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volatility follows a general stochastic process. Even though the level of noise trading
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trading volatility is mean-reverting, then the equilibrium price follows a ‘bridge’ process

with stochastic volatility. Thus, the model generates a form of ‘excess volatility’ because

non-payoff relevant shocks (e.g., ‘sunspots’) that affect noise trading may affect the
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when noise trading volatility is higher and price impact is lower.
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1. Introduction

In his seminal contribution, Kyle (1985) derives the equilibrium price dynamics in

a model where a large trader possesses long-lived private information about the value

of a stock that will be revealed at some known date, and optimally trades into the

stock to maximize his expected profits. Risk-neutral market makers try to infer from

aggregate order flow the information possessed by the insider. Because order flow is also

driven by ‘noise traders,’ who trade solely for liquidity purposes, prices are not fully

revealing. Instead, prices respond linearly to order flow. Kyle’s lambda, which measures

the equilibrium price impact of order flow is constant in the model.

In this paper we generalize Kyle’s model (in the continuous time formulation given

by Back, 1992) to allow the volatility of noise trading to change stochastically over

time. The main (economic) restriction we put on the process is that it is independent

of the insider’s private information and that it may not be (Granger-)caused by order

flow. We ask the following questions. How does the insider adapt his optimal trading

strategy to account for time-varying noise trading volatility? How are the equilibrium

price dynamics affected by these shocks to noise trader volatility, which by assumption

are independent of fundamentals?

Kyle’s model provides the insight that the larger the noise trading volatility for a

given amount of private information, the more aggressive the insider will trade, since,

in equilibrium, his optimal trading rule is inversely related to Kyle’s lambda (a measure

of price impact). The insider makes more profits when there is more noise trading,

since the market maker can recoup more profits himself from the greater volume of noise

traders. In a dynamic setting where ‘noise trader volume’ changes stochastically, one

may therefore expect price impact measures to move over time, and the insider to adjust

his trading to take advantage of those moments when ‘liquidity’ is greater. In turn, this
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may result in more complex price dynamics than in the standard Kyle model.

Below we characterize the equilibrium fully for general stochastic volatility dynamics.

We find that in equilibrium price impact is stochastic. Price impact is larger when noise-

trading volatility is lower. When noise trading volatility is lower, the informed trader

trades less aggressively. This leads to a negative relation between expected informed

order flow and price-impact. This prediction is consistent with Collin-Dufresne and Fos

(2014), who find that informed traders trade much more aggressively when measures of

price impact are low.

Second, market depth (the inverse of price impact) is a martingale in equilibrium,

which implies that price impact (Kyle’s lambda) is a submartingale, i.e., is expected to

increase on average. This is in contrast to much of the previous theoretical models (e.g.,

Baruch, 2002; Back and Baruch, 2004; Back and Pedersen, 1998; Admati and Pfleiderer,

1988; Caldentey and Stacchetti, 2010).1 The prediction of our model that price impact

is expected to rise on average is consistent with the empirical evidence in Madhavan

et al. (1997) who find that estimated execution costs rise significantly on average over

the day.

Third, when noise trading volatility is predictable, the equilibrium price follows a

multi-variate ‘bridge’ process whose volatility is stochastic and driven by both noise

trader volatility and the posterior variance of the insider’s private information. This

implies that non-fundamental information, if it affects the expected change in noise

trader volatility, will affect equilibrium price dynamics in this model. Our model thus

generates a form of ‘excess volatility,’ since non-payoff relevant shocks (e.g., ‘sunspots’)

1In Baruch (2002) and Back and Baruch (2004) Kyle’s lambda is actually a super-martingale. As
discussed in these papers, this arises because the insider faces a random deadline or is risk-averse. See
the discussion in Back and Pedersen (1998) page 387. Foster and Viswanathan (1996) and Back, Cao,
and Willard (2000) may also generate an increase in λ, at least near the end of the trading horizon,
because of competition among multiple informed traders (we thank a referee for pointing this out).
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that affect noise trading volatility may affect the stock price volatility because the market

maker rationally anticipates that in periods where noise traders are more active informed

trader would be more aggressive and thus adjusts prices faster. In contrast, when noise

trader volatility is a martingale (i.e., is unpredictable) or when it is constant, then the

equilibrium price process is, as in the original Kyle model, independent of the level of

noise trader volatility.

Mathematically, the price process resembles the Brownian Bridge process used, for

example, in Back (1992) in that it converges to the liquidation value (known only to

the insider) almost surely at the announcement date. However, the dynamics are more

complex in that they are multi-variate and exhibit stochastic volatility. These dynamics

should also be useful for other applications that use a Brownian bridge.

Finally, when noise trader volatility is predictable, then information revelation, as

measured by the decrease in the posterior variance of the informed’s signal, is faster when

noise trading volatility is higher. This seems consistent with the evidence in Foster and

Viswanathan (1993) who find a positive relation between their estimates of the adverse

selection component of trading costs and volume (for actively traded stocks).

This paper is primarily related to work by Back and Pedersen (1998) (‘BP’ hereafter)

who extend Kyle’s original model to allow for deterministically changing noise trader

volatility to capture intra-day patterns (clustering) of liquidity trading. They also find

that the informativeness of orders and the volatility of prices follow the same pattern as

the liquidity trading. However, in their setting there are no systematic patterns in the

price impact of orders. This implies that ‘expected execution costs of liquidity traders

do not depend on the timing of their trades’ (BP p. 387).2 Instead, in our model,

equilibrium price impact is a submartingale, i.e., is expected to increase on average.

2Foster and Viswanathan (1990) also propose a model with discrete jumps in noise trader volume.
In their framework, market depth is constant over time (as proved in Back and Pedersen, 1998).

4



Our paper is also related to a long list of papers investigating the impact of

asymmetric information on asset prices and volatility (see Brunnermeier (2001) for a

survey). For example, Admati and Pfleiderer (1988) investigate a dynamic economy, with

myopic agents (essentially a sequence of one-period Kyle models), where they generate

time variation in price volatility. In their model, price volatility is stochastic because the

amount of private information changes from period to period, not because noise trading

volatility is time varying.3

Section 2 introduces the general model and solves for an equilibrium. Section 3

investigates a few special cases, arbitrary deterministic noise trading volatility, and

continuous time Markov Chain, to show some numerical simulations of equilibrium

quantities. Section 4 concludes.

2. Informed Trading with Stochastic Liquidity Shocks

We extend Kyle’s (1985) model (in the continuous time formulation given by Back,

1992) to allow for time varying volatility of noise trading . As in Kyle, we assume there

is an insider trading in the stock with perfect knowledge of the terminal value v. The

insider is risk-neutral and maximizes the expectation of his terminal profit.4

3Indeed, in the standard Kyle model, price volatility only depends on the volatility of private
information and not on noise trading volatility. Since Admati and Pfleiderer (1988) consider a sequence
of such one period models, where informed traders have short-lived private information, all variation in
price volatility arises because of variation in the private information volatility. (Watanabe, 2008, extends
their work to capture GARCH features in equilibrium prices, by directly incorporating stochastic
volatility in the (short-lived) private information process.) This is very different from our model where
the insider has long-lived information and optimally chooses to trade when noise trading volatility is
high, thus generating a link between noise trading volatility and price volatility.

4As in Kyle’s model we assume the insider submits market orders dXt that will be filled by the market

maker at price Pt+dt = Pt+dPt. Thus his profits are, assuming a zero risk-free rate,
∫ T

0
(v−Pt+dt)dXt =∫ T

0
(v − Pt)dXt −

∫ T

0
dPtdXt. When dXt = θtdt is absolutely continuous (Back (1992) shows this is

optimal) the second term drops out.
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max
θt∈A

E

[∫ T

0

(v − Pt)θtdt |FYt , v
]
, (1)

where we denote by FYt the information filtration generated by observing the entire past

history of aggregate order flow Y (which we denote by Y t = {Ys}s≤t).5 In addition, the

insider knows the actual value v of the stock, and, of course, his own trading. Following

Back (1992) we assume that the insider chooses an absolutely continuous trading rule θ

that belongs to an admissible set A = {θ s.t. E[
∫ T

0
θ2
sds] <∞}.6

The market maker is also risk-neutral, but does not observe the terminal value.

Instead, he has a prior that the value v is normally distributed N(µ0,Σ0).

The market maker observes the aggregate order flow arrival which is the sum of the

insider’s demand and the ‘noise-trader’ demand:

dYt = θtdt+ σtdZt, (2)

where Zt is a standard Brownian motion independent of v. The market maker absorbs

the total order flow by trading against it at a price he sets so as to break even on average.

5In the standard Kyle-Back model, assuming that the informed investor observes total order flow is
innocuous, since if the insider only observes equilibrium prices, he can typically recover the total order
flow (and, given his own trading, the noise trading order flow). In our setting, when uniformed order flow
has stochastic volatility, this assumption is important for our equilibrium construction. Alternatively,
we could assume that the informed agent observes prices and noise trading volatility, or prices and price
impact λt. The point is that observing only prices may not be sufficient to recover noise trading volatility
(we give some examples below, where equilibrium prices are independent of noise trading volatility, even
though the insider’s trades depend on it). The assumption that insiders observe noise-trader volatility
may be partially justified by the fact that volume and order-book information are available in many
markets.

