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Abstract

I examine the impact of status-seeking considerations on investors’
portfolio choices and asset prices in a general equilibrium setting. The
economy I study consists of traditional (”Markowitz”) investors as well
as status seekers who are concerned about relative wealth. The model
highlights the strategic and interdependent nature of portfolio selec-
tion in such a setting: low-status investors look for portfolio choices
that maximize their chances of moving up the ladder while high-status
investors look to maintain the status quo and hedge against these
choices of the low-status investors. In equilibrium, asset returns obey
a novel two-factor model in which one factor is the traditional mar-
ket factor and the other is a particular ”high volatility factor” that
does not appear to have been identified so far in the theoretical or
empirical literature. I test this two-factor model using stock market
data and find significant economical and statistical support for it. Of
particular interest, the model and the empirical results attribute the
low returns on idiosyncratic volatility stocks documented by Ang, Ho-
drick, Xing and Zhang (2006) to their covariance with the portfolio of
highly volatile stocks held by investors with relatively low status.
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1 Introduction

The empirical finance literature has provided many challenges to traditional
portfolio choice and asset pricing theories. A key insight of modern portfolio
theory is the merits of diversification. However, many households that hold
individual stocks directly hold only a single stock, and the median number
of stocks held is only about three [30]. In addition, less wealthy investors un-
derdiversify more than wealthier investors. A fundamental principle of asset
pricing theory is that idiosyncratic risk should not be priced, or in a market
in which investors cannot properly diversify, one would expect idiosyncratic
risk to be positively related to expected returns (Merton, 1987) [32]. How-
ever, one of the most puzzling recent empirical findings documented by Ang,
Hodrick, Xing, and Zhang (2006) [3] is that stocks with high idiosyncratic
volatility have abysmally low average returns. Another recent empirical study
by Bali, Cakici, and Whitelaw (2009) [4] shows that stocks with lottery-like
payoffs also have significantly low returns.

In this paper, I argue that taking status concerns into account sheds some
light on these puzzles. Status concerns are prevalent in the decisions made by
financial market participants. These concerns can take the form of a mutual
fund tournament, in which fund managers compete against each other over
past-returns. One reason for such competition is the findings that investors
prefer to invest in funds that performed well relative to others. Status con-
cerns can also be manifested by investors who care about their wealth or
social status relative to other individuals, and compete over wealth-based
rank. There is a growing literature in psychology, sociology and, more re-
cently, economics documenting the importance of relative wealth or relative
income concerns on self-reported well-being. For example, Luttmer (2005)
[31] finds a negative effect of increases in neighbors’ earnings on own well-
being.

I devise a stylized model that abstracts from the exact nature of the un-
derlying competition and concentrates on several salient characteristics of a
competition between investors. First, the concern for status is modeled as
a concern of investors for their ordinal rank in the competition. Modelling
status as indicated by the ordinal rank in the distribution of wealth was pi-
oneered by Frank (1985) [19] in a study of the demand for positional and
non-positional goods. Robson (1992) [35] and Becker, Murphy and Werning
(2005) [6] considered preferences over absolute wealth as well as ordinal rank
in wealth.
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Second, investors are heterogeneous in their attitudes toward their current
rank in the competition. Some competitors are ahead in the competition,
satisfied with their position, and are interested in maintaining the status-
quo. I call these investors ”leaders”. Other competitors are falling behind,
dissatisfied with their position and are interested in ”reshuffling” the ranks of
the competitors. I call these investors ”laggards”. I will focus on the context
of a two-player competition, where the leader is the richer investor, while the
laggard is the poorer investor, and the players compete over wealth based
rank.

The heterogeneity in attitude toward status risk is examined in the mutual
fund tournament literature, spawned by Brown, Harlow and Starks (1996)
[7] and Chevalier and Ellison (1997) [12]. The literature examines tourna-
ment behavior, that is, whether underperforming mutual funds increase risk
in the latter part of the year. Taking the competition analogy into the social
context, Kumar (2009) [27] finds that two of the characteristics of investors
who hold lottery-like securities are being poor in absolute terms and being
poor in relative terms, that is, earn less than their neighbors. Kumar con-
cludes that ”this evidence indicates that to some extent gambling-motivated
investments are likely to be influenced by a desire to maintain or increase
upward social mobility”. In the context of this paper, these investors are the
laggards in the competition over social status.

The third feature of the model is the strategic interaction between the
players. If investors care about their performance relative to other investors,
then their optimal investment strategy should take the choices of others into
account. Anecdotal evidence of this sort is stated by Professor Harrison Hong
(2008) during an interview to the WSJ regarding the High-Tech bubble: ”My
sister’s getting rich. My friends are getting rich....I think this is all crazy,
but I feel so horrible about missing out, about being left out of the party. I
finally caved in, I put in some money just as a hedge against other people
getting richer than me and feeling better than me”.

The heart of the model is a game between two players, a laggard and a
leader, who compete against each other over who will be the leader at the
end of the period. Each player cares only about his or her position relative
to the other player at the end of the game. The attitudes of investors toward
the moments of the return on their portfolios are determined endogenously
as a function of their initial status. While both investors seek to increase
the expected return on their portfolio, the laggard investor pursues a volatile
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portfolio with low correlation with the portfolio of the leader as he has ”noth-
ing to lose” and he must obtain a portfolio that is different than that of the
leader in order to overtake her. The leader tries to maintain her position
and she is exposed to ”status risk”, the risk of losing her leadership. Status
risk has two components. The first risk is that she will obtain a low return
and fall behind the laggard, and the second is the risk that the laggard will
obtain a high return and overtake her. To manage the first risk, the leader
tries to minimize the variance of her portfolio, and so practically, this risk is
the same as the risk bared by a Markowitz investor. To manage the second
risk, the leader is interested in increasing the correlation of her portfolio with
the portfolio of the laggard.

To study portfolio choices and the cross-section of asset returns in this sta-
tus conscious economy, I introduce an economy with many groups of similar
assets. There are many pairs of laggard and leader investors (status investors)
and many Markowitz investors, who care only about maximizing expected
return and minimizing volatility. I find a Nash-Equilibrium, in which the lag-
gard player uses a mixed strategy to invest in a single stock from a specific
group (”group V”), which is characterized by the high volatility of its assets.
I obtain a closed form solution for the leader’s response. The leader’s port-
folio reflects her two-folded concern for reducing her variance and increasing
her covariance with the laggard as she invests in a linear combination of
the tangency portfolio and group V. The tradeoff of the leader between the
tangency portfolio and group V depends on her ”hedging demands”, which
captures the extent to which the leader can hedge against the laggard. As
the correlation within group V increases, the leader can better hedge against
the laggard using group V , and accordingly she increases the portion she
invests in group V relative to her investment in the tangency portfolio.

I obtain exact solutions for asset prices and show that they follow a two-
factor beta pricing model where one factor is the market and the other is
group V minus the market (VM). Assets with high exposure to VM obtain
lower expected returns as they provide better hedge against the laggard.
The negative premium for assets with high exposure to VM depends on the
hedging demands, derived from the correlation within group V, and on the
variance VM. When the variance of VM is low, the leader can use other
assets in the economy to hedge against the laggard and exposure to VM
is less appreciated. However, when the variance of VM is high, group V
becomes more special in terms of hedging efficiency against the laggard and
the price of exposure to VM increases.
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The model provides both portfolio choice and asset pricing implications.
It can explain why some investors (the laggards in the model) take on undi-
versified portfolios, concentrated in stocks with lottery like payoffs, and why
other investors (the leaders in the model) give high weight to these stocks in
their portfolio. The model provides cross-sectional asset pricing implication
in the form of a two-factor pricing equation. It predicts that assets with
higher exposure to the most volatile group of stocks in the market should
have negative premium, as they provide a hedge against ”status risk”. In ad-
dition, the model expresses the determinants of the price of the most volatile
group of assets, leading to empirical time-series implications regarding the
price of the most volatile group of stocks.

I examine the cross-sectional implications by constructing 5x5 = 25 dy-
namic portfolios, sorting stocks first by their exposure to the market and then
by their exposure to VM. Group V is proxied by selecting stocks with the
highest total volatility. I examine the monthly returns on these portfolios and
show that portfolios with higher exposure to VM achieve significantly lower
returns. In addition, I conduct time series, Fama-MacBeth and SDF-GMM
tests to show that the two factor pricing model resulted from my model is
supported by the data. The model can explain the idiosyncratic volatility
puzzle, as idiosyncratic risk has a prediciting power over exposure to VM
and sorting by it creates a spread in exposure to VM.

2 Related Literature

The idea that individuals are often motivated in their behavior by a quest for
social status has lately received growing attention in economics application
(See Heffez and Frank (2008) [23] for an excellent review). There is a grow-
ing literature in Finance studying the effects of relative wealth concerns on
portfolio choice and asset prices. Cole, Mailath, and Postlewaite (2001) [14]
study the effects of relative wealth concerns on investment choice in a gen-
eral framework and show that these concerns can have two opposite effects -
investors can bias their portfolios either toward or away from the portfolios
held by other investors.

Abel (1990) [1] and most of the papers studying interdependent prefer-
ences in Finance modeled relative wealth using utility functions that exhibit
the first effect, which is commonly termed as ”keeping up with the joneses”.
Since investors in these models tend to bias their portfolio toward the port-
folio held by the reference group, such models yield herding behavior. For
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example, DeMarzo, Kaniel, and Kremer (2004) show that preference for a
local good can give rise to relative wealth concerns, leading to undiversified
portfolios, with households in each community tilting their portfolios toward
community-specific assets. Others, such as Lauterbach and Reisman (2004)
[28] and Cole, Mailath, and Postlewaite [14] have used such preferences to
explain the home bias.

Roussanov (2009) [37] is probably the first paper in the Finance literature
that specifies a utility function that takes the opposite approach and leads
investors to ”get ahead of the Joneses” and seek portfolios that are biased
away from the aggregate portfolio. He motivates this approach refering to
Friedman and Savage (1948) [21] who suggest that as people move to a higher
social class their marginal utility of wealth rises. Consequently, they take
great risks to distinguish themselves” (p. 299), potentially exhibiting risk-
loving behavior.

