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High-Frequency Quoting: 

Short-Term Volatility in Bids and Offers 

Abstract 

At horizons down to 50 ms, bids and offers in US equity markets exhibit volatility much higher than 

what is implied by long-term fundamentals.  In examining the origins of this volatility, the findings 

suggest that competitive Edgeworth cycles are more likely than single-agent stuffing, spoofing, and 

experimentation activity or multiple-agent mixed-strategy behavior.  To assess impact, the paper 

proposes a model wherein traders’ random delays (latencies) interact with quote volatility to 

generate execution price risk and relative latency costs. The estimates imply that traders with 

latencies longer than 800 ms trade at a 1.8 bp disadvantage relative to faster traders. Finally, over 

the 2001-2011 period, despite high growth in quote traffic, quote volatility does not display a 

strong trend. 
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 Recent developments in market technology have called attention to the practice of high 

frequency trading. The term is used broadly in reference to all sorts of fast-paced market activity, 

not just “trades”, but trades have certainly received the most attention. There are good reasons for 

this, as trades signify the actual transfers of income streams and risk. Quotes also play a significant 

role in trading process, however.  This paper examines short-term volatility in bids and offers of US 

equities, a consequence of what might be called high frequency quoting. 

 By way of illustration, Figure 1 depicts the bid and offer for AEP Industries (a NASDAQ-

listed manufacturer of packaging products) on April 29, 2011.1 In terms of broad price moves, the 

day is not a particularly volatile one, and the bid and offer quotes are stable for long periods. The 

placidity is broken, though, by several intervals where the bid undergoes extremely rapid changes.  

The average price levels, before, during and after these episodes are not dramatically different. 

Moreover, the volatility is largely one-sided: the bid volatility is associated with an only moderately 

elevated volatility in the offer quote. Nor is the volatility associated with increased executions. 

These considerations suggest that the volatility is unrelated to fundamental public or private 

information. It appears to be an artifact of the trading process.  

In the context of the paper’s data sample, the AEPI episode does not represent typical 

behavior. Nor, however, is it a singular event. It therefore serves to motivate the paper’s key 

questions. What is the extent of short-term quote volatility? What market practices give rise to it?  

What does it cost slower traders? Finally, given the current public policy debate surrounding low-

latency activity, how has it changed over time? 

Quote volatility is often attributed to the supposedly manipulative single-agent practices of 

quote-stuffing (canceling and submitting orders to produce congestion and/or confusion) and 

spoofing (briefly exposing quotes that are not intended for execution). Baruch and Glosten (2013) 

suggest that quote setters may be pursuing mixed (randomized) strategies. Their analysis builds on 

IO models of price randomization by sellers in product markets. These settings also sometimes 

exhibit Edgeworth cycles, wherein sellers incrementally undercut each other, reset to a high price, 

and repeat (Edgeworth (1925);  Maskin and Tirole (1988);  Noel (2011)).  The mixed-strategy and 

Edgeworth cycle mechanisms offer rational competitive alternative explanations for quote 

volatility. This paper proposes a partial empirical resolution. 

                                                             
1 The bid is the National Best Bid (NBB), the maximum bid across all exchanges. The offer is the 
National Best Offer (NBO), the minimum offer. They are often jointly referred to as the NBBO. 
Unless otherwise noted, or where clarity requires a distinction, “bid” and “offer” indicate the NBBO. 
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Quote volatility imposes costs and risks on liquidity demanders. The customary view is that 

bids and offers represent the terms of immediate trading opportunities, but in today’s markets 

“immediacy” is hypothetical. All agents experience random latency in observing the quotes, 

formulating their responses, and communicating these decisions to the markets. For marketable 

orders quote volatility and random latency combine to create execution price uncertainty. This 

uncertainty extends beyond the marketable orders that are sent directly to the quoting venue: the 

NBBO in the “lit” US market establishes reference prices for dark trades, a category that includes 

roughly thirty percent of all U.S. equity trading volume.2  

If latencies were identically distributed across agents, the execution price uncertainty might 

well be zero-mean and diversifiable. In practice, however, latency depends on proximity to the 

market, status (retail vs. institutional, or subscriber/member vs. public customer), and technology. 

Quote volatility magnifies the consequences of these differences: faster participants can condition 

on bid and offer states that, from the perspective of slower traders, are subsumed by noise. This 

paper proposes a model to measure relative latency costs. 

 Jarrow and Protter (2012), Foucault, Hombert and Rosu (2013), and Biais, Foucault and 

Moinas (2012) have recently proposed models in which speed confers an advantage. This 

advantage generally stems from more timely knowledge of fundamental information.  The quote 

volatility considered in this paper comprises both fundamental and transient volatility. The model 

shows that relative speed can imply transfers from slow to fast traders even when the quote 

volatility is stationary (as in Figure 1). 

This study estimates quote volatility in a broad sample of US equity market data using 

short-term variances centered about short-term averages of bids and offers. Given that market 

participants’ definitions of “short-term” are likely to diverge, however, the analysis uses the flexible 

tools of time scale decomposition to estimate bid and offer volatility over horizons ranging from 

under 50 ms to about 27 minutes. In a 2011 sample, estimates suggest that at low-latency time-

scales (roughly one second and lower) quote variances are two or three times the level that can be 

explained by fundamental movements, implying the presence of substantial stationary components. 

In a stylized model of trading latencies, the quote volatility estimates suggest that fast market-order 

                                                             
2 Dark mechanisms do not publish visible bids and offers. They establish buyer-seller matches, 
either customer-to-customer (as in a crossing network) or dealer-to-customer (as in the case of an 
internalizing broker-dealer). The matches are priced by reference to the NBBO: generally at the 
NBBO midpoint in a crossing network, or at the NBB or the NBO in a dealer-to-customer trade. 
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traders (about one-second and faster) have an expected gain of about $0.003 per share (or about 

1.8 basis points) relative to slower traders. 

Using these estimates, the analysis reconsiders the mechanisms hypothesized to generate 

quote volatility. Single-agent and mixed-strategy models generally predict an inverse relation 

between competition and quote volatility. This paper finds that the empirical association is 

generally positive, suggesting that these mechanisms are not predominant. Edgeworth cycles are 

characterized by skewness in price changes (negative for bids, positive for offers). This study finds 

that quote volatility is associated with more extreme skewness, a result supportive of the 

Edgeworth mechanism. 

To study quote volatility in historical data with truncation or rounding of time stamps to 

relatively coarse resolution, this paper proposes a novel simulation approach. Application to a 

sample of 2001-2011 data suggests that quote volatility displays no strong historical upward trend, 

in contrast to the growth in quote records and similar market data. 

Two recent papers also focus on quote volatility. Egginton, Van Ness and Van Ness (2012) 

investigate quote stuffing, which they define as intense rates of order submission and cancellation, 

and which they proxy by number of quote updates.  In a 2010 sample, they find that standard 

measures of liquidity are lower during quote-stuffing episodes. In a 2009-2011 sample, however, 

Conrad, Wahal and Xiang (2014) find that increased quoting activity is associated with improved 

efficiency and liquidity. The present study uses a different measure of quote volatility, different 

tools to assess costs and explanations for the source of the volatility, and, in parts of the analysis, a 

substantially longer sample.  

The paper is organized as follows. The next two sections examine the economics of quote 

volatility, first from the perspective of liquidity suppliers (Section I), and then in terms of the costs 

borne by liquidity demanders (Section II). Section III connects the framework used to analyze 

liquidity demanders to the statistical tools used to measure quote volatility. Section IV describes the 

2011 millisecond-stamped data used from the primary analysis, and the paper then turns to results: 

Section V analyzes the variance ratios, and Section VI discusses latency risk and cost estimates. 

Section VII presents an empirical analysis of the mechanisms generating quote volatility.  The 

historical evidence on quote volatility from 2001 to 2011 is discussed in Section VIII. The 

connection to recent studies on high frequency trading is explored in Section IX. Section X 

summarizes the findings and concludes the paper. 
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I. The economic origins of quote volatility 

 Bid and offer quotes are set by liquidity suppliers. Why might they pursue volatile 

strategies? First note that any standard microstructure model can generate quote volatility if we 

introduce corresponding time variation in the underlying parameters. For example, if the half-

spread in the basic Roll (1984) model represents a pass-through of the summary cost of market 

making, then variation in this cost will induce variation in the bid and ask. Alternatively, in a simple 

sequential trade model, we might conjecture time variation in the probability of an information 

event or the proportion of informed traders. This approach, though, has some obvious limitations. 

For such mechanisms to generate behavior like that depicted in Figure 1, the parameter must be 

rapidly oscillating, perhaps at sub-second periods. For clearing costs, interest rates, dealer risk 

aversion, and even informed trading probabilities or fundamental volatility, this sort of variation is 

implausible. 

 The field of possible explanations is wider if we consider settings in which the bid and offer 

are not simply determined in static equilibrium, but reflect instead a multi-move game in which 

quote updates occur in response to earlier moves by other players or as a device to trigger 

subsequent moves. Timing is then determined by the reaction speeds of the players (which are very 

high in the present market environment). The discussion will start with single-agent strategies, and 

then move on to competitive settings. 

 When there is one agent bidding or offering, or if the distance to the next best bid or offer is 

large, the agent has great latitude to maintain or vary the quote. Some practices that might arise in 

this case, such as quote-stuffing and some forms of spoofing, are often cited as major concerns 

associated with high frequency trading. Quote-stuffing is the rapid-fire cancellation and repricing of 

orders to impose higher costs or delays on agents who must process those quotes (Egginton, Van 

Ness and Van Ness (2012)). Spoofing is defined as entering a bid or offer for which the submitter 

does not actually desire an execution (U.S. Commodities Futures Trading Commission (2013)). 

Execution may be discouraged by exposing the quote for such a brief duration that access is 

essentially impossible. A seller, for example, might submit and quickly cancel an aggressive bid, 

perhaps to encourage existing bidders to raise their prices or to set a high reference price for a sale 

in a dark pool. 

 Single-agent strategies need not, however, have manipulative intent. A single seller, for 

example, might experiment with different offers in an attempt to discern demand elasticity (Leach 

and Madhavan (1992);  Leach and Madhavan (1993)). In fact, Leach and Madhavan suggest that 



 Page 5 

 

such experimentation will only occur in a market with a single (monopolistic) dealer. Bids and 

offers set in the course of experimentation may lose money in expectation, and so multiple dealers 

give rise to a free rider problem.  

 In the Leach and Madhavan framework, time is notional. Applying their insights in the 

present context, one might skeptically question what could be learned from an offer exposed for 

only, say, fifty milliseconds. The situation can easily be reframed, however. A single seller who 

experiments by monotonically decreasing the offering price might simply be running an impromptu 

clock auction.3 The auction ends when the offer is hit (“mine”) or when the seller’s reservation price 

is reached. In the latter event, the seller might consider continuing to post the reservation price, but 

this would subject her to pick-off risk and the consequent need to monitor her offering price. If the 

latter costs are high, it may be preferable to withdraw from the market completely, re-entering with 

another auction at some later time when she may face a new set of buyers.4 

 When there are multiple bidders or offers, alternative explanations for quote volatility are 

suggested by dynamic models of price setting originally developed for non-financial markets. One 

line of analysis, following Edgeworth (1925), yields equilibria with price cycles (“Edgeworth 

cycles”, see Maskin and Tirole (1988);  Noel (2011)). Another set of analyses investigates mixed 

strategy equilibria. Varian (1980) considers a product market where at each revision opportunity 

each seller quotes a price randomly drawn from a stable distribution. Baruch and Glosten (2013) 

develop a model of a limit order market that exhibits similar equilibria. 

 In both Edgeworth and mixed strategy models, the driving force is the strategy of 

undercutting a competitor’s price by a small amount. The classic Edgeworth cycle arises in a 

duopoly with a discrete price grid bounded from above. Starting from this upper bound, the 

producers alternately undercut each other’s prices until the next lower feasible price would lead to 

a loss. At that point, the best response is to reset the price to the upper bound, and the process 

starts anew. The incremental undercutting followed by a jump gives a distinctive saw-tooth price 

path. Edgeworth cycles have been documented in retail gasoline markets. Although generally 

                                                             
3 In a seller’s clock auction, the price starts high and then descends at a constant rate until a buyer 
claims the lot. Also sometimes called a Dutch auction, it has long been used in the wholesale flower 
market at Aalsmeer (EconPort (2014), for example). 
4 Periodic single-price call auctions have been suggested to alleviate the perceived inequities of 
high-frequency trading (Budish, Cramton and Shim (2013);  Schwartz and Wu (2013)). These 
proposals envision consolidated auctions coordinated by an exchange. Ad hoc clock auctions, 
however, can be run unilaterally, with no coordination or consolidation (other than guarantees of 
access). 
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studied in the context of competing sellers, Zhang (2005) has noted their occurrence in online 

advertising auction bidding. 

 Under slightly different assumptions (most importantly, a continuum of prices), Varian and 

Baruch and Glosten (BG) examine mixed-strategy equilibria. In the BG model identical sellers make 

rapid-fire draws of an offer price from a common distribution. The best offer at any given time is 

the minimum, that is, the first order statistic of the extant sample of draws. Until a trade occurs, the 

price distribution is time invariant. The sequence of best offers is therefore iid, in contrast to the 

dependent dynamic of the Edgeworth cycle. The assumption of a continuous price grid plays a 

major role in establishing the mixed-strategy equilibrium.  Any pure strategy (or mixed strategy 

with mass points) invites a response that undercuts by an infinitesimal amount. At this lower price 

the responder captures the entire market, rendering the original proposer’s strategy suboptimal. 

BG show that as the number of sellers increases, the offer price schedule converges to that 

predicted by the competitive (that is, non-strategic) equilibrium. They do not prove that this 

convergence is monotone, but for most common distributions (including the uniform, exponential 

and normal), as the sample size increases, the variance of the first order statistic drops. The 

conjecture that this is a general feature of the mixed strategy models suggests that quote volatility 

should be inversely related to competition among liquidity suppliers. 

 Edgeworth cycles may be identified by visual inspection of price plots. More objective 

identification criteria, though, may be derived from the skewness of the price changes. The sellers’ 

saw-tooth price path involves numerous drops of small magnitude and a smaller number of large 

price increases, which implies a right-skewed distribution for price changes. Similarly, an 

Edgeworth cycle on the bid side is marked by numerous small price increases punctuated by large 

drops, which implies a left-skewed distribution. 

 These remarks establish the general empirical features of the two mechanisms. The details 

of their implementation in the empirical analysis are deferred to a later section.  

II. The costs of quote volatility for liquidity demanders 

 A trader who transmits a market order does not achieve an execution until the order 

actually arrives at the market center. If the transmission delay (latency) is random, quote volatility 

induces corresponding execution price risk and also places the trader at a disadvantage relative to 

those with shorter delays. 
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 The situation can be illustrated with a stylized model. Consider an offer price that is 

evolving over a trading session of eight periods (“seconds”).  Market-order buyers are classified 

according to their time scale, ℓ, which characterizes their latency in the following sense. If a type-ℓ 

buyer transmits a marketable order at time t, the actual arrival time of the order at the market 

center is uniformly distributed on the interval (𝑡, 𝑡 + ℓ).  The ℓ parameter thus summarizes both 

the mean and dispersion of the trader’s latency. In a sense that will be made more precise below, a 

type-ℓ trader also possesses information specific to his type. A slow buyer has ℓ = 8. Given the 

uniform distribution of his arrival time, he can expect to pay the mean offer price over the session.  