6A shown in Back, it is optimal for the insider to choose an absolutely continuous trading strategy,
since, in continuous time, the market maker can immediately infer from the quadratic variation of the
order flow the informed component with infinite variation. Note that his proof requires that the constant
noise trader volatility be common knowledge. If volatility were not known by the market maker then
potentially other equilibria could arise and the trading strategy of the insider may not be absolutely
continuous.
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Since we assume the market maker is risk-neutral, equilibrium break even requires that

the market clearing price is:

Pt = E
[
v | FYt

]
. (3)

If noise trading volatility were constant then this setup would be exactly the Kyle-

Back model. Instead, we assume that the noise trading volatility, σt, follows a general

stochastic process. Specifically, we assume there is a Brownian motion W , which is

independent both of v and of Z, such that:

dσt = m(t, σt)dt+ ν(t, σt)dWt, (4)

where the drift and diffusion of σ can depend on its past history which we denote by σt,

but not on the history of Y (or Z). Further, we assume they satisfy standard integrability

requirements for the SDE to admit a unique strong solution (e.g., Liptser and Shiryaev

(2001) Theorem 4.6.).

Importantly, we assume that the volatility process is uniformly bounded away from

zero (to avoid the case of ‘degenerate learning’). In addition, we also assume that the

volatility is bounded above uniformly.7 To summarize, we assume:

B : {There exist two constants σ, σ such that 0 < σ ≤ σt ≤ σ <∞}.

We assume that both the market maker and the insider observe the history of σ

perfectly. This is natural, since by observing aggregate order flow in continuous time, its

quadratic variation is perfectly observed. Thus the filtration FYt contains both histories

7These assumptions are stronger than necessary, but simplify the proof of existence of equilibrium
in the general case. In the last section, we relax some of these assumptions. Specifically, we construct
equilibria where Wt is not a purely continuous martingale, and where σt is not bounded uniformly. We
also allow for some correlation between σt and Yt.
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of order flow (Y t), and of volatility (σt).

We ask the following questions. How does the insider adapt his optimal trading

strategy to account for these time-varying noise trader volatility shocks? How is the

equilibrium price dynamics affected by these shocks, which are orthogonal to the private

information of the insider (i.e., are not directly payoff relevant)?

At first, this problem may seem like a trivial extension of the Kyle (1985) model,

as one might conjecture that one can simply ‘paste together’ Kyle economies with

different levels of noise-trading volatility. However, this is not so. Indeed, the insider

will optimally choose to trade less in the lower liquidity states than he would were

these to last forever, because he anticipates the future opportunity to trade more when

liquidity is better and he can reap a larger profit. Of course, in a rational expectations’

equilibrium, the market maker foresees this, and adjusts prices accordingly.

At this stage it is useful to introduce a new quantity Gt which is the solution to the

following recursive equation:

√
Gt = E

[∫ T

t

σ2
s

2
√
Gs

ds|σt
]
. (5)

As we will show below, Gt represents the relevant quantity of expected noise trading

remaining over the trading horizon that the insider should compare to his private

information when deciding how aggressively to trade. In fact, for specific choices of

the volatility dynamics (e.g., when it is deterministic or unpredictable) the solution to

this recursive equation is precisely the expected total noise trading variance. However,

when the expected change in noise trading volatility is predictable then it may differ

significantly. We first establish that the solution to this recursive equation exists and

some of its properties.

Lemma 1. Under condition B there exists a maximal bounded solution Gt to the
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recursive equation (5). Further, that solution satisfies

σ2 (T − t) ≤ Gt ≤ σ2 (T − t). (6)

Proof 1. See Appendix.

Remark 1. The theorem in Lepeltier and San Martin (1997) used for the proof of lemma

1 does not guarantee the uniqueness of the solution to the BSDE. However, the use of the

maximal solution in the construction of the equilibrium seems sensible since it achieves

the highest value function for the insider, as we show below.

The following lemma characterizes the solution to the equation for interesting special

cases.

Lemma 2. Suppose the drift mt and diffusion νt of volatility are such that the following

regularity conditions hold:
∫ T

0
|ms|ds is uniformly bounded and ξt = e−

∫ t
0
ν2s
2
ds+

∫ t
0 νsdWs is

a martingale,8 then a solution to equation (5) is given by the process:

G(t) = σ2
tA(t)2, (7)

where A(t) solves the following recursive equation:

A(t)2 = Ẽt

[∫ T

t

e
∫ u
t 2ms−σA(s)2dsdu

]
, (8)

where the expectation is taken with respect to the measure P̃ equivalent to P and defined

by the Radon-Nykodim derivative dP̃
dP

= ξT , and where σA is the diffusion of logA(t).

It follows that:

G(t) ≤ E

[∫ T

t

σ2
udu

]
. (9)

Proof 2. See Appendix.

8Sufficient conditions for the latter, such as the Novikov condition, are given in LS(2001).
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This lemma has interesting implications.

Corollary 1. If the expected growth rate of noise trading volatility (mt) is deterministic,

then the solution to equation (5) is:

G(t) = σ2
t

∫ T

t

e
∫ u
t 2msdsdu = E[

∫ T

t

σ2
sds] (10)

This Corollary covers the two extreme cases of a general deterministic noise trader

volatility process (i.e., σ(t) is known for all future date as in Back and Pedersen (1998))

and of general unpredictable (i.e., martingale) dynamics for σt. In both these cases Gt is

the expected remaining noise trading variance over the trading horizon. Instead, if the

growth rate of noise trading volatility is stochastic then Gt is smaller than the expected

noise trading variance.

With these results established we can now proceed to characterize the equilibrium

trading strategy and price process in our economy. To solve for an equilibrium, we

proceed in a few steps. First, we derive the dynamics of the stock price consistent

with the market maker’s risk-neutral filtering rule, conditional on a conjectured trading

rule followed by the insider. Then we solve the insider’s optimal portfolio choice

problem, given the assumed dynamics of the equilibrium price. Finally, we show that

the conjectured rule by the market maker is indeed consistent with the insider’s optimal

choice.

The equilibrium we obtain, which constitutes the main result of our paper, is

summarized in the following theorem.

Theorem 1. Under condition B there exists an equilibrium where the price process has

dynamics

dPt =
(v − Pt)
Gt

σ2
t dt+

√
Σt

Gt

σtdZt (11)
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and the optimal strategy of the insider is:

θ∗t =
1

λt

σ2
t

Gt

(v − Pt), (12)

where Gt solves equation (1) and Σt, the conditional posterior variance of v in the market

makers filtration, is given by:

Σt = Σ0e
−

∫ t
0
σ2u
Gu

du. (13)

In equilibrium, price change is linear in order flow (i.e., dPt = λt dYt) with a price

impact process given by:

λt =

√
Σt

Gt

, (14)

The optimal value function of the insider is:

J(t) =
(v − Pt)2 + Σt

2λt
. (15)

The unconditional expected profit of the insider (from the point of view of the market

maker) is
√

Σ0G0.

Further, Pt is a martingale with respect to the market maker’s filtration that converges

almost surely to v at the final date T .

Lastly, market depth 1
λt

is a martingale and λt a submartingale with respect to both

the market maker’s and the insider’s filtrations.

Proof 3. See Appendix.

We now comment on several implications of the theorem. First, the equilibrium

price converges almost surely to the value v, known ex ante only to the insider, at

maturity T . This guarantees that all private information will have been incorporated

into equilibrium prices at maturity. This property is analogous to the result proved in

Back (1992), that the equilibrium price in the continuous time Kyle model follows a

standard Brownian Bridge. However, in our model the equilibrium price will typically
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display stochastic volatility if noise trading volatility is stochastic. Our model thus

generates a form of ‘excess volatility,’ since non-payoff relevant shocks (e.g., ‘sunspots’)

that affect noise trading volatility may affect the stock price volatility because the market

maker rationally anticipates that in periods where noise traders are more active informed

trader would be more aggressive and thus adjusts prices faster. We will show below

‘excess volatility’ only appears if noise trading volatility is stochastic and predictable.

Second, we see that the optimal trading strategy for the insider is to trade

proportionally to the under-valuation of the asset (v − Pt) at a rate that is inversely

related to her price impact (λt) and to the remaining amount of noise trader risk

measured by the new equilibrium quantity (Gt
σ2
t
). The latter quantity reduces to the

remaining time horizon T − t in the original Kyle model when σt is constant or indeed

when σt is unpredictable. Thus, the idea that the insider trades at a rate that is inversely

related to the remaining time horizon T − t holds only for these specific cases.

Third, our expression for the price impact generalizes both BP’s result (page 395)

obtained for deterministically changing noise trader volatility and Kyle’s result that

price impact (the inverse of market depth) is a signal to noise ratio. The signal is

measured as in the previous papers by the posterior variance of the liquidation value.

