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Learning, Confidence and Option Prices

Abstract

Out-of-the-money index put options appear overpriced, so that the insur-
ance for large downward moves in underlying asset prices is expensive relative
to standard models. These findings indicate that investors are concerned with
large, negative moves in underlying prices, which occur approximately once a
year in the data. This evidence is puzzling as in the data there are no jumps in
consumption at such frequencies. I present a long-run risks type model where
consumption shocks are Gaussian, and the agent learns about unobserved ex-
pected growth from the cross-section of signals. The uncertainty about expected
growth (confidence measure), as in the data, is time-varying and subject to
jump-like risks. I show that confidence jump risk channel can quantitatively
account for the cross-section of option prices and large moves evidence in asset
prices, without hard-wiring jumps into consumption. Based on the two estima-
tion approaches, the model is not rejected in the data and provides a good fit
to the option price, confidence measure, returns and consumption data.



Introduction

Option markets are important, as they can provide significant information about the
risks that investors perceive in financial markets. One of the central puzzles in op-
tion data is that deep out-of-the-money index put options appear overpriced, so that
the insurance for large downward movements in the stock market is too expensive
relative to standard models (see e.g. Rubenstein, 1994). These findings indicate that
investors are concerned with large, negative moves in underlying prices, which occur
approximately once a year in the data.1 However, there is no persuasive evidence
in the data for large contemporaneous moves in the real economy at the considered
frequencies, which presents a challenge for economic explanation of option markets.
In this paper, I show that fluctuating confidence of investors about unobserved ex-
pected growth can quantitatively explain asset-price anomalies in derivative markets
and account for the observed large moves in returns, while keeping fundamental con-
sumption dynamics smooth Gaussian. Based on two estimation approaches, I find
that the model with learning and confidence jump risks delivers plausible preference
and model parameters and provides a good fit to option prices, investor confidence,
returns, and consumption in the data.

Earlier structural works which address issues in option markets typically intro-
duce jumps into the fundamental consumption process: see Eraker and Shaliastovich
(2008), Drechsler and Yaron (2008), Santa-Clara and Yan (2008), Gabaix (2007),
Bates (2006), Benzoni, Collin-Dufresne, and Goldstein (2005), Liu, Pan, and Wang
(2005). In this paper, I do not entertain the possibility of jumps in consumption, and
instead show that learning and fluctuating confidence about expected growth can
account for the key features of option and equity data. The economy setup closely
follows Bansal and Shaliastovich (2008a) and, as in standard long-run risks model of
Bansal and Yaron (2004), features Gaussian dynamics of true consumption growth
with a persistent expected growth component, time-varying consumption volatility,
and the recursive utility of Epstein and Zin (1989) and Weil (1989). However, unlike
the standard long-run risks model, expected growth is not directly observable, and
investors learn about it using a cross-section of signals. The quality of signals de-
termines the uncertainty of investors about their estimate of expected growth. This
uncertainty, referred to as ”confidence measure,” is time-varying and contains large
positive shocks. Due to imperfect information and learning, the confidence measure
affects the beliefs of investors about future consumption and impacts equilibrium
asset prices in the economy.

1Recent empirical work featuring jumps in prices includes Bakshi, Cao, and Chen (1997), Pan
(2002), Andersen, Benzoni, and Lund (2002), Eraker, Johannes, and Polson (2003), Eraker (2004),
Broadie, Chernov, and Johannes (2007), Santa-Clara and Yan (2008). For a nonparametric anal-
ysis of high-frequency data, refer also to Barndorff-Nielsen and Shephard (2006) and Andersen,
Bollerslev, Diebold, and Vega (2003).
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As in a standard long-run risks specification, investors in the model demand com-
pensation for short-run, long-run and consumption volatility risks. The novel contri-
bution of the model is that the confidence risks are also priced in equilibrium, so that
when agents have a preference for early resolution of uncertainty, states with higher
uncertainty about expected growth are discounted more heavily. Notably, confidence
jump shocks receive risk compensation although there are no jump risks in consump-
tion. Learning and confidence jump risk channels can explain the key features of
option price data. Out-of-the-money put options hedge jump risks in confidence and
thus appear expensive relative to models with no jump risks. This can account for the
smirk pattern in option prices, where Black-Scholes implied volatilities are decreasing
in the strike price of the contract. Further, endogenous jumps in equilibrium prices
due to positive jumps in uncertainty about future growth can account for large down-
ward moves in asset prices, and a negatively skewed and heavy-tailed unconditional
distribution of returns.