However, Friedman and Savage (1948) provides a framework that supports
both approaches to status as they interpret the convex segment in their utility
function as a transition between two socio-economic levels. If this is the case,
then individuals with high wealth relative to their socio-economic class will
exhibit risk-loving behavior, while individuals with low wealth relative to
their socio-economic class will exhibit risk-averse behavior. My model takes
the view that merging these two effects into a single framework is essential
to understand the effects of status on portfolio choice and asset pricing, since
the investors who are satisfied with their position relative to others will purse
the ”keeping up with the Joneses” approach and will bias their portfolios
towards the portfolio of others, while other investors who are dissatisfied
with their position relative to others will pursue the ”getting ahead of the
Joneses” approach and will bias their portfolio away from the portfolios of
others. Confronting these two approaches gives rise to a strategic game as
the decision of both types of investors depends on each other. This paper is
a first step in studying such models.

This paper is not the first to show that relative wealth might lead to
preference for volatility or lottery like securities. Robson (1996) [36] uses
a biologically motivated model to show agents who are fundamentally risk
neutral are induced to take Fair bets involving small losses and large gains
in an environment in which the rewards are a function of relative wealth.
Other papers that yield preference for lottery-like securities are Barberis and
Huang (2008) [5] who study the implications of prospect theory (Tversky and
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Kahneman (1992) [24]) on asset prices. Errors in the probability weighting
of investors cause them to over-value stocks that have a small probability
of a large positive return. The optimal beliefs framework of Brunnermeier,
Gollier and Parker (2007) [8] also predicts preference for lottery like securities.
In this model, agents optimally choose to distort their beliefs about future
probabilities in order to maximize their current utility.

Other studies that use relative wealth concerns to provide explanations
to under-diversification are Roussanov [37] and DeMarzo, Kaniel, and Kre-
mer (2004). Unlike these studies, this paper identifies the holders of under-
diversified portfolio as investors who fall behind in the competition over sta-
tus and identifies the assets held in these portfolios as the most volatile assets.
A model that associates assets held in under-diversified portfolio with high
risk assets is provided by Van Nieuwerburgh and Veldkamp (2010) [33] who
argue that Information acquisition can rationalize investing in a concentrated
set of assets. In particular, they formalize the conditions under which the
informed investor would hold an under-diversified portfolio of the riskiest
assets. Liu (2008) [30] argues that portfolio insurance leads the poorest in-
vestors to hold under-diversified portfolios with assets that have the highest
expected return and highest risk. Unlike these papers, in my model the
underdiversified portfolios held by poorer investors have assets that are in-
efficient in the mean-variance sense and is close to the findings of Kumar
who shows that investors who invest disproportionately more in lottery-type
stocks experience greater underperformance.

Another strand of literature related to this paper is the mutual fund tour-
nament literature, which examines whether underperforming mutual funds
(the laggards in our model) increase risk in the latter part of the year. This
phenomenon has been studied using return data, and different studies have
reached different conclusions (see a review at Elton, Gruber, Blake, Krasny,
and Ozelge [16]). There are at least two issues with this literature that might
hinder reaching a decisive conclusion about mutual fund tournament behav-
ior. First, while most studies examined the risk taken by the leaders versus
the laggards measured by volatility or beta, Chen and Penachi (2009) [11]
shows that laggard funds should increase fund’s ”tracking error” volatility
and not necessarily volatility. My paper provides support to both approaches
at the same time as the laggard is interested in higher variance and lower co-
variance with the leader. The second issue with this literature is the identity
of the leaders and the laggards. While the common and intuitive approach is
to view the under-performers funds as the laggards and the top-performers
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as the leaders, this might not necessarily be the case. Chevalier and Elli-
son (1997) study the relationship between new cash flows and returns, and
find that it is nonlinear - an extreme payoff from winning the tournament as
opposed to being one of the last knights killed in the jousting competition.
Such a relationship might suggest that the competition structure might be
more complex and localized, where the best performers compete locally with
each other and the worst performers compete locally with each other. What
is more, it could be the case that funds compete within families as suggested
by Kempf and Ruenzi (2004) [25]. My model lends an additional test to this
literature, as it predicts that both the leader and (particularly) the laggards
should increase holdings of highly volatile assets as the tournament-based
incentives intensify (i.e. towards the end of the calendar year). Finally, ad-
ditional support for the existence of status concerns is provided by Koijen
(2008) [26], who studies the joint cross-sectional distribution of managerial
ability and risk preference using structural portfolio management models. He
shows that plausible estimation of managers risk aversion requires introduc-
ing relative-size concerns into the managers objective function.

I use the terminology leaders and laggard following Cabral (2002) [9], who
analyzes the choice of variance and risk in a race between two players. Cabral
(2003) [10] and Anderson and Cabral (2007) [2] provide conditions under
which the laggard chooses a risky strategy, while the leader chooses a safe
strategy. Cabral (2002) shows that when the competitors choose covariance,
the laggard is willing to trade off lower expected value for lower correlation
with respect to the leader. Both effects are consistent with my model.

3 Theory Section

In this section, I first define and examine the status game between the leader
and the laggard in a general setting where assets are multivariate normal.
Next, I define an economy with additional structure imposed on the distri-
bution of assets and derive the Nash-Equilibrium in the two-player game.
Finally, I add many pairs of leaders and laggards and Marokowitz investors
and examine asset prices in this economy.

3.1 The Two Player Status Game

The model has two players: the laggard (referred to as a male) with an initial
wealth normalized to 1, and the leader (referred to as a female) with an initial
wealth normalized to k > 1. There are finitely many risky assets with returns
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from a multivariate normal distribution as well as a risk free asset available
for investment. Time is discrete and runs for one period. At the beginning
of the period, each of the players chooses a portfolio. The gross return of the
leader’s portfolio is given by rd and the gross return of the laggard’s portfolio
is rg. The wealth of the leader at the end of the period is krd, and the wealth
of the laggard is rg. Infinite shorts sales are not allowed. The players care
only about their wealth based rank at the end of the period. We denote the
difference in the end-of-period wealth between the leader and the laggard by
D(rd, rg):

D(rd, rg) = krd − rg (1)

This is a zero-sum game, in which the leader (laggard) tries to maximize
(minimize) the expression:

Pr(D(rd, rg) > 0) (2)

Since D is normal, we can write the objective function of the leader as:

Max Φ

(
kE(rd)− E(rg)√

k2V ar(rd)− 2kCov(rd, rg) + V ar(rg)

)
(3)

In the above, Φ(x) is the CDF of a standard normal distribution. If infinite
short sales are not allowed, the expected return on any portfolio must be
finite. Therefore, the leader can guarantee an expected return on her portfolio
at least as good as that of the laggard , and so the following proposition holds:

Proposition 3.1. In a Nash Equilibrium, the choices of the players must
satisfy:

kE(rd)− E(rg) > 0 Almost Surely (4)

Where rd is the gross return of the leader, rg is the gross return of the laggard,
and k > 1 is the wealth ratio between the players .

That is, in equilibrium, the laggard cannot choose a portfolio such that his
end-of-period wealth, on average, will exceed or be equal to that of the leader.
Otherwise, the leader will match his strategy. Note that the equilibrium
allocation can be random, in case one of the players uses a mixed strategy
to choose his or her portfolio, and therefore the term ”almost surely”.
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The leader (laggard) chooses her (his) portfolio in order to increase (de-
crease) Pr(D(θ1, θ2) > 0). Using proposition (3.1) and equation (3), we can
gain some insight into the preferences of the players in their portfolio choice.
Both players try to maximize the expected returns of their portfolios. Since
the numerator in equation (3) is positive, the laggard (leader) tries to max-
imize (minimize) the variance of his (her) portfolio. Finally, the laggard
(leader) tries to minimize (maximize) the covariance between the wealth of
both players.

3.2 The Economy

To further examine portfolio choices and asset prices, we impose additional
structure on the distribution of assets, and introduce G groups of assets. To
simplify notation, we will use capital letters to denote variables that relate to
groups, and small letters to denote variables that relate to individual assets.

Each group I ∈ {1, ..., G} has NI similar assets with the same distribution.
All assets are multivariate normal. The return of asset k ∈ {1, ..., NI} in
group I is denoted by rki . The return of the equally weighted portfolio over
all assets in group I is denoted by rI . I refer to the ”equally weighted portfolio
over all assets in group I” as ”group I” for brevity.

The expected return of every individual asset in the same group I is iden-
tical and denoted by µi. Since the return of group I is the average of the
expected returns of individual assets, the return of group I, µI , is equal to
the expected return of individual securities:

E(rki ) = µi = E(rI) = µI

∀k ∈ {1, ..., NI} , I ∈ {1, ..., G}

The variance of every individual security in group I is the same and de-
noted by σ2

i . The correlation of every pair of assets in group I is the same and
denoted by ρI . Hence, the NI by NI covariance matrix of group I follows:

Cov(rki , r
l
i) =

{
σ2
i if k = l
ρIσ

2
i if k 6= l

}
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The correlation between two assets of different groups I, J ∈ {1, ..., G} is
denoted by ρi,j. Hence, the G by G covariance matrix for individual assets
across different groups follows

Cov(rki , r
k
j ) = σij =

{
σ2
i if i = j
ρi,jσiσj if i 6= j

}
The G by G covariance matrix for groups is denoted by Σ and follows:

Cov(rI , rJ) = σI,J =

{
σ2
I = σ2

i (ρI + 1−ρI

NI
) if I = J

ρi,jσiσj if I 6= J

}
Note that the covariance of two individual assets of different groups is

equivalent to the covariance of these two groups.

3.3 Nash Equilibrium

For the strategy of the leader, we restrict our attention to strategies that
guarantee that her expected wealth in the next period is higher than that of
the laggard, regardless of the response of the laggard (following proposition
3.1).