 The offer path is constructed as a residual, 𝑅(𝑡), relative to the session mean, with changes 

occurring at times 𝑡 = 0, 1, … ,7 (that is, at the beginning of each second). The residual is the sum of 

short-, medium- and long-term components, corresponding to levels of resolution indexed by 𝑗 =

1,2,3. The component at level j is called the level-j detail and denoted by 𝐷𝑗(𝑡), so 𝑅(𝑡) = ∑ 𝐷𝑗(𝑡)𝑗 .  

Each 𝐷𝑗(𝑡) in turn is constructed as a random linear combination of Haar transforms. The Haar 

function is a one-period square wave, defined on the real line as 𝜓(𝑥) = +1 if 0 < 𝑥 <

1 2⁄ , −1 if 1 2⁄ < 𝑥 < 1, and 0 otherwise.  In this example, the basis functions at level j are of the 

𝜓(𝑡, 𝑗, 𝑘) = 2 −𝑗 2⁄ 𝜓(2−𝑗𝑥 + 𝑘 + 1). The full basis set consists of seven functions 𝜓(𝑡, 𝑗, 𝑘) for 𝑗 =

1, … ,3 and 𝑘 = 1, … , 23−𝑗. 

 Figure 2 depicts this set. The top row contains the four short-run (𝑗 = 1) basis functions. 

Each is constant for one second, and then flips sign in the next second. There are four such 

functions, arranged to cover the eight-period interval without overlap. In the middle row, the 

medium-term basis functions (𝑗 = 2) are constant for two periods, flip sign over the next two 

periods, and also cover the full interval without overlap. In the bottom row, the long-term basis 

function (𝑗 = 3, 𝑘 = 1) is constant for four periods and then flips sign. The duration over which a 

basis function maintains its positive or negative value is defined as the time-scale of the function, 

𝜏𝑗 = 2𝑗−1. 

 The seven functions constitute a basis for the eight unit segments that define 𝑅(𝑡). (Since 

the offer is being expressed as a deviation from the session mean, 𝑅(𝑡) integrates to zero, reducing 

the degrees of freedom by one.) It is clear by visual inspection that the functions are zero-mean and 

orthogonal. The amplitudes of the functions reflect a convenient normalization. When the two 

levels of 𝜓(𝑡, 𝑗, 𝑘) are set to ±2−𝑗 2⁄ , ∫ 𝜓(𝑡, 𝑗, 𝑘)2𝑑𝑡 = 1: the basis is orthonormal. 

 The choice of the Haar basis here is motivated by two considerations. Firstly, it affords a 

differentiation of the components by time scale that is clearer than would be possible with, say, an 



 Page 8 

 

innovations representation. Secondly, the procedure used in this section to construct a hypothetical 

quote time series is essentially reversed in the empirical sections to obtain time-scale 

decompositions of actual bid and offer series. 

   The level-j detail is constructed as a random linear combination of the level-j basis 

functions: 𝐷𝑗(𝑡) = ∑ 𝑎𝑗𝑘𝑘 𝜓(𝑡, 𝑗, 𝑘). The 𝑎𝑗𝑘 are random variables independently drawn from a 

distribution that may depend on j (but not k). Since all of the level-j basis functions have the same 

time scale, 𝜏𝑗 is also the time scale of the level j detail. From the orthogonality of the basis functions 

the integrated squared residual can be decomposed as the sum of the integrated detail squares: 

∫ 𝑅(𝑡)2𝑑𝑡 = ∑ ∫ 𝐷𝑗(𝑡)2𝑑𝑡𝑗 . Alternatively, the risk faced by the slow trader decomposes as 

𝑉𝑎𝑟(𝑅(𝑡)) = ∑ 𝜈𝑗
2

𝑗 , where 𝜈𝑗
2 ≡ 2−𝑗𝑉𝑎𝑟(𝑎𝑗𝑘).  

 For tractability, I now assume that the 𝑎𝑗𝑘 are drawn from a two-state distribution. 

Specifically, for a given value of 𝜈𝑗
2,  𝑎𝑗𝑘 ∈ {±2𝑗/2𝜈𝑗} with probability 1/2 for each value. This 

implies 𝑉𝑎𝑟(𝑎𝑗𝑘) = 2𝑗𝜈𝑗
2, and generates  27 = 128 equiprobable sample paths. 

 Recall that the slow ℓ = 8 buyer pays the average price over the interval. Consider a 

relatively “fast” buyer whose latency is equal to the time scale of the long-term component, ℓ =

𝜏3 = 22 = 4 seconds. It is common in models of high-frequency trading to endow faster traders 

with predictive power. In this model, the informational advantage of an ℓ = 𝜏𝑗 trader consists of 

observing 𝑎𝑗𝑘 at the start of the interval defined by the support of the corresponding basis function. 

The long-term component has one basis function (bottom row of Figure 2), which starts at 𝑡 = 0 

and flips sign at 𝑡 = 4. The ℓ = 4 buyer’s optimal order submission time 𝑡∗ is therefore either 0 or 4.  

If  𝑎𝑗=3,𝑘=1 > 0, the fast trader knows  that the offer is relatively high in the first half of the session 

and relatively low in the second half, so he submits his buy order at 𝑡∗ = 4. If 𝑎𝑗=3,𝑘=1 < 0, he 

submits his order at 𝑡∗ = 0. Given the normalization of 𝜓(𝑡, 𝑗 = 3, 𝑘 = 1), his purchase price in 

either outcome is  𝜈3 below the session average. That is, his incremental gain relative to the slow 

trader is 𝜈3. He remains subject to short- and medium-term risk, 𝜈1
2 + 𝜈2

2. 

 Now consider a “faster” buyer whose latency is  ℓ = 𝜏2 = 21 = 2 seconds, and whose 

optimal order submission time is 𝑡∗ ∈ {0,2,4,6}. Like the ℓ = 4 buyer, she observes 𝑎𝑗=3,𝑘=1 and so 

can narrow her choices down to 𝑡∗ ∈ {0,2} or 𝑡∗ ∈ {4,6}, implying that her order will arrive in 𝑡 ∈

(0,4) or 𝑡 ∈ (4,8). She also possesses information about 𝐷2: at 𝑡 = 0 she observes 𝑎𝑗=2,𝑘=1, and at 

time 𝑡 = 4, she observes 𝑎𝑗=2,𝑘=2. If she has chosen to submit her order in 𝑡∗ ∈ {0,2}, the value of 

𝑎𝑗=2,𝑘=1 guides her final choice: 𝑎𝑗=2,𝑘=1 < 0 ⇒ 𝑡∗ = 0 and 𝑎𝑗=2,𝑘=1 > 0 ⇒ 𝑡∗ = 2. If she has 

narrowed her choice down to  𝑡∗ ∈ {4,6}, then 𝑎𝑗=2,𝑘=2 < 0 ⇒ 𝑡∗ = 4 and 𝑎𝑗=2,𝑘=2 > 0 ⇒ 𝑡∗ = 6. 
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Her incremental gain, relative to the fast trader is 𝜈2. She remains exposed to short-term risk.  

 Continuing, the “fastest” buyer is subject to a latency ℓ = 𝜏1 = 20 = 1 second. In addition to 

the information possessed by all slower buyers, he observes 𝑎𝑗=1,𝑘=1 at 𝑡 = 0,  𝑎𝑗=1,𝑘=2  at 𝑡 = 2, 

and so on. This allows him to time his submission to the optimal second. His incremental gain 

relative to the faster trader is 𝜈1.  

 Jarrow and Protter (2012), Foucault, Hombert and Rosu (2013), and Biais, Foucault and 

Moinas (2012) suggest that faster traders have advance knowledge of fundamental (that is, value-

relevant) information. The volatility mechanisms considered in Section I, however, originate in the 

liquidity supply process. From a statistical perspective, fundamental information is permanently 

impounded in the in the random-walk component of security prices, whereas price movements 

created by the mixed-strategy and Edgeworth mechanisms are stationary and transient. The 

present specification of the price process is agnostic as to the sources of variation and can 

accommodate both types. The present model is similar to the aforementioned analyses in that it 

imbues the faster agents with predictive power. Their forecasting ability, though, is limited to 

sources of variation at their particular latency/time-scale. It is not necessary that they possess full 

knowledge of these components. Knowing 𝑎𝑗𝑘 at the point when the associated basis function first 

becomes nonzero suffices to determine the location of the minimum offer, at least up to the level-j 

trader’s latency.  

 The empirical analysis conducted below produces estimates of the detail volatility, 𝜈𝑗. The 

models suggests that 𝜈𝑗 can also be interpreted as the incremental expected gain of the level-j 

trader relative to the level 𝑗 + 1 trader, or as the incremental shortfall of the level 𝑗 + 1 trader. By 

implication then, 𝐺𝑗 = ∑ 𝜈𝑗
𝑗
𝑖=1  is the total shortfall of the level 𝑗 + 1 trader relative to all faster 

agents.5  

                                                             
5 𝐺𝑗 possesses an additional interpretation. Most retail orders are executed by market makers who 

act as counterparty at a price equal to the prevailing bid or ask. If the timing of the prevailing bid or 
ask can’t be verified, the market maker may try to choose the price within an interval that is most 
favorable to them. Stoll and Schenzler (2006) call this a look-back option. The faster market order 
buyers in the model are trying to find the minimum average offer. A market maker exploiting a 
look-back option tries to locate the maximum offer. The max and the min will occur, of course, at 
different times, but by the symmetry of the process the magnitudes are identical. Thus, 𝐺𝑗 can be 

interpreted as the loss incurred by a market-order buyer trading against a market maker who 
enjoys a look-back option. 
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 The relative gain associated with a latency differential is hypothetical, an amount that a fast 

trader might expect to gain versus a slower one, ceteris paribus. In equilibrium, however, these 

relative advantages might become real trading costs. Suppose that the entire population of market 

order buyers has latency ℓ = 1 second, and that the average offer price yields zero-expected profit 

to sellers. If some traders reduce their latency below one second, that average offer will generate 

expected losses, as the faster traders are more successful at finding better prices. It might 

reasonably be conjectured that in equilibrium, sellers will raise their average offer price, thereby 

effecting a transfer from slow traders to fast traders, in the usual fashion.  Broadening the scope of 

the analysis, there is no necessary implication that the faster traders’ advantages are rents, 

particularly if entry is available to all who purchase the necessary technology. 

 In summary, timing uncertainty in this model has two effects. It gives rise to a zero-mean 

risk and to cost differentials, both of which depend on a trader’s latency. The estimates presented 

later in this paper will give insight into the relative importance of these considerations. This 

evidence will suggest that the zero-mean risk is probably of second-order importance, but that the 

cost differentials are large enough to warrant attention. 

III. Measuring quote volatility 

 The last section employed time-scale decomposition as a constructive tool, to generate a 

quote deviation series from primitives related to latency. Time-scale decomposition is more 

commonly used as a statistical device. Starting with a sample series, details are essentially 

computed as deviations between local means at different time scales, and their mean-squares are 

estimates of the detail variances. In principle the computations could be accomplished by any 

statistical package capable of estimating basic statistics for grouped data. 

 First proposed in Haar (1910), the Haar representation is now usually treated as a member 

of a broader class of functions called wavelets. Most statistical results, efficient computational 

algorithms, and connections to traditional time series analysis are developed in the broader 
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framework of wavelet analysis. Percival and Walden (2000) provide a comprehensive text-book 

development.6,7  

 Most of the notation and terminology developed thus far conforms to the Percival and 

Walden usage, but there are two exceptions. The 𝜈𝑗
2, termed “detail variances” in section II, are 

more generally called “wavelet variances”. Also, 𝑅(𝑡), the sum of the detail processes, was described 

in section II as a “residual”. In the wavelet or signal processing setting it is referred to as a “rough”.  

A time scale decomposition generates a family of roughs, computed as sums of the detail processes: 

𝑅1(𝑡) ≡ 𝐷1(𝑡); 𝑅2(𝑡) = 𝐷1(𝑡) + 𝐷2(𝑡); 𝑅3(𝑡) = 𝐷1(𝑡) + 𝐷2(𝑡) + 𝐷3(𝑡); and so on. 

 The statistical framework can be summarized as follows. The series of price levels, 𝑝𝑡, is 

assumed to possess stationary first differences. (Note that while the stationarity condition is 

imposed on the first differences, the computations are performed on levels, as in section II.) 

This condition suffices to define the rough and detail variances  2

j jVar R  and  2

j jVar D  . In 

the Section II model, the arrangement of the basis vectors in time corresponds to a discrete wavelet 

transform (DWT). Although estimates of 𝜎𝑗
2 and 𝜈𝑗

2  can be based on sample DWTs,  better estimates 

                                                             
6 Time scale and multi-resolution decompositions are widely used across many fields. In addition to 
Percival and Walden, Gençay, Selçuk and Whitcher (2002) discuss economic and financial 
applications in the broader context of filtering. Nason (2008) discusses time series and other 
applications of wavelets in statistics. Ramsey (1999);  (2002) provides other useful economic and 
financial perspectives. Walker (2008) is clear and concise, but oriented more toward engineering 
applications. 
7 Studies that apply time scale decompositions in the economic analysis of stock prices loosely fall 
into two groups. The first set explores time scale aspects of stock comovements. A stock’s beta is a 
summary statistic that reflects short-term linkages (like index membership or trading-clientele 
effects) and long-term linkages (like earnings or national prosperity).  Wavelet analyses can 
characterize the strength and direction of these horizon-related effects Gençay, Selçuk and 
Whitcher (2005);  In and Kim (2006). Most of these studies use wavelet transforms of stock prices 
at daily or longer horizons. A second group of studies uses wavelet methods to characterize 
volatility persistence Dacorogna, Gencay, Muller, Olsen and Pictet (2001);  Elder and Jin (2007);  
Gençay, Selçuk, Gradojevic and Whitcher (2010);  Gençay, Selçuk and Whitcher (2002);  Høg and 
Lunde (2003);  Teyssière and Abry (2007). These studies generally involve absolute or squared 
returns at minute or longer horizons. Wavelet methods have also proven useful for jump detection 
and jump volatility modeling Fan and Wang (2007). Beyond studies where the focus is primarily 
economic or econometric lie many more analyses where wavelet transforms are employed for ad 
hoc stock price forecasting Atsalakis and Valavanis (2009);  Hsieh, Hsiao and Yeh (2011, for 
example). An early draft of Hasbrouck and Saar (2013) used wavelet analyses of message count 
data to locate periods of intense message traffic on NASDAQ’s Inet system. 
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are generally obtained using a variant called the maximal overlap discrete wavelet transform 

(MODWT). All estimates in this paper employ the MODWT.8 

 The empirical analysis reports estimates of 𝜎𝑗, 𝜈𝑗 , and the implied gain 𝐺𝑗 in cents per share 

and basis points. For some purposes, though, it is useful to compute statistics that summarize the 

relative importance of the stationary and random-walk components of the price. This is achieved by 

variance ratios. 

 There is a long tradition of variance ratios in empirical market microstructure (Amihud and 

Mendelson (1987);  Barnea (1974);  Hasbrouck and Schwartz (1988, among others), among 

others).9 Let K periods denote some suitably “long” horizon, and k periods a shorter horizon. A 

typical variance ratio compares the variance per period implied at these two time scales: 

 𝑉Δ𝑘 =
𝑉𝑎𝑟(Δ𝑘𝑝𝑡) 𝑘⁄

𝑉𝑎𝑟(Δ𝐾𝑝𝑡) 𝐾⁄
 (1) 

where Δ𝑘 is the k-period differencing operator Δ𝑘𝑝𝑡 = 𝑝𝑡 − 𝑝𝑡−𝑘. If pt follows a random-walk at all 

horizons, 𝑉Δ𝑘 = 1 for all k. In typical microstructure samples, variance ratios with k<<K are 

generally elevated due to short-term microstructure effects. The motivation for using a long-term 

variance in the denominator of 𝑉Δ𝐾 is the desire for an estimate of fundamental volatility, on the 

assumption that a long-term price change is dominated by informational components.  