The key economic mechanism in this paper, such as learning about expected
growth, is featured in a number of asset-pricing models. In the class of learning
models considered by David (1997), Veronesi (1999), Ai (2007), unobserved drift is
modeled as a regime-shift process, so that investor’s uncertainty about the estimate is
stochastic and is related to fundamental shocks in the economy. David and Veronesi
(2002) show that this channel endogenously generates the correlation between equilib-
rium returns and return volatility which can explain time-variation in option-implied
volatility and the skewness and kurtosis premium in option prices. The model of
Buraschi and Jitsov (2006) features heterogeneous agents and learning about the div-
idend growth rate and can explain option prices and the dynamics of option volume2.
Alternative learning models are presented in Hansen and Sargent (2006), who specify
model-selection rules which capture investors’ concerns about robustness and poten-
tial model misspecification, and Piazzesi and Schneider (2007), who use survey data
to characterize and study the subjective beliefs of agents in the economy. Relative to
the models in the literature, the novel dimension of this paper is the time-variation in
the quality of signals available to the investors and the ensuing confidence jump risks
in asset markets. Fluctuations in confidence measure are consistent with theoretical
model of Veldkamp (2006) and Van Nieuwerburgh and Veldkamp (2006), where infor-
mation flow about the unobserved economic state endogenously varies with the level
of economic activity.

The main target in this paper is to quantitatively explain option pricing puzzles
and at the same time account for the key dimensions of consumption, returns and
confidence measure in the data. I use the cross-section of forecasts of next-quarter
GDP from the Survey of Professional Forecasters and construct empirical confidence
measure as a cross-sectional variance of the average forecast, consistent with the the-

2Rational learning is also featured in Detemple (1986), Gennotte (1986), Brennan (1998), Veronesi
(2000), Brennan and Xia (2001), David and Veronesi (2008), Croce, Lettau, and Ludvigson (2006).
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oretical specification. I show that in the data, confidence measure contains significant
information about Black-Scholes volatilities in the option market. The option volatili-
ties across all strikes and maturities are about 7% higher in quarters when uncertainty
is high, relative to quarters when uncertainty about future growth is low. Further, in
projections of option-implied volatilities 2 and 3 quarters ahead, the slope coefficient
on confidence measure is large and significant at all strikes, while the slope coefficient
on the current value of option volatility is small and is typically decreasing with the
horizon. In addition, the empirical confidence measure exhibits large positive moves,
whose frequencies and magnitudes are plausible to account for the jump features of
option and asset market data. Indeed, using formal econometric analysis, Bansal
and Shaliastovich (2008a) find significant evidence for jump-like shocks in confidence
measure at frequencies of about 4 months. These large moves in confidence measure
are related to large moves in returns and in variance of returns implied by option
markets. On the other hand, there is no persuasive evidence in the data for the link
between large moves in returns and large moves in the real economy at the considered
frequencies of about 1 year.

I use two econometric approaches to estimate and test the model. For GMM esti-
mation, I consider moments of confidence measure and equity returns, which charac-
terize non-Gaussian features of the distribution, as well as the information in interest
rates and option-implied volatilities in the data. I also employ the latent-factor MLE
approach, where I treat confidence measure as well as consumption volatility and ex-
pected growth state as latent factors and back them out from the option, return and
consumption data, similar to Duffie and Singleton (1997), Pan (2002) and Santa-Clara
and Yan (2008). The quantitative implications from the two estimation approaches
are very similar and provide empirical support for the long-run risks model with learn-
ing, fluctuating investor confidence and jump-like confidence risks. I obtain plausible
preference parameters, which indicate that investors have a preference for early res-
olution of uncertainty. The estimated model parameters suggest that the confidence
measure significantly fluctuates over time; moreover, nearly all the variation in the
series is driven by Poisson jumps. Large moves in uncertainty about future growth
can quantitatively explain over-pricing of out-of-the-money put options and produce
the implied volatility curve comparable to the data. Using the backed out confi-
dence measure and consumption volatility states from the MLE estimation, I show
that these states account for more than 95% of the total variation in option volatil-
ities. Due to jumps and higher persistence, shocks in confidence measure are more
important for out-of-the-money and longer maturities contracts.