First, we characterize the laggard’s response to the leader’s strategy. In
the appendix, we prove the following:

Theorem 3.2. As long as condition (4) holds, the best response of the laggard
to the leader’s strategy is to invest his entire wealth in a single risky asset or
in the risk free asset.

The laggard is interested in maximizing volatility and minimizing covari-
ance with the leader. Investing in a single risky asset serves both objectives.
The laggard might choose to invest in the risk-free asset if the leader is in-
vested in risky assets and either the expected returns on these risky assets
are too low, or the correlation between the risky assets is too high. In either
of these cases, the laggard is better off waiting on the sideline, hoping that
the leader obtains a low return using the risky assets.

The laggard is indifferent between using a pure strategy or using a mixed
strategy where he invests in a single risky asset chosen uniformly over a
certain group. If the laggard invests in a pure strategy, the leader can match
his investment and thus guarantee her first place rank. On the other hand,
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with the mixed strategy, the leader finds it impossible to exactly match the
investment of the laggard, and a Nash Equilibrium can exist.

We now turn to the leader’s response to the laggard’s strategy of choosing
a single risky asset using a uniform mixing strategy over a specific group
that we denote group V . We first show that if the number of assets in group
V is large enough, the leader chooses a strategy where she invests in an
equally-weighted portfolio over every group.

Proposition 3.3. For an NV large enough, and given that the laggard invests
his wealth in a single asset, chosen uniformly by a mixed strategy over group
V , the leader invests the same amount in each of the assets in the same
group.

The reason that we need a large enough number of assets in group V can
be illustrated by the following example. Suppose there is only one group
in the economy, and there are only two assets in that group. In addition,
the wealth ratio, k, is very close to 1. In this case, if the leader takes the
equally weighted portfolio, the probability she remains the leader is a little
more than 0.5, since the result of the game depends on whether the laggard’s
chosen asset performs better than the other asset. However, in the case she
invests all in one asset, she will obtain a probability of a little more than
0.75, because if she ”catches” the laggard, and invests in the same asset, she
will remain the leader for sure. Having a large enough number of assets is
important to discourage the leader from pursuing such strategies.

Since the leader invests in equally weighted portfolios over groups, and the
laggard invests in an asset v, we can treat the leader’s problem as choosing
a size N vector θ over groups. We can write the problem of the leader:

Maxθ
k (θ′µ̃+ 1)− (µ̃v + 1)√
k2θ′Σθ − 2kθ′ΣEv + σ2

v

(5)

Where µ̃ is the vector of expected excess returns over the N groups, µ̃v is
the expected excess return of a group V asset, Σ is the covariance-variance
matrix over groups, and Ev is a vector of zeros except for entry v, which is 1.
The leader is interested in maximizing expected return, minimizing variance
and maximizing covariance with group V . The leader’s problem is a special
case of the problem of an ICAPM investor who cares about her covariance
with state variables. In our model, the only ”state” variable is the return on
group V and naturally the mimicking portfolio for group V is the return on
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group V . Following Fama (1996) [17], we conclude that the leader chooses an
MMV portfolio - a combination of the risk free asset, the tangency portfolio
and group V . Hence, we can write the leader’s risky portfolio in the following
way:

θ = xΣ−1µ̃+ yEv (6)

Using this insight, and restricting the players to choose strategies that are
symmetric within groups if they are indifferent among several strategies, we
can now solve for a unique Nash Equilibrium:

Theorem 3.4. There exists a unique Nash-Equilibrium in which the laggard
chooses a single asset using a uniform mixed strategy over group V assets,
and the leader invests in a risky portfolio θ over groups, where

θ =
σ2
v − σ2

V

k(k − 1)
Σ−1µ̃+

1

k
Ev (7)

Given that NV is large enough and the following conditions hold:
(1) σv ≥

√
2σj ∀j ∈ {1, ..., g}, (2) σv,j ≥ 0 ∀j, (3) σv ≥ 2σV ,

(4) 0 < ψ−1ι′Σ−1µ̃ < k − 1, (5) EjΣ
−1µ̃ > 0 ∀j, (6) EvΣ

−1µ̃ > −ψ

Where σv,j is the covariance between an asset in group V and an asset
in group J , σj is the volatility of an individual asset of group J , σV is the
volatility of group V , Σ is the covariance-variance matrix for groups, µ̃ is the
expected excess return over the groups, Ev is a vector of zeros except entry
v, which is 1, NV is the number of assets in group V , and ψ = k−1

σ2
v−σ2

V
.

The leader uses the risky assets in order to optimally compete against the
laggard. Her two-folded concern for low variance and high covariance with the
laggard is illustrated by the two terms in (7). To obtain high covariance with
the laggard she matches his investment in group V in the second term 1

k
Ev.

To manage her implicit risk-aversion, she finds an efficient mean-variance
portfolio and invests in the tangency portfolio. The balance between the two
terms is the function of the following term:

ψ =
k − 1

σ2
v − σ2

V

(8)
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ψ reflects the hedging demands of the leader. When the volatility of an
individual asset of group V (asset v) relative to the volatility of group V in-
creases, the correlation within group V decreases, it is harder for the leader
to obtain a high covariance with the laggard and so her hedging demands,
reflected in ψ, decrease. When hedging demands are high, the leader concen-
trates her efforts in the covariance with the laggard and decreases her invest-
ment in the tangency portfolio. When hedging demands are low, she cannot
obtain a high covariance with the laggard, and she channels her concerns to
the variance term by investing more in the tangency portfolio, obtaining a
more efficient risk-return tradeoff.

The three first conditions stated in theorem (3.4) are sufficient to have the
laggard not deviating form investing in asset v. Condition (1) says that the
variance of asset v should be high enough relative to assets of other groups
in order to encourage the laggard to invest in it. This condition identifies the
attribute that makes group V the laggard’s choice. It is the high volatility of
group V that distinguishes it from other groups in the economy. Condition
(2) tells us that there is no group with negative covariance with group V . If
there were one, the laggard might have been enticed to invest in it in order to
obtain a negative correlation with the leader who tilts her portfolio towards
group V . Condition (3) says that the volatility of asset v should be high
enough relative to the volatility of group V . In other words, the correlation
within group V should be low enough, otherwise, the leader can easily hedge
against the laggard. To have the laggard not deviating to the risk free asset, a
sufficient condition is σv ≥

√
2σV , which is included in the above conditions.

Conditions 4 to 6 are necessary to ensure that the leader refrains from taking
a short position in the risk free asset or in any of the risky assets.

3.4 Asset Prices

To examine asset prices in this economy, we add many leader-laggard pairs
(status investors) and many Markowitz investors whose risky portfolio is
just the tangency portfolio. Since there are many laggards in the economy,
and using the law of large numbers, the aggregation of the portfolios of the
laggards is group V . As we have seen, the portfolio of the leader is a linear
combination of the tangency portfolio and group V . Hence, the market
portfolio, which is a linear combination of all investors, is a also a linear
combination of the tangency portfolio and group V . This guarantees the
existence of a two factor model as we will shortly see. To obtain a closed
form solution for prices, we start by taking the first order condition of the
leader’s problem, equation (5), by θ and obtain:
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µ̃ =
k (θ′µ̃+ 1)− (µ̃v + 1)

k2θ′Σθ − 2kθ′ΣEv + σ2
v

(kΣθ − ΣEv) (9)

Using the solution of equation (7) for the portfolio of the leader we further
simplify:

µ̃ =
k − 1

σ2
v − σ2

V

(kΣθ − ΣEv) = ψ (kΣθ − ΣEv) (10)

We can see that the expected return of an asset depends on its covariance
with group V and on its covariance with the portfolio of the leader. Since
the leader’s portfolio is a combination of group V and the tangency portfolio,
it is also a combination of the market and group V . Hence, we obtain a two
factor beta pricing model, where one of the factors is the market and the
other is group V .

3.4.1 Only Status Investors

Suppose that there are only status investors in the market. In this case, we
can write the market portfolio as:

θM =
kθ + Ev
kθ′ι+ 1

(11)

Using the expression for the leader’s portfolio we obtained in (7) and the
pricing equation (10), we can write the expected excess return for an indi-
vidual asset as:

µ̃i =
[
ι′Σ−1µ̃+ 2ψ

]
Cov(ri, rM)− 2ψCov(ri, rV ) (12)

An exposure of an asset to the market positively contributes to its expected
return. The term ι′Σ−1µ̃ is the expected excess return divided by the variance
of the tangency portfolio. It reflects the implicit risk aversion of the leader.
The term ψ reflects the hedging demands of the leader, as discussed above:

ψ =
k − 1

σ2
v − σ2

V
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If the hedging demands are high, the leader is inclined to invest more in
group V at the expense of other groups, leading to a higher price for group V
and a lower price for the market. A compact way to express the asset pricing
relation as a two factor beta pricing model, is to have the first factor as the
excess return of the market portfolio, and the second factor as the return on
the most volatile group minus the return on the market. This form is not
only algebraically simpler but also leads to sharp empirical predictions, as
we will shortly see.

Theorem 3.5. In an economy with many pairs of leaders and laggards, where
the Nash-Equilibrium described in theorem (7) holds, the expected excess re-
turn of asset i (µ̃i) is:

µ̃i = βIi,MF

[
ι′Σ−1µ̃

]
V ar (rMF ) + βIi,V M [−2ψ]V ar (rVM) (13)

Where βIi,MF is the slope from a univariate regression of the asset return
on the excess return of the market return (rM), βIi,V M is the slope from a
univariate regression of the asset return on the return of the most volatile
group minus the return on the market (rV − rM), ι is a vector of ones, Σ
is the covariance matrix of groups, and µ̃ is a the expected excess returns of
groups.

Equation (13) illustrates how exposure to the most volatile group of assets
(group 1) translates into prices. Fixing the univariate beta of an asset on
the market (βIi,MF ), a higher univariate beta on the most volatile group of
stocks minus the market (βIi,V M) leads to lower expected return. The nega-
tive premium on exposure to the most volatile group has two determinants.
First, the hedging demands ψ - when there are higher hedging demands, the
premium becomes more negative as the demand for exposure to group 1 in-
creases. The second determinant is the variance of the return on group 1
minus the market. When V ar (rV − rM) increases it means that it is harder
to hedge against the most volatile group using the market and so group 1
becomes more special in its effectiveness as a hedge.