But, interestingly, the relevant measure of noise, is quite different from what obtains

in the deterministic case, where it is simply the remaining total variance. It solves

a recursive equation (5) the solution of which is typically smaller than the expected

remaining noise-trader variance.

Fourth, in our model price impact is a submartingale. This contrasts our framework

from much of the previous literature. In the original Kyle model price impact is constant.

In extensions of that model (Back, 1992; Back and Pedersen, 1998; Baruch, 2002; Back

and Baruch, 2004), price impact is either a martingale, or a super-martingale. In these

models, price impact measures have to improve (i.e, decrease) on average over time, to
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incite the insider to not trade too aggressively initially.9 Instead, with stochastic noise

trading volatility price impact measures are expected to increase over time.

Fifth, in equilibrium dΣt = −dP 2
t , which shows that when information arrives at

a higher rate, stock price volatility is high. As we show in the next section, when

noise trading volatility exhibits mean-reversion, then stock price volatility is stochastic

and typically increases when noise trading volatility increases. So in our model more

information makes its way into prices when noise trading volatility increases. This is

very different from the standard Kyle model, where private information is revealed at a

constant rate that is independent of the level of noise trading volatility.

Before we consider a few specific examples of noise trader volatility process in the

next section, we compute the profits to the insider and and the execution costs for noise

traders. Total unconditional profits of the informed in our model can be computed

by integrating the value function over the unconditional prior distribution of v, as

Ev[J(0)] = Σ0

λ0
=
√

Σ0G0. Clearly, the profits depend on how much private information

remains to be released to the market, and the total expected amount of noise trading as

measured by the solution to the recursive equation for G0.

We define the aggregate execution (or slippage) costs incurred by liquidity traders

at time T (defined pathwise) as:

∫ T

0

σtdZtdPt =

∫ T

0

λtσ
2
t dt. (16)

Intuitively, the total losses incurred between 0 and T by noise traders can be computed

9Motives to trade more aggressively early on are due to risk-aversion and a random exogenous
deadline. It would be interesting to combine risk-aversion or random deadline, with stochastic noise
trader volatility. It is likely that price impact would be neither a sub nor a super martingale in that
case.
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pathwise as:

∫ T

0

(Pt+dt − v)σtdZt =

∫ T

0

(Pt + dPt − v)σtdZt =

∫ T

0

λtσ
2
t dt+

∫ T

0

(Pt − v)σtdZt. (17)

The first component is the pure execution or slippage cost due to the fact that, in Kyle’s

model, agents submit market orders at time t that get executed at date t+ dt at a price

set by competitive market makers. The second component is the pure fundamental

loss due to the fact that based on the price they observe at t noise traders purchase

a security with fundamental value v that is unknown to them. Note that since prices

are set efficiently by market makers, on average this second component has zero mean.

Therefore we obtain the result that, the unconditional expected total losses incurred by

noise traders are equal to the unconditional expected execution costs incurred by noise

traders. Further, these are also equal the total unconditional expected profits of the

insider. (Note, however, that pathwise neither quantity need be equal.10)

In the following section we consider a few specific examples of noise trader volatility

process to illustrate the above result.

3. Special Cases of the Noise Trading Volatility Dynamics

As is clear from the above proposition, much of the characterization of the equilibrium

depends on the dynamics of the λt process, which, in turn, depends on the Gt and Σt

10To show that unconditional expected execution costs paid by noise traders are equal to the
unconditional expected profits of the insider note that the insider’s unconditional expected profits
are

Ev[

∫ T

0

θt(v − Pt)dt] = Ev[

∫ T

0

σ2
t√

ΣtGt

(v − Pt)
2dt] = Ev[

∫ T

0

σ2
t√

ΣtGt

Σtdt] = Ev[

∫ T

0

σ2
t λtdt], (18)

where the first equality follows from the definition of θ∗ and the second from the law of iterated
expectations. This is the same expression obtained for the execution costs paid by noise traders. By
definition this is also equal to Ev[J(0)] =

√
Σ0G0 where the expectation superscript emphasizes that it

is taken over the unconditional distribution of v.
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processes. Gt solves a backward stochastic differential equation, which can be solved

for specific choices of the noise trading volatility dynamics. In this section we consider

a few special cases, for which we can characterize the equilibrium further. As we show

below a crucial distinction is whether the drift of noise trading volatility is stochastic or

not.

3.1. Deterministic expected change in noise trading volatility

Suppose that the drift mt of the noise trader volatility process in equation (4) is a

deterministic process, but that the diffusion may be stochastic with general form ν(t, σt).

Then following Corollary 1 we can derive an explicit solution for the solution Gt:
11

G(t) = σ2
tBt (19)

Bt =

∫ T

t

e
∫ u
t 2msdsdu. (20)

With this solution in hand we can derive all the equilibrium quantities using Theorem

1. We summarize them in the following.

Theorem 2. If the drift mt of noise trader volatility in equation (4) follows a

deterministic process, then the solution to Gt is given by (19). It follows that private

information flows into prices deterministically:

Σt

Σ0

=
e
∫ t
0 2msdsBt

B0

. (21)

Market depth is given by:
1

λt
= e−

∫ t
0 msdsσt

√
B0

Σ0

. (22)

11This can be verified by direct substitution of the solution (19) into equation (5). It also shows that
assumption B used to derive a general existence result for G in lemma (1) is not necessary.
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The trading strategy of the insider is:

θt =
e−

∫ t
0 msdsσt
Bt

√
B0

Σ0

(v − Pt). (23)

The expected trading rate of the insider is given by:

E[θt | v,F0] =
e
∫ t
0 2msdsσ0√
B0

(v − P0)√
Σ0

(24)

Stock price dynamics are given by:

dPt =
(v − Pt)
Bt

dt+ e
∫ t
0 msds

√
Σ0

B0

dZt. (25)

In particular, stock price volatility is a deterministic exponentially increasing (decreas-

ing) function of time if noise trader volatility is expected to increase (decrease). The

unconditional expected profit at time zero of the insider is Tσvσ0

√
B0

T
.

Proof 4. Follows directly from theorem 1 and the expression for Gt obtained in (19) for

the case of a deterministic drift. The only new result is the calculation of the expected

trading rate of the insider is given by:

E[θt | v,F0] = E[
(v − Pt)√

Σt

σ2
t√
Gt

] (26)

=
(v − P0)√

Σ0

e−
∫ t
0

1
2Bs

dsσ0e
∫ t
0 msds

√
Bt

(27)

where we used the dynamics of ht from lemma 5 and the expression for Gt from

equation (19). The result in the theorem then follows from standard manipulations.

This result is interesting as it informs us about the equilibrium in two important

special cases: when the noise trader volatility process is deterministic where we recover

the model of Back and Pedersen (1998) and in the case where it is unpredictable where
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we recover a stochastic version of Kyle/Back’s model. We summarize these special cases

in the following.

Corollary 2. If noise trader volatility is deterministic (νt = 0) then the equilibrium

is identical to that derived in Kyle/Back, up to a deterministic time change given by

τt =
∫ t

0
σ2
udu. Indeed, G(t) = τT −τt, and Σt

Σ0
= (τT−τt)

τT
. Price impact (and market depth)

are constant: λ =
√

Σ0

τT
. The optimal strategy of the insider is: θ∗t =

σ2
t

λ(τT−τt)
(v − Pt).

The equilibrium price process follows a time-changed Brownian bridge process:

dPt =
(v − Pt)
τT − τt

dτt + λdZ̃(τt). (28)

where Z̃ is a standard Brownian motion with respect to Fτt.

This result is consistent with the analysis in Back and Pedersen (1998) and specializes

to the continuous time Kyle-model also derived in Back (1992) if σ(t) = σ is constant

(in which case λ = σv
σ

with σ2
v = Σ0

T
is the annualized variance of the market maker’s

prior estimate of the asset value). Note that price impact is constant in this example.

However, this is no longer the case as soon as noise trader volatility is stochastic.

Corollary 3. If noise trader volatility follows an unpredictable martingale process (i.e.,

mt = 0) then private information is incorporated into prices linearly (independent of the

level of noise trader volatility):
Σt

Σ0

=
(T − t)
T

. (29)

Market depth (the inverse of Kyle’s lambda) is stochastic and proportional to noise trader

volatility:
1

λt
=
σt
σv
, (30)

where σ2
v = Σ0

T
is the annualized initial variance of private information. The trading

strategy of the insider is:

θt =
σt

σv(T − t)
(v − Pt). (31)
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Equilibrium price dynamics are identical to the original Kyle/Back model:

dPt =
(v − Pt)
T − t

dt+ σvdZt. (32)

In particular, stock price volatility is constant. The unconditional expected profit level of

the insider at time zero is Tσvσ0.