 The end-points of the K-period price change remain subject, however, to microstructure 

effects just as strong (in absolute terms) as those of the short-term price change. That is, both pt and 

pt-K are subject to bid-ask bounce, discreteness effects, and so on. A long-term wavelet variance, 

however, is in principle purged of the short-term variation, and so may serve as a better estimate of 

fundamental long-term variance. Fan and Gençay (2010) apply this principle to unit root tests 

based on time scale decompositions. Gençay and Signori (2012) explore the use of variance ratios at 

different time scales to test for serial correlation. The variance ratios used here are special cases or 

minor modifications of theirs. 

                                                             
8 The DWT is sensitive to alignment. In the section II example, if we constructed a sample by 
successively replicating the first eight periods, estimates of 𝜎𝑗

2 and 𝜈𝑗
2 would converge to their 

population values. If the sample were somehow shifted (by dropping the first observation, for 
example), the alignment of the estimated process would no longer conform to that of the data 
generating process. Estimates based on the MODWT essentially average over all possible 
alignments. 
9 Return variance ratios are also used more broadly in economics and finance to characterize 
deviations from random-walk behavior over longer horizons (Lo and MacKinlay (1988)). 
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 The appendix develops a wavelet variance ratio of the form 

 𝑉𝑗 =
𝜈𝑗

2 𝜏𝑗⁄

𝜈𝐽
2 𝜏𝐽⁄

= 2𝐽−𝑗
𝜈𝑗

2

𝜈𝐽
2 (2) 

where J is the highest level (corresponding to the longest time scale) in the analysis and 𝑗 < 𝐽. The 

corresponding time scales are 𝜏𝑗 = 2𝑗−1 and 𝜏𝐽 = 2𝐽−1, which implies the second equality. Like the 

price-change variance ratio, the wavelet variance ratios for a random walk are one for all j. Wavelet 

variances measure variation at a particular time scale. Rough variances measure variation at and 

below given time scale.  A variance ratio can also be based on the rough variance: 

 𝑉𝑅𝑗 = 2𝐽−𝑗−1
𝜎𝑗

2

𝜈𝐽
2  (3) 

Note that while the numerator is a rough variance, the denominator is a wavelet variance. For a 

random walk, 𝑉𝑅𝑗 = 1 for all j. A finding of 𝑉𝑅𝑗 > 1 indicates elevated short-term volatility. 

(Whereas 𝑉𝐽 = 𝜈𝐽
2 𝜈𝐽

2⁄ = 1 by construction, however, 𝑉𝑅𝐽 = 𝜎𝐽
2 2𝜈𝑗

2⁄ , which need not equal one.) The 

appendix contains further details. 

 Security prices at all horizons are a mix of integrated and stationary components. The 

former are usually identified with persistent fundamental information innovations; the latter, with 

transient microstructure effects.  The former are important to long-term hedging and investment; 

the latter, to trading and market-making. The dichotomy is sometimes reflected in different 

statistical tools and models.  

 In the somewhat distinct literatures that focus on integrated and stationary volatilities, the 

greatest common concerns arise in the analysis of realized volatility (Andersen, Bollerslev, Diebold 

and Ebens (2001);  Andersen, Bollerslev, Diebold and Labys (2003a);  Andersen, Bollerslev, Diebold 

and Labys (2003b)).  Realized volatilities (RVs) are calculated from short-term price changes. They 

are useful as estimates of fundamental integrated volatility (IV), and typically serve as inputs to 

longer-term forecasting models. RVs constructed directly from trade, bid and offer prices are 

typically noisy, however, due to the presence of microstructure components. Local averaging 

moderates these effects [see Hansen and Lunde (2006) and accompanying comments].  Other 

approaches are discussed in Aït-Sahalia, Mykland and Zhang (2011);  Zhang (2006);  Zhang, 

Mykland and Aït-Sahalia (2005). There is a methodological connection here, in that long-term 

wavelet variances are computed from short-term averages, much like the pre-averaged inputs to 

realized volatility. 
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 The present study draws on several themes in the RV literature. The variance ratios 

employed here serve a purpose similar to the volatility signature plots introduced by Fang (1996), 

and used by Andersen, Bollerslev, Diebold, and Ebens (2002) and Hansen and Lunde (2006), among 

others. Hansen and Lunde also articulate the connection between bid-offer comovement and 

fundamental volatility: since the bid and offer have economic fundamentals in common, divergent 

movements must be short-term, transient, and unconnected to fundamentals. 

 One strand in the RV literature emphasizes analysis of multiple time-scales. Zhang, Mykland 

and Aït-Sahalia (2005) posit a framework consisting of a Brownian motion with time-varying 

parameters, ,t t tdX dt dz   and a discretely-sampled noisy observation process, .
i i it t tY X    

The 
it

Y are viewed as transaction prices, and 
it

 constitute i.i.d. microstructure noise. The objective 

is estimation of the integrated volatility 2

t dt over a sample. They propose a two-scale variance 

estimator in which a long-scale estimate is corrected for bias with an adjustment based on 

properties of the noise estimated at a short scale. While the present analysis also features multiple 

time scales, there are major differences in the perspective. In the present situation, execution price 

risk is caused by volatility in the observed process (the quote, not the underlying latent value); the 

quote process is right-continuous (and continuously observable);  the noise is not necessarily i.i.d. 

(cf. the AEPI episodes in Figure 1); and, the noise is possibly correlated with the tX increments. 

 The paper also departs from the RV literature in other respects. The millisecond time scales 

employed in this paper are several orders of magnitude shorter than those typically encountered. 

Most RV studies also focus on relatively liquid assets (index securities, Dow-Jones stocks, etc.).  The 

low-activity securities included in the present paper’s samples are important because, due to their 

larger spreads and fewer participants, they are likely to exhibit relatively strong, persistent and 

distinctive microstructure-related components. 

IV. Sample and data 

 The analyses are performed for a subsample of US firms using quote data from April, 2011 

(the first month of my institution’s subscription.) The subsample is constructed from all firms 

present on the CRSP and TAQ databases from January through April of 2011 with share codes of 10 

or 11, with closing prices between two and one thousand dollars, and with a primary listing on the 
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New York, Amex or NASDAQ exchanges. 10 I compute the daily average dollar volume based on 

trading in January through March, and randomly select 15 firms from each decile. For brevity, 

reported results are grouped into quintiles. 

The U.S. equity market is highly fragmented, but all exchanges post their quotes to the 

Consolidated Quote System (CQS).11 The CQ and NBBO files from the NYSE’s daily TAQ dataset used 

here are definitive transcripts of the consolidated activity, time-stamped to the millisecond.12 A 

record in the consolidated quote (CQ) file contains the latest bid and offer originating at a particular 

exchange. If the bid and offer establish the NBBO this fact is noted on the record. If the CQ record 

causes the NBBO to change for some other reason, a message is posted to another file (the NBBO 

file). Thus, the NBBO can be obtained by merging the CQ and NBBO files. It can also be constructed 

(with a somewhat more involved computation) directly from the CQ file. Spot checks confirm that 

these two approaches are consistent. 

Studies involving TAQ data have traditionally used error filters to suppress quotes that 

appear spurious. Recent daily TAQ data, though, appear to be much cleaner than older samples. In 

particular, the NBBO construction provided by the NYSE clearly defines what market participants 

would have perceived. Some quotes present in the CQ file are not incorporated into the NBBO 

because they are not firm, indicative or otherwise deemed “not NBBO-eligible”. Beyond these 

exclusions, however, I impose no additional filters for the estimates discussed in this section. Error 

filters are used, however, in the subsequent historical analysis, and will be discussed in greater 

detail at that point. 

 Table I reports summary statistics. Post-Reg NMS US exchanges have become more similar 

in structures and trading mechanisms. With respect to listing characteristics, though, differences 

persist. The NYSE “classic” has the largest proportion of high-volume stocks, NYSE Amex has the 

smallest, and NASDAQ falls in the middle. In some instances, a stock that is present in CRSP and 

                                                             
10 The American Stock Exchange merged with NYSE Euronext in 2008, and was renamed NYSE 
Amex LLC. In May, 2012, the name was changed to NYSE MKT LLC. For the sake of clarity, it is 
identified here simply as “Amex”. 
11 At the same time that an exchange sends a quote update to the consolidated system, it can also 
transmit the update on its own subscriber line. For subscribers this can reduce the delay associated 
with consolidation and retransmission (which is on the order of about five milliseconds). Thus, 
while the CQS is a widely-used single-source of market data, it is not the fastest. Moreover, bids and 
offers with sizes under 100 shares are not reported. 
12 The “daily” reference in the Daily TAQ dataset refers to the release frequency. Each morning the 
NYSE posts files that cover the previous day’s trading. The Monthly TAQ dataset, more commonly 
used by academics is released with a monthly frequency and contains time stamps in seconds.  
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TAQ’s master file is absent from a day’s quote file. Stocks missing more than half of the days in the 

sample are dropped. 

 Market event counts (trades, quotes, and so forth) display some interesting patterns. There 

are large numbers of quote records, since one is generated when any market center changes its best 

bid, best offer, or size at the bid or offer. If the action establishes the bid and offer as the NBBO this 

fact is noted on the quote record. But if the action causes some other change in the aggregate prices 

or sizes at the NBBO, an NBBO record is generated. Since many quote records don’t induce such a 

change, there are substantially fewer NBBO records. Finally, many actions might change one of sizes 

or one side of the quote. Thus, the numbers of NBB and NBO changes are smaller yet. 

 Volatility and spreads tend to be elevated at the start and end of trading sessions (9:30 to 

16:00). To remove the effect of these deterministic effects, I confine the variance estimates to the 

9:45 to 15:45 subperiod. Estimates are computed separately for the bid and offer, and then 

averaged for convenience in presentation. Most samples are winsorized at ± 5% prior to 

computation of statistics. 

V. Variance ratio estimates 

 Variance ratios provide a familiar point of departure. Table II summarizes sample averages 

for the wavelet, rough, and the conventional price-change variance ratios for all time scales. Table 

III reports results for a subset of time scales (50 ms, 800 ms, and 27.3 minutes), but with standard 

errors, and for subsamples constructed as quintiles in average dollar trading volume. 

The pattern across time scales is similar across all ratios. At shorter time scales, they are 

substantially greater than one, indicating elevated short-term volatility. At a time scale of 50 ms., all 

three ratios are in the vicinity of three, suggesting that quotes at this time scale are about three 

times what one would expect from a random-walk calibrated to 27.3 minute volatility.  These 

estimates attest to the importance of stationary (non-fundamental) volatility as a latency-related 

concern for traders. As the time scale increases, the means of all three ratios drop towards unity. 

 Both the wavelet and rough variance ratios are normalized by the same denominator, the 

wavelet variance over 27 minutes. The numerator of the wavelet variance ratio measures variance 

only at the indicated time scale. At a time scale of 800 ms (𝑗 = 5), for example, 𝑉𝑗 = 1.975 indicates 

that stochastic components varying at that time scale are 1.975 times the value implied by a 

random walk. The numerator of the rough variance ratio additionally captures volatility from 

components at all shorter scales, so at 𝑉𝑅𝑗 = 2.061, it is slightly higher. At the longest time scale, 
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𝑉𝑗=16 is one by construction, the average 𝑉𝑅𝑗=16 = 1.074, indicating that volatility from all shorter 

time scales is 7.4% higher than expected (relative to a random walk). 

 The computation of the price-change variance ratio 𝑉Δ𝑗 differs fundamentally from that of 

the wavelet and rough variance ratios, and sample values could in principle diverge substantially. In 

fact, however, the average 𝑉Δ𝑗 is close to the average 𝑉𝑗 and 𝑉𝑅𝑗 at all time scales (except for 

𝑉𝑅𝑗=16, at the longest time scale). This can be explained by noting that, relative to the wavelet 

variances in 𝑉𝑗, the price-change variances in 𝑉Δ𝑗 are inflated by shorter-term components. This 

inflation occurs, though, in both the numerator and denominator of 𝑉Δ𝑗, thus working in offsetting 

directions. 

 Across volume quintiles, short-term volatility elevation is much more pronounced in the 

low-volume firms. At 50 ms., the variance ratios for the lowest volume quintile are between three 

and four; for the highest volume quintile, about 1.3.  This suggests that the spreads for small firms 

are not only wider on average, but the bid and offer quotes are substantially more volatile. 

 In an earlier study, Hansen and Lund analyze realized volatility based on bid and offer 

changes at time scales down to one second Hansen and Lunde (2006). Their Figure 1 depicts 

realized volatility profiles for tickers AA and MSFT, for 2001 and 2004. For AA in 2004, the RVs are 

about 2.5 at one second and about 2.2 at 1,200 seconds (20 minutes). This implies a one-second 

price-change variance ratio of about 1.14. For MSFT in 2004, the one-second and 20-minute RVs are 

approximately equal, implying a ratio around unity. In the present sample, both AA and MSFT lie in 

the top volume quintile. The average 𝑉Δ𝑗 at a time scale of 1,800 ms. is 1.146, which is quite similar 

to the Hansen and Lund values. 

 In all volume quintiles, as the time scale drops, the variance ratios increase. It might be 

conjectured that this an inevitable consequence of the way these ratios are defined. To pursue this 

case, consider a price-change variance ratio computed for a transaction price modeled as a random-

walk plus uncorrelated bid-ask bounce. In this case, the price change sampled at interval length h is 

Δℎ𝑝𝑡 = 𝑝𝑡 − 𝑝𝑡−ℎ = 𝑢𝑡 + 𝜖𝑡 − 𝜖𝑡−ℎ where 𝑢𝑡 is the fundamental (random-walk) price change over 

the interval and 𝜖𝑡 is the bid-ask bounce component at time t. If 𝜖𝑡  and 𝜖𝑡−ℎ are assumed 

independent, then Zhang, Mykland and Aït-Sahalia (2005) point out that 𝑉𝑎𝑟(Δℎ𝑝𝑡) = ℎ𝜎𝑢
2 + 2𝜎𝜖

2, 

and that in the limit of higher frequency sampling , as ℎ → 0, 𝑉𝑎𝑟(Δℎ𝑝𝑡) → 2𝜎𝜖
2. In this limit the 

short/long variance ratio 𝑉𝑎𝑟(Δℎ𝑝𝑡) ℎ𝜎𝑢
2⁄ → ∞ . 

 The driving force behind this divergence, though, is the assumption that the sample is 

infinitely dense in transactions, i.e., that at the beginning and end of any interval, no matter how 
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short, we can find two trades with independent bid-ask bounce terms. In the case of a frequently-

traded stock, this is a tenable assertion with one-minute or even one-second sampling. It is less 

plausible with 50-ms sampling, or for a low-volume stock. 

 Bid and asks are step functions, with a finite number of transitions in any given sample. 