To have the model in a multifactor beta form and to obtain the expected
return of group 1 minus the market (rV − rM), we need to express the model
where the slopes of an asset on the market and on group 1 are obtained from
a bivariate regression. The model in a bivariate beta form:

µ̃i = βIIi,MF

[
ι′Σ−1µ̃V ar(rM)− 2ψCov(rV − rM , rM)

]
+ (14)
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βIIi,V M
[
(−2ψ)V ar(rV − rM) + ι′Σ−1µ̃Cov(rV − rM , rM)

]
Where βIIi,MF and βIIi,V M are the slopes from a bivariate regression of the as-

set return on both the excess market return (rMF ) and the return of the most
volatile group minus the return on the market (rVM). Hence the expected
return on the most volatile group minus the market is:

E (rV − rM) = (−2ψ)V ar(rV − rM) + ι′Σ−1µ̃Cov(rV − rM , rM) (15)

We can see that the two ingredients discussed above, the hedging demands
(ψ), and the variance of the most volatile group minus the market (V ar(rV −
rM)) drive the expected return of the most volatile group minus the market.

To obtain the Stochastic Discount Factor in this economy, we can manip-
ulate equation (12) to obtain:

M = 1 + µ̃′Σ−1µ̃− ι′Σ−1µ̃ (rMF ) + 2ψ (rVM) (16)

The SDF expression is useful if we want to think about the model in
conditional terms. So far our analysis focused on a one-period game. To
extend the asset pricing implications to a multi period settings, we have to
assume that our investors are myopic ones. In this case, every time period t
we can write our SDF as:

Mt+1 = 1 +
(
µ̃′Σ−1µ̃

)
t
−
(
ι′Σ−1µ̃

)
t
rM,t+1 + 2ψt(rV,t+1 − rM,t+1) (17)

This form of the SDF implies that deriving an unconditional version of the
beta pricing model will have to include not only the returns on the market
and group V , but also the time varying hedging demands. In particular, in
an unconditional model, an asset will obtain high price if it covarias with
group 1 conditional on times when the hedging demands are especially high.

3.4.2 Status Investors and Markowitz Investors

Suppose that along with the status investors, there are Markowitz investors
who invest solely in the tangency portfolio. In particular, suppose that for
every pair of leader/laggard investors with wealth of (k + 1), there is one
Markowitz investor that invests λ in the tangency portfolio. λ captures both
the proportion of Markowitz investors relative to status investors and also
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their risk aversion. As both increase, λ increases. We can use the same
derivation we used above. Now the market portfolio is:

θM =
kθ + E1 + λΣ−1µ̃

ι′Σ−1µ̃

kθ′ι+ 1 + λ
(18)

And the expected return is:

µ̃(λ) =
ι′Σ−1µ̃+ (2 + λ)ψ

1 + ψλ
ι′Σ−1µ̃

ΣθM −
2ψ

1 + ψλ
ι′Σ−1µ̃

ΣE1 (19)

We see that as λ increases, the negative coefficient on the covariance with
group V decreases. We can follow the derivation in the previous section (only
status investors) to obtain an beta pricing expression of the expected return
of an asset:

µ̃i = βIi,MF

[
ι′Σ−1µ̃+ λψ

1 + ψλ
ι′Σ−1µ̃

]
V ar (rMF ) +βIi,V M

[
−2ψ

1 + ψλ
ι′Σ−1µ̃

]
V ar (rVM) (20)

And an expression for the SDF:

M = 1 + µ̃′Σ−1µ̃−

[
ι′Σ−1µ̃+ λψ

1 + ψλ
ι′Σ−1µ̃

]
rMF −

[
−2ψ

1 + ψλ
ι′Σ−1µ̃

]
(rVM) (21)

Not surprisingly, as λ goes to infinity, we converge to the CAPM world:

lim
λ→∞

µ̃(λ) = ι′Σ−1µ̃ΣθM (22)

4 Empirical Section

The model provides a linear two factor pricing model, where the factors are
excess returns. The first factor is the return on the market minus the risk
free rate (henceforth MF), and the second factor is the return over the most
volatile group of stocks minus the market (henceforth VM). Since the model
is a member in the family of linear factor models, we can use an array of
statistical tests provided by the empirical asset pricing literature to evaluate
it.
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The model suggests that assets with higher exposure to the group of the
most volatile stocks (henceforth V) should obtain lower returns. If the model
is true, then such assets are over-priced relative to asset pricing models that
do not take this negative premium into account. For example, our model
suggests that the CAPM alpha follows:

αcapm = βIi,mf
(
λImf − E(rMF )

)
+ βIi,vmλ

I
vm (23)

Where βIi,mf is the slope from a univariate regression of ri, the asset return,
on MF . The coefficient βIi,vm is the slope from a univariate regression of ri
on VM . For a given βIi,mf , a higher βIi,vm leads to lower CAPM alpha, since
λIvm is a negative number.

My empirical agenda is to first examine whether assets with high exposure
to the portfolio of the high volatility stocks obtain low returns relatively to
other asset pricing models. Then, I examine the two factor model directly
using Time Series Regressions, Fama-MacBeth, and GMM-SDF tests. Since
beta VM is correlated with idiosyncratic risk across our test asset, I exam-
ine the explanatory power of beta VM versus idiosyncratic risk. Finally, I
examine the conditional version of the model using GMM.

In testing our asset pricing model, we first need to create test assets that
have dispersion in their exposure to MF and VM. To successfully create such
assets, we need to take into account time variation not only in the volatility of
stock returns, but also in the cross-section of stocks volatility. In particular,
the composition of the most volatile portfolio of stock may frequently change
and therefore the sensitivity of an individual stock to V can dramatically
change in a short period of time. To have an up-to-date estimators, estimat-
ing parameters over short windows with daily data is preferable. However,
to obtain more accurate estimators longer windows are better. Most studies
that estimated betas use a formation period of more than a year, on the other
hand, Ang, Hodrick, Xing and Zhang (2006), use a formation period of one
month to estimate idiosyncratic volatility. I choose a formation period of six
month.

4.1 The Test Assets

Our model has a sharp prediction regarding the relationship between uni-
variate MF and VM betas and stock expected returns. Higher univariate
beta VM leads to lower expected return, while higher univariate MF beta
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leads to higher expected return. I follow the spirit of the model and con-
struct strategies that select stocks based on their univariate slopes to MF
and to VM. I first form portfolio V as the value-weighted top decile of stocks
sorted by total volatility. I estimate total volatility using daily returns of the
past six months. I then sort stocks into 5x5 = 25 portfolios. First, I sort
stocks into quintiles according to their univariate market beta, estimated us-
ing daily returns of past six months. Next, for every quintile, I sort stocks
into sub-quintiles based on their univariate VM beta.

Since a sound estimation of βIV M is crucial for our tests, we estimate βIV M
using a cross-section predictive model that relates the expected βIV M of the
following month to the lagged βIV M and other predictive variables detailed
below.

4.1.1 Choosing Portfolio V

I use the following procedure to form portfolio V every month:

1. I include only stocks that have daily returns for all trading days in the
past six months.

2. I exclude the lowest decile of stocks in terms of dollar volume.

3. I rank stocks according to their total volatility estimated in the previ-
ous six months, according to equation (24) below, and pick the value-
weighted top decile as portfolio V . If the market share of portfolio V
is less than 1%, I keep adding stocks until the 1% cap is reached.

We use the liquidity based filtration, because we are interested to capture
the co-movements across volatile stocks and to measure sensitivities to VM .
Hence, we refrain from using noisy stocks with low-quality daily return data
that suffer from micro-structure issues and from the problem of zero returns
that might obscure our estimations.

We estimate V ar(ri) using daily returns of the past six months. Since
non-synchronous trading of securities causes daily portfolio returns to be
autocorrelated, I follow French, Schwert, and Stambaugh (1987) [20], and
estimate V ar(ri) as the sum of the squared daily return plus twice the sum
of the products of adjacent return:

σ̂2
i,t =

Nt∑
j=1

(ri,j,t)
2 + 2

Nt−1∑
j=1

(ri,j,t)(ri,j+1,t) (24)
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Where there are Nt daily stock returns, ri,j,t, in formation period t. After
obtaining the variance for the entire six months, we divide by six to obtain
an estimator for the monthly volatility.

Table (1) provides some statistics about VM and its relation with other
well known factors. VM has an average monthly return of −0.86% and its
monthly standard deviation 8.22% is, not surprisingly, the highest among
the factors. VM has a correlation of 0.69 with SMB, and a correlation of
−0.53% with HML, suggesting that the small growth stocks set the tone
within portfolo V. Finally, VM has a low correlation with UMD, suggesting
that its return is not driven by momentum effects. Finally, we see that the
correlation of VM with MF is 0.52. Although the VM portfolio has a short
position in the market portfolio, the market beta of VM is high enough to
make the correlation between VM and MF positive.

4.1.2 Estimating βIV M

To estimate the next period βIV M for a specific stock, we start by regressing
the daily return of the stock on the daily returns of VM . To account for
nonsynchronous price movements in returns, we follow Lewellen and Nagel
(2006) [29], who include four lags of factor returns, imposing the constraint
that lags 2,3, and 4 have the same slope to reduce the number of parameters.
The Lewellen and Nagel method is an extension of Dimson (1979) [15], who
included current and lagged factor returns in the regression, and addressed
the findings that small stocks tend to react with a week or more delay to
common news (Lo and MacKinlay (1990), so a daily beta will miss much of
the small-stock covariance with market returns. Specifically, we estimate βIX ,
where X is either MF or VM , using the following regression:

ri,t = αi + βi,0rX,t + βi,1rX,t−1 + βi,2 [rX,t−2 + rX,t−3 + rX,t−4] + εi,t (25)

The estimated beta is then:

βi,X = βi,0 + βi,1 + βi,2

Literature has shown that stock level beta estimators are quite noisy and
not persistent. In our case, the problem is exacerbated, since we are using
a short period to estimate βIV M,t, and the VM returns are very volatile.
Table (2) presents cross-sectional predictive regression results of next month
βIV M,t+1 on various variables estimated in the previous six months. Every
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month t, we measure the next month βIV M,t+1 using the daily returns of
month t + 1. On average, a cross-section regression of βIV M,t+1 on βIV M,t

yields an R2 of just 0.02.