This example shows that many of the features of Kyle’s equilibrium survive when noise

trader volatility follows arbitrary martingale dynamics. Indeed, we see that when noise

trader volatility is not forecastable, private information gets into prices at the same rate

as in the original economy (i.e., linearly). The equilibrium looks identical to the original

Kyle-Back model where one substitutes a stochastic process σt for the constant noise

trading volatility in the original model. Since in the original model, the equilibrium price

process and the rate at which private information is revealed are independent of the noise

trading volatility, they are unchanged in this case. However, both the trading strategy of

the insider and the price impact (Kyle’s lambda) change. Both become stochastic. The

insider trades more aggressively when noise trading volatility is higher, but price impact

moves in the exact opposite direction so that both effects cancel, leaving equilibrium

prices unchanged. In equilibrium then, insiders cannot gain from timing their trades

and thus their unconditional expected profit level is unchanged relative to what it would

be in the Kyle-Back model with noise trader volatility set to a constant σ0. Interestingly,

even in this model however, price impact measures are stochastic and vary inversely with

the level of noise trader volatility. Since the latter is a martingale, we see that on average,

price impact is expected to increase in this case.

While we do recover the original Kyle/Back model in some unconditional expected

sense when noise trader volatility is unpredictable, interestingly it is market depth (and

not price impact) that is on average constant.
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In general when noise trading volatility is stochastic (ν 6= 0) and if there is

predictability (mt 6= 0) then theorem 2 shows that the equilibrium differs from the

standard Kyle-Back solution even unconditionally. For example, we plot in figure 1 the

expected optimal trading rate of the insider normalized by the initial undervaluation

(E[θt | v,F0]/(v − P0) from equation (24)) for different levels of m. As we can see, when

the noise trading volatility is unpredictable (m = 0) then we expect the insider to trade

at a constant rate as in the Kyle-Back model. Instead, if noise trading volatility is

expected to increase (m > 0) then unconditionally we expect the insider to trade more

aggressively on average in the future when more noise trading will occur.

In figure 2 we plot the corresponding G(t) function normalized by the noise trader

variance (i.e., Gt
σ2
t
, which in this case is a deterministic component of the inverse of the

trading rate of the insider. When m = 0 his reduces to a linear function of time, leading

the insider to trade inversely proportionally to time to maturity. Instead, when m > 0

then we see this function is convex, and for m > 0 concave explaining partially the shape

of the unconditional expected trading rate. These different trading patterns also result

in different patterns in information revelation.

Figure 3 plots the path of the posterior variance of the private information signal for

three cases m = 0.5, m = 0 and m = −0.5. It is remarkable that private information

is revealed following a deterministic path, which only depends on the expected rate of

change in noise trading volatility, despite the fact that the strategy of the insider is

stochastic. This is of course the result of the offsetting effect noise trading volatility

has on the price impact coefficient λt. If the level of noise trading variance changes,

the insider trades more or less aggressively, but price impact changes one for one,

making price dynamics and information revelation independent of the volatility level. If

variance is expected to increase, then private information gets into prices more slowly

initially, and then faster when the insider trades more aggressively. So posterior variance
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Figure 1: Trading strategy of the insider normalized by his expected profit (θt/(v−Pt))
for a given fixed level of noise trader volatility plotted against time and for different
levels of expected growth rate of noise trader volatility.
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Figure 2: Expected remaining cumulative noise trading variance normalized by the noise
trader variance (G(t)/σ2

t ) plotted against time and for different levels of expected growth
rate of noise trader volatility.
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Figure 3: Path of posterior variance of the insider’s private information Σt for various
values of the expected change in noise trader volatility m.

follows a deterministic concave path if noise trader volatility is expected to increase,

but a convex path if it is expected to decrease. As a result, the equilibrium price

process exhibits time varying volatility. Its volatility increases (decreases) exponentially

if noise trader volatility is expected to increase (decrease). Interestingly, price volatility

is deterministic, despite stochastic noise trader volatility and stochastic market depth.

From a mathematical point, the price process follows a one-factor-Markov bridge process

with non-time homogeneous volatility (recall that Pt almost surely converges to v at time

T ).

In this economy, we obtain an interesting separation result. The strategy of the

insider (θt) and the price impact measures (λt) expressed as a function of the level of noise

trader volatility (σt) are independent of the volatility of the noise trader volatility (ν). As

a result, the informational efficiency of prices, the price process, and the unconditional

expected profits of the insider only depend on initial conditions (Σ0, σ0) and on the

expected growth rate of noise trader volatility (m).
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However, the time-series dynamics of the price impact measure and the optimal

strategy of the insider is stochastic and varies with σt, which of course depends on ν.

An implication is that we may see lots of variation in estimates of price impact measures

(Kyle’s lambda) in time series (i.e, at different times along one path) and in cross-section

(i.e., at the same time across different ‘economies’ or stocks), but this is not necessarily

informative about the amount of private information (Σt) in the market.

Theorem 2 clearly shows that for uncertainty about future noise trading volatility to

affect the equilibrium price volatility and indeed for price volatility to be stochastic, the

expected change in noise trading volatility mt has to be stochastic.12

To further analyze how stochastic noise trading volatility can generate stochastic

price volatility and how both interact with measured price impact and actual execution

costs paid by noise traders, we now consider the case where noise trading volatility follows

a continuous time Markov Chain. This introduces state-dependent predictability and

jumps in noise trader volatility in a simple manner and leads to a tractable illustration

of the dynamics of price volatility and private information revelation.

3.2. Stochastic expected change in noise trader volatility: A Markov chain example

Here we consider a case where noise trader volatility does not follow a diffusion

process and show that we can still derive an equilibrium following the same approach

used in the Brownian case above. We assume that noise trading volatility follows a

two-state continuous Markov Chain, i.e., there are two fixed values σL < σH with

σ0 ∈ {σH , σL} and with dynamics:

dσt = (σH − σt)dNL(t)− (σt − σL)dNH(t), (33)

12In the appendix we analyze a case where volatility follows a mean-reverting diffusion process, using
expansion techniques and show using an approximation to the solution for G how uncertainty about
future noise trading volatility interacts with mean-reversion to generate stochastic price volatility.
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where Ni(t) is a standard Poisson counting process with jump intensity ηi respectively.13

Since the volatility process is Markov, we seek a solution to the BSDE for G of the

form G(t, σt) that satisfies:

√
G(t, σt) = Et

[∫ T

t

σ2
u

2
√
G(u, σu)

du

]
. (34)

We can characterize it as follows.

Theorem 3. A solution to (34) is the function G(t, σt) = 1{σt=σL}
GL(T − t) +

1{σt=σH}
GH(T − t), where the deterministic functions GL, GH satisfy the system of ODE

given in equations (35)-(36) below, with boundary conditions GL(0) = GH(0) = 0.

GL
τ (τ) = (σL)2 + 2ηL(

√
GH(τ)GL(τ)−GL(τ)) (35)

GH
τ (τ) = (σH)2 + 2ηH(

√
GH(τ)GL(τ)−GH(τ)) (36)

Proof 5. Consider a pair of functions GL(·), GH(·) that solve the ODE system (35)-

(36) subject to the boundary condition GL(0) = GH(0) = 0, then it is straightforward

to show that if we define G(t, σt) = 1{σt=σL}
GL(T − t) + 1{σt=σH}

GH(T − t) then J(t) =√
G(t, σt) +

∫ t
0

σ2
u

2
√
G(u,σu)

du is a pure jump martingale (i.e., Et[dJ(t)] = 0). It follows

that J(t) = Et[J(T )] and using the definition of J(t) and the boundary conditions from

the ODEs that:
√
G(t, σt) = Et[

∫ T
t

σ2
u

2
√
G(u,σu)

du].

We note that when there is no transition between states ηi = 0 then the solution

reduces to the familiar one obtained in Back (1992), i.e., Gi(τ) = (σi)2 (T − t). In

general, the system of coupled differential equations for Gi(t) i = L,H can be easily

solved numerically. We note that as maturity approaches, as long as the switching

intensities ηH , ηL are not too (i.e., unboundedly) large, the solution for the price process

converges to a pure Brownian bridge as in the continuous time version of the Kyle model

13For example, ηH is the intensity of moving from state H to state L.
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presented in Back (1992). However, with more time to go before maturity, the possibility

of transitionning from one liquidity state to another changes the optimal strategy of the

insider and the price impact function.

For illustration, we choose a period length T = 1, ηL = ηH = 2 (2 transitions per

period), σL = 0.2 and σH = 0.5. For these parameter values we report in figure 4 the

G-function in the high and low state. As expected, close to maturity the two functions

converge smoothly to the lines (σi)2(T − t) (with i = L,H) that would prevail, if there

were no transitions between states (i.e., the state was absorbing), which also corresponds

to the original Kyle model.

Figure 4 shows that, typically, when there is a switch in regime, say from the low to

the high volatility regime, the measure of price impact (Kyle’s lambda) will jump down,

as price impact is lower in the high noise-trading volatility regime. Indeed, recall that

λt =
√

Σt
Gt

and that since Σt is an absolutely continuous process, the immediate effect

of an upward jump from GL to GH is to lower λ. (of course subsequently, in the high

noise trading regime, information will be impounded more quickly into prices, leading

to a faster drop in Σt than in the low volatility regime).

