in
exchange for Treasury bills increases short rates, while a pure reduction in the supply of long-safe
assets reduces short rates but increases the term spread.

There is smaller theoretical literature on the connection of the supply of safe assets and asset
prices. With a representative agent, the supply of assets has no effect on asset prices unless it
changes the aggregate consumption stream. For the particular case of government debt, aggregate
consumption does not change because of the Ricardian equivalence formalized by Barro (1974). As
discussed by Barro, this result can change when the government has some technological advantage
or disadvantage in creating safe assets and collecting taxes. More recent work focuses on the effects
of central bank asset purchases directly. In frameworks studied by Gertler and Karadi (2011),
Curdia and Woodford (2010) and Moreira and Savov (2016), the central bank can alleviate balance
sheet constraints by purchasing riskier securities in exchange for safe assets in times of financial
distress. While these models help us understand the effects of central bank purchases of risky assets
during a financial crisis, as arguably observed in the data during QE 1 (2008-09), these models
predict no effects of purchases of long-maturity safe assets outside of a financial crises, as in the
two later rounds QE 2 and QE 3.

Most theoretical frameworks studying purchases of government debt in normal times rely on
exogenous market segmentation and are often labeled “preferred habitat” theories. The idea to
model different investor groups with different exogenous portfolio preferences goes back to Tobin
(1969). It has recently been revived by Andrés, López-Salido, and Nelson (2004) and Vayanos
and Vila (2009). Applications based on these theories can be found in Hamilton and Wu (2012),
Greenwood and Vayanos (2014) and Chen, Cúrdia, and Ferrero (2012). As noted by Krishnamurthy
and Vissing-Jorgensen (2011), models of exogenous market segmentation need to specify along
which asset characteristics investor preferences differ. A central bank purchase of the 10-year
Treasury can have large effects in such models if there are investor groups with a strong preference
for government debt with a maturity of 10 years, but it has small effects if investors have preferences
for all long-maturity credit instruments, which is a much larger market. One also has to decide
whether such preferences exist for all asset classes or just for government debt.

In contrast, this paper develops a theory of endogenous market segmentation. As explained
above, the most risk-tolerant investors have an endogenous preference for long-maturity safe
assets because of their high collateralizability. Surprisingly, riskier assets with higher expected
returns are held by more risk-averse investors. This theory therefore complements the “preferred
habitat” literature by determining which assets characteristics set market segments, and why such
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segmentation plays an important role for safe assets but not riskier securities.19 The model also
makes new predictions on how the supply in one market segment affects prices of other assets. For
example, changes in the supply of long-maturity securities have an effect on the endogenous supply
of safe short-maturity securities and, therefore, on their prices.

The model builds on previous theoretical work on collateralized lending, in particular on the
idea that assets can be valued not only for their payoffs, but also for their usability as collateral.
The corporate finance literature labels this asset characteristic “debt capacity”; see for example
Shleifer and Vishny (1992). Holmström and Tirole (2001) derive the value of debt capacity or
collateralizability in an asset pricing framework. Kiyotaki and Moore (1997) present a model of the
real economy in which the interaction of collateral constraints and asset prices amplifies real shocks.
Geanakoplos (1996, 2010) studies the determination of collateralized lending contracts in general
equilibrium and analyzes the dynamics of prices and leverage. Brunnermeier and Pedersen (2009)
analyze the interaction of endogenous variations in margin requirements and market liquidity.20

Within this strand of literature, my framework is most closely related to the work of Brumm
et al. (2015), who study an environment in which agents differ in their risk aversion and trade a
tree with stochastic payoffs. Agents trade collateralized loans, but only a fraction of tree shares can
be used as collateral. The authors show that the collateralizable shares carry a collateralizability
premium. The same premium is present in my framework, but different from previous work, there
are multiple assets of different maturity and risk exposure and all assets can be used as collateral.
These features allow me to apply the model to the data on repurchase markets and asset prices. To
my knowledge, this is the first quantitative framework studying collateralized lending in financial
markets.

This paper is related to Williamson (2014) who also studies the importance of government-backed
assets as good collateral. In his framework agents use collateralized loans as forms of payment
and short-maturity assets are the better collateral because they are subject to little price risk and
therefore have a high degree of pledgeability. Closely related is the work of Venkateswaran and
Wright (2014) and Rocheteau, Wright, and Xiao (2016). In my framework, collateral is used to
produce short safe assets, and safe but long-maturity assets are the most desired form of collateral
because they offer the ideal combination of excess return and collateralizability. In the data, long
safe assets provide the most used form of collateral in repurchase agreements and, therefore, my
framework is suited for the analysis of this central market for collateralized lending.