Intuitively, in computing a sample variance of the changes at progressively smaller h, once we move 

below the resolution at which each change is contained in its own interval, the sum of squares stays 

fixed. Denote this quantity by 𝑆𝑆̅̅ ̅. For a fixed clock-time sample of length T, however, the number of 

intervals in the sample is 𝑇 ℎ⁄ . The estimated sample variance per interval is 𝑆𝑆̅̅ ̅ (𝑇 ℎ⁄ )⁄ , which 

converges to zero with h. The price-change variance ratio converges to 𝑆𝑆̅̅ ̅ 𝑇𝜎𝑢
2⁄ .  

 In this situation, the wavelet variance ratio is more precise than the standard price-change 

ratio. In the process of refining the intervals, we will arrive at a point where the sample wavelet 

variance is zero (because all changes are captured at longer time scales). Because the wavelet 

variance ratio is time-scale specific, it will be zero if there is in fact no variation at that time scale.  

VI. Volatilities and related estimates 

 Table IV summarizes the sample means for wavelet volatilities, rough volatilities, and 

implied cumulative gains in units of cents per share and basis points for all time scales. Table V 

reports similar statistics for three representative time scales, but with standard errors and also in 

volume-based subsamples. 

 The entries in the Table IV row for level 𝑗 = 5, for example, indicate that a market-order 

trader facing arrival time uncertainty of 800 ms is exposed to wavelet (detail) volatility of 

𝜈5 =$0.00105 per share, or 0.452 basis points (0.00452%), from variation at an 800 ms time scale. 

From sources of variation at that time scale and shorter, the trader is exposed to cumulative risk of 

𝜎5 = $0.00152 per share, or 0.910 basis points (0.00910%). In moving from shorter to longer time 

scales, sample means for both 𝜎𝑗 and 𝜈𝑗 increase. A trader whose order arrives at some time within 

a 27.3-minute window will incur a risk of  𝜎𝑗=16 = 28.990 𝑏𝑝. 

 How should the economic significance of these magnitudes be assessed? Many trading fees 

(such as commissions and clearing fees) are assessed on a per share basis. Access fees, the charges 

levied by exchanges on taker (aggressor) sides of executions are also assessed per share. US SEC 

Regulation NMS caps access fees at $0.003 per share, and in practice most exchanges are close to 

this level. Exchanges also pay liquidity rebates that transfer a portion of the access fee to the maker 

(passive) side of the trade, generally about $0.002 per share. Variations in these fees are regarded 
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as important determinants of order routing decisions. As an alternative benchmark, a recent survey 

estimates average institutional commissions for US equities at about six basis points (ITG (2014)). 

The volatilities of latency risk are of comparable magnitude. 

 If the latency risk is zero-mean, however, the direct economic significance is small. Consider 

a hypothetical investor with CRRA utility 𝑈(𝑊) = 𝑊1−𝛾 (1 − 𝛾)⁄  and 𝛾 = 2. The investor holds a 

risky investment with annual return relative R where 𝐿𝑜𝑔(𝑅) is normally distributed with mean 

0.08 and standard deviation 0.20. The investor buys the investment, holds for one year, and then 

sells. Latency risk that is normally distributed with mean zero and standard deviation of five basis 

points (roughly five times larger than the 𝜎5 estimate) is incurred on both trades. Numerical 

calculations suggest that relative to the case with no latency risk, the drop in expected utility 

corresponds to a relative initial wealth penalty of only 3 × 10−4 percent (which is roughly at the 

limit of computational precision). For a frequent trader, of course, the impact of latency risk might 

be larger. But even if the investor turns over his portfolio daily, buying and selling in each of a 

year’s 250 trading days, the equivalent wealth penalty is only about one basis point, an amount that 

would surely be swamped by other trading costs. 

 Following the model presented in Section II, these estimates can be mapped to costs of 

latency. It should be borne in mind, however, that while the estimates of 𝜎𝑗 and 𝜈𝑗 are computed in a 

fairly robust statistical framework, the model mapping these estimates to costs is stylized, and 

involves a number of additional assumptions about the data generating process, the information 

possessed by traders, and their strategies.  Cost estimates derived from this model should therefore 

be viewed more tentatively. 

 The timing model implies that the wavelet volatility 𝜈𝑗 can also be interpreted as the  

time-scale-specific gain, that is, the relative advantage held by a trader subject to a random latency 

bounded at ℓ = 𝜏𝑗 = 50 × 2𝑗−1 ms versus a trader who is slower by a factor of two. The cumulative 

gain 𝐺𝑗 measures the relative advantage held by all traders at time scale 𝜏𝑗 and faster. For example, 

a trader whose latency is ℓ > 800 ms loses $0.00303 per share or 1.817 bp to faster traders. The 

utility loss to slower ( ℓ > 800) traders is small, but non-trivial. If we rework the utility calculations 

with a twice-a-year cost that is normally distributed with mean of 1.817 and standard deviation 

0.910 bp, the implied initial wealth penalty is about 3.7 bp, which is about two-thirds of the average 

institutional commission. Costs to frequent traders, of course, could be much larger. 

 Table V reports estimates in trading-volume quintile subsamples. Taking the 800 ms 

estimates as representative, in moving from the low- to high-volume quintiles, the cumulative gains 
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measured in $0.01 per share tend to increase, while those measure in basis points tend to decrease. 

Low-volume stocks tend to have high relative volatility and latency costs, with the latter on the 

order of two or three basis points. Some of the cumulative gain estimates at the longest time scale 

are quite large: 106.455 bp (1.06 percent) for the lowest volume quintile, or $0.20711 per share for 

the highest volume quintile. These represent gains, however, relative to traders who are subject to 

latencies above 27.3 minutes. At such horizons, the assumptions of the timing model, particularly 

predictability, are more suspect. 

 Hansen and Lunde (2006) note that to the extent that volatility is fundamental, we would 

expect bid and offer variation to be perfectly correlated, that is, that a public information revelation 

would shift both prices by the same amount. On this point, Tables IV and V also report, in the last 

column, the average wavelet correlation between the bid and offer, i.e., the correlation between bid 

and offer detail components at a given time scale. In the full sample (Table IV), for example, the 

correlation between bid and offer details at 800 ms. is 0.471. This is positive (bids and offers do 

tend to move in the same direction), but it is at best only moderately positive. The average 

correlation increases with time scale, reaching 0.896 at 27.3 minutes. The corresponding estimates 

for volume quintile subsamples, however, display great dispersion (Table V). For the lowest 

quintile, the 50-ms correlation is near zero (at 0.060), 0.166 at 800 ms, and only 0.532 at 27.3 

minutes. At sub-second time scales for these stocks, bid and offer movements are essentially 

uncorrelated. In moving to higher volume subsamples, correlations increase. At the shortest time 

scale (50 ms), the correlation in the highest volume subsample is 0.553. In general, the weak 

correlations affirm that quote volatility at short time scales is primarily transient.  

VII. The strategies of liquidity suppliers 

 Section I discussed volatility originating from three actors: single agents pursing stuffing, 

spoofing, and experimentation/auction strategies; multiple agents following mixed strategies 

(Baruch and Glosten, BG); and multiple agents generating Edgeworth cycles. This section suggests 

and implements empirical tests to detect and resolve these mechanisms. 

A. Competition 

 The earlier discussion establishes that the single agent and mixed strategy mechanisms 

generally suggest a negative relation between volatility and the number of agents competing to set 

the best bid and offer. “Competing” in this context means that the agent’s quote is at or near the 
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best much of the time, that the agent is closely monitoring market conditions, and that she is ready 

to quickly revise her quote. Agents whose limit orders are deep in the book or are infrequently 

monitored are not considered competitive. By definition, the single-agent strategies giving rise to 

quote volatility only when one agent has the market power to set and change the quote. If there are 

two or more active quote setters, the Baruch-Glosten model predicts that they will follow mixed 

strategies. The conjecture that the variance of the minimum or maximum draw from a common 

distribution generally decreases with the sample size suggests that the variance of the best offer or 

best bid should also drop as the number of competitors increases. 

 The TAQ do not identify individuals, and so cannot measure the number of competing quote 

setters. The data do identify exchanges, however. Exchanges partially aggregate individual activity, 

and so exchange competition may plausibly proxy for competition among individuals. This study 

therefore uses Herfindahl-Hirschman Indices (HHIs) computed from reporting exchanges as an 

inverse proxy for competition among agents. These HHIs are constructed for three variables: time 

at best; time alone at best; and number of quote improvements.  

  The time at best HHI variant is defined as follows. For a given firm and time interval, let 

𝑚𝑗
𝑎𝑡 𝑏𝑒𝑠𝑡 denote the number of ms that exchange j’s offer is at (that is, either sets or matches) the 

National best offer.  

 𝐻𝐻𝐼𝑎𝑡 𝑏𝑒𝑠𝑡 = ∑ (
𝑚𝑗

𝑎𝑡 𝑏𝑒𝑠𝑡

∑ 𝑚𝑘
𝑎𝑡 𝑏𝑒𝑠𝑡

𝑘

)

2

𝑗
 (4) 

Time alone at best, 𝐻𝐻𝐼𝑎𝑙𝑜𝑛𝑒, is defined similarly, but is based on 𝑚𝑗
𝑎𝑙𝑜𝑛𝑒, the number of ms that 

exchange j’s offer is alone at (that is, sets) the National best offer. The quote improvement variant, 

𝐻𝐻𝐼𝑖𝑚𝑝𝑟𝑜𝑣𝑒 , is computed using 𝑚𝑗
𝑖𝑚𝑝𝑟𝑜𝑣𝑒

, the number of quote improvements (reductions in the 

National best offer) occurring at exchange j. Note that for this to occur, the exchange must 

previously have been alone at the best offer.  

 The empirical specification is a general linear model of the form 

 𝐻𝐻𝐼𝑖𝑡𝑑 = 𝑋𝑖𝑡𝑑𝛽 + 𝑒𝑖𝑡𝑑 (5) 

where HHI is a placeholder for one of the three HHI measures, 𝑖 = 1, … ,150 indexes firms, t indexes 

ten-minute date/time intervals, and 𝑑 ∈ {𝑏𝑖𝑑, 𝑜𝑓𝑓𝑒𝑟} indicates direction. (The bid and offer sides of 

the market are treated as separate observations). The set of explanatory variables includes control 

fixed effects (dummies for firm and date/time), and also a measure of high-frequency quoting. 
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 To enhance comparability across firms, the high-frequency quoting measure is constructed 

as an indicator variable. The HFQ dummy 𝐻𝐹𝑄𝑖𝑡𝑑 = 1 if the rough volatility at level 𝑗 = 9 (for the 

given firm, date/time and direction) lies at or above the 90th percentile of the distribution (for the 

firm and direction) over all t. Essentially, 𝐻𝐹𝑄𝑖𝑡𝑑  is an indicator of high relative extent of quote 

volatility. 

 Table VI reports the estimated least squares means of the model. The column labeled 

“𝐻𝐹𝑄 = 𝐿𝑜𝑤,” for example, reports the estimated mean HHI for the low HFQ state. The last column 

reports the implied difference in the HHI across the two HFQ states. Across increasing volume 

subsamples, all HHI’s decline: liquidity supply in actively traded stocks is more competitive. Among 

the three HHI variants, the alone and improve measures are higher than the at best measure. This is 

not a necessary consequence of the definitions. Over a given interval in a set of n exchanges, it is 

possible that all would match the best quote most of the time, implying 𝐻𝐻𝐼𝑎𝑡 𝑏𝑒𝑠𝑡 = ∑(1 𝑛⁄ )2
. If in 

addition there are many quote improvements, and the first-mover for each improvement is 

randomly drawn with equal likelihood from the full set, 𝐻𝐻𝐼𝑎𝑙𝑜𝑛𝑒 and 𝐻𝐻𝐼𝑖𝑚𝑝𝑟𝑜𝑣𝑒 would have 

values similar to 𝐻𝐻𝐼𝑎𝑡 𝑏𝑒𝑠𝑡 .  

 The difference estimates exhibit striking consistency. For all HHI measures and across all 

samples, the difference is negative and statistically significant. This suggests that increased quote 

volatility is associated with more competition. The difference is smallest for the high-volume firms, 

and generally (but not uniformly) higher for the lower-volume quintiles. 

B. Edgeworth cycles 

 The hallmark of an Edgeworth cycle in a typical product market is right-tail skewness in the 

first difference of the selling price. This occurs because the back-and-forth undercutting generates 

many small price drops, while the “reset” consists of a single large price increase. Similarly, 

Edgeworth cycles on the bid side are characterized by negative skewness. 

 Skewness can be assessed directly via the usual skewness coefficient, defined for the 

random price changes  𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = 𝐸(Δ𝑝 − 𝐸Δ𝑝)3 [𝐸(Δ𝑝 − 𝐸Δ𝑝)2]3/2⁄ . Some studies of Edgeworth 

cycles also use the normalized mean-less-median, denoted here by 𝑀𝐿𝑀 = (𝐸Δ𝑝 − Δ𝑝𝑚𝑒𝑑𝑖𝑎𝑛) 𝜎Δ𝑝⁄ . 

For a hypothetical cycle consisting of n one-tick steps down followed by one n-tick step up, 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = (𝑛 − 1) √𝑛⁄  and 𝑀𝐿𝑀 = 1 tick. Since skewness is increasing in n, and the price-change 

variance is 𝑉𝑎𝑟(𝑑𝑝) = 𝑛, it might be conjectured that increasing price volatility necessarily leads to 
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increased skewness. This is true for Edgeworth price dynamics, but not necessarily in general: price 

volatility could be symmetrical. 

 Because skewness is asymmetric across the bid and offer sides of the market, the high-

frequency quoting indicator HFQ and 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∈ {𝑏𝑖𝑑, 𝑜𝑓𝑓𝑒𝑟} must be interacted. Table VII reports 

the results. The results are expressed as implied means (for the dependent variable) under the 

indicated fixed effects. The direction fixed-effect estimates imply, for example, that unconditionally 

(that is, disregarding value of HFQ) bid price changes are positively skewed and offer price changes 

are negatively skewed.  The interaction effects imply that the magnitude of the skewness is 

increased (by about fifty percent) with 𝐻𝐹𝑄 = ℎ𝑖𝑔ℎ. 

C. Discussion 

 The estimated effects of competition (proxied by the HHIs) are not consistent with 

prevalent single-agent and/or mixed multiple-agent strategies. The skewness estimates are 

consistent with Edgeworth cycles. Recall that both the mixed-strategy and Edgeworth cycle 

equilibria involved successive undercutting. There are many differences in the formal assumptions 

and arguments, but one in particular stands out. The mixed strategy models assume a continuous 

price space. The possibility of undercutting by an infinitesimal amount prevents the occurrence of 

mass points in the equilibrium distribution. The Edgeworth cycle equilibria, on the other hand, 

arise in formal models where the price space is discrete. Thus, the implication that Edgeworth 

cycles dominate mixed strategies may be a consequence of the relatively large tick size. 

 As a final note, the analysis here is directed at a broad classification of HFQ activity. It does 

not rule out, for example, the occurrence of quote-stuffing or spoofing. It merely says that they are 

not the dominant activity. 

VIII. Historical evidence 

 The recent history of securities trading has been marked by advances in technology and 

proliferation of regulations governing the use of these advances. It is obvious that technology has 

enabled strategies that weren’t possible in an era of manual markets. One oft-remarked feature of 

this trend is explosive growth in the number of quote records handled by the consolidated systems. 