Based on GMM estimation, the estimated frequency of jumps in asset prices,
driven endogenously by jumps in confidence measure, is one every 5 months, and the
average jump in returns is −3.3%, monthly. Using MLE estimates, the frequency of
large moves in returns is about once every 9 months, while average jump in return is
−7.5%, monthly. The frequency of moves in returns of such magnitude in the data is
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consistent with the model; for example, in my sample monthly returns fall below the
cutoff of −3.3% once every 6 months. Confidence jump risks contribute about 2% to
the total equity premium of 6%, while expected growth shocks account for 3%. The
estimates of the jump risk premium in the economy is consistent with Pan (2002)
and Broadie et al. (2007), who find that jump risks account for about one-third of
the total equity premium in the economy.

Based on GMM estimation, the model with confidence jumps is not rejected in the
data, with a p−value of 0.3. The in-sample and out-of-sample tests suggest that the
model can account for the cross-section of option prices and distribution of confidence
measure and returns in the data. The dynamics of consumption and confidence
measure from the two estimations are consistent with features of the data based on
a long historical sample. On the other hand, the restricted model with no jump risks
in confidence is rejected both in sample and out of sample, as it fails to capture the
over-pricing of out-of-the-money put options and non-Gaussian features of returns and
confidence measure in the data. Overall, the empirical results strongly indicate that
confidence jumps risk is a key channel to empirically explain option and equity prices
in the data without introducing jumps into the fundamental consumption process.

Earlier structural models which aim to explain option prices and large moves in
returns typically hardwire jumps into consumption fundamentals. Eraker and Shalias-
tovich (2008) show that when investors have preference for the timing of resolution of
uncertainty, jumps in consumption fundamentals are priced in equilibrium and affect
asset valuations and returns. In particular, positive jumps in consumption volatility
endogenously translate into negative jumps in equilibrium prices, which can cap-
ture the shape of the implied volatility curve in option prices. Benzoni et al. (2005)
consider jumps in expected consumption, which they show can also rationalize the
volatility smirk observed in the data. Eraker (2007) and Drechsler and Yaron (2008)
further argue that jumps in conditional moments of consumption can account for
some key features of the risk-neutral variance of returns implied by the cross-section
of option prices in the data. In a related literature, Liu et al. (2005) introduce rare
jumps into the endowment dynamics and argue that concerns for model uncertainty
can explain the over-pricing of out-of-the money puts and the smirk pattern of option
prices in the data. This implied volatility pattern can also be generated in a rare
disaster model with a time-varying probability of a crash, as discussed by Gabaix
(2007). In a similar vein, Santa-Clara and Yan (2008) estimate risks of investors
implied from the option markets and argue for substantial Peso issues in measur-
ing jumps from the stock market data alone. Bates (2006) studies the equilibrium
implications of the model which features jump news in dividends and crash-averse in-
vestors with heterogeneous attitudes towards crash risk. In an earlier study, Naik and
Lee (1990) analyze general-equilibrium option pricing when the underlying dividend
follows a jump-diffusion process. Relative to the above literature, I do not entertain
the possibility of jumps in consumption; rather, I show that learning and fluctuating
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confidence of investors about expected growth can account for the empirical jump
evidence in option and equity data.