Using the explicit solution for the amount of private information Σ(t) =

Σ(0)e−
∫ t
0
σ2u
Gu

du, we present in figure 5 four paths of Σ(t) which depict the revelation

of private information in our economy relative to the Kyle (1985) benchmark. We plot

Σ(t)/Σ(0) for the case where noise trading volatility switches to the high regime at date

zero and stays there until maturity (high), when it starts in the low regime and stays

there until maturity, and when there is a jump at t = 0.5 from high to low and low to

high respectively.

Note that in Kyle, information always decays linearly in time, irrespective of the

level of noise trader volatility, in the sense that Σkyle(t)
Σkyle(0)

= T−t
T

. Instead, when noise

trading volatility can change stochastically, information flows into prices in a very
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Figure 4: G function in high and low state that solve equation (34). We also plot the
lines σL(T − t) and σHT − t, which sandwich respectively GL(T − t) and GH(T − t).
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Figure 5: Four paths of the remaining amount of private information Σ(t)/Σ(0)
corresponding to four different noise trader volatility scenarios: (a) start and stay in
the high volatility regime until T , (b) start and stay in the low volatility regime until
T , (c) start in the high volatility regime and switch to low volatility at t = 0.5, and (d)
start in low volatility regime and switch to high at t = 0.5. We also plot as a benchmark,
the Kyle (1985) economy private information decay, which is linear and independent of
the noise trader volatility level.
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different fashion. As figure 5 reveals, the posterior variance, when in the high volatility

regime, is a decreasing convex function of time, but becomes decreasing concave when

there is a switch to the low noise trading regime. The intuition, is that in the low noise

trading regime, the insider is playing a waiting game, in the sense that he trades much

less aggressively, than he would in the Kyle economy with the same level of volatility.

He does so hoping for the high noise trading regime to arrive, where he trades more

aggressively, leading to much faster arrival of private information. Of course, if the

regime switch does not arrive then ultimately, he will have to become more aggressive

so that all his information eventually makes it into prices (see the path marked as ‘low’

on the graph).

This suggests that all the price impact measures and execution cost measures will

be path dependent. For example, we plot in figure 6, for the same four noise trading

volatility scenarios, the corresponding path of the price impact (λ(t)) process. We see

that if the economy starts in the high noise trading regime and stays there until maturity,

then measured price impact is relatively low and decays steadily. Instead, if the economy

starts in the low noise trading regime, then price impact level is at first only slightly

higher than the price impact level in the high noise trading regime, but it increases

exponentially as the economy approaches maturity. Similarly, if the regime switches at

some point from high to low volatility, then price impact immediately jumps up a little,

but subsequently, market depth worsens very rapidly as λ increases along a very convex

path. This captures intuitively, the submartingale property of λ. On average, execution

costs are expected to increase as the economy approaches maturity. Interestingly, note

that if the economy is in the high noise trading regime, then measured price impact will

be low and decrease steadily at the beginning, even though there is a lot of ‘asymmetric

information’ in the sense that, from figure 5, we see a lot of information getting into

prices. Comparing figures 5 and 6 suggests that the level of λt, obtained by ‘regressing’
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stock price changes on order flow, does not give a valid measure of the amount of private

information flowing into prices (as measured by the slope of Σ(t) which equals −λ2
tσ

2
t ).

In figure 7 we plot the volatility of the stock price (which equals λtσt), for the same

four noise trading volatility scenarios. As we see, stock price volatility tends to be higher

in the high noise-trading volatility regime. If the economy stays in that regime, then

volatility drops steadily. However, if the economy jumps to a low noise trading volatility

regime, then stock price volatility jumps down, a large amount, and then subsequently

rises rapidly, following an exponential path. These dynamics are intuitive, given the

discussion about how private information is disclosed since price volatility is higher

when information is disclosed faster.

Lastly, from its definition, it is clear that execution costs paid by noise traders are

closely related to the path of stock price volatility. In figure 8 we plot, for the same four

scenarios, the path of realized execution costs (λtσ
2
t ). The total execution costs paid by

noise traders at time T is represented by the area below each curve plotted. From the

graph it is clear that execution costs are lowest in the low volatility regime scenario,

and much higher in the high noise trading volatility regime. We give the corresponding

numbers in table 1.

This is paradoxical, since as is clear from the table, the high noise trading volatility

regime is also the one where the average measured price impact (λ) is lower. However, the

comparison is not appropriate since there are typically more noise trading (as measured

by the quadratic variation of the order flow) in a high volatility scenario than in the low

volatility scenario, and therefore it is natural that the total execution costs paid by noise

traders are higher in the high volatility scenario. However, if we compare the two other

scenarios (high/low to low/high), where arguably there are the same ‘number’ of noise

traders along each path (in the sense that the cumulative quadratic variation of noise

trading is the same across both paths as is confirmed in the third row of table 1), then
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Figure 6: Four separate paths of equilibrium price impact (lambda) dynamics corre-
sponding to (a) start and stay in the high volatility regime until T , (b) start and stay
in the low volatility regime until T , (c) start in the high volatility regime and switch
to low volatility at t = 0.5, and (d) start in low volatility regime and switch to high at
t = 0.5.
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Figure 7: Four separate paths of stock price volatility corresponding to (a) start and
stay in the high volatility regime until T , (b) start and stay in the low volatility regime
until T , (c) start in the high volatility regime and switch to low volatility at t = 0.5,
and (d) start in low volatility regime and switch to high at t = 0.5.
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Figure 8: Four separate paths of realized execution costs (λtσ
2
t ) corresponding to (a) start

and stay in the high volatility regime until T , (b) start and stay in the low volatility
regime until T , (c) start in the high volatility regime and switch to low volatility at
t = 0.5, and (d) start in low volatility regime and switch to high at t = 0.5. As
explained in lemma 3 the area under each path represents the execution costs incurred
by noise traders.

Noise trading volatility paths
high/high low/low high/low low/high

Total 0.078 0.017 0.054 0.057

Execution costs (
∫ T

0
λtσ

2
t dt) 0.047/0.031 0.005/0.012 0.047/0.007 0.005/0.052

Total 0.487 1.740 1.023 0.853

Average price impact (
∫ T

0
λtdt) 0.292/0.195 0.530/1.210 0.292/0.731 0.530/0.323

Total 0.16 0.01 0.085 0.085

‘Number’ of noise traders (
∫ T

0
σ2
t dt) 0.08/0.08 0.005/0.005 0.08/0.005 0.005/0.08

Total 0.487 1.740 0.636 0.671

Normalized execution costs (
∫ T
0 λtσ2

t dt∫ T
0 σ2

t dt
) 0.587/0.387 1/2.4 0.587/1.4 1/0.65

Total 0.195 0.174 0.190 0.182

Average stock price volatility (
∫ T

0
λtσtdt) 0.117/0.078 0.053/0.121 0.117/0.073 0.053/0.129

Table 1: This table presents the realized execution costs for noise traders depending
on various scenarios of realized paths of noise trader volatility. Each path of realized
noise trader volatility corresponds to a certain ‘number’ of uniformed traders arriving
to the market. This ‘number’ is measured by the quadratic variation of the order flow.
Normalized execution costs measure the total execution costs divided by the number of
noise traders.
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we see that this is not the only reason. Indeed, execution costs paid by noise traders

are higher in the low/high than in the high/low scenario (see first row of table 1).

Interestingly, we see that the average price impact is higher in the high/low than in

the low/high regime, which indicates that focusing on the average level of price impact

measures does not capture the realized execution costs. Instead, normalized execution

costs, measured as ‘volume’ weighted price impact normalized by total noise trader

volume, perhaps better captures the average execution cost paid by the average noise

trader. We see in the last row of table 1 that the average price impact thus measured is

indeed higher in the low/high than the high/low regime, and indeed, also higher in the

low regime than the high regime, indicating the importance of normalizing price impact

measures, when there can be variation in noise trading volatility.

Unlike in previous literature, aggregate execution costs are path-dependent and

depend in a complex manner on the realized path of noise trader volatility (and not

just on the total cumulative amount of noise trading relative to private information as

in Kyle (1985) or Back and Pedersen (1998)).

4. Extensions and Empirical Implications

4.1. The Dynamics of Aggregate Order Flow

For simplicity we have assumed that aggregate order flow and noise trader volatility

are conditionally uncorrelated. This assumption can be relaxed. Consider for example

the more general model for total order flow:

dŶt = θtdt+ σtdZt + η(t, σt, Ŷ t)dWt. (37)
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In that case, it suffices to define the process Yt by

dYt = dŶt −
η(t, σt, Ŷ t)

ν(t, σt)
(dσt −m(t, σt)dt) = θtdt+ σtdZt. (38)

Note that the dynamics of Yt in (38) are identical to those in equation (2). Further,

since observing (Ŷt, σt) is equivalent to observing (Yt, σt) for all market participants, it

can be shown that all our results above (and in particular Theorem 1) are unchanged

with this more general model of order flow. This shows that our previous assumption

that total order flow and σt be conditionally uncorrelated is not crucial for our results.