It is logical to extend this observation with a conjecture of a similar increase in quote volatility. This 

section explores the empirical evidence bearing on this point. 
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A. Sample and data 

 The data for this phase of the analysis are drawn from CRSP and Monthly TAQ datasets. The 

sample selection procedure in each year is essentially identical to that described for the 2011 cross-

sectional sample. In each year, from all firms present on CRSP and TAQ in April, with share codes in 

(10 and 11), and with primary listings on the NYSE, Amex and NASDAQ exchanges, I draw fifteen 

firms from each dollar trading volume decile.13 Quote data are drawn from TAQ.  Table VIII reports 

summary statistics. The increase in the intensity of trading activity is clearly visible in the trends for 

median number of trade and quote records. From 2001 to 2011, the average annual compound 

growth rate is about 23% percent for trades, and about 32% for quotes. 

B. Methodology 

 Most of this paper’s analyses rely on the April 2011 sample of daily TAQ data. In the daily 

TAQ, millisecond time stamps are only available from 2006 onwards. Monthly TAQ data (the 

standard source used in academic research) is available back to 1993, and the precursor ISSM data 

go back to the mid-1980s. These data are substantially less expensive than the daily TAQ, and they 

have a simpler logical structure. The time stamps on the Monthly TAQ and ISSM datasets are 

reported only to the second, however. This limitation might seem to render these data useless for 

characterizing sub-second variation, but on closer examination it turns out that the data are 

actually quite rich and informative.  

The usual sampling situation in discrete time series analysis involves either aggregation 

over periodic intervals (such as quarterly GDP) or point-in-time periodic sampling (such as the end-

of-day S&P index). In both cases there is one observation per interval, and in neither case do the 

data support resolution of components shorter than one interval. In the present situation, however, 

quote updates occur in continuous time and are disseminated continuously. The one second time-

stamps arise as a truncation (or equivalently, a rounding) of the continuous event times. The 

Monthly TAQ data include all quote records, and it is not uncommon for a second to contain ten or 

even a hundred quote records. 

Assume that all quote updates in a given second arrive as a Poisson process of constant 

intensity. If the interval  0,t  contains n updates, then the update times have the same distribution 

as the order statistics in a sample of n independent random variables uniformly distributed on the 

                                                             
13 As of April, 2001, NASDAQ had not fully implemented decimalization. For this year, I do not 
sample from stocks that traded in sixteenths. 
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interval  (0,t), Ross (1996, Theorem 2.3.1). Within a one-second interval containing n updates, 

therefore, we can simulate continuous arrival times by drawing n realizations from the standard 

uniform distribution, sorting, and assigning them to quotes (in order) as the fractional portions of 

the arrival times. These simulated time-stamps are essentially random draws from true 

distribution. This result does not require knowledge of the underlying Poisson arrival intensity. 

I make the additional assumption that the quote update times are independent of the 

updated bid and offer prices. (That is, the “marks” associated with the arrival times are 

independent of the times.) Then all estimates based on the simulated time stamp series constitute 

draws from their corresponding posterior distributions. This procedure can be formalized in a 

Bayesian Markov-Chain Monte Carlo (MCMC) framework.  To refine the estimates, we would 

normally make repeated simulations (“sweeps”) over the sample, but due to computational 

considerations and programming complexity, I make only one draw for each CQ record. 

 The assumptions underlying this model are unlikely to be completely satisfied in practice. 

For a time-homogeneous Poisson process, interevent durations are independent. In fact, inter-event 

times in market data frequently exhibit pronounced serial dependence, and this feature is a staple 

of the autoregressive conditional duration and stochastic duration literature (Engle and Russell 

(1998);  Hautsch (2004)). In NASDAQ data, Hasbrouck and Saar (2013) show that event times 

exhibit intra-second deterministic patterns. Subordinated stochastic process models of security 

prices suggest that transactions (not wall-clock time) are effectively the “clock” of the process 

Shephard (2005). 

The reliability of the randomization approach can be assessed, however, by a simple test. 

The time-stamps of the data analyzed in the last section are stripped of their millisecond 

remainders. New millisecond remainders are simulated, the random-time-stamped data are 

analyzed, and the two sets of estimates (based on true vs. simulated time stamps) are compared. 

When this procedure was performed, estimates of the 𝜈𝑗
2 and 𝜎𝑗

2 parameters were found to be very 

highly correlated, even at sub-second time scales. (The wavelet bid and ask correlation estimates, 

however, are more sensitive to alignment, and are therefore not as reliable.)14 

                                                             
14 In a sample of n uniform random numbers, the expected values of the n order statistics is 
{𝛿, 2𝛿, … , 𝑛𝛿} where 𝛿 = 1 (𝑛 + 1)⁄ . In working with Monthly TAQ data, Holden and Jacobsen 
(2013, HJ) suggest assigning sub-second time stamps as {𝛿 2⁄ , 3𝛿 2⁄ , … ,1 − 𝛿 2⁄ }.  HJ show this 
assignment yields reliable estimates of effective spreads. The two approaches can be shown to 
follow from different conditioning assumptions. The present result conditions only on the n arrivals 
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C. Results 

 In analyzing 2001-2011, the most useful statistics are variance ratios. By construction they 

are normalized with respect to long-term variance, and over this period there are large swings in 

market-wide long-term volatility (evident from a cursory examination of  the VIX). These would be 

expected to affect the short term variances as well. Table IX Panel A reports the mean wavelet 

variance ratios for the shorter time scales.  As in the 2011 sample, there is substantial variance 

inflation relative to the random-walk in all years. Perhaps surprisingly, though, the excess variance 

is high in all years, including the early years of the decade. The estimates are higher in 2001 than in 

2011. The pattern does not suggest an increasing trend. 

 Given the recent media attention devoted to low-latency activity and the undeniable growth 

in quote volume, the absence of a strong trend in quote volatility seems surprising. There are 

several possible explanations. In the first place, “flickering quotes” drew comment well before the 

start of the sample, in an era when quotes were dominated by human market makers Harris 

(1999);  U.S. Commodities Futures Trading Commission Technology Advisor Committee (2001). 

Also an artifact of this era is the specialist practice of “gapping” the quotes to indicate larger 

quantities at worse prices Jennings and Thirumalai (2007). In short, the quotes may have actually 

been less stable than popular memory holds. The apparent discrepancy between quote volatility 

and quote volume can be explained by appealing to the increase in market fragmentation and 

consequent growth in matching quotes. 

 Exploring this finding further, bid-offer plots for firm-days in each year that correspond to 

extreme realizations of the variances exhibit an interesting pattern. In later years, these outlier 

plots tend to resemble the initial AEPI example, with rapid oscillations of relatively low amplitude. 

In the earlier years, they are more likely to feature small number of prominent spikes associated 

with a sharply lower bid or elevated offer that persists for a minute or less. 

 As an example, Figure 3 (Panel A) depicts the NBBO for PRK (Park National Corporation, 

Amex-listed) on April 6, 2001. At around 10:00 there is a downward spike in the NBB. Shortly after 

noon there is a sharp drop in the NBB of roughly three dollars and a sharp rise in the NBO of about 

one dollar. Examination of the CQ record establishes that during this period there are multiple 

exchanges active in the market, but Amex is the apparent price leader. At 12:02:22, the Amex 

                                                             

in one interval, with an unknown arrival intensity. The HJ assignment corresponds to the expected 
locations under the assumption that the process has a constant arrival intensity. 
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establishes the NBB at $86.74. At 12:03:11 the Amex drops its bid to $83.63, exposing the NASDAQ 

bid of $86.68 as the new NBB. At 12:03:16, the NASDAQ bid drops, leaving the Amex’s $83.63 as 

best. Within half a minute, however, the NBB is back at 86.50. The lower bid is not marketed by any 

special mode flag. It is not a penny (“stub”) bid. The size of the bid at two (hundred shares) is 

typical for the market on that day.  A similar sequence of events sends the NBO up a dollar for about 

one second. 

 These quotes are not so far off the mark as to be clearly erroneous. We must nevertheless 

question whether they were “real”? Did they reliably indicate the consensus market values at those 

instances? Were they accessible for execution? Were they truly the best in the market? There were 

no trades between 11:38 and 12:13, but if a market order had been entered, would it in fact have 

been executed at the NBBO?15 These are meaningful questions because they bear directly on market 

quality. Ultimately, though, the record is unlikely to provide clear answers. The US equity market in 

2001 reflected a blend of human and automated mechanisms, practices and conventions that defies 

detailed description even at a distance of only twelve years. 

 Discerning whether or not quote volatility increased over the period, therefore, requires 

that we sharpen the question. The quote volatility in the initial AEPI example is of high frequency, 

but low amplitude. This is visually distinct from the spikes of high frequency and high amplitude 

found in PRK. The latter is sometimes called “pop” noise, in reference to its sound in audio signals 

Walker (2008).  As in the de-noising of audio signals, the goal is to remove the pops from the signals 

of lower amplitude. The wavelet literature has developed many denoising approaches (see Percival 

and Walden, Gençay et al, and Walker). When the stochastic properties of the noise and signal 

processes are known, optimal methods can often be established. In the present case, though, I adopt 

a simpler method. 

 Wavelet transforms facilitate the direct computation of smooth and rough components. This 

process, known as multiresolution analysis, isolates components at different time scales. As an 

example, Panel B of Figure 3 plots the rough component of the PRK bid at a time scale of 51.2 

seconds. It is zero mean by construction, and the spikes are cleanly resolved.  On the principle that 

high frequency quoting (as in the AEPI example) should not be substantially larger than the bid-

                                                             
15 The Amex (like the NYSE) had specialists in 2001. Specialists generally had affirmative price 
continuity obligations that would have discouraged (though not expressly forbidden) trades 
occurring at prices substantially different from those prevailing immediately before and 
immediately after.  A broker-dealer, however, would not have been subject to this restriction. 
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offer spread in magnitude, I set acceptance bands at   1.5 ,$0.25 .Min average spread   The 

minimum of $0.25 is set to accommodate stocks with very tight spreads. For PRK, the bands are 

approximately ±$0.33, and they are indicated in the figure by horizontal black lines. Values lying 

outside of the band are set to the band limits. This clips the high-amplitude peaks, while leaving the 

low-amplitude components, some of which are highly oscillatory, untouched. The signal (bid or 

offer) is reconstituted using the clipped rough, and analysis proceeds on this denoised signal. I 

recompute all estimates for all firms using the denoised bids and offers. 

 Table IX Panel B reports the wavelet variance ratios for the denoised quotes. The results are 

striking. In the early years, the variance ratios computed from the denoised quotes are much lower 

than those computed from the raw data. In later years, however, the reduction associated with the 

denoising is small.  For the 200 ms variance ratio, for example, the 2001 drop is from 2.43 (for the 

raw quotes) to 1.52 (for the denoised quotes), but the 2011 value only drops from 2.61 to 48.   

 These results are consistent with the view that the overall level of quote volatility did not 

change very much over the decade. The nature of the volatility has apparently, however, evolved. In 

the early years, the volatility was of relatively high amplitude but non-oscillatory. It is removed by 

the pop-denoising procedure. The procedure does not attenuate the low-amplitude highly 

oscillatory components, however, which drive quote volatility in the later years. The difference 

between the raw and denoised ratios generally declines throughout the decade, but the 

convergence appears to be strongest during the Reg NMS transition period.  

 The denoising procedure accentuates low-amplitude oscillatory volatility. Since one might 

expect that this would be tied more closely to low-latency technology, it is sensible to ask whether 

the denoised volatilities have increased. Table X therefore presents rough volatilities for the 

denoised quotes in $0.01 per share (Panel A), in basis points (Panel B), and as a variance ratio 

(Panel C) for a representative subset of time scales. Figure 4 plots these quantities at the 800 ms 

time scale. The table and figure suggest that neither the $0.01 per share volatility (Panel A) nor the 

basis point volatility (Panel B) evinces an upward trend. The variance ratio (Panel C) appears to 

climb from 2001 to 2004, but thereafter drifts distinctly downwards. In summary, the climb that 

might be expected from cumulative enhancements to trading technology or the growth in quote 

traffic is conspicuously absent. 
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IX. High frequency quoting and trading. 

 Although trading and quoting are different activities, most definitions of algorithmic and 

high frequency trading encompass many aspects of market behavior (not just executions), and 

would be presumed to cover quoting as well as trading.16  In particular, the same technology that 

makes high frequency executions possible also facilitates the rapid submission, cancellation and 

repricing of the nonmarketable orders that establish the bid and offer. Quote volatility is not 

necessarily associated with a high frequency of executions. One can envision regimes where 

relatively stable quotes are hit intensively when fundamental valuations change, and periods (such 

as that depicted in Figure 1) where frenetic quoting occurs in the absence of executions. One might 

nevertheless expect this commonality of technology to link the two activities in practice. 

 Executions are generally emphasized over quotes when identifying agents as high 

frequency traders. For example, Kirilenko, Kyle, Samadi and Tuzun (2011) select on high volume 

and low inventory. The low inventory criterion excludes institutional investors who might use 

algorithmic techniques to accumulate or liquidate a large position. The NASDAQ HFT dataset uses 

similar criteria Brogaard (2012);  Brogaard, Hendershott and Riordan (2012).  Once high frequency 

traders are identified, their executions and the attributes of these executions lead to direct 

measures of HF activity in panel samples. 

 In some situations, however, identifications based on additional, non-trade information are 

possible. Menkveld (2013) identifies one Chi-X participant on the basis of size and prominence.  The 

Automated Trading Program on the German XETRA system allows and provides incentives for 

designating an order as algorithmic Hendershott and Riordan (2013).  Other studies analyze 

indirect measures of low-latency activity. Hendershott, Jones, and Menkveld (2011) use NYSE 

message traffic. Hasbrouck and Saar (2013) suggest strategic runs (order chains) of cancel and 

replace messages linked at intervals of 100 ms or lower.  

 Most of these studies find a positive association between low-latency activity and market 

quality. Low-latency activity, for example, tends to be negatively correlated with as posted and 

effective spreads, which are inverse measures of market quality.  Most also find a zero or negative 

                                                             
16 A CFTC draft definition reads: “High frequency trading is a form of automated trading that 
employs: (a) algorithms for decision making, order initiation, generation, routing, or execution, for 
each individual transaction without human direction; (b) low-latency technology that is designed to 
minimize response times, including proximity and co-location services; (c) high speed connections 
to markets for order entry; and (d) high message rates (orders, quotes or cancellations)” U.S. 
Commodities Futures Trading Commission (2011). 
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association between low-latency activity and volatility, although the constructed volatility 

measures usually span intervals that are long relative to those of the present paper. With respect to 

algorithmic or high frequency activity, Hendershott and Riordan (2012) find an insignificantly 

negative association with the absolute value of the prior 15-minute return; Hasbrouck and Saar 

(2013) find a negative association with the high-low difference of the quote midpoint over 10-

minute intervals.   

 The time-scaled variance estimates used here clearly aim at a richer characterization of 

volatility than the high/low or absolute return proxies used in the studies above. The present study 

does not, on the other hand, attempt to correlate the variance measures with intraday proxies for 

high frequency trading.  One would further suspect, of course, that the ultimate strategic purpose of 

high frequency quoting is to facilitate a trade or to affect the price of a trade. The mechanics of this 

are certainly deserving of further research. 

 The discussion in Section II associates short-term quote volatility with price uncertainty for 

those who submit marketable orders, use dark mechanisms that price by reference, or face 

monitoring difficulties. From this perspective, quote volatility is an inverse measure of market 

quality.  Although the present study finds evidence of economically significant and elevated quote 

volatility, it does not establish a simple connection to technological trends associated with low 

latency activity. 