Other approaches which incorporate learning and option prices include Camp-
bell and Li (1999), who consider learning about volatility regimes, and Guidolin and
Timmermann (2003), who study Bayesian learning implications for option pricing in
context of the equilibrium model. A number of papers highlight the importance of
information in option prices to learn about the risks in financial markets. The em-
pirical evidence presented in Bollerslev, Tauchen, and Zhou (2008), Todorov (2007),
Buraschi and Jackwerth (2001), Bakshi and Kapadia (2003), as well as from paramet-
ric models of asset prices, suggest that the risk premia in options cannot be explained
by compensation for diffusive stock market risk alone. A number of papers also use
option market data to study the characteristics of investor preferences; these works
include Brown and Jackwerth (2004), Bondarenko (2003), Garcia, Luger, and Renault
(2003), Ait-Sahalia and Lo (2000), Jackwerth (2000).

The rest of the paper is organized as follows. In the next section I set up the model
and discuss preferences of the representative agent and dynamics of the economy given
the information set of investors. Solutions to the discount factor and asset and option
prices are shown in Section 2. Section 3 describes the data and empirical evidence
on the option pricing puzzles. I present GMM estimation results and implications to
option prices and equity premium in Section 4, while the MLE estimation is discussed
in Section 5, followed by the Conclusion.

1 Model Setup

1.1 Preferences

I consider a discrete-time real endowment economy. Investor’s preferences over the
uncertain consumption stream Ct are described by the Kreps and Porteus (1978)
recursive utility function of Epstein and Zin (1989):

Ut =
{

(1 − δ)C
1−γ

θ
t + δ(Et[U

1−γ
t+1 ])1/θ

}

θ
1−γ

, (1.1)

where γ is a measure of a local risk aversion of the agent, ψ is the intertemporal
elasticity of substitution and δ ∈ (0, 1) is the subjective discount factor. The condi-
tional expectation is taken with respect to date-t information set of the agent, which
is discussed later in the paper. For notational simplicity, parameter θ is defined as

θ =
1 − γ

1 − 1
ψ

. (1.2)
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When θ = 1, that is, γ = 1/ψ, the above recursive preferences collapse to standard
expected utility. As is pointed out in Epstein and Zin (1989), in this case the agent is
indifferent to the timing of resolution of uncertainty in the consumption path. When
risk aversion exceeds the reciprocal of the intertemporal elasticity of substitution,
investors prefer early resolution of uncertainty; otherwise they prefer late resolution of
uncertainty. Preference for the timing of the resolution of uncertainty has important
implications for risk channels and equilibrium asset-prices in the economy. In the
long-run risk model agents prefer early resolution of uncertainty in the consumption
path.

As shown in Epstein and Zin (1989), the logarithm of the intertemporal marginal
rate of substitution for these preferences is given by

mt+1 = θ log δ − θ

ψ
∆ct+1 + (θ − 1)rc,t+1, (1.3)

where ∆ct+1 = log(Ct+1/Ct) is the log growth rate of aggregate consumption and
rc,t+1 is the log of the return (i.e., continuous return) on an asset which delivers
aggregate consumption as its dividends. This return is not observable in the data. It
is different from the observed return on the market portfolio as the levels of market
dividends and consumption are not equal: aggregate consumption is much larger
than aggregate dividends. To solve the model, I assume an exogenous process for
consumption growth and use a standard asset pricing restriction

Et[exp(mt+1 + rt+1)] = 1, (1.4)

which holds for any log return rt+1 = log(Rt+1) to calculate asset prices in the econ-
omy.

The dynamics of the real economy and agent’s information set is described in the
next sections.

1.2 Real Economy

Following Bansal and Yaron (2004), the true dynamics for log consumption growth
∆ct+1 incorporates a time-varying mean xt and stochastic volatility σ2

t :

∆ct+1 = µ+ xt + σtηt+1, (1.5)

xt+1 = ρxt + ϕeσtǫt+1, (1.6)

σ2
t+1 = σ2 + νc(σ

2
t − σ2) + ϕwσtwc,t+1, (1.7)

where ηt, ǫt and wc,t+1 are independent standard Normal shocks which capture short-
run, long-run and volatility risks in consumption, respectively. Parameters ρ and νc
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determine the persistence of the conditional mean and variance of the consumption
growth rate, while ϕe and ϕw govern their scale. The empirical motivation for the
time-variation in the conditional moments of the consumption process comes from
the long-run risks literature, see e.g. Bansal and Yaron (2004), Hansen, Heaton, and
Li (2008) and Bansal, Kiku, and Yaron (2007b).