To improve the predicting ability of βIV M,t+1, we start by adding volatility -
a stock cannot have high exposure to portfolio V without being volatile itself.
The reverse argument, however, is not necessarily true. Stocks with high
volatility can have low exposure to volatile stocks, for example, in the event
that their volatility is purely idiosyncratic and does not relate to any other
firm. Nevertheless, the formation period volatility has a significant predictive
power for the next period βIV M . In fact, as a stand alone predictor, it is not
inferior to βIV M,t+1, judging by the average R2 which is practically the same
between the two. Table (2) also shows that the measure of idiosyncratic
risk using the last month daily returns has significant predicting ability for
βIV M,t+1.

If a certain industry is extremely volatile at a certain point in time, the V
portfolio is likely to contain a high proportion of stocks associated with that
industry. In such an event, we know that if a certain stock belongs to that
industry, it is likely to have high exposure to V. To quantify this intuition, we
measure the percentage proportion of every industry i (4 digit SIC code) in
the market (denote by mi) and the percentage proportion of every industry i
(4 digit SIC code) in the V portfolio (denote by vi) . We construct a measure
of industry affiliation to the V portfolio by:

φi = vi −mi (26)

A stock of industry i that has the same proportion of market cap in the V
portfolio and in the MKT portfolio, will have a neutral affiliation of φi = 0.
In the period of July 1999 to December 1999, the most volatile industry was
SIC 7370, ”Services-Computer Programming, Data” with a MKT proportion
of 3.67% and a V porportion of 31.29%. Table (2) shows that higher φi is
positively correlated with βIV M,t+1.

Table (2) shows that all three variables are significant in a multiple regres-
sion of βIV M,t+1, and so we use all in our predictive regression:

β̂IV M,i,t+1 = C0 + C1β
I
V M,i,t + C2σi,t + C3φi,t (27)
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Each month, we run 240 monthly cross sectional regressions over the pre-
vious 20 years and estimate the coefficients in (27) as the average of the
cross-sectional values. It is important to update the predictive regression as
the relationship between the variables can change over time. For example,
SIC codes has become more accurate and informative with time and indeed
we can see that C3 is increasing with time.

4.1.3 Portfolios Statistics

Table (3) depicts statistics for the 25 portfolios. TO BE COMPLETED

4.2 Time Series Analysis

To test a factor model, previous studies form portfolios using pre-formation
criteria, but examine post-ranking factor loading that are computed over
the full sample. To provide a convincing factor risk explanation, I need to
show that the portfolios also exhibit persistent loadings on portfolio V over
the same period used to compute the alphas. The first two panels in Table
(4) depicts the post-formation VM betas of the 25 portfolios and their t-
statistics. Indeed, in each and every row the post-formation coefficients on
VM follows the pre-formation coefficients in terms of ranking.

To examine whether other asset pricing models overprice assets with high
βIV M , we examine the Jensen alpha obtained by our portfolios. The second
pair of panels in table (4) show the CAPM alphas for the 25 portfolios.
Indeed, for each quintile, we see that alphas are decreasing with βIV M . The
effect is most pronounced for the sub-quintile with the highest βIMF . TO BE
COMPLETED

An important empirical issue is whether our results coincide with those
of Ang et al (2006), who found that stocks with high idiosyncratic volatility
relative to the Fama and French (1993) model have abysmally low average
returns. Disentangling these two effects is not trivial and we start addressing
this by sorting the IVOL quintiles into two sub-quintiles based on βIV M .
Tables 5 and 6 show the results of this analysis. The decile with higher βIV M
has significantly lower simple returns and alphas obtained using the CAPM,
Fama-French 3 factor model and the Carhart model. A caveat is that the two
variables are correlated and therefore soring by βIV M creates a distinguishable
difference in IVOL.
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4.3 Fama-MacBeth

Our asset pricing model predicts expected return follows:

E(ri − rf ) = βIi,mfλ
I
mf + βIi,vmλ

I
vm (28)

Or in the bivariate form:

E(ri − rf ) = βIIi,mfλ
II
mf + βIi,vmλ

II
vm (29)

The model also has a sharp prediction regarding the sign of the univariate
premiums. The premium on VM is negative, while the premium on MF is
positive. Assuming that the correlation between MF and VM is positive,
which is supported by the data, we also have the prediction that:

λIIvm > λIvm

λIImf < λImf

And naturally, the model suggests that the bivariate premium on each fac-
tor equals its expected returns. The Fama-MacBeth [18] methodology is a
convenient framework to examine our predictions. In addition, it allows us
to take a close look into the relationship between IVOL and βVM . Following
Fama-MacBeth, I first perform time series regressions where I regress the ex-
cess portfolio returns on a constant and on various factors - MF, SMB, HML,
UMD, VM. In the second step, the excess portfolio returns are regressed on
the estimated factor loadings in each sample month. Then, a time series
average of the estimated coefficients is taken to arrive at point estimates and
statistical significance of the factor premia. To examine the role of IVOL, I
also use the time-averaged IVOL value for each portfolio.

T O BE COMPLETED

4.4 GMM - SDF

Our model provides an explicit Stochastic Discount Factor which is linear in
MF and VM:

Mt+1 = 1 +
(
µ̃′Σ−1µ̃

)
t
−
(
ι′Σ−1µ̃

)
t
rMF,t+1 + 2ψt(rVM,t+1)
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As Cochrane (2005) [13] notes, when the factors are correlated, one should
test whether the SDF-parameter coefficients equals zero to see if factor j helps
to price the assets rather than to test whether the factor premium obtained
from the Fama-MacBeth methodology equals zero. In our case, the factors
are indeed correlated.

I estimate the model E[MR] = 1 using the GMM of Hansen (1982) [22]. In
the analysis below, I choose the weighting matrix W to be the asymptotically
optimal one, given by the inverse of the covariance matrix of the moment
conditions. To examine the role of idiosyncratic volatility, I follow Nyberg
(2008) [34], and examine whether idiosyncratic volatility has pricing power
beyond the pricing power of the stochastic discount factor. In addition,
to examine the role of conditioning information in the stochastic model, I
estimate the hedging demands term obtained in the model:

ψ =
k − 1

σv − σV
≈ (k − 1)ρV

(1− ρV )σV

I use daily returns in the formation period to estimate the average corre-
lation between pairs in portfolio V and to estimate the variance of portfolio
V . The test assets are the same 25 portfolio used above.

The moment conditions to test the unconditional asset pricing models are:

1 = E [(B0 −B′Ft+1) ·Rt+1] (30)

The moment conditions to test the effect of IVOL are:

1 = E [(B0 −B′Ft+1) ·Rt+1 − γIV OLIV OLt] (31)

And the moment conditions to test the conditional model are:

1 = E [(B0 −B1RMF,t+1 −B2(1 +B3ψt)RVM,t+1)) ·Rt+1 − γIV OLIV OLt]
(32)

TO BE COMPLETED
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5 Appendix

5.1 Proof For 3.2

First, we examine the best risky strategy of the laggard, given that he invests
some wealth in risky assets. We first observe that the laggard will not invest
in more than one stock of the same group. Merging all the wealth invested in
some group i into a single stock of i will not change his expected return and
his covariance with the leader, however, it will increase his variance. Since
the laggard cannot have his expected wealth higher than that of the leader,
he is better off investing in a single asset of a single group.

Now, the risky strategy of the laggard can be characterized by a size N
vector θg, θ

′
gι = 1, that reflects his investment in a single stock of each group.

The risky strategy of the leader can be characterized by a size N vector θd,
θ′dι = 1, that reflects her investments in an equally-weighted portfolio of the
different groups. We can write the laggard problem:

Minθg

k (wdθ
′
dµ+ 1− wd)−

(
wgθ

′
gµ+ 1− wg

)√
k2wd2θ′dΣ̂θd − 2kwgwdθ′dΣ̂θg + wg2θ′gΣθg

(33)

Note that we used the covariance matrix for groups, Σ̂ to express the
variance of the leader, and the covariance matrix for individual stocks, Σ to
express the variance of the laggard. It is easy to show that the covariance
between group i and group j is equivalent to the covariance between group
i and an individual asset of group j, and therefore, we can use the groups
covariance matrix in the expression for the covariance between the leader and
the laggard.

So, we are left with strategies where the laggard invests across groups,
where in each group he invests in a single stock. Now, I will show that the
best response of the laggard is to invest in a single stock of a specific group
i, that is, θg = Ei, where Ei is a vector of zeros except for entry i, which is
one. Assume by contradiction that the best response of the laggard is not
to invest in a single stock. In this case, there must be two groups i and j
where he invests a portion of his risky portfolio w∗i and w∗j . Due to the short
sales constraint, it must be that 0 < w∗i , w

∗
j < 1. We can examine strategies

where the laggard transfers wealth from i to j and invests wi = w∗i + x and
wi = w∗j − x in a single asset of group i and a single asset of group j.
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Consider the unconstraint problem of the laggard, solving for x. The
optimality of w∗i and w∗j , and the fact that 0 < w∗i , w

∗
j < 1, guarantees

that x = 0 is a local minimum for this problem. In this point, the value of
the objective function of the laggard is positive, as the leader has a higher
expected wealth than the laggard. Note that for the unconstraint problem
of the laggard, he can increase the weight on the security that has higher
expected return and reach negative values for this function. Alternatively,
if both securities have the same expected return, he can increase the weight
on one of them, taking the denominator to infinity and the value of the
objective function to zero. Therefore, the function U(x) must have at least
one maximum point. So, U(x) has at least two extremum points. However,
the function U(x) is of the form:

U(x) =
a+ bx√

Ax2 +Bx+ C
(34)

It is easy to show that this function has only one extremum point. Con-
tradiction. Hence, the laggard will invest only in one risky asset. Now, con-
sidering his investment between the risky portfolio and the risk free asset,
we can use the same ”trick” to show that he must invest all-in the risk-free
asset or all-in the risky portfolio. In this case, x will be the amount invested
in the risky asset, and the objective function U(x) still follows equation (34)

5.2 Proof For (3.3)

This is proof is for one group, and can be easily generalized to many groups,
since it is obvious that in a group that the laggard does not invest in, the
leader will use an equally weighted portfolio - better from variance point of
view, and the same level of expected return and covariance with the laggard.