X. Conclusions 

 This paper presents a number of new economic and statistical perspectives on volatility in 

bid and offer quotes. Intuitively, this volatility is measured as the local mean square deviation of the 

bid or offer about a local mean. The analysis is framed as a time scale decomposition, and draws 

extensively on the formal structure and results established in that area. In a 2011 sample of 

millisecond-stamped US equity data, estimates of sub-second high frequency variance for the 

National Best Bid and Offer (NBBO) are well in excess of what would be expected relative to 

random-walk volatility estimated over longer intervals. At an 800 ms time scale, for example, the 

estimated quote volatility is on average close to a basis point, about double what can be explained 

by fundamental volatility. Furthermore, the correlations between bids and offers at sub-second 

time scales are positive, but low. That the bid and offer are not moving together also suggests that 

the volatility is not fundamental. 
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 Under additional assumptions, latency volatility implies cost differentials for agents subject 

to differing latencies, as faster traders can pick off better prices. As a representative estimate, 

traders with latencies of 800 ms and faster have an advantage of about 1.8 basis points relative to 

slower traders. In equilibrium one would expect liquidity providers’ losses to fast traders to be 

passed on to slower traders, but the paper neither formally models this mechanism nor provides 

evidence directly bearing on it. 

 Sub-second volatility is comparable in magnitude to access fees and other transaction costs, 

but since it arises as a zero-mean risk its economic significance for most stocks and most traders is 

low. The latency differentials, however, imply expected costs for slower traders that are small but 

meaningful.  All in, a hypothetical investor with latency above 800 ms, trading at the beginning and 

end of the year incurs an expected utility loss equivalent to a wealth penalty of 3.7 basis points. 

 The public debate on high frequency trading has given prominence to allegedly 

manipulative single-agent mechanisms (such as spoofing and quote stuffing). The evidence in this 

study suggests, however, that quote volatility is associated with increased competition. This finding 

runs counter to the predictions of mixed-strategy models of quote-setting. Quote volatility is also 

associated with more pronounced skewness in bid and offer changes. This is consistent with 

Edgeworth cycles commonly found in product markets.  In product markets, it should also be noted, 

these cycles are not generally considered manipulative. 

 The paper also investigates recent trends and patterns in quote volatility. To facilitate the 

use of data with time stamps that are truncated or rounded to low resolution, the paper proposes a 

simple and straightforward simulation strategy. In a 2001-2011 sample of second-stamped TAQ 

data, the compound annual average growth rate in the number quote (CQ) records is 32%. Quote 

volatility, however, exhibits no such striking trend. In fact, some of the highest estimates occur in 

2001 and 2002, a finding that seems to reflect market-makers “gapping” the quotes.  The highest 

levels of quote volatility occur in 2004-2006. 

 Many of these findings raise additional questions. The findings on quote volatility presented 

here are broad characterizations that may on closer examination exhibit diversity as to strategies of 

liquidity providers and relative costs to liquidity seekers.  The volatility in the motivating example, 

moreover, is concentrated and episodic, which raises questions about conditions that might give 

rise to these bursts. Finally, the volatility considered here embraces both fundamental value-

relevant and transient effects. A resolution (even if partial) would help clarify the role of quotes in 

price discovery. All of these concerns are worthwhile goals of further research.  
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Appendix: Deviations from averages of random walks 

Consider a price series that evolves as 𝑝𝑡 = 𝑝𝑡−1 + 𝑢𝑡 where 𝑢𝑡 is a white-noise process with unit 

variance. Without loss of generality, we initialize 𝑝0 = 0 and consider the mean-squared deviations 

over n observations: 

 𝑀𝑆𝐷(𝑛) =
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 (A1) 

Taking expectations (noting that 𝐸𝑢𝑖𝑢𝑗 = 1 for 𝑖 = 1 and zero otherwise) and simplifying the sums 

gives 

 𝐸(𝑀𝑆𝐷(𝑛)) =
𝑛 + 1

2
−

(𝑛 + 1)(2𝑛 + 1)

6𝑛
=

𝑛2 − 1

6𝑛
 (A2) 

For the sequence of averaging periods 𝑛𝑗 = 𝑛02𝑗 for 𝑗 = 0, …, the corresponding sequence of 

variances is 

 𝛾𝑗
2 = 𝐸 (𝑀𝑆𝐷(𝑛𝑗)) =

4𝑗𝑛0
2 − 1

3𝑛02𝑗+1
 (A3) 

In moving from 𝑗 − 1 to 𝑗 the incremental change in variance (the wavelet variance) is 

 𝜈𝑗
2 = 𝛾𝑗

2 − 𝛾𝑗−1
2 =

4𝑗𝑛0
2 + 2

3𝑛02𝑗+1
 for 𝑗 = 1, … (A4) 

In the special case where 𝑛0 = 1, this reduces to Percival and Walden, exercise 8.3, p. 337 (using 

𝜎𝜖
2 = 1, and 𝜏𝑗 = 2𝑗−1). The rough variance is usually defined as 

 𝜎𝑗
2 = ∑ 𝜈𝑗

2
𝑗

𝑖=1
=

2−𝑗−1(2𝑗 − 1)(2𝑗𝑛0
2 − 1)

3𝑛0
 (A5) 

where the summation starts at 𝑖 = 1. We now reinterpret these results in a slightly expanded 

framework. Suppose that the original time subscript t indexes periods of  time units 

(“milliseconds”) and that the variance per unit time of the ut process is 𝜎𝑢
2. Let M denote the 

averaging period measured in units of time, and correspondingly, 𝑀𝑗 = 𝑀02𝑗 for 𝑗 = 0,1, …. Then 

the wavelet and rough variances become 
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 𝜈𝑗
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2
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In the continuous time limit, as 0 ,  

 νj
2 =

1

3
2𝑗−2𝑀0𝜎𝑢

2 and 𝜎𝑗
2 =

1

6
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2. (A7) 

The wavelet and rough variance ratios are: 

 𝑉𝑗 = 2𝐽−𝑗
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2
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2
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 Alternatively, the rough variance may be defined to include the variance within the initial 

averaging interval. In this case, corresponding to equation (A5): 

𝜎𝑗
2 = γ0

2 + ∑ 𝜈𝑗
2

𝑗
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In the continuous time limit the rough variance ratio becomes 

 𝑉𝑅𝑗 = 2𝐽−𝑗−1 ×
𝜎𝑗
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Table I. Descriptive Statistics 

Source: CRSP and Daily TAQ data, April 2011. The sample is 150 firms randomly selected from 
CRSP with stratification based on average dollar trading volume in the first quarter of 2011, 
grouped in quintiles by dollar trading volume. NBB is the National Best Bid; NBO the National Best 
Offer.  Except for the counts (first four rows), all table entries are cross-firm medians. 
 

  Dollar trading volume quintile 

 Full sample 1 (low) 2 3 4 5 (high) 

No. of firms 149 29 30 30 30 30 

NYSE 47 0 5 7 16 19 

Amex 6 2 2 0 1 1 

NASDAQ 96 27 23 23 13 10 

Avg. daily CT records (trades) 1,346 33 431 1,126 3,478 16,987 

Avg. daily CQ records (quotes) 24,053 1,067 7,706 24,026 53,080 181,457 

Avg. daily NBBO records 7,203 354 3,029 7,543 16,026 46,050 

Avg. daily NBB changes 1,265 121 511 1,351 2,415 4,124 

Avg. daily NBO changes 1,179 106 460 1,361 2,421 4,214 

Avg. price (bid-offer midpoint) $15.77 $4.76 $5.46 $17.86 $27.76 $51.60 

Market capitalization of equity, $Million $690 $41 $202 $747 $1,502 $8,739 
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Table II. Quote variance ratios 

Estimates for 150 US firms during April, 2011. The wavelet variance ratio is 𝑉𝑗 = 2𝐽−𝑗𝜈𝑗
2 𝜈𝐽

2⁄  where 

𝜈𝑗
2 is the wavelet variance at level j and 𝐽 = 16 is the highest level in the analysis.  The rough 

variance ratio is 𝑉𝑅𝑗 = 2𝐽−𝑗−1𝜎𝑗
2 𝜈𝐽

2⁄  where 𝜎𝑗
2 is the rough variance at level j. The price-change 

variance ratio is 𝑉Δ𝑗 = 2𝐽−𝑗𝑉𝑎𝑟 (Δ𝜏𝑗
𝑝𝑡) 𝑉𝑎𝑟 (Δ𝜏𝐽

𝑝𝑡)⁄  where Δ𝜏 is the differencing operator Δ𝜏𝑝𝑡 =

𝑝𝑡 − 𝑝𝑡−𝜏 and 𝜏𝑗 = 2𝑗−1is the level-j time scale. For a random-walk, all variance ratios should be 

unity for all j. The sample is winsorized at ±5%. The National Best Bid and Offer are computed from 
TAQ data; the bid and offer are separately transformed using the Haar basis; the reported variance 
estimates are averages of the bid and offer variances. The data are time stamped to the millisecond. 
Prior to transformation, I take the average of the bid or offer over non-overlapping 50 millisecond 
intervals. Entries for 0j  are variances within the 50 ms intervals. 

 

Level Time scale 𝑉𝑗  𝑉𝑅𝑗 𝑉Δ𝑗  

0 < 50 ms 5.198 5.198  

1 50 ms 2.344 2.465 2.377 

2 100 ms 2.257 2.362 2.295 

3 200 ms 2.154 2.258 2.192 

4 400 ms 2.048 2.162 2.085 

5 800 ms 1.975 2.061 2.004 

6 1,600 ms 1.888 1.971 1.917 

7 3.2 sec 1.774 1.880 1.823 

8 6.4 sec 1.657 1.774 1.721 

9 12.8 sec 1.544 1.654 1.606 

10 25.6 sec 1.449 1.548 1.496 

11 51.2 sec 1.353 1.455 1.406 

12 102.4 sec 1.269 1.364 1.310 

13 3.4 min 1.199 1.289 1.232 

14 6.8 min 1.141 1.217 1.168 

15 13.7 min 1.078 1.148 1.094 

16 27.3 min 1.000 1.074 1.000 

 

 

 



 Page 40 

 

Table III. Quote variance ratios in volume subsamples 

Estimates for 150 US firms during April, 2011. The wavelet variance ratio is 𝑉𝑗 = 2𝐽−𝑗𝜈𝑗
2 𝜈𝐽

2⁄  where 

𝜈𝑗
2 is the wavelet variance at level j and 𝐽 = 16 is the highest level in the analysis.  The rough 

variance ratio is 𝑉𝑅𝑗 = 2𝐽−𝑗−1𝜎𝑗
2 𝜈𝐽

2⁄  where 𝜎𝑗
2 is the rough variance at level j. The price-change 

variance ratio is 𝑉Δ𝑗 = 2𝐽−𝑗𝑉𝑎𝑟 (Δ𝜏𝑗
𝑝𝑡) 𝑉𝑎𝑟 (Δ𝜏𝐽

𝑝𝑡)⁄  where Δ𝜏 is the differencing operator Δ𝜏𝑝𝑡 =

𝑝𝑡 − 𝑝𝑡−𝜏 and 𝜏𝑗 = 2𝑗−1is the level-j time scale. For a random-walk, all variance ratios should be 

unity for all j. All entries are winsorized cross-firm means. The National Best Bid and Offer are 
computed from TAQ data; the bid and offer are separately transformed using the Haar basis; the 
reported variance estimates are averages of the bid and offer variances.. Table reports estimates for 
the full sample and subsamples constructed as quintiles of dollar trading volume. 

 

Sample Level, j Time scale 𝑉𝑗  𝑉𝑅𝑗  𝑉Δ𝑗  

Full sample 1 50 ms 2.344 2.465 2.377 
(0.108) (0.116) (0.104) 

5 800 ms 1.975 2.061 2.004 
(0.082) (0.087) (0.078) 

16 27.3 min 1.000 1.074 1.000 
 (0.007)  

1 (low) 1 50 ms 3.648 3.815 3.465 
(0.262) (0.274) (0.249) 

5 800 ms 3.096 3.184 2.927 
(0.195) (0.205) (0.182) 

16 27.3 min 1.000 1.156 1.000 
 (0.017)  

2 1 50 ms 2.831 3.007 2.926 
(0.252) (0.276) (0.235) 

5 800 ms 2.300 2.435 2.411 
(0.173) (0.195) (0.170) 

16 27.3 min 1.000 1.077 1.000 
 (0.018)  

3 1 50 ms 2.268 2.445 2.388 
(0.161) (0.184) (0.175) 

5 800 ms 1.930 2.018 1.993 
(0.115) (0.126) (0.120) 

16 27.3 min 1.000 1.056 1.000 
 (0.010)  

4 1 50 ms 1.645 1.708 1.784 
(0.139) (0.149) (0.157) 

5 800 ms 1.385 1.457 1.511 
(0.099) (0.109) (0.114) 

16 27.3 min 1.000 1.016 1.000 
 (0.009)  

5 (high) 1 50 ms 1.328 1.350 1.322 
(0.049) (0.050) (0.038) 

5 800 ms 1.164 1.211 1.179 
(0.042) (0.043) (0.035) 

16 27.3 min 1.000 1.065 1.000 
 (0.010)  
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Table IV. Wavelet volatilities and derived measures 

Estimates of time scale variances and related measures for 150 US firms during April, 2011. The 
wavelet volatilities, 𝜈𝑗 are estimates of the price volatility at the time scale 𝜏𝑗 = 50 × 2𝑗−1 ms. The 

rough volatilities, 𝜎𝑗 measure cumulative variation at all time scales j . Both values are scaled to 

$0.01/share and (alternatively) basis points. Based on the model of timing advantage developed in 
section 2, 𝜈𝑗 is also the expected transfer from a trader active at time scale 𝜏𝑗+1 to a trader active at 

time scale 𝜏𝑗. The cumulative gain  𝐺𝑗 = ∑ 𝜈𝑖
𝑗
𝑖=1  is the expected transfer from a trader active at time 

scale 𝜏𝑗+1 to traders active at all lower time scales. 𝐶𝑜𝑟𝑟(𝐷𝑗
𝑏𝑖𝑑 , 𝐷𝑗

𝑜𝑓𝑓𝑒𝑟
) is the correlation between 

bid and offer detail components at level j. All entries are winsorized cross-firm means. The National 
Best Bid and Offer are computed from TAQ data; the bid and offer are analyzed separately and then 
averaged. The data are time stamped to the millisecond. Prior to transformation, I take the average 
of the bid or offer over non-overlapping 50 millisecond intervals. Entries for 0j  are variances 

within the 50 ms intervals. 