Instead, our proofs do rely on the assumption that order flow does not Granger-cause

σt in the sense that the history of Ŷt does not affect the future dynamics of σt (i.e, m

and ν cannot depend on Ŷ t).

Economically, this extension is interesting as it shows that price change need not be

linear in total order flow, but only in the component of the order flow that is informative

about the insider’s action.

4.2. Informed Trading and Adverse Selection Measures

Empirical measures of adverse selection typically rely on an estimate of the persistent

price impact of trades to measure the amount of private information in trades. In their

well-known survey of the micro-structure literature, Biais, Glosten, and Spatt (2005)

describe the empirical relation between adverse selection and the price impact (λ) as

follows: “As the informational motivation of trades becomes relatively more important,

λ goes up.” (page 232). Consistent with this intuition many empirical study rely on

average measures of price impact to sort firms into groups with different levels of adverse

selection (higher when average price impact is higher).

One of the implications of our model is that average price impact might not be a

valid measure of average adverse selection costs paid by noise traders. This implication
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is most evident when the Markov chain example is analyzed (see Section 3.2). In a

recent empirical study, Collin-Dufresne and Fos (2014) (‘CF’ hereafter) report evidence

consistent with this implication. Investigating a large sample of trades by informed

investors14 CF find that informed traders trade much more aggressively, when measured

adverse selection is low. Their study uncovers a strong negative relation between

traditional measures of adverse selection (such as estimates of Kyle’s lambda obtained

from high-frequency data) and trading by informed investors.They also show that these

informed investors are more likely to trade when abnormal volume on the stock itself as

well as other measures of liquidity (such as the abnormal volume on the S&P 500 stock

index) are high, which is consistent with the economic mechanism of this paper, where

informed investors wait for liquidity to be high to trade more.

4.3. Dynamics of Price volatility, bid-ask spreads, and returns

The model makes interesting predictions about the joint dynamics of price volatility,

price impact (i.e, the adverse selection component of trading costs), and stock returns.

For example, the model predicts that typically price volatility tends to be high when

volume is high and price impact is low. This goes in an opposite direction to the relation

predicted for example by inventory models of trading costs, where higher volatility would

typically be positively related to trading costs. Further, our model predicts that the joint

dynamics are path-dependent and will depend significantly on the realized path of noise

trading. So for example, after a long period of low noise trading, price volatility and

price impact can actually both rise together. This occurs in the model if the insider

approaches maturity without having been able to trade much in a high noise trading

environment. Eventually, he is not willing to wait anymore and trades aggressively

14Exploiting an SEC disclosure requirement CF build a sample of trades by activist investors. They
document that these trades are informed, based on their abnormal realized profits and analyze the price
impact of these trades.
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in a low noise trading environment leading to high price impact and high volatility.

These predictions could be tested and used to improve our estimates of adverse selection

measures.

5. Conclusion

In this paper we have extended Kyle’s (1985) model of dynamic insider trading to the

case where noise trading volatility can change stochastically over time. In equilibrium,

we find that the insider adjusts his optimal trading strategy to trade less when noise

trading volatility is lower and more when it is higher. Since market makers anticipate

this, in equilibrium, measures of market depth are time varying. Market depth is a

martingale and therefore its inverse, price impact, is a submartingale, indicating that on

average execution costs are expected to increase over time.

Under certain conditions which we identify, the equilibrium price process exhibits

stochastic ‘excess volatility’ in the sense that non-payoff relevant shocks that change

noise trading in equilibrium also drive the price volatility. This is because rational

market makers anticipate that more informed trading occurs, and thus more information

is revealed, when noise trading volatility is high.

The model makes interesting predictions about the joint dynamics of price volatility,

price impact (i.e, the adverse selection component of trading costs), and stock returns,

which could be taken into account when estimating empirical measures of adverse

selection.

The model makes many simplifying assumptions that could be relaxed to further our

understanding of how information flows into prices and how volatility, price impact, and

prices comove. First, we assume that the amount of private information is fixed and only

noise trading volatility is time varying. Second, we assume throughout that the noise

trading volatility process is common-knowledge. Third, we assume (as in Kyle) that
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the presence of the insider is common-knowledge. Fourth, we assume that the trading

horizon is exogenous and fixed. And lastly we assume that the insider is risk-neutral.

We leave these extensions for future research.
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6. Appendix

6.1. Proof of lemma 1

We note that yt =
√
Gt solves the Backward stochastic differential equation

dyt = −f(t, yt)dt− ΛtdMt

with f(t, yt) =
σ2
t

2yt
and with terminal condition yT = 0. Now f(t, yt) ≤ `(yt) ∀(t, ω)

where we define the function `(y) = σ2

2y
. We can thus compute

∫∞
0

dx
`(x)

=
∫ 0

−∞
dx
`(x)

=∞.

Thus `(x) is super-linear as shown in lemma 1 of Lepeltier and San Martin (1997).

Their theorem 1 then applies, which gives us the existence of a maximal bounded

solution for yt (and therefore for Gt). In addition their Theorem 1 implies that there

exist two solutions L(t), U(t) that solve Lt = −
∫ T
t
`(Ls)ds and Ut =

∫ T
t
`(Us)ds such

that we have Lt ≤ Gt ≤ Ut. It is easy to calculate that U2
t = −L2

t = σ2(T − t). This

gives us the upper bound.

For the lower bound we use a comparison theorem. Consider the solution to the

following Backward equation

dxt = − σ2

2xt
dt− Λ̃tdMt,

with terminal condition xT = 0. It can be computed straightforwardly as xt = σ
√
T − t

(note Λ̃t = 0). Since ∀(t, ω); f(t, y) ≥ σ2

2y
we can use the comparison result Corollary 2

of Lepeltier and San Martin (1997) to obtain

yt ≥ xt ∀(t, ω), (39)

35



which gives the lower bound on the maximal solution for Gt.

6.2. Proof of lemma 2

Define A(t) =

√
G(t)

σt
. Then plugging into equation (5) we see that A(t) solves:

A(t) = Et[

∫ T

t

e
∫ u
t msds

2A(u)

ξu
ξt
du] (40)

= Ẽt[

∫ T

t

e
∫ u
t msds

2A(u)
du], (41)

where we have used, for the first line, the fact that (for u ≥ t):

σu = σte
∫ u
t msds

ξu
ξt
, (42)

and, for the second line, Girsanov’s theorem. Now, it follows, that e
∫ t
0 msdsA(t) +∫ t

0
e
∫u
0 msds

2A(u)
du = Ẽt[

∫ T
0

e
∫u
0 msds

2A(u)
du] =: M̃t which is a continuous bounded P̃ martingale

(given the assumed regularity conditions, the previous lemma, and the law of iterated

expectations). Thus we have:

dA(t) +mtA(t)dt+
1

2A(t)
dt = e−

∫ t
0 msdsdM̃t. (43)

By Itô’s formula we also have dA(t)2 = 2A(t)dA(t) + σA(t)2A(t)2dt, where we define

σA(t) to be the diffusion of logA(t). It follows that:

dA(t)2 + (2mt − σA(t)2)A(t)2dt = 2A(t)2e−
∫ t
0 msdsdM̃t. (44)

Integrating, using the fact that A(T ) = 0, and taking expectations we obtain the result.

The inequality follows immediately from the fact that E[
∫ T
t
σ2
udu] =

σ2
t Ẽ[
∫ T
t
e
∫ u
t 2msdsdu].
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6.3. Proof of main Theorem 1

The proof is in several steps.

6.3.1. Step 1: Market Maker’s Updating

First, we establish that if the the market maker conjectures that the insider’s trading

strategy is linear in his per period profit, i.e., that:

θt = β(σt, Gt,Σt)(v − Pt), (45)

where β(·, ·, ·) measures the speed at which the insider decides to close the gap between

the fundamental value v (known only to him) and the market price Pt, and where we

define Σt as the conditional variance of the terminal payoff:

Σt = E
[
(v − Pt)2 | FYt

]
, (46)

then the equilibrium price process which results from the market maker’s break-even

pricing rule given in equation (3) is such that price changes are conditionally linear in

order flow.

Lemma 3. If the insider adopts a trading strategy of the form given in (45), then the

stock price given by equation (3) satisfies P0 = µ0 and:

dPt = λ(σt, Gt,Σt) dYt, (47)

where the price impact is a function of the conjectured trading rule:

λ(σt, Gt,Σt) =
β(σt, Gt,Σt)Σt

σ2
t

. (48)
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Further, the dynamics of the posterior variance are given by:

dΣt = −λ(σt, Gt,Σt)
2σ2

t dt. (49)

Proof 6. This follows directly from an application of theorems 12.6, 12.7 in LS 2001.

We provide a simple ‘heuristic’ motivation of the result using standard Gaussian

projection theorem below.