The importance of collateral in the creation of means of payment is also highlighted in the work
of Piazzesi and Schneider (2015). In their framework, banks need collateral to back deposits which
households use for payment transactions. Banks hold reserves and assets, trading off liquidity and

19 For a different channel of endogenous market segmentation see Alvarez, Atkeson, and Kehoe (2002).
20 See also Bernanke, Gertler, and Gilchrist (1996), Fostel and Geanakoplos (2008), Simsek (2013), Chabakauri

and Han (2015) and Parlatore (2015).
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collateral benefits. As in the above framework, assets are not only priced for their return but also
for their collateralizability. The authors link the creation of money-like assets to the price level
by incorporating an explicit end-user demand for payment transactions. Monetary policy affects
asset prices and the price level by influencing the banks’ portfolio choices. While my paper neglects
the central role of safe short-maturity assets as means of payments, it complements the work of
Piazzesi and Schneider by emphasizing the important role of safe but long-maturity securities in
the creation of money-like assets.

My work shares some features with other papers analyzing the macroeconomic role of safe assets.
Caballero and Farhi (2014) study an economy with two groups of agents, one being risk-neutral and
the other infinitely risk-averse. Infinitely risk-averse agents can only hold risk-free claims issued by
the risk-neutral investors who use aggregate payoff claims as collateral. When the collateralizability
of the aggregate output claim falls, risk-neutral investors can borrow less and may have to scale
down production. The introduction of a production margin within my framework provides an
interesting extension. Interestingly, risk-tolerant investors hold mostly long-maturity government
debt in my model. One of the main results of my quantitative analysis is that changes in the supply
of safe assets have negligible price effects on risky assets, like equities and corporate bonds.

Barro and Mollerus (2014) study the safe asset share in an endowment economy with two
investors of different risk aversion. In a complete market setting with two aggregate states, the
authors determine the safe asset share as the value of risk-free one-period bonds that has to be
sold by the more risk-tolerant investor to the more risk-averse investor to achieve the equilibrium
risk allocation. Their work is motivated by the empirical work of Gorton, Lewellen, and Metrick
(2012), who are finding a relatively stable share of safe assets in the economy because privately
produced safe assets substitute government debt. My model also determines the private production
of safe assets, but I incorporate an endogenous collateral constraint as well as short-sale constraints.
These constraints and a real growth process subject to temporary and persistent shocks create a
role for the capital structure of the economy. The exogenous supply of assets determines to what
extent agents can share risk, and it therefore has implications for asset prices and allocations.

I study a dynamic equilibrium framework with endogenous asset prices. The model makes
predictions not only on real rates, credit spreads and expected stock returns, but also on the level
and slope of the nominal yield curve. I build on earlier work studying nominal yield curves in
general equilibrium, as for example Piazzesi and Schneider (2006), Bansal and Shaliastovich (2013)
or Swanson (2015). My work introduces heterogeneous investors and collateralized lending markets
into a dynamic equilibrium framework. The quantitative solution replicates the observed dynamics
of lending volumes in the data, and generates several asset pricing implications that have been
documented in the data but that the standard representative agent model cannot generate. The
time-varying collateral premium induces excess bond return predictability, as documented by Fama
and Bliss (1987), Campbell and Shiller (1991) and Cochrane and Piazzesi (2005). The model also
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predicts sizable and volatile credit spreads that are largely unrelated to default risk, as documented
in the data by Collin-Dufresne et al. (2001) and Huang and Huang (2012).

8 Conclusion

I study how quantities of safe bonds affect asset prices and lending volumes in financial markets.
The answer to this question is important because central bank purchases of safe assets change
the supply and maturity structure of safe assets, often with the explicit goal of changing the
level of interest rates and asset prices. I argue that collateralized lending plays a central role
in the market of both short- and long-maturity safe assets. Collateralized lending produces safe
investment opportunity with short maturity for lenders. I document that borrowers hold leveraged
portfolios of long safe assets which they provide as collateral to lenders. To capture this interaction
of collateralized lending and the markets for safe assets, this paper develops a quantitative model
of financial markets in which investors can borrow and lend against collateral. Claims on aggregate
output are traded in the form of several assets of different maturity and risk exposure. Investors
differ in their risk aversion, which creates gains from trade. Risk-tolerant investors prefer to hold
long-maturity safe bonds, even though stocks and corporate bonds provide higher expected returns.
This endogenous preference arises because long safe bonds earn a small term premium and because
they are very collateralizable, allowing for high leverage. Risk-averse investors hold short- and
medium-maturity safe assets, as well as collateralized bonds. Studying changes in the supply of
safe assets between 1990 and 2015, the model not only replicates the observed segmentation of
the market for safe assets, but it also matches the dynamics of lending volumes observed in the
data. The endogenous market segmentation generates time-varying risk-premia, which induce
excess return predictability as observed in the data. The model also generates large and volatile
credit spreads that are mostly unrelated to default risk as documented in the empirical literature.
I study high-frequency changes in the supply of government debt around the April tax due date
in order to better identify the model mechanism. The model replicates the price effects of both
anticipated temporary and unanticipated permanent supply shifts. The quantified framework
provides a toolbox to study the effects of large-scale asset purchases. I find that the effects of
such market interventions depend on the specific policy implementations and, in particular, on the
characteristics of the asset that the central bank uses to pay for its purchases.
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Appendix A Model