 

   $0.01 /share  bp, 0.01%   

Level Time scale  𝜈𝑗  𝜎𝑗  𝐺𝑗   𝜈𝑗  𝜎𝑗  𝐺𝑗   𝐶𝑜𝑟𝑟(𝐷𝑗
𝑏𝑖𝑑 , 𝐷𝑗

𝑜𝑓𝑓𝑒𝑟
) 

0 < 50 ms  0.030 0.030 0.000  0.178 0.178 0.000   

1 50 ms  0.028 0.041 0.028  0.171 0.246 0.171  0.312 

2 100 ms  0.039 0.057 0.068  0.236 0.342 0.407  0.356 

3 200 ms  0.055 0.079 0.122  0.326 0.472 0.732  0.400 

4 400 ms  0.076 0.109 0.198  0.452 0.653 1.183  0.437 

5 800 ms  0.105 0.152 0.303  0.630 0.910 1.817  0.471 

6 1,600 ms  0.144 0.211 0.450  0.870 1.264 2.696  0.509 

7 3.2 sec  0.201 0.290 0.654  1.196 1.740 3.894  0.548 

8 6.4 sec  0.279 0.402 0.924  1.617 2.376 5.511  0.592 

9 12.8 sec  0.384 0.559 1.313  2.206 3.236 7.697  0.640 

10 25.6 sec  0.528 0.769 1.850  3.014 4.430 10.688  0.688 

11 51.2 sec  0.722 1.059 2.578  4.123 6.066 14.825  0.739 

12 102.4 sec  0.992 1.449 3.573  5.655 8.297 20.512  0.787 

13 3.4 min  1.374 1.989 4.929  7.751 11.407 28.336  0.828 

14 6.8 min  1.906 2.764 6.807  10.627 15.614 39.168  0.859 

15 13.7 min  2.657 3.829 9.475  14.548 21.358 53.750  0.882 

16 27.3 min  3.626 5.288 13.096  19.633 28.990 73.299  0.896 
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Table V. Wavelet volatilities and derived measures in volume subsamples 

Estimates of time scale variances and related measures for 150 US firms during April, 2011. The 
wavelet volatilities, 𝜈𝑗 are estimates of the price volatility at the time scale 𝜏𝑗 = 50 × 2𝑗−1 ms. The 

rough volatilities, 𝜎𝑗 measure cumulative variation at all time scales j .  Based on the model of 

timing advantage developed in section 2, 𝜈𝑗 is also the expected transfer from a trader active at time 

scale 𝜏𝑗+1 to a trader active at time scale 𝜏𝑗. The cumulative gain  𝐺𝑗 = ∑ 𝜈𝑖
𝑗
𝑖=1  is the expected 

transfer from a trader active at time scale 𝜏𝑗+1 to traders active at all lower time scales. 

𝐶𝑜𝑟𝑟(𝐷𝑗
𝑏𝑖𝑑 , 𝐷𝑗

𝑜𝑓𝑓𝑒𝑟
) is the correlation between bid and offer detail components at level j. 

Subsamples are constructed on average daily dollar trading volume. Standard errors are given in 
parentheses. 

 

    $0.01 /share  bp, 0.01%   

Sample Level 
Time 
scale  𝜈𝑗  𝜎𝑗  𝐺𝑗   𝜈𝑗  𝜎𝑗  𝐺𝑗   𝐶𝑜𝑟𝑟(𝐷𝑗

𝑏𝑖𝑑 , 𝐷𝑗
𝑜𝑓𝑓𝑒𝑟

) 

Full 
sample 

1 50 ms  0.028 0.041 0.028  0.171 0.246 0.171  0.312 
 (0.002) (0.003) (0.002)  (0.009) (0.013) (0.009)  (0.018) 

5 800 ms  0.105 0.152 0.303  0.630 0.910 1.817  0.471 
 (0.007) (0.009) (0.019)  (0.032) (0.047) (0.093)  (0.019) 

16 27.3 min  3.626 5.288 13.096  19.633 28.990 73.299  0.896 
 (0.230) (0.333) (0.811)  (0.725) (1.110) (2.949)  (0.018) 

1 (low) 1 50 ms  0.020 0.029 0.020  0.296 0.426 0.296  0.060 
 (0.003) (0.004) (0.003)  (0.022) (0.031) (0.022)  (0.009) 

5 800 ms  0.074 0.106 0.212  1.101 1.586 3.156  0.166 
 (0.011) (0.016) (0.032)  (0.079) (0.116) (0.231)  (0.015) 

16 27.3 min  1.792 2.736 7.115  26.332 40.416 106.455  0.532 
 (0.249) (0.375) (0.938)  (1.761) (2.626) (6.887)  (0.046) 

2 1 50 ms  0.020 0.029 0.020  0.217 0.313 0.217  0.235 
 (0.004) (0.006) (0.004)  (0.018) (0.025) (0.018)  (0.031) 

5 800 ms  0.070 0.103 0.205  0.782 1.135 2.271  0.403 
 (0.013) (0.019) (0.038)  (0.062) (0.090) (0.180)  (0.032) 

16 27.3 min  2.117 3.115 7.873  23.360 34.561 87.989  0.958 
 (0.348) (0.527) (1.361)  (1.669) (2.571) (6.810)  (0.009) 

3 1 50 ms  0.028 0.042 0.028  0.142 0.208 0.142  0.308 
 (0.004) (0.005) (0.004)  (0.012) (0.017) (0.012)  (0.026) 

5 800 ms  0.103 0.150 0.300  0.532 0.766 1.528  0.512 
 (0.013) (0.018) (0.037)  (0.045) (0.063) (0.126)  (0.032) 

16 27.3 min  3.409 4.939 12.312  17.461 25.521 64.006  0.993 
 (0.417) (0.599) (1.481)  (1.254) (1.939) (5.102)  (<0.001) 

4 1 50 ms  0.036 0.051 0.036  0.113 0.163 0.113  0.406 
 (0.004) (0.006) (0.004)  (0.006) (0.009) (0.006)  (0.030) 

5 800 ms  0.133 0.192 0.383  0.420 0.607 1.214  0.561 
 (0.017) (0.024) (0.048)  (0.023) (0.033) (0.066)  (0.028) 

16 27.3 min  5.003 7.168 17.468  17.396 24.672 59.770  0.998 
 (0.566) (0.816) (1.983)  (1.142) (1.602) (3.786)  (<0.001) 

5 (high) 1 50 ms  0.039 0.055 0.039  0.085 0.121 0.085  0.553 
 (0.004) (0.005) (0.004)  (0.005) (0.008) (0.005)  (0.033) 

5 800 ms  0.145 0.209 0.417  0.317 0.458 0.917  0.714 
 (0.014) (0.020) (0.040)  (0.021) (0.030) (0.059)  (0.029) 

16 27.3 min  5.809 8.481 20.711  13.615 19.778 48.278  1.000 
 (0.505) (0.735) (1.779)  (1.054) (1.508) (3.601)  (<0.001) 
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Table VI.  
High-frequency quoting and competition 

For three measures of the Herfindahl-Hirschman index (HHI), the table reports mean estimates 
implied by the linear fixed-effects panel model (∙)𝑖𝑡𝑑 = 𝑋𝑖𝑡𝑑𝛽 + 𝑒𝑖𝑡𝑑, where 𝑖 = 1, … ,150 indexes 
firms, 𝑡 = 1, … ,20 × 36 indexes 10-minute date/time intervals between 9:45 and 15:45 and trading 
days in April 2011 (20 days  36 intervals/day), and direction 𝑑 ∈ {𝑏𝑖𝑑, 𝑜𝑓𝑓𝑒𝑟}. (The bid and offer 
sides of the market are treated as separate observations.) All variables are computed at the 
firm/date/time/direction level, but the itd subscripts are suppressed for clarity. 𝐻𝐹𝑄 ∈ {𝑙𝑜𝑤, ℎ𝑖𝑔ℎ} 
is a high-frequency quoting indicator, set to high if the rough variance of the quote (bid or offer, 
depending on direction) lies at or above 90th percentile of the empirical distribution of rough 
variances (for the firm i and direction d).  The HHI that measures competition at the best quote is 

defined as 𝐻𝐻𝐼𝑎𝑡 𝑏𝑒𝑠𝑡 = ∑ (𝑚𝑗
𝑎𝑡 𝑏𝑒𝑠𝑡 ∑ 𝑚𝑘

𝑎𝑡 𝑏𝑒𝑠𝑡
𝑘⁄ )

2
𝑗  where 𝑚𝑗

𝑎𝑡 𝑏𝑒𝑠𝑡 denotes the number of ms that 

exchange j’s quote sets or matches the National best; 𝐻𝐻𝐼𝑎𝑙𝑜𝑛𝑒, is defined similarly, but is based on 

𝑚𝑗
𝑎𝑙𝑜𝑛𝑒, the number of ms that exchange j’s quote is alone at (that is, sets) the National best; 

𝐻𝐻𝐼𝑖𝑚𝑝𝑟𝑜𝑣𝑒 , is computed using 𝑚𝑗
𝑖𝑚𝑝𝑟𝑜𝑣𝑒

, the number of quote improvements (reductions in the 

National best offer or increases in the National best bid) occurring at exchange j. All specifications 
include firm and date/time fixed effects. Standard errors are reported in parentheses. 
 

Variable Sample 𝐻𝐹𝑄 = 𝐿𝑜𝑤  𝐻𝐹𝑄 = 𝐻𝑖𝑔ℎ  𝐻𝑖𝑔ℎ − 𝐿𝑜𝑤 𝐷𝑖𝑓𝑓  

𝐻𝐻𝐼𝑎𝑡 𝑏𝑒𝑠𝑡  All firms 0.3646 0.3322 -0.0324 

(0.0003) (0.0010) (0.0011) 

1 (low) 0.7331 0.6533 -0.0798 

(0.0014) (0.0032) (0.0038) 

2 0.3844 0.3370 -0.0474 

(0.0008) (0.0026) (0.0027) 

3 0.2954 0.2684 -0.0270 

(0.0005) (0.0018) (0.0019) 

4 0.2363 0.2273 -0.0089 

(0.0004) (0.0012) (0.0013) 

5 (high) 0.1788 0.1757 -0.0031 

(0.0002) (0.0007) (0.0008) 

 
(continued on next page) 

 
 
 
 
 
  



 Page 44 

 

Table VI.  
High-frequency quoting and competition (Continued) 

 

Variable Sample 𝐻𝐹𝑄 = 𝐿𝑜𝑤  𝐻𝐹𝑄 = 𝐻𝑖𝑔ℎ  𝐻𝑖𝑔ℎ − 𝐿𝑜𝑤 𝐷𝑖𝑓𝑓  

𝐻𝐻𝐼𝑎𝑙𝑜𝑛𝑒  All firms 0.7245 0.5988 -0.1256 

(0.0005) (0.0014) (0.0015) 

1 (low) 0.9698 0.8582 -0.1117 

(0.0009) (0.0018) (0.0021) 

2 0.8302 0.6454 -0.1848 

(0.0012) (0.0034) (0.0036) 

3 0.7120 0.5699 -0.1422 

(0.0012) (0.0036) (0.0038) 

4 0.5911 0.5101 -0.0810 

(0.0010) (0.0036) (0.0038) 

5 (high) 0.5150 0.4400 -0.0751 

(0.0010) (0.0034) (0.0037) 

𝐻𝐻𝐼𝑖𝑚𝑝𝑟𝑜𝑣𝑒  All firms 0.6152 0.5060 -0.1093 

(0.0007) (0.0015) (0.0016) 

1 (low) 0.9301 0.7877 -0.1424 

(0.0034) (0.0039) (0.0048) 

2 0.7309 0.5300 -0.2009 

(0.0016) (0.0040) (0.0043) 

3 0.5941 0.4732 -0.1208 

(0.0012) (0.0036) (0.0039) 

4 0.4522 0.4045 -0.0477 

(0.0009) (0.0032) (0.0034) 

5 (high) 0.3835 0.3541 -0.0294 

(0.0007) (0.0026) (0.0028) 
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Table VII 
High-frequency quoting and asymmetry in quote changes 

For two measures of quote change asymmetry, the table reports mean estimates implied by the linear fixed-effects panel model (∙)𝑖𝑡𝑑 =
𝑋𝑖𝑡𝑑𝛽 + 𝑒𝑖𝑡𝑑, where 𝑖 = 1, … ,150 indexes firms, 𝑡 = 1, … ,20 × 36 indexes 10-minute date/time intervals between 9:45 and 15:45 and 
trading days in April 2011 (20 days  36 intervals/day), and direction 𝑑 ∈ {𝑏𝑖𝑑, 𝑜𝑓𝑓𝑒𝑟}. (The bid and offer sides of the market are treated 
as separate observations.) Skewness is the usual skewness coefficient computed for changes in the NBB or NBO (depending on d). MLM is 
the mean less the median, normalized by (that is, divided by) the standard deviation. 𝐻𝐹𝑄 ∈ {𝑙𝑜𝑤, ℎ𝑖𝑔ℎ} is a high-frequency quoting 
indicator, set to high if the rough variance of the quote (bid or offer, depending on direction) lies at or above 90th percentile of the 
empirical distribution of rough variances (for the firm i and direction d). The fixed effects of interest are those associated with direction d 
and the interaction effect 𝑑 × 𝐻𝐹𝑄.  All specifications include fixed effects for firm and date/time. The sample is either all firms, or 
subsamples constructed as quintiles of average daily dollar volume.  
Standard errors are reported in parentheses. 
 

   Direction fixed effect  𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 × 𝐻𝐹𝑄 interaction effect 

Variable Sample 
 

𝑑 = 𝐵𝑖𝑑  
𝑑 =

𝑂𝑓𝑓𝑒𝑟  Difference 
 𝑑 = 𝐵𝑖𝑑 and  

𝐻𝐹Q = 𝑙𝑜𝑤  
𝑑 = 𝐵𝑖𝑑 and  
𝐻𝐹𝑄 = ℎ𝑖𝑔ℎ  Difference 

                                     𝑑 = 𝑂𝑓𝑓𝑒𝑟 and  
𝐻𝐹𝑄 = 𝑙𝑜𝑤  

𝑑 = 𝑂𝑓𝑓𝑒𝑟 and  
𝐻𝐹𝑄 = ℎ𝑖𝑔ℎ  Difference 

Skewness Full  -0.2134 0.2246 -0.4379  -0.1686 -0.2581 -0.0896  0.1804 0.2687 0.0883 

 (0.0029) (0.0029) (0.0036)  (0.0024) (0.0050) (0.0054)  (0.0024) (0.0051) (0.0054) 

   1 
(low) 

 -0.1716 0.2142 -0.3857  -0.1160 -0.2272 -0.1112  0.1816 0.2467 0.0651 

 (0.0098) (0.0101) (0.0111)  (0.0119) (0.0136) (0.0164)  (0.0122) (0.0139) (0.0166) 

2  -0.2763 0.2693 -0.5456  -0.2146 -0.3380 -0.1234  0.2156 0.3229 0.1072 

 (0.0068) (0.0067) (0.0093)  (0.0053) (0.0124) (0.0134)  (0.0053) (0.0124) (0.0134) 

3  -0.3333 0.3396 -0.6729  -0.2736 -0.3929 -0.1193  0.2771 0.4021 0.1249 

 (0.0067) (0.0067) (0.0091)  (0.0045) (0.0126) (0.0134)  (0.0045) (0.0126) (0.0134) 

4  -0.1940 0.2054 -0.3994  -0.1523 -0.2358 -0.0835  0.1677 0.2430 0.0753 

 (0.0054) (0.0054) (0.0071)  (0.0033) (0.0104) (0.0111)  (0.0033) (0.0104) (0.0110) 

5 
(high) 

 -0.0943 0.1131 -0.2073  -0.0864 -0.1021 -0.0158  0.0812 0.1450 0.0638 

 (0.0043) (0.0043) (0.0056)  (0.0026) (0.0084) (0.0090)  (0.0026) (0.0084) (0.0090) 

 
(continued next page) 
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Table VII 
High-frequency quoting and asymmetry in quote changes (continued) 

 

   Direction fixed effect  𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 × 𝐻𝐹𝑄 interaction effect 