Pt+dt = E
[
v |Y t, Yt+dt, σ

t, σt+dt
]

(50)

= E
[
v |Y t, σt

]
+
Cov(v, Yt+dt − Yt |Y t, σt)

V (Yt+dt − Yt |Y t, σt)
(Yt+dt − Yt − E[Yt+dt − Yt |Y t, σt](51)

= Pt +
βΣtdt

β2Σtdt2 + σ2
t dt

(Yt+dt − Yt) (52)

≈ Pt +
βΣt

σ2
t

dYt. (53)

The second line uses the fact that the dynamics of σt is independent of the asset value

distribution and of the innovation in order flow. The third line uses the fact that the

expected change in order flow is zero for the conjectured policy. The last line follows from

going to the continuous time limit (with dt2 ≈ 0). Similarly, by the projection theorem,

we have:

V ar
[
v |Y t, Yt+dt, σ

t, σt+dt
]

= V ar
[
v |Y t, σt

]
− (

βΣt

σt
)2V ar

[
Yt+dt − Yt |Y t, σt

]
, (54)

which gives:

Σt+dt = Σt − λ2
tσ

2
t dt. (55)
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6.3.2. Insider’s Optimal strategy

Second, we establish that if price changes are linear in order flow with a specific

choice of price impact process, namely:

dPt = λt dYt (56)

λt =

√
Σt

Gt

(57)

with Gt,Σt as defined in (5) and (49), then the optimal trading strategy of the insider

is indeed of the form given in equation (45).

To establish this we first need a preliminary result which establishes that the

conjectured equilibrium price process converges at maturity to the liquidation value

v.

Lemma 4. Suppose price dynamics are given by equations (56), (49),(57), and (5),

then the price process Pt converges almost surely to v at time T .

Proof 7. The conjectured equilibrium price process is:

dPt =
(v − Pt)
Gt

σ2
t dt+

√
Σt

Gt

σtdZt (58)

dΣt = −Σt

Gt

σ2
t dt. (59)

It is straightforward to solve the ODE for Σt and obtain equation (13). Consider the

process X(t) = Pt − v:

X(t) = e−
∫ t
0
σ2u
Gu

duX0 +

∫ t

0

e−
∫ t
s
σ2u
Gu

du

√
Σs

Gs

σs dZs (60)

:= I1(t) + I2(t), (61)
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where the second line defines the integrals I1, I2. Equation (6) implies that

σ2

σ2
log(

T

T − t
) ≥

∫ t

0

σ2
u

Gu

du ≥ σ2

σ2 log(
T

T − t
)

It follows immediately from this inequality that

lim
t→T

I1(t) = 0 a.s. (62)

Further, note that I2(t) = e−
∫ t
0
σ2u
Gu

duMt where we define the Brownian martingale:

Mt =

∫ t

0

e
∫ s
0
σ2u
Gu

du

√
Σs

Gs

σs dZs (63)

Note that the quadratic variation of Mt is equal to:

< M >t =

∫ t

0

e
∫ s
0

2σ2u
Gu

duΣs

Gs

σ2
s ds (64)

= Σ0(e
∫ s
0
σ2u
Gu

du − 1) (65)

where we substituted Σs from equation (13) to obtain the second line.

Now, from Karatzas and Shreve (1991) theorem 4.6 p. 174, we know there exists

a standard Brownian motion Bt such that the continuous martingale can be seen as a

time changed Brownian motion, specifically Mt = B<M>t. Using the Strong law of large

number for Brownian Motion, which states that limτ→∞Bτ/τ = 0 a.s. (see Karatzas

and Shreve (1991) page 104), we obtain:

lim
t→T

e−
∫ t
0
σ2u
Gu

duMt = lim
t→T

B<M>t

1 + <M>t
Σ0

= lim
τ→∞

Bτ/τ
1

Σ0
+ 1/τ

= 0 a.s. (66)

This establishes that limt→T I2(t) = 0 a.s and completes the proof.

We now establish another useful result about the limiting distribution of the standardized

price process.
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Lemma 5. The process ht = Pt−v√
Σt

follows a time changed Ornstein-Uhlenbeck process

with the property that hT has a normal distribution with E[hT ] = 0 and E[h2
T ] = 1.

Proof 8. Simple calculations show that

dht = −1

2

σ2
t

Gt

dt+
σt√
Gt

dZt (67)

This is a time changed Ornstein-Uhlenbeck process with stochastic time change process

τt =
∫ t

0
σ2
s

Gs
ds which is independent of the filtration generated by Zt. Straightforward

calculations show that E[hT ] = 0 and E[h2
T ] = 1 and that the limiting distribution of hT

is a standard normal.

The last intermediate result we establish is that market depth is a martingale.

Lemma 6. Market depth (which is the inverse of the price impact, i.e, Kyle’s lambda)

is a martingale that is orthogonal to the aggregate order flow. It follows that price impact

(Kyle’s lambda) is a submartingale.

Proof 9. Note that from its definition the Gt process satisfies:

d
√
Gt +

σ2
t

2
√
Gt

dt = dMt, (68)

whereMt = E[
∫ T

0

σ2
t

2
√
Gt
dt |σt] is a bounded martingale (adapted to the filtration generated

by the noise-trader volatility process) by the law of iterated expectation. Note that from

equation (6) it is straightforward to show that Mt ≤ σ2

σ

√
T ∀t.

It follows, by definition of the process σt, that dMtdZt = 0.

From its definition in (57) and the definition for Σt and Gt above we obtain:

d
1

λ(t)
=

1√
Σt

d
√
Gt −

√
Gt

2(Σt)3/2
dΣt (69)

=
1√
Σt

dMt. (70)
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It also follows that d 1
λt
dYt = 0.

To prove that λ is a submartingale we apply Jensen’s inequality. We have: 1
λt

=

Et[
1
λs

] ≥ 1
Et[λs]

. It follows that λt ≤ Et[λs].

We now can prove the main result for this step, namely a verification proof of

optimality of the insider’s trading strategy (12). Recall that the insider is optimizing

the following value function:

J(t) = max
{θs}s≥t∈A

E

[∫ T

t

(v − Ps)θsds |FYt , v
]
, (71)

where the set of admissible strategies A is defined as the set of processes θt such that

E[
∫ T

0
|θs|2ds] <∞.

Lemma 7. Suppose price dynamics are given by equations (56), (49),(57), and (5), and

that assumption B holds, then the optimal value function is given by:

J(t) =
(v − Pt)2 + Σt

2λt
, (72)

and the optimal strategy is given by:

θ∗t =
1

λt

σ2
t

Gt

(v − Pt). (73)

Proof 10. Apply Itô’s rule to the conjectured value function to get

dJ(t) =
(v − Pt)2 + Σt

2
d

1

λt
+

1

λt

(
−(v − Pt)dPt +

1

2
dP 2

t

)
− (v − Pt)dPt d

1

λt
+

1

2λt
dΣt.

(74)

The insider takes the price impact process as given and assumes the price process follows:

dPt = λt (θtdt+ σtdZt) ,
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with the λ process as in equation (57) above. Using lemma 6 and the Σt dynamics, and

integrating the above we obtain:

J(T )− J(0) +

∫ T

0

(v − Pt)θtdt =

∫ T

0

(Pt − v)σtdZt +

∫ T

0

(v − Pt)2 + Σt

2
√

Σt

dMt. (75)

Now, since J(T ) ≥ 0 it follows by taking expectation (and using the fact that the

stochastic integrals are martingales, as established in lemma 8 below), that

E

[∫ T

0

(v − Pt)θtdt
]
≤ J(0) (76)

for any admissible policy {θt}. Further, if there exists a trading strategy θt consistent

with the updating equations (48), such that E[J(T )] = 0 then the inequality holds with

equality.

The candidate policy in equation (12) satisfies this.

Indeed note that

J(T ) =
(v − PT )2 + ΣT

2λT
=

(v − PT )2

2λT
+

√
ΣT GT

2
=

(v − PT )2

2λT
.

In turn:

E[
(v − PT )2

λT
] ≤

√
E[(v − PT )2GT ]E[(

v − PT
ΣT

)2] = 0

where the right hand side equality follows from lemma 4 and lemma 5.

We have therefore proved the optimality of the value function and of the proposed

policy.

Lemma 8. Under assumption B the stochastic integrals J1(t) =
∫ t

0
(v − Ps)σsdZs and

J2(t) =
∫ t

0
(v−Ps)2+Σs

2
√

Σs
dMs are martingales for any admissible strategy.