A.1 Stationary equilibrium

As shown in section 3.4, the distribution of tradable wealth and the allocation of the non-tradable
assets are constant across time and states because of the assumption that risk-aversion type changes
are i.i.d. The state of the economy therefore reduces to st = {zt, Yt, Pt}. Yt and Pt scale the real
and nominal model outcomes, but do not affect allocations or relative prices. To derive a recursive,
stationary equilibrium, I introduce the following definitions:

C̃i(st) = Ci(st)
Y (st)

Q̃j(st) = Qj(st)P (st) ∀j ∈ {0, S,M,L}

Q̃E(st) = QE(st)
Y (st)

Q̃N
m(st) = QN

m(st)
Y (st)

W̃i(st) = Wi(st)
Y (st)

Π̃j(st) = Πj(st)
Y (st)

ãji (st) = aji (st) ∀j ∈ {E,B} ãji (st) = aji (st)
P (st)Y (st)

∀j ∈ {0, S,M,L}

Directly using the result that I can aggregate all investors with the same risk aversion type, I
write the recursive optimization problem of group m with γm as

Vm(z) = max

(1− β)C̃m(z)1−1/σ + β

[ 4∑
n=1

pnE
[
(G(z′)Vn(z′))1−γm

]] 1−1/σ
1−γm


1

1−1/σ

,

subject to the budget constraint

W̃m(z) ≥ C̃m(z) +
∑

j∈J\{N}
ãjm(z)Q̃j(z) + ãNm(z)Q̃N

m,t(z)− F̃ (z),

where the issuance fee is F̃ (z) = −min [0, f ã0
m(z)] and where wealth W̃m(z) is

W̃m(z) = pm

 ∑
j∈J\{N,E}

ājΠ̃j(z) + Π̃E(z) + Π̃N
m(z)

 . (6)

The optimization is furthermore subject to the short-sale constraints

ãjm(z) ≥ 0 ∀j ∈ J\{0}.

Equation (6) directly uses the fact that the wealth of each group is a deterministic function of z.
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Definition A.1 (Recursive equilibrium) A recursive equilibrium of the economy is defined by
a stationary process z, and price functions Q̃j(z) for all assets j, as well as value functions Vm(z)
and portfolio policy functions ãjm(z) for all assets j and each investor group m, such that in each
state z

1. the value functions and policy functions solve the above optimization problem, taking the
prices Q̃j(z) as given,

2. all common asset markets clear,

4∑
m=1

ã0
m(z) = 0,

4∑
m=1

ãLm(z) = āL,

4∑
m=1

ãSm(z) = āS,

4∑
m=1

aEm(z) = 1,

4∑
m=1

aMm (z) = āM ,

4∑
m=1

aBm(z) = āB,

3. and the group-specific markets of the residual claim clear,

aNm(z) = pm.

Appendix B Additional model results

B.1 Portfolio holdings

Table 6: Average portfolio holdings 1990-2015

Risk aversion types
Asset γ1 γ2 γ3 γ4 E[r]
Repo −3388% 0% 15% 100% -0.5%
Short safe 0% 0% 36% 0% 0.1%
Medium safe 0% 0% 44% 0% 1.5%
Long safe 2609% 0% 0% 0% 2.7%
Equity 0% 92% 0% 0% 4.9%
Corp. bond 879% 8% 5% 0% 4.8%

Note: Average portfolio holdings of each investor group as a percentage of net-worth across all 13 episodes between
1990-2015. The right column reports the average conditional expected real returns of each asset class. Results are
conditional on the estimated aggregate state ẑt.
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Appendix C Quantification

C.1 Estimation of the stochastic process

The dynamics of the model are driven by two stochastic processes: the growth rate Gt, and the
nominal price level Pt. I assume that the log-growth rate gt is subject to a transitory and a
permanent shock. In particular,

gt = µg + ξgxt + λgεt,

where
xt = φxt−1 + λxεt.

I define the growth rate of the price level as Πt = Pt
Pt−1

and assume that its log-growth rate πt is
also driven by a transitory shock as well as the same permanent component xt:

πt = µπ + ξπxt + λπεt.