Variable Sample 
 

𝑑 = 𝐵𝑖𝑑  𝑑 = 𝑂𝑓𝑓𝑒𝑟  Difference 
 𝑑 = 𝐵𝑖𝑑 and  

𝐻𝐹Q = 𝑙𝑜𝑤  
𝑑 = 𝐵𝑖𝑑 and  
𝐻𝐹𝑄 = ℎ𝑖𝑔ℎ  Difference 

                                     𝑑 = 𝑂𝑓𝑓𝑒𝑟 and  
𝐻𝐹𝑄 = 𝑙𝑜𝑤  

𝑑 = 𝑂𝑓𝑓𝑒𝑟 and  
𝐻𝐹𝑄 = ℎ𝑖𝑔ℎ  Difference 

MLM Full  -0.1814 0.1789 -0.3603  -0.1470 -0.2159 -0.0689  0.1509 0.2070 0.0561 

 (0.0037) (0.0038) (0.0047)  (0.0031) (0.0066) (0.0070)  (0.0031) (0.0066) (0.0070) 

1 
(low) 

 -0.1378 0.1467 -0.2845  -0.1219 -0.1537 -0.0318  0.1434 0.1500 0.0066 

 (0.0090) (0.0093) (0.0102)  (0.0110) (0.0125) (0.0150)  (0.0112) (0.0128) (0.0153) 

2  -0.1546 0.1621 -0.3167  -0.1372 -0.1720 -0.0347  0.1492 0.1749 0.0256 

 (0.0067) (0.0067) (0.0092)  (0.0052) (0.0123) (0.0134)  (0.0053) (0.0123) (0.0133) 

3  -0.2404 0.2259 -0.4663  -0.2001 -0.2808 -0.0807  0.1940 0.2578 0.0638 

 (0.0065) (0.0065) (0.0089)  (0.0044) (0.0123) (0.0131)  (0.0044) (0.0123) (0.0131) 

4  -0.1988 0.2027 -0.4015  -0.1489 -0.2488 -0.0999  0.1597 0.2457 0.0860 

 (0.0077) (0.0077) (0.0102)  (0.0047) (0.0148) (0.0158)  (0.0047) (0.0148) (0.0157) 

5 
(high) 

 -0.1597 0.1505 -0.3103  -0.1180 -0.2014 -0.0834  0.1017 0.1994 0.0977 

 (0.0088) (0.0089) (0.0114)  (0.0053) (0.0172) (0.0184)  (0.0053) (0.0173) (0.0185) 
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Table VIII  
Summary statistics for US equities 

From the CRSP file, for each year, 2001-2011 and all stocks present in January through April of that year with share codes equal to 10 or 
11, I draw 150 firms in a random sample stratified by dollar trading volume in January through March. NBB is the National Best Bid; NBO, 
the National Best Offer; CT, Consolidated Trade; CQ, Consolidated Quote. Trade and quote counts are from the Monthly TAQ database 
(one-second time stamps). Except for the number of firms, table entries are cross-firm medians. 
 

 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

No. firms 137 122 141 148 144 150 150 147 145 149 149 

 NYSE 106 46 51 44 48 44 55 53 56 54 47 

Amex 16 4 10 12 8 15 14 6 5 14 6 

NASDAQ 15 72 80 92 88 91 81 88 84 81 96 

Avg. daily CT records (trades) 167 228 231 399 448 605 970 1,217 1,993 1,141 1,346 

Avg. daily CQ records (quotes) 1,525 1,053 1,470 3,917 6,004 7,307 12,521 16,791 41,571 23,530 24,053 

Avg. daily NBB changes 128 162 210 514 611 761 772 1,183 1,787 1,468 1,225 

Avg. daily NBO changes 127 163 226 545 729 751 789 1,142 1,789 1,461 1,146 

Avg. price (bid-offer midpoint) $20.57 $20.98 $14.41 $16.53 $16.10 $21.14 $15.81 $14.12 $11.25 $16.79 $15.77 

Market capitalization of equity, $Million $976 $410 $205 $352 $348 $411 $480 $411 $382 $490 $690 
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Table IX 
Wavelet variance ratios for US equities, 2001-2011 

In each year 2001-2011, 150 US firms are randomly selected from CRSP (stratified by average daily 

dollar trading volume during the first quarter of the year).  Quote records for April are taken from 

the NYSE Monthly TAQ database. Within each second, quotes are randomly assigned order-

preserving millisecond fractional portions. The wavelet variance ratio is 𝑉𝑗 = 2𝐽−𝑗𝜈𝑗
2 𝜈𝐽

2⁄  where 𝜈𝑗
2 

is the wavelet variance at level j and 𝐽 = 16 is the highest level in the analysis. For a random-walk, 

the ratio would be unity at all horizons. All entries are cross-firm means. The National Best Bid and 

Offer are computed from TAQ data; the bid and offer are separately transformed using the Haar 

basis; variance estimates are formed as the average of the bid and offer variances. Estimates in 

Panel A are constructed from bids and offers that were filtered for errors, but not otherwise 

adjusted. Estimates in Panel B are constructed from denoised bids and offers (with short-term 

peaks clipped). Table reports cross-firm means, winsorized at ±5%. 

Panel A. Wavelet variance ratios, 𝑉𝑗, computed from raw bids and offers 

Level, j Time scale 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

1 50 ms 2.90 2.87 3.59 6.01 5.40 5.89 5.10 4.40 4.15 5.99 3.16 

2 100 ms 2.88 2.77 3.55 5.79 5.21 5.68 4.75 3.98 3.81 5.24 2.86 

3 200 ms 2.43 2.64 3.50 5.24 4.94 5.33 4.17 3.43 3.42 4.51 2.61 

4 400 ms 2.36 2.54 3.44 4.80 4.56 4.78 3.58 2.96 3.02 3.90 2.32 

5 800 ms 2.13 2.41 3.27 4.19 4.03 4.30 2.94 2.57 2.53 3.28 2.07 

6 1,600 ms 2.02 2.24 3.04 3.47 3.33 3.47 2.61 2.29 2.25 2.77 1.92 

7 3.2 sec 1.95 2.12 2.65 2.96 2.86 2.98 2.28 2.12 2.06 2.39 1.79 

8 6.4 sec 1.90 1.97 2.43 2.64 2.54 2.61 2.10 1.98 1.88 2.07 1.66 

Panel B. Wavelet variance ratios, 𝑉𝑗, computed from denoised bids and offers 

Level, j Time scale 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

1 50 ms 1.55 2.19 2.88 5.09 4.89 5.61 4.70 4.18 3.53 5.71 2.94 

2 100 ms 1.53 2.14 2.85 4.97 4.75 5.41 4.36 3.78 3.22 5.03 2.72 

3 200 ms 1.52 2.11 2.80 4.77 4.55 5.07 3.77 3.23 2.92 4.36 2.48 

4 400 ms 1.52 2.08 2.73 4.44 4.22 4.52 3.13 2.77 2.65 3.70 2.22 

5 800 ms 1.53 2.04 2.64 3.97 3.72 3.81 2.63 2.42 2.35 3.13 2.03 

6 1,600 ms 1.56 2.00 2.54 3.28 3.12 3.23 2.31 2.21 2.09 2.62 1.89 

7 3.2 sec 1.65 1.96 2.40 2.85 2.69 2.77 2.12 2.06 1.90 2.26 1.77 

8 6.4 sec 1.71 1.91 2.24 2.64 2.41 2.48 1.99 1.94 1.75 2.00 1.66 
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Table X Time scale volatility estimates for US equities, 2001-2011 

In each year 2001-2011, 150 US firms are randomly selected from CRSP (stratified by average daily 

dollar trading volume during the first quarter of the year). Quote records for April are taken from 

the NYSE Monthly TAQ database. Within each second, quotes are randomly assigned order-

preserving millisecond fractional portions. Panel A reports rough volatilities, 𝜎𝑗 = √∑ 𝜈𝑗
2𝑗

𝑖=1 , in 

$0.01 per share; Panel B reports the rough volatility, 𝜎𝑗, in basis points. Panel C reports rough 

variance ratios, 𝑉𝑅𝑗. Table entries are cross-firm means and standard errors winsorized at ±5%. All 

estimates are constructed from denoised bids and offers (with short-term peaks clipped). 

Panel A. Rough volatility, 𝜎𝑗 , $0.01 per share. 

Level, 
j 

Time 
scale 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

1 50 ms 0.04 0.04 0.03 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.03 

  (<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01) 

3 200 ms 0.10 0.09 0.07 0.11 0.10 0.11 0.07 0.09 0.11 0.10 0.08 

  (<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (0.01) (<0.01) (<0.01) (0.01) (0.01) (<0.01) 

5 800 ms 0.20 0.19 0.15 0.21 0.20 0.22 0.14 0.17 0.22 0.19 0.15 

  (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

7 3.2 sec 0.43 0.38 0.29 0.40 0.37 0.40 0.26 0.33 0.40 0.35 0.30 

  (0.02) (0.02) (0.01) (0.02) (0.02) (0.02) (0.01) (0.02) (0.02) (0.02) (0.02) 

10 25.6 sec 1.37 1.04 0.79 0.98 0.93 1.01 0.70 0.90 1.07 0.89 0.78 

  (0.09) (0.04) (0.04) (0.04) (0.04) (0.05) (0.04) (0.04) (0.06) (0.05) (0.05) 

14 6.8 min 4.70 3.66 2.61 3.39 3.21 3.53 2.53 3.20 3.87 3.17 2.79 

  (0.23) (0.15) (0.12) (0.16) (0.15) (0.18) (0.14) (0.16) (0.20) (0.18) (0.17) 

16 27 min 8.78 6.77 4.69 6.10 5.80 6.47 4.74 6.04 7.36 6.03 5.33 

  (0.45) (0.29) (0.22) (0.29) (0.27) (0.33) (0.28) (0.30) (0.40) (0.36) (0.34) 
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Table 8. Time scale volatility estimates for US equities, 2001-2011 (continued) 
 
Panel B. Rough volatility, 𝜎𝑗 , basis points 

 

Level, j Time scale 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

1 50 ms 0.19 0.21 0.21 0.31 0.30 0.22 0.19 0.29 0.38 0.25 0.19 

  (0.01) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01) 

3 200 ms 0.50 0.55 0.55 0.80 0.78 0.55 0.46 0.71 0.94 0.61 0.47 

  (0.02) (0.03) (0.02) (0.06) (0.06) (0.03) (0.03) (0.04) (0.05) (0.03) (0.02) 

5 800 ms 1.06 1.14 1.14 1.59 1.53 1.07 0.89 1.35 1.82 1.15 0.92 

  (0.05) (0.05) (0.05) (0.10) (0.11) (0.05) (0.05) (0.08) (0.09) (0.06) (0.05) 

7 3.2 sec 2.22 2.29 2.20 2.82 2.72 1.97 1.61 2.52 3.35 2.08 1.74 

  (0.10) (0.11) (0.09) (0.16) (0.18) (0.08) (0.09) (0.14) (0.16) (0.10) (0.09) 

10 25.6 sec 6.59 6.33 5.80 6.93 6.54 4.91 4.12 6.43 8.40 5.04 4.47 

  (0.31) (0.31) (0.23) (0.35) (0.36) (0.18) (0.20) (0.31) (0.36) (0.21) (0.21) 

14 6.8 min 23.72 21.84 19.22 21.81 21.05 16.38 14.03 21.84 29.56 17.07 15.76 

  (1.04) (1.05) (0.70) (0.91) (0.95) (0.51) (0.57) (0.83) (1.18) (0.63) (0.67) 

16 27.3 min 43.30 40.08 34.55 38.77 37.00 29.40 25.34 39.83 54.23 31.52 29.25 

  (1.87) (1.93) (1.27) (1.61) (1.51) (0.88) (0.90) (1.27) (1.97) (1.10) (1.14) 

 
 
Panel C. Rough variance ratio, 𝑉𝑅𝑗 

 

Level, j Time scale 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

1 50 ms 1.55 2.19 2.88 5.09 4.89 5.61 4.70 4.18 3.53 5.71 2.94 

  (0.06) (0.09) (0.10) (0.41) (0.43) (0.59) (0.51) (0.44) (0.22) (0.52) (0.15) 

3 200 ms 1.52 2.13 2.82 4.87 4.67 5.25 4.09 3.55 3.09 4.74 2.61 

  (0.06) (0.08) (0.10) (0.38) (0.41) (0.55) (0.42) (0.35) (0.18) (0.40) (0.13) 

5 800 ms 1.53 2.08 2.71 4.29 4.05 4.37 3.09 2.77 2.62 3.63 2.21 

  (0.06) (0.09) (0.10) (0.31) (0.33) (0.42) (0.26) (0.23) (0.15) (0.28) (0.10) 

7 3.2 sec 1.61 2.02 2.52 3.33 3.15 3.36 2.42 2.28 2.16 2.70 1.92 

  (0.07) (0.09) (0.09) (0.20) (0.21) (0.28) (0.16) (0.16) (0.11) (0.18) (0.08) 

10 25.6 sec 1.74 1.81 2.09 2.52 2.23 2.35 1.88 1.81 1.67 1.86 1.56 

  (0.08) (0.07) (0.07) (0.14) (0.10) (0.14) (0.09) (0.10) (0.06) (0.09) (0.05) 

14 6.8 min 1.35 1.35 1.46 1.53 1.46 1.49 1.33 1.29 1.30 1.30 1.22 

  (0.03) (0.03) (0.03) (0.04) (0.03) (0.04) (0.03) (0.03) (0.02) (0.03) (0.02) 

16 27.3 min 1.11 1.11 1.15 1.17 1.15 1.16 1.11 1.09 1.10 1.09 1.08 

  (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 
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Figure 1.  The bid and offer for AEPI, April 29, 2011. 

National best bid and offer (NBBO) from the NYSE Daily TAQ dataset. The National best bid (bottom line, in blue) is the maximum bid, 
taken over all market centers reporting to the Consolidated Tape Association; the National best offer (top line, red) is the minimum offer. 
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Figure 2. Haar basis for components of offer residual 

 
The Haar function is defined over the real line as 𝜓(𝑥) = +1 if 0 < 𝑥 < 1 2⁄ , −1 if 1 2⁄ < 𝑥 < 1, and 0 otherwise.  At level j the basis set 

contains 𝑘 = 1, … , 23−𝑗 functions 𝜓(𝑡, 𝑗, 𝑘) = 2 −𝑗 2⁄ 𝜓(2−𝑗𝑥 + 𝑘 + 1). The top row (𝑗 = 1) contains the basis functions for the short-term 

component; the middle row (𝑗 = 2), the medium term component; and the bottom row (𝑗 = 3), the long-term component. 

 

 

 

Out[41]=
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Figure 3 Bid and offer for PRK (Park National Corporation) on April 6, 2001 

Panel A. National best bid and offer (NBBO) from the NYSE Daily TAQ dataset. The National best bid 
(bottom line, in blue) is the maximum bid, taken over all market centers reporting to the 
Consolidated Tape Association; the National best offer (top line, red) is the minimum offer. 
 

 
Panel B. Rough component of the National Best bid, constructed from a Haar wavelet transform and 
comprising components at time scales of 51.2 seconds and lower. The bands demarcate $0.33,

approximately 150% of the average bid-ask spread for the day. 
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Figure 4. 
Time scale volatility estimates for U.S. Equities, 2001-2011 

Quote volatility at a time scale of 800 ms., $0.01 per share (Panel A), basis points (Panel B), and as a 
variance ratio (Panel C). In each year, the horizontal tick marks the mean and the vertical line 
demarcates the mean ± twice the standard error. 
 
Panel A. Rough volatility, 𝜎𝑗 , $0.01 per share 

 
 
Panel B Rough volatility, 𝜎𝑗, basis points 
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Figure 4. Time scale volatility estimates for U.S. Equities, 2001-2011 (continued) 

 

Panel C. Rough variance ratio, 𝑉𝑅𝑗=5 
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