Given wd, the leader is looking for a risky portfolio θ to maximizes:

Un(x) =
1

n

n∑
j=1

Φ

(
k (µwd + 1− wd)− µ

σ
√

1− 2kwd (ρ+ (1− ρ)θj) + k2wd2 (ρ+ (1− ρ)θ′θ)

)
(35)

We will prove this proposition in several steps:

Lemma 5.1. The function Un(x) has a maximum
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Proof. Since this function represents a probability it is positive and bounded
from above by 1. Since the leader always pursues strategies that give her a
higher expected wealth than the laggard, the function is bounded from below
by 0.5. In addition, the function asymptotically goes to 0.5 as the distance
of portfolios from the equally weighted portfolio goes to infinity. All we need
to conclude that there is a maximum point is continuity.

The denominator of the argument in Φ is the standard deviation of the
wealth difference between the players at the end of the game. It could be
zero in case kwd = 1. In this case the leader matches not only the portfolio
of the laggard, but also the dollar amount invested in the asset. We augment
the function by setting these points (we have n of them) to be the value of
the limit at this point, which is obtained just by replacing Φ(A

0
) in 1. The

augmented function is continuous and so we have a maximum point.

Lemma 5.2. The points that maximize the function Un(x) take the following
form:

θ = x
1

n
ι+ (1− x)Ej; j ∈ {1, ..., n} (36)

That is, they are a linear combination of the equally weighted portfolio and a
vector with 1 in a single entry and zero in the rest.

Proof. Two ”hand-waving” arguments at this point:

1. The leader response reflects the tradeoff between variance and covari-
ance. If the leader wants to minimize variance, she should invest in
the equally weighted portfolio. However, if she wants to maximize the
realized covariance, in case she bets successfully on the laggard’s stock,
she is better off investing in a single asset. The solution reflects this
tradeoff and so it is a linear combination between the equally weighted
portfolio and a vector with 1 in a single entry and zero in the rest.

2. Since this problem is symmetric, we expect to see symmetry in the
solutions. The equally weighted portfolio is an obvious candidate since
it is symmetric in the n entries. A combination between the Ej vector
and the equally weighted portfolio is symmetric in n − 1 entries. Say
we have a solution that is symmetric in n− 2 entries. This means that
the order of number of solutions is O(n2), which is not likely for this
problem.

We need a rigorous proof.
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Lemma 5.3. There exists an n0 such that for every n > n0, the equally
weighted point is a local maximum

Proof. Now the leader solves for the right combination x between the equally
weighted and , WLOG, E1:

Un(x) =
n− 1

n
Φ

 k (µwd + 1− wd)− µ

σ

√
1− 2kwd

(
ρ+ (1− ρ)

[
x
n

])
+ k2wd2

(
ρ+ (1− ρ)

[
x(2−x)
n

+ (1− x)2
])
+

(37)

1

n
Φ

 k (µwd + 1− wd)− µ

σ

√
1− 2kwd

(
ρ+ (1− ρ)

[
x
n

+ (1− x)
])

+ k2wd2
(
ρ+ (1− ρ)

[
x(2−x)
n

+ (1− x)2
])


Economizing notation, we write the problem as:

Un(x) =
n− 1

n
Φ

(
A√
fn(x)

)
+

1

n
Φ

(
A√
gn(x)

)
(38)

Where the variance of the wealth difference between the players in the event
that the laggard chose an asset different than 1 is expressed as a function of
x, the weight invested in the equally weighted portfolio:

fn(x) = 1−2kwd

(
ρ+ (1− ρ)

[x
n

])
+k2wd

2

(
ρ+ (1− ρ)

[
x(2− x)

n
+ (1− x)2

])
(39)

And where the variance of the wealth difference between the players in the
event that the laggard chose asset 1:

gn(x) = fn(x)− 2kwd(1− ρ)(1− x) (40)

We check whether the F.O.C holds for the equally weighted portfolio, that
is, x = 1:

U ′n(x) = (n− 1)
f ′n(x)Φ′( A√

fn(x)
)

fn(x)
3
2

+
g′n(x)Φ′( A√

gn(x)
)

gn(x)
3
2

= 0 (41)
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We find the first derivatives of fn(x) and gn(x):

f ′n(x) =
2k (1− ρ)w (−1 + k (n− 1)w (x− 1))

n
(42)

g′n(x) = f ′n(x) + 2kwd(1− ρ) (43)

Since in the equally weighted portfolio f(x) = g(x), we are left with:

U ′n(1) = (n− 1) f ′n(1) + g′n(1) = (n− 1) f ′n(1) + f ′n(1) + 2kwd(1− ρ) = (44)

−2kwd (1− ρ) + 2kwd(1− ρ) = 0

So, we conclude that the equally weighted is an extremum point. We
will examine whether it is a minimum or maximum by taking the second
derivative. First we take the second derivative of f(x) and g(x):

g′′n(x) = f ′′n(x) =
2k2w2 (n− 1) (1− ρ)

n
(45)

And to the second derivative of the objective function:

U ′′n(x) =
3Ag′n(x)2Φ′( A√

gn(x)
)

4gn(x)
5
2

−
AΦ′( A√

gn(x)
)g′′n(x)

2gn(x)
3
2

+
A2g′n(x)2Φ′′( A√

gn(x)
)

4gn(x)3 +

(46)

(n− 1)

3Af ′n(x)2Φ′( A√
fn(x)

)

4fn(x)
5
2

−
AΦ′( A√

fn(x)
)f ′′n(x)

2fn(x)
3
2

+
A2f ′n(x)2Φ′′( A√

fn(x)
)

4fn(x)3


The terms g′n(1), g′′n(1) are of order one, and when we take this term to the

limit as n goes to infinity (eliminating subscripts to denote the limit):

U ′′(x) = lim
n→∞

n

3Af ′(x)2Φ′( A√
f(x)

)

4f(x)
5
2

−
AΦ′( A√

f(x)
)f ′′(x)

2f(x)
3
2

+
A2f ′(x)2Φ′′( A√

f(x)
)

4f(x)3


(47)
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We see that f ′(1) is of the order of O
(

1
n

)
, f(1) is bounded from below,

and f ′′(1) is a positive constant, and so:

U ′′(1) = − lim
n→∞

n

AΦ′( A√
f(1)

)f ′′(1)

2f(1)
3
2

 = −∞ (48)

We conclude that there is an n0 such that for all n > n0, the equally
weighted is a local maximum.

Lemma 5.4. There exists an n0 such that for every n > n0, the equally
weighted point is a global maximum

Proof. Given that the solution for this problem is of the form of (36), we
are going to show that there could not be x̃ 6= 1 that is a maximum (note
that we are not concerned by the kw = 1 case, because we can show that it
is neither a minimum nor a maximum point). We assume by contradiction
that there is a another local maximum point x̃ of the form of (36). If x̃ is
a local maximum, and we know that the equally-weighted point is a local
maximum, then it means that there must be a point x̂ that takes the form of
(36) and is a local minimum. However, we next show that any point x that
satisfies the F.O.C is a maximum point for a large enough n.

We use the F.O.C relation of (44) in the second order equation (46) to show
that for large enough n, any point that satisfies the F.O.C is a maximum
point. Similarly to (49), the limit of the second derivative of the solution is
minus infinity:

U ′′(x) = − lim
n→∞

n

AΦ′( A√
f(1)

)f ′′(x)

2f(x)
3
2

 = −∞ (49)

This is a contradiction.

This completes the proof of proposition (3.3).

5.3 Proof for Theorem 3.4

Denoting A = µ̃′Σ̂−1µ̃, we can simplify the following terms:

θ′µ̃ = xA+ yµ̃1
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θ′Σ̂θ = x2A+ 2xyµ̃1 + y2σ̂2
1

θ′Σ̂E1 = xµ̃1 + yσ̂2
1

So, we can write the leader’s problem as:

Max(x,y)
k ([xA+ yµ̃1] + 1)− (µ̃1 + 1)√

k2[x2A+ 2xyµ̃1 + y2σ̂2
1]− 2k [xµ̃1 + yσ̂2

1] + σ2
1

(50)

Taking the first order conditions for x and y and equating both to zero
leads to the solution:

x =
σ2

1 − σ̂2
1

k(k − 1)

y =
1

k

So the leader’s risky portfolio over groups is:

θ =
σ2

1 − σ̂2
1

k(k − 1)
Σ−1µ̃+

1

k
E1 (51)

Given the leader’s strategy, we revisit the problem of the laggard and find
the conditions required to keep the laggard investing in group 1. Since the
laggard invests only in a single stock or in the risk free asset, we examine
his utility from investing in asset j (note that the laggard is interested in
minimizing Uj):

Uj =
k (θ′µ̃+ 1)− (µ̃j + 1)√
k2θ′Σ̂θ − 2kθ′Σ̂Ej + σ2

j

(52)

Plugging the investment of the leader, where

A = µ̃′Σ̂−1µ̃

x =
σ2

1 − σ̂2
1

k(k − 1)

We get:

Uj =
k
(
xA+ µ̃1

k
+ 1
)
− (µ̃j + 1)√

k2
[
x2A+ 2x µ̃1

k
+

σ̂2
1

k2

]
− 2k

[
xµ̃j +

σ̂1,j

k

]
+ σ2

j

(53)
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We examine the conditions to guarantee that Uj > U1 for all j. The
condition is algebraically involved, but we can find sufficient conditions to
satisfy this inequality:

1. σ̂1,j ≥ 0 ∀j

2. σ1 ≥
√

2σj ∀j

3. σ1 ≥ 2σ̂1
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Factor Mean StdDev Corr(i,mktrf) Corr(i,smb) Corr(i,hml) Corr(i,umd) Corr(i,VM)
mktrf 0.38 4.45 1.00 0.30 -0.38 -0.08 0.52
smb 0.24 3.19 0.30 1.00 -0.26 0.01 0.69
hml 0.43 2.89 -0.38 -0.26 1.00 -0.13 -0.53
umd 0.86 4.03 -0.08 0.01 -0.13 1.00 -0.06
vm -0.86 8.22 0.52 0.69 -0.53 -0.06 1.00

Table 1: Factors Statistics The table reports the means, standard deviations
and correlations of VM and various factors. The factors MKTRF, SMB, HML are
the Fama and French (1993) factors, the momentum factor UMD is constructed
by Kenneth French. Sample period is July 1963 to December 2008, and the es-
timation values relate to monthly returns. VM is constructed every month using
the following procedure. I consider only stocks with daily returns for every trad-
ing day in the previous six months. Next, I filter stocks with the lowest decile
in terms of dollar volume (volume times price). Then, I estimate the monthly
return volatility of stocks using the six months daily returns corrected for one-lag
autocorrelation as in FSS (87). I form a value-weighted portfolio out of the high-
est decile of stocks sorted by total volatility and obtain the monthly return for
the consecutive month. Finally, I substract the Fama and French MKT return to
obtain the monthly return of VM.
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const βI
V M,i,t σ2

i,t φi,t IV OLi,t R̄2

0.35 0.38 0.02
( 9.15) ( 11.31)

0.11 0.04 0.02
( 2.77) ( 7.09)

0.56 0.05 0.01
( 8.79) ( 14.71)

0.34 0.09 0.01
( 7.05) ( 5.96)

0.16 0.22 0.02 0.03 0.03
( 4.32) ( 11.78) ( 6.23) ( 9.30)

Table 2: Predictive Regressions of βI
V M,i,t+1 - the table summarizes the results of

firm-level cross-sectional predictive regressions of βI
V M,i,t+1 on various variables. βI

V M,i,t+1

is estimated using the daily returns in month (t+1) as in regression (25). The independent
variables βI

V M,i,t, σ
2
i,t, and φi,t are estimated using daily returns in six month prior to

month (t + 1). βI
V M,i,t is estimated by a univariate regression of stock daily returns on

VM as in regression (25). σ2
i,t is estimated using the prior six month daily returns corrected

for one-lag autocorrelation as in FSS (87) and in equation 24. φi,t measures the affiliation
of the 4 digits SIC industry of stock i with portfolio V, formed using the prior six month
daily returns of all stocks, as in equation (26). IVOL is estimated following Ang et al
(2006) using the daily returns of the month prior to (t + 1). I ran the cross sectional
regressions each month from July 1963 to December 2008. Robust NeweyWest t-stats
obtained from the time series of estimated coefficients, and reported in parenthesis. The
column R̄2 represents the average R2 across time.
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Univariate βI
V M Quintiles

Low 2 3 4 High Low 2 3 4 High
Mean Return Std.dev Return

Low βI
MF 0.89 0.79 1.00 0.96 0.95 3.28 3.62 4.50 5.38 7.31

2 0.94 1.05 1.09 0.95 0.81 3.63 4.22 4.54 5.20 6.66
3 1.08 1.06 1.09 0.95 0.78 4.21 4.79 5.41 6.17 7.54
4 1.01 0.96 1.01 1.07 0.90 5.29 5.81 6.52 7.29 8.35

High βI
MF 1.09 1.10 0.89 0.66 0.37 6.67 8.06 8.44 9.20 10.58

Market Share Book To Market
Low βI

MF 0.09 0.05 0.03 0.02 0.01 0.66 0.57 0.59 0.63 0.63
2 0.12 0.06 0.04 0.02 0.01 0.55 0.54 0.58 0.59 0.59
3 0.13 0.05 0.03 0.02 0.01 0.51 0.55 0.57 0.57 0.54
4 0.10 0.04 0.03 0.02 0.01 0.53 0.54 0.56 0.55 0.52

High βI
MF 0.05 0.02 0.02 0.01 0.01 0.54 0.55 0.54 0.54 0.54

IVOL (daily) Volatility (Monthly)
1 0.88 1.17 1.48 1.91 2.85 4.88 6.26 7.71 9.59 13.01
2 0.95 1.13 1.33 1.62 2.24 5.70 6.65 7.60 8.92 11.62
3 1.04 1.26 1.46 1.74 2.24 6.54 7.53 8.57 9.87 11.99
4 1.21 1.47 1.70 1.97 2.37 7.65 8.88 9.94 11.24 12.78
5 1.59 1.95 2.21 2.53 3.18 9.69 11.46 12.66 14.06 16.21

Table 3: Statistics for 5x5 portfolios - I form 25 value-weighted portfolios, sorting
first on univariate MF beta βI

mf , and then sorting by univariate VM beta (βI
vm). I form

portfolio VM as described in Table (1). Then, for every stock with more than 12 days and
more than 75% of trading days in each month in the past six month, I run a univariate
regression on MF to obtain βI

mf , and a univariate regression on VM to obtain βI
vm, as

in equation (25). Stocks are then sorted to quintiles according to βI
mf , and within each

equintile, they are sorted to 5 sub quintiles according to βI
vm. The statistics in the first

row panels labeled Raw Returns Mean and Std.Dev. are measured in monthly percentage
terms and apply to total simple returns. The panel Market Share is in percentage and
represent the average market share of each portfolio. The values in the panels BM, IVOL,
and Volatility are calculated in each formation period for each portfolio using a value-
weighted average across stocks, and then averaged across time. The panel BM represents
the book-to-market ratio within each portfolio, calculated following Fama-French. IVOL
is measured following Ang et al using the last month daily returns. Volatility is measured
using the six months daily returns corrected for one-lag autocorrelation as in FSS (87).
univariate βI

V M , univariate βI
MKT , and bivariate βII

MKT report the value-weighted average
of pre-formation regressions of stock returns on VM (portfolio V - the market), the market,
and a bivariate regression of stock returns on the market and VM, averaged across the
entire sample. The pre-formation regressions use Dimson one-lag correction. The period
is from January 1945 to December 2008.
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Univariate βI
V M Quintiles

Low 2 3 4 High HL Low 2 3 4 High HL
Post-Form βI

V M t(βI
V M )

Low βI
MF 0.04 0.11 0.21 0.32 0.64 0.60 1.15 2.37 4.06 5.67 9.45 10.00

2 0.08 0.19 0.22 0.30 0.54 0.46 1.40 3.76 3.48 4.98 8.21 10.72
3 0.18 0.25 0.36 0.47 0.70 0.52 3.51 3.90 5.71 6.98 11.51 15.07
4 0.34 0.42 0.53 0.70 0.77 0.44 6.24 6.73 8.97 17.90 8.11 7.37

High βI
MF 0.55 0.76 0.85 1.01 1.21 0.66 10.04 16.71 18.22 15.99 14.53 11.16

Post-Form αCAPM t(αCAPM )
Low βI

MF 0.22 0.05 0.14 0.03 -0.13 -0.35 2.46 0.47 1.24 0.20 -0.70 -1.66
2 0.19 0.19 0.19 -0.03 -0.28 -0.48 2.48 2.28 2.32 -0.30 -2.02 -2.69
3 0.21 0.11 0.06 -0.14 -0.41 -0.62 3.17 1.56 0.78 -1.44 -2.53 -3.31
4 0.00 -0.12 -0.14 -0.12 -0.39 -0.39 -0.03 -1.15 -1.46 -0.79 -2.15 -1.90

High βI
MF -0.07 -0.18 -0.42 -0.69 -1.08 -1.01 -0.57 -1.02 -2.40 -3.18 -4.11 -4.19

P (α = 0) 0.0014
Post-Form αFF3 t(αFF3)

Low βI
MF 0.07 -0.09 -0.01 -0.14 -0.17 -0.25 0.92 -0.95 -0.14 -1.12 -1.08 -1.41

2 0.09 0.09 0.08 -0.15 -0.30 -0.38 1.25 1.19 1.13 -1.85 -2.43 -2.79
3 0.16 0.06 0.04 -0.14 -0.36 -0.52 2.54 0.77 0.53 -1.55 -2.52 -3.38
4 0.05 -0.04 -0.05 -0.01 -0.32 -0.37 0.68 -0.45 -0.49 -0.06 -1.92 -2.05

High βI
MF 0.05 0.02 -0.24 -0.50 -0.84 -0.90 0.47 0.13 -1.76 -2.79 -3.58 -3.60

P (α = 0) 0.0001
Post-Form αCAR4 t(αCAR4)

Low βI
MF 0.14 -0.04 0.00 -0.15 -0.20 -0.34 1.45 -0.41 0.02 -1.08 -1.11 -1.64

2 0.14 0.14 0.13 -0.15 -0.25 -0.39 1.71 1.80 1.59 -1.66 -1.99 -2.62
3 0.17 0.13 0.13 -0.09 -0.23 -0.40 2.81 1.87 1.44 -0.98 -1.32 -2.23
4 0.09 0.01 0.05 0.05 -0.24 -0.33 0.98 0.07 0.44 0.38 -1.43 -1.83

High βI
MF 0.09 0.04 -0.19 -0.38 -0.75 -0.84 0.70 0.30 -1.28 -2.17 -2.81 -3.04

P (α = 0) 0.0001
Post-Form αMF+V M t(αMF+V M )

Low βI
MF 0.06 -0.08 0.08 0.08 0.25 0.19 0.69 -0.89 0.78 0.53 1.45 1.03

2 0.02 0.09 0.11 -0.05 -0.06 -0.08 0.24 1.15 1.40 -0.54 -0.48 -0.53
3 0.10 0.04 0.09 -0.01 -0.03 -0.12 1.48 0.53 1.08 -0.09 -0.17 -0.73
4 0.00 -0.04 0.03 0.26 0.03 0.03 0.00 -0.37 0.36 2.08 0.17 0.16