Proof 11. To prove that J1(t) is a martingale it is sufficient to show that E[
∫ T

0
(v −

Pt)
2σ2

t dt] <∞. In turn becuse B holds it is sufficient to show that Pt has finite variance

for all t. Note that Pt = P0 +
∫ t

0
λsθsds+

∫ t
0
σsλsdZs. Thus for Pt to have finite variance
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it is sufficient that E[(
∫ t

0
λsθsds)

2] <∞ and E[
∫ t

0
σ2
sλ

2
sds] <∞. Clearly, E[

∫ t
0
σ2
sλ

2
sds] =

Σ0 − Σt <∞. Further, using Cauchy-Schwartz we have:

E[(

∫ t

0

λsθsds)
2] ≤ E[

∫ t

0

λ2
sds

∫ t

0

θ2
sds]

The right hand side is finite for any admissible trading strategy since
∫ t

0
λ2
sds ≤

1
σ

∫ t
0

Σs
Gs
σ2
sds = Σ0−Σt

σ
< Σ0

σ
.

Next to show that J2(t) is a martingale, sinceMt is a bounded continuous martingale

(from lemma 6) and Σt is a decreasing process, it is sufficient to show that
∫ T

0
(v−Pt)2√

Σt
dMt

is a martingale. To that effect we use integration by parts and write

∫ t

0

(v − Ps)2

√
Σs

dMs =
(v − Pt)2

√
Σt

Mt − C −
∫ t

0

Msd
(v − Ps)2

√
Σs

for some constant C. Thus for the stochastic integral to have finite variance it is

sufficient that E[ (v−Pt)4
Σt

] <∞ ∀t given that Mt <
σ2
√
T

σ2 ∀t as shown in lemma 6. Since

E[ (v−Pt)4
Σt

] < Σ0E[h4
t ], with h defined in lemma 5 we can easily verify (from the results

obtained in lemma 5) that E[h4
t ] <∞ ∀t.

6.4. Mean-reverting noise trading volatility

Here we consider an example where noise trader volatility follows a diffusion process

with mean-reversion. Specifically, we consider the case where xt = log σt follows a

mean-reverting Ornstein-Uhlenbeck process:

dxt = (−ν
2

2
− κxt)dt+ νdWt. (77)

We parametrize the drift of xt so that, when κ = 0, volatility is a martingale:

dσt
σt

= −κxtdt+ νdWt. (78)
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As a result, we can focus on the impact of mean-reversion alone, and use a series

expansion in κ around the known solution when κ = 0 (derived in example 2). The

following result characterizes the solution.

Theorem 4. If the log of noise trading volatility follows a mean reverting process as

given in equation (78), then the process G(t) admits the solution:

G(t) = σ2
tA(T − t, xt, κ)2, (79)

where the function A(τ, x, κ) can be approximated by a series expansion:

A(τ, x, κ) =
√
T − t

(
1 +

n∑
i=1

(−kτ)i

(
i∑

j=0

xj
i−j∑
k=0

cijkt
k

)
+O(κn+1)

)
, (80)

where the cijk are positive constants that depend only on ν2 and can be solved explicitly.15

In that case, private information enters prices at a stochastic rate that depends on the

level of noise trading volatility:

dΣt

Σt

= − 1

A(T − t, xt, κ)2
dt. (81)

Market depth is stochastic and given by:

λt =

√
Σt

σtA(T − t, xt, κ)
. (82)

The trading strategy of the insider is:

θt =
σt√

ΣtA(T − t, xt, κ)
(v − Pt). (83)

Stock price dynamics follow a three factor (P, x,Σ) Markov process with stochastic

15We provide in the section below the fifth order solution. Higher order expansions can be obtained
easily using Mathematica (program available upon request).
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volatility given by:

dPt =
(v − Pt)

A(T − t, xt, κ)2
dt+

√
Σt

A(T − t, xt, κ)
dZt. (84)

In particular, stock price volatility is a stochastic and tends to be higher when noise

trading volatility is higher. The unconditional expected profit at time zero of the insider

is Tσvσ0
A0√
T

.

Proof 12. To prove this result, we observe that mt = −κxt and that xt has following

dynamics under the P̃ measure:

dxt = (
ν2

2
− κxt)dt+ νdW̃t, (85)

where by Girsanov’s theorem we have defined W̃t = Wt − ν2t a standard P̃ -measure

Brownian motion. Thus xt is a one-factor Markov process under P̃ . Using the Markov

property for conditional expectations, we guess that the solution to equation (8) is given

by a function A(t, xt).

As shown in the proof of lemma 4, this function satisfies:

Ẽt

[
dA(t, xt)/dt+mtA(t, xt) +

1

2A(t, xt)

]
= 0. (86)

Using Itô’s lemma we obtain the following non-linear PDE for A(T − t, x) (where we

change variables to τ = T − t and drop the argument of the function for simplicity):

ν2

2
(Axx + Ax) +−κx(Ax + A)− Aτ +

1

2A
= 0 (87)

subject to boundary conditions A(0, x) = 0. When κ = 0, the solution is simply

A(τ, x;κ = 0) =
√
τ . Assuming the solution is analytic in its arguments, we seek an

series expansion solution of the form given in equation (80) above. Plugging this guess

into the left hand side of the PDE and Taylor expanding in κ, we find that each term
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in the series expansion can be set to zero by an appropriate choice of the constants cijk.

We can thus recursively solve for these constants and obtain an approximate solution to

the PDE. In figures 9 in the appendix we plot the 0th, 1st, 2nd and 5th order expansion

solution for ν = 0.7 T = 1,κ = 0.25 and for three values of x0 = {−0.3; 0; +0.3}.

The first term in the series expansion of the A(τ, x, κ) function is instructive. Indeed,

we find:

A(τ, x, κ) =
√
τ(1− κ

2
τ(
ν2τ

6
+ x)) +O(κ2). (88)

This confirms that we need κ to be different from zero for uncertainty about future noise

trading volatility to affect the trading strategy of the insider, and equilibrium prices. We

see that for a given expected path of noise trading volatility (e.g., setting x = 0 where

it is expected to stay constant), the higher the mean-reversion strength κ the lower the

A function. This implies that mean-reversion tends to lower the profit of the insider for

a given expected path of noise trading volatility (compare his profits to the case where

κ = 0).

Further, we see that the function is decreasing in (log) noise-trading volatility if

κ > 0 (we confirm this for higher order expansions). This implies that stock price

volatility is stochastic and positively correlated with noise-trading volatility. Equilibrium

prices follow a Bridge process with stochastic volatility that is Markovian in three state

variables. Private information gets incorporated into prices faster the higher the level

of noise trading volatility, as the insider trades more aggressively in these states. Note

that, since the A(τ, log σ, κ) function is decreasing and convex in volatility, the insider

trades more aggressively than in the case where κ = 0 (where A(t, log σ) is independent

of volatility). In these high volatility states, market depth also improves, but less than

proportionally to volatility to account for the more aggressive insider trading.

The net effect is that the insider’s strategy changes as a function of uncertainty about
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future noise trading volatility, as the insider can benefit from timing market (liquidity)

conditions in this context. In fact, the higher ν2 the more aggressively does the insider

choose to respond a change in noise trading volatility (as A is decreasing in ν2).

6.5. Expansion solution

The fifth order expansion of the A function (with v = ν2).

A(τ, x, κ) =
√
t

(
1− κt

(
vt

12
+
x

2

)
+ κ2t2

(
13v2t2

1440
+ x

(
vt

12
+

1

6

)
+

7vt

96
+

5x2

24

)
− κ3t3

(
89v3t3

120960
+ x

(
3v2t2

320
+

323vt

2880
+

1

24

)
+

11v2t2

640
+ x2

(
59vt

1440
+

1

6

)
+

3vt

80
+
x3

16

)
+ κ4t4

(
1237v4t4

29030400
+

337v3t3

161280
+ x2

(
71v2t2

16128
+

2593vt

34560
+

59

720

)
+

6827v2t2

387072

+ x

(
17v3t3

24192
+

2657v2t2

120960
+

737vt

8640
+

1

120

)
+ x3

(
vt

80
+

59

720

)
+

31vt

2160
+

79x4

5760

)
− κ5

(
t5
)( 6299v5t5

3832012800
+

193v4t4

1244160
+

51709v3t3

16588800
+ x3

(
601v2t2

483840
+

4673vt

161280
+

59

960

)
+

18703v2t2

1451520
+

x2
(

4241v3t3

14515200
+

7129v2t2

580608
+

9127vt

120960
+

11

360

)
+ x

(
287v4t4

8294400
+

49439v3t3

21772800
+

319777v2t2

11612160
+

2293vt

48384
+

1

720

)
+x4

(
431vt

161280
+

1

40

)
+

vt

224
+

3x5

1280

))
+O(κ6)

We illustrate the convergence of the expansion in the following figures.
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Figure 9: A function expansion solution given in equation (80) for different order (0,1,2,5)
of the expansion for x0 = 0. Other parameter values are κ = 0.25, ν = 0.7, T = 1.
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Figure 10: A function expansion solution given in equation (80) for different order
(0,1,2,5) of the expansion for x0 = +0.7. Other parameter values are κ = 0.25, ν =
0.7, T = 1.
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Figure 11: A function expansion solution given in equation (80) for different order
(0,1,2,5) of the expansion for x0 = −0.7. Other parameter values are κ = 0.25, ν =
0.7, T = 1.
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