The vector of innovations, εt = [ε1,t, ε2,t, ε3,t], consists of three independently and identically
distributed random variables with a truncated standard normal distribution. The truncation is
symmetric and defined by the truncation parameter T , stating that the support of each element of
εt is bounded between −T and T . This assumption of a bounded support of εt ensures that the
collateral constraint defined in Equation (3) yields a well-defined and positive borrowing limit.

Defining the vector of observables as zt = [gt, πt]′, the stochastic model has the state-space
representation

zt+1 = µz + ξ′xt +
 λg

λπ

 εt+1,

xt+1 = φxt + λxεt+1.

Without loss of generalization, I assume that λg

λπ

 =
 λ11 λ12 λ13

0 λ22 λ23

 and λx =
[

0 0 1
]
.

While the model is solved on a weekly frequency, I estimate the stochastic process with quarterly
data, in particular consumption and price data from the National Income and Product Accounts
(NIPA) from the BEA. I use data on the consumption of nondurables and services, and follow
Piazzesi and Schneider (2006) in constructing a price index for that consumption bundle. The
sample period is 1947:Q1 to 2016:Q2.

The above model has 10 parameters. Given that I use a numerical simulation when solving
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the model, I use a method of simulated moments to directly fit data moments to the numerical
simulation of the stochastic process. To do so, I estimate 25 moments from the data: the average
quarterly growth rates of consumption and price index, the respective standard deviations, the
contemporaneous correlation, and the first 10 autocorrelations of both consumption and price
growth. 21

Since the model is overindentified, I need to choose a weighting matrix. I choose a diagonal
matrix, where the diagonal elements are the inverse of the squared size of the respective 95%
confidence bounds around the moments’ estimates. This matrix has the desirable property of
putting more weight on those moments that are estimated more precisely. I estimate a weekly AR
coefficient of φ = 0.9937 = 0.973 52

12 .22

Despite its simplicity, the estimated process matches the empirical moments well. Table 1
summarizes the fit of growth rates, standard deviation and contemporaneous correlation. The
estimation matches these five moments perfectly. Figure 2 compares the autocorrelation of data and
model. The estimated process overstates the first order autocorrelation of consumption growth, but
provides a good fit for the following lags. These latter autocorrelations are particularly important
given the choice of Epstein-Zin preferences. The autocorrelations of inflation fit the data well. A
more general process would allow for separate long-run components of consumption and inflation,
as implemented by Piazzesi and Schneider.

C.1.1 Kalman filter

Given the estimated stochastic process, I use a Kalman filter to estimate zt in the data. In the
data, I observe growth and inflation on a quarterly frequency that aggregates 13 weeks. I denote
with s the quarterly time index, so that s = t/13 for t ∈ {13, 26, 39, ...}. The quarterly growth rate
in the data is gqs = ∑s13

t=(s−1)13+1 gt and similarly πqs = ∑s13
t=(s−1)13+1 πt. For simplification, I assume

instead that gqs = 13gs. I define a new quarterly process as

[gqs , πqs ]
′ =

[
µqg, µ

q
π

]′
+ ξqzs + Λq [ε1,s, ε2,s]′

zs = ρzs−1 + σqzε3,s,

with ξq = 13ξ, Λq =
√

13Λ, µq = 13µ, ρ = φ13 and σz =
√

1−φ26

1−φ2 . As before,ε1,s, ε2,s and ε3,s are
three independent truncated standard normally distributed shocks.

21Given the peculiarities of the population data noted by Piazzesi and Schneider, I estimate the moments using
aggregate data and only afterwards, I adjust the consumption growth rate by the average population growth over
the sample period.

22 This is less persistent than the monthly AR coefficient of 0.979 used in Bansal and Yaron (2004) and the
monthly estimate of 0.99 in Schorfheide, Song, and Yaron (2014).
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I redefine a new state-space system as

ys = [gqs , πqs ]
′ − µq = ξqzs−1 + Λq [ε1,s, ε2,s]′

zs = φqzs−1 + σzε3,s

The prediction equations are

ẑs|s−1 = ρẑs−1|s−1

ŷs|s−1 = ξqẑs|s−1

The variance of the prediction error is

Ps|s−1 = ρ2Ps−1|s−1 + σ2
z

The updated prediction given ys is

ẑs|s = ẑs|s−1 + Ps|s−1ξ
′
q

(
Ps|s−1ξqξ

′
q +H

)−1
(ys − ξẑs|s−1),

with H = ΛqΛ′q.

And its prediction error is

Ps|s = Ps|s−1 − P 2
s|s−1ξ

′
q

(
Ps|s−1ξqξ

′
q +H

)−1
ξq

I abstract from the truncation and treat ε1,s, ε2,s and ε3,s as standard normally distributed. I
initialize the system by setting ẑ0|0 = 0 and var(ẑ0|0) = P0 = σqz

1−ρ2 = 1
1−φ2 .
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