As in Bansal and Shaliastovich (2008a), I assume that the agent knows the struc-
ture and parameters of the model and can observe consumption volatility σ2

t . However,
the true expected growth factor xt is not directly observable and has to be inferred
from the data, which includes history of consumption and cross-section of signals
about future growth. These signals, together with consumption data, provide all the
information about the expected growth state in the economy.

Specifically, I assume that agents receive n signals about the expected growth xi,t,
for i = 1, 2, . . . n. Each signal deviates from the true state xt by a random noise ξi,t,

xi,t = xt + ξi,t, (1.8)

where the errors ξi,t are randomly drawn from a Normal distribution and are uncor-
related with fundamental shocks in the economy.

The date-t imprecision in signal i is captured by Vi,t :

ξi,t ∼ N(0, Vi,t). (1.9)

In general, the imprecision in the signal can be different across signals and can vary
across time, hence the subscripts i and t. For simplicity, I further assume that all the
signals are ex-ante identical, so that at each date t the uncertainty in each signal is
the same and denote V0,t ≡ Vi,t for all i.

As all the signals come from the same distribution and are ex-ante equally in-
formative, the investor assigns same weight to each of them. That is, in the end
the average signal is a sufficient statistic for the cross-section of all the individual
ones. Define the average signal x̄t, which corresponds to the sample average of the
individual signals. Then, using (1.8),

x̄t ≡
1

n

∑

xi,t = xt + ξt, (1.10)

where the cross-sectional uncertainty in average signal Vt and the average signal error
are given by

Vt =
1

n
V0,t, ξt =

1

n

∑

ξi,t, (1.11)

so that
ξt ∼ N(0, Vt). (1.12)
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The uncertainty Vt determines the confidence of investors about their estimate of
expected growth; as in Bansal and Shaliastovich (2008a), I also refer to it as confidence
measure. In the model, confidence measure is assumed to be observable to investors.
It can be estimated in the data from the cross-section of individual signals. Indeed,
the signal equation (1.8) implies that

E

(

1

n− 1

n
∑

i=1

(xi,t − x̄t)
2

)

= E

(

1

n− 1

n
∑

i=1

(ξi,t − ξt)
2

)

= V0,t, (1.13)

so that the cross-sectional variance of the signals adjusted by the number of signals
n can provide an estimate of the confidence measure Vt in the data.

The time-variation in the quality of the signals and ensuing confidence risks is
a novel dimension of this model. Standard learning models, see for example David
(1997), Veronesi (2000), Brennan and Xia (2001), Ai (2007) and David and Veronesi
(2008), feature a constant level of imprecision in observed signals. Hansen and Sargent
(2006) consider constant variance as well and specify alternative learning rules robust
to model misspecification.

1.3 Confidence Dynamics

The specification of the time-series fluctuation of confidence measure Vt is a key
ingredient of the model. As in Bansal and Shaliastovich (2008a), I consider a discrete-
time jump-diffusion model for confidence measure, which features persistence and
both Gaussian and jump-like innovations:

Vt+1 = σ2
v + ν(Vt − σ2

v) + σw
√

Vtwt+1 +Qt+1. (1.14)

The parameters σ2
v is the mean value of Vt, ν captures its persistence while σw deter-

mines the volatility of the smooth Gaussian shock wt+1. The non-Gaussian innovation
in confidence process is denoted by Qt+1. I model it as a compound Poisson jump,

Qt+1 =

Nt+1
∑

i=1

Ji,t+1 − µjλt, (1.15)

where Nt+1 is the Poisson process, whose intensity λt ≡ EtNt+1 corresponds to the
probability of having one jump in continuous-time model, while Ji,t+1 determines the
distribution of the size of the jump. Parameter µj is the unconditional mean of jump
size, so subtracting µjλt on the right-hand side of the above equation ensures that
the jump innovation Qt+1 is conditionally mean zero3. In estimation of the model,

3Indeed,
Et(Qt+1) = Et(Et(Qt+1|Nt+1)) = Et(µjNt+1) − µjλt = 0.
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I consider an exponential distribution for jumps, which is convenient as it is fully
described by a single parameter µj.

To capture the dependence of jump probability on the level of variance, I assume
that the arrival intensity λt is linear in Vt,

λ = λ0 + λ1Vt. (1.16)

When λ1 > 0, the probability of jumps increases in the level of the confidence measure,
so jumps are more frequent when the uncertainty about expected growth is high.

This specification of the time-series evolution of the uncertainty about future
growth is very similar to the models for the variance process in continuous time con-
sidered in Eraker (2004), Broadie et al. (2007) and Eraker and Shaliastovich (2008).

1.4 Filtering Dynamics

At each point in time, the agent estimates expected consumption growth given the
information set It, which includes the history of consumption, consumption volatility,
signals and confidence measure:

It =
{

{

∆ct−j , σ
2
t−j , {xi,t−j}i=1,2,..., Vt−j

}

j=0,1,...

}

. (1.17)

Let x̂t stand for investors’ estimate of the expected growth,

x̂t = E(xt |It), (1.18)

and denote ω2
t the variance of the filtering error which corresponds to the estimate

x̂t :
ω2
t = E

(

(xt − x̂t)
2 |It

)

. (1.19)

Appendix A.1 shows that the filtering problem of the agent has a one-step ahead
innovation representation, where the expectations about future growth are updated
using the observed consumption and average signal data. The optimal weights given
to consumption and signal news are time-varying and reflect the relative quality of
consumption and signal information, that is, σ2

t versus Vt. In general, solutions to the
optimal signal x̂t and filtering uncertainty ω2

t are complicated non-linear functions
of the whole history of consumption and signal data. To simplify the solution to
the model, I follow Bansal and Shaliastovich (2008a) and consider an approximate
specification where the Kalman Filter weight on consumption news is 0, and that on
the signal news is set to a constant steady-state value: a positive number slightly less
than 1. This approximation is exact in a complete information case when average
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signal perfectly reveals the true state, that is, when Vt = 0. The approximation is
very accurate when the uncertainty in the average signal is much smaller than the
consumption variance. I verify that at the considered model parameter values the
time-series correlation of the filtered expected growth states from the approximate
and exact Kalman Filter specification is in excess of 0.99, and utility losses from the
considered approximate setup are small.

The approximate solution to the agents filtering problem implies that the evolution
of the economy given the information of the agent is given by,

∆ct+1 = µ+ x̂t + ac,t+1, (1.20)

x̄t+1 = ρx̂t + ax,t+1, (1.21)

x̂t+1 = ρx̂t +K2ax,t+1. (1.22)

The immediate filtered consumption innovations are given by ac,t+1, while ax,t+1 de-
notes the filtered news about the average signal. As shown in (1.22), the agents
update their expectations about the true expected growth based on the filtered news
about the average signal ax,t+1, so that the estimate of the expected state can also be
written as a weighted average of the expected value of the state as of last period and
current average signal:

x̂t+1 = (1 −K2)ρx̂t +K2x̄t+1. (1.23)

The weight on the average signal news K2 is constant and is given by the steady-state
solution to the Kalman Filter problem of the agent (see Appendix A.1).

Investor’s uncertainty about the estimate of expected growth ω2
t is directly related

to the confidence measure from the cross-section of signals:

ω2
t = K2Vt. (1.24)

If uncertainty about future growth is constant, a standard Kalman Filter result ob-
tains that the steady-state variance of the filtering error is constant. On the other
hand, when investor confidence is stochastic, the variance of the filtering error fluctu-
ates one-to-one with the uncertainty about future growth. Learning models consid-
ered by David (1997) and Veronesi (1999) use regime-shift specification for expected
growth component and feature alternative time-varying dynamics of the filtering un-
certainty.

The innovations into consumption and average signal contain fundamental short
and long-run consumption shocks and filtering errors; in general, the three cannot be
separately identified based on the information set of the agent:

ac,t+1 = xt − x̂t + σtηt+1,

ax,t+1 = ρ(xt − x̂t) + ϕeσtǫt+1 + (x̄t+1 − xt).
(1.25)
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In a complete information setting, investors observe the true expected growth, so
the two innovations above collapse to standard short-run and long-run consumption
shocks. On the other hand, with imperfect information, the confidence of investors
about their estimate of expected growth affects their beliefs about the distribution of
future consumption. Even if the fundamental consumption volatility is constant, the
variance of consumption growth tomorrow given the available information of investors
is time-varying due to the variation in the precision of the signals, and lower confidence
of investors (high Vt) implies higher uncertainty about future consumption.

The equations (1.20) - (1.22), together with the time-series model for the confi-
dence measure in (1.14) and aggregate consumption volatility in (1.7) fully describe
the evolution of the economy given agent’s period-t information. In the next section,
I incorporate preferences and solve the equilibrium asset prices in the economy.

2 Model Solution

2.1 Discount Factor

To solve the model, I first use the dynamics of the economy given the information
set of the agent and Euler equation (1.4) to calculate the price of the consumption
claim. The equilibrium price-consumption ratio is linear in the expected growth state,
aggregate consumption volatility, and the confidence level of the investors:

pct = B0 +Bxx̂t +BvVt +Bσσ
2
t , (2.1)

where the expressions for the loadings are provided in Appendix A.

The loading Bx measures the sensitivity of the price-consumption ratio to expected
growth. It is positive for ψ > 1, so that when the substitution effect dominates the
income effect, prices rise following positive news about expected consumption, similar
to a standard long-run risks model. The loadings Bv and Bσ capture the effects of
confidence measure and consumption volatility on asset valuations. When the agent
has a preference for early resolution of uncertainty (γ > 1/ψ), these loadings are
negative. In this case, lack of confidence about the expected growth state and high
aggregate uncertainty decrease equilibrium asset valuations and the utility of the
agent.

The relative magnitudes of the loadings of the price-consumption ratio on the ag-
gregate volatility and confidence measure depend on the quality of signal information
about expected growth. In the complete information case, the true expected state
is known and the consumption volatility factor σ2

t alone determines the conditional
variation of short-run and long-run consumption shocks. On the other hand, with
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learning, the volatilities of these shocks are now driven by two factors, σ2
t and Vt

(see equation (1.25)), so that the volatility channel is now represented by consump-
tion volatility and confidence measure states. This reduces the price of consumption
volatility risks and the risk compensation for consumption volatility shocks relative
to the complete information case.

Using the equilibrium solution to the consumption asset, I can express the discount
factor in (1.3) in terms of the underlying states and shocks in the economy. The
equilibrium solution to the discount factor and the Euler equation (1.4) can then be
used to directly obtain equity, bond and option prices in the economy. In equilibrium,
the log discount factor is equal to,

mt+1 = m0 +mxx̂t +mvVt +mσσt

− γac,t+1 − λxK2ax,t+1 − λv

(

σw
√

Vtwt+1 +Qt+1

)

− λσϕwσtwc,t+1,
(2.2)

where the expressions for the discount factor loadings and prices of risks are pinned
down by the model and preference parameters of the investors. Their expressions are
provided in Appendix A.

Innovations in the discount factor determine the risks that investors face in the
economy. As in standard long-run risks model with complete information, short-run,
long-run and consumption volatility risks are priced. The novel dimension of the
model is that confidence shocks also receive risk compensation; in particular, con-
fidence jump risks Qt+1 are priced even though there are no jumps in fundamental
consumption. Due to learning, the magnitudes of risk prices change relative to a
standard model. As investors cannot observe the true long-run risks shocks, the price
of long-run risk decreases, while the price of short-run consumption risk increases rel-
ative to complete information; this is consistent with Croce et al. (2006). In addition,
the risk compensation for consumption volatility shocks also decreases relative to a
standard long-run risks model.

Using the solution for the discount factor, I can derive the expressions for the
equilibrium risk-free rates in the economy. Real