High βI
MF 0.13 0.23 0.08 0.00 -0.16 -0.29 1.13 1.68 0.58 0.01 -1.01 -1.51

P (α = 0) 0.0953

Table 4: Post-Formation Regressoins - January 1945 to December 2008 - For
the 5x5 portfolios described in Table 3, the table depicts resluts of various post-formation
monthly regressions. The left panels depict point estimations and the right panels depict
robust Newey-West t-stats. The table shows 5 values for each portfolio. The first is
the post-formation βI

V M estimated using a regression of portfolio monthly returns on VM
monthly returns. The next three values are Jensens alphas with respect to the CAPM, the
FamaFrench (1993) three-factor model, and the Fama-French-Carhart four-factor model.
The last value is the alpha obtained from a regression of portfolio return on MF and VM.
In each panel, the last row is the p value obtained for a joint test for the alphas equal
to zero. The test is conducted by first estimating all 25 portfolio simultaneously using
GMM with robust Heteroskedasticity and Autocorrelation Consistent Covariance Matrix,
and then using a Wald test.
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IVOL Quintiles

beta 2 3 4 High Low 2 3 4 High
Mean Return Std.dev Return

Low βI
V M 0.85 0.94 0.90 0.86 0.31 3.55 4.40 5.21 6.29 7.47

High βI
V M 0.96 0.98 1.06 0.69 -0.39 4.91 6.26 7.59 9.43 10.67

Market Share Book To Market
Low βI

V M 0.38 0.15 0.07 0.03 0.01 0.53 0.56 0.58 0.62 0.72
High βI

V M 0.19 0.09 0.05 0.02 0.01 0.50 0.52 0.53 0.55 0.64
IVOL (daily) Volatility (Monthly)

Low βI
V M 0.88 1.47 2.04 2.80 4.39 6.07 7.84 9.51 11.52 14.23

High βI
V M 1.01 1.52 2.09 2.88 4.98 7.95 10.26 12.74 15.49 18.79

Table 5: βI
V M and IVOL - We form quinile portfolios sorted by IVOL following Ang

et al (2006). Then, we sort each quintile into two sub-quintiles according to βI
V M . The

statistics correspond to the ones in table 3. The sample period is from July 1963 to
December 2008.

IVOL Quintiles
Low 2 3 4 High HL Low 2 3 4 High HL

Post-Form βV M t(βV M )
Base 0.14 0.29 0.48 0.71 0.89 0.75 3.43 5.23 8.94 16.99 19.19 23.34

Low βV M 0.08 0.17 0.33 0.49 0.63 0.55 1.94 3.02 6.56 10.81 11.62 12.30
High βV M 0.26 0.47 0.68 0.95 1.16 0.90 5.58 8.35 11.76 21.12 23.07 30.49
HL βV M 0.19 0.30 0.34 0.46 0.53 0.35 13.85 11.90 12.48 23.03 13.56 8.87

Post-Form αCAPM αCAPM

Base 0.12 0.06 0.01 -0.22 -1.07 -1.20 2.14 1.32 0.09 -1.35 -5.19 -4.78
Low βV M 0.13 0.13 0.02 -0.08 -0.67 -0.80 1.69 1.86 0.25 -0.60 -3.77 -3.55
High βV M 0.11 0.02 0.02 -0.44 -1.55 -1.65 1.61 0.21 0.14 -2.01 -5.37 -5.36
HL βV M -0.02 -0.11 0.00 -0.36 -0.87 -0.86 -0.21 -0.79 0.01 -2.01 -3.66 -3.78

Post-Form αFF3 αFF3

Base 0.10 0.06 0.03 -0.16 -1.14 -1.23 2.18 1.15 0.49 -1.27 -7.60 -6.95
Low βV M 0.06 0.04 -0.05 -0.17 -0.86 -0.92 1.03 0.71 -0.62 -1.62 -6.34 -5.46
High βV M 0.13 0.13 0.12 -0.26 -1.52 -1.65 2.25 1.38 1.15 -1.50 -6.95 -7.22
HL βV M 0.07 0.08 0.17 -0.10 -0.66 -0.73 0.77 0.76 1.29 -0.56 -2.89 -3.15

Post-Form αCAR4 αCAR4

Base 0.08 0.12 0.10 -0.07 -0.88 -0.96 1.54 2.14 1.54 -0.60 -5.45 -4.88
Low βV M 0.05 0.06 -0.02 -0.07 -0.67 -0.72 0.77 0.98 -0.29 -0.66 -4.41 -3.83
High βV M 0.10 0.20 0.18 -0.16 -1.21 -1.31 1.51 2.08 1.71 -0.90 -4.74 -4.80
HL βV M 0.05 0.14 0.20 -0.09 -0.54 -0.59 0.62 1.12 1.56 -0.45 -1.97 -2.17

Table 6: βI
V M and IVOL - We form quinile portfolios sorted by IVOL following Ang

et al (2006). Then, we sort each quintile into two sub-quintiles according to βI
V M . The

statistics correspond to the ones in table 4. The sample period is from July 1963 to
December 2008.
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c λmkt λsmb λhml λumd λvm IV OL R2 Adj.R2

1 0.68 -0.24 0.16 0.13
( 2.76) (-0.80)

2 0.56 -0.41 0.28 0.25
( 3.51) (-1.05)

3 0.77 -0.20 0.37 0.34
( 3.86) (-1.34)

4 -0.54 1.67I -2.47I 0.61 0.58
(-1.67) ( 3.31) (-3.64)

5 -0.54 0.97 -0.86 0.61 0.58
(-1.67) ( 2.68) (-2.22)

6 0.70 0.18 -0.28 0.39 0.34
( 2.84) ( 0.54) (-2.14)

7 -0.50 1.63I -2.39I -0.02 0.61 0.56
(-1.48) ( 3.51) (-2.99) (-0.11)

8 -0.50 0.96 -0.82 -0.02 0.61 0.56
(-1.48) ( 2.88) (-1.48) (-0.11)

9 0.24 0.60 -0.82⊥ -0.27 0.61 0.56
( 0.55) ( 1.35) (-1.48) (-2.11)

10 -0.54 0.97 -0.86 -0.02⊥ 0.61 0.56
(-1.67) ( 2.68) (-2.22) (-0.11)

11 -0.33 0.75 -0.39 0.36 0.37 0.28
(-0.99) ( 2.01) (-1.86) ( 1.26)

12 -0.02 0.49 -0.10 -0.48 -1.02 0.69 0.63
(-0.06) ( 1.28) (-0.45) (-1.42) (-2.57)

13 -0.20 0.75 -0.40 0.14 1.85 0.47 0.36
(-0.59) ( 1.98) (-1.92) ( 0.47) ( 2.15)

14 0.05 0.50 -0.13 -0.57 1.62 -1.11 0.73 0.66
( 0.13) ( 1.32) (-0.58) (-1.66) ( 1.90) (-2.75)

Table 7: Fama-MacBeth Analysis This table shows the estimated Fama-
MacBeth (1973) factor premiums on 25 portfolios sorted first by βIMF and then
by βIV M . MKT is the market factor, SMB and HML are the Fama-French (1993)
factors and UMD is a momentum factor. VM is constructed as explained in Table
1. IVOL is the value weighted average of idiosyncratic risk as calculated by Ang
et al (2006) measured using the previous month daily returns. Fama-MacBeth
(1973) t-values are shown in brackets. A notation I means that I used the beta
obtained from a univariate time series regression. The notation ⊥ for a certain
variable means that I first orthogonalized the variable with respect to the other
independent variables in the regression. The sample period is from July 1963 to
December 2008.
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C bMKT bSMB bHML bUMD bV M γIV OL ψ TJ P-Val
1 0.99 -0.16 41.82 0.01

( 195.93) (-0.13)
2 1.00 3.25 -0.005 36.05 0.03

( 140.32) ( 2.39) (-4.55)
3 1.10 10.64 -5.34 29.47 0.13

( 38.93) ( 4.91) (-4.86)
4 1.10 11.20 -6.19 127.62 25.88 0.21

( 36.63) ( 4.84) (-3.66) ( 1.13)
5 1.08 9.59 -4.21 -0.002 29.41 0.10

( 36.99) ( 4.27) (-3.26) (-1.54)
6 1.04 8.35 -8.62 6.77 35.47 0.03

( 29.27) ( 2.92) (-3.23) ( 1.46)
7 1.09 8.84 3.48 13.08 -0.007 28.83 0.09

( 23.48) ( 3.33) ( 0.92) ( 2.71) (-3.62)
8 1.10 9.63 3.83 -2.50 -6.15 29.79 0.07

( 26.86) ( 3.49) ( 0.99) (-0.48) (-3.59)
9 1.12 6.71 -8.55 2.16 12.19 31.85 0.04

( 20.02) ( 2.51) (-3.22) ( 0.49) ( 2.68)
10 1.18 7.97 3.55 10.08 11.55 -0.007 27.76 0.09

( 16.95) ( 2.38) ( 0.84) ( 1.63) ( 2.07) (-3.07)
11 1.09 4.44 4.24 -16.28 7.47 -7.14 29.18 0.06

( 19.21) ( 1.62) ( 0.97) (-2.86) ( 1.64) (-3.23)

Table 8: SDF/GMM Tests This table shows results from estimating the
stochastic discount factor M = C’F, using the moment conditions E[MR] = 1.
MKT is the market factor, SMB and HML are the Fama-French (1993) factors
and UMD is a momentum factor. IVOL is a measure of idiosyncratic volatility as
used by Ang et al. It is measured in the last month of the formation period. The
parameter estimates are obtained from minimizing the GMM-criterion function
where the weighting matrix of moment conditions is the asymptotically optimal
one. TJ is Hansen.s (1982) test of overidentifying restrictions , and P-Val the
corresponding p-value. The sample period is from July 1963 to December 2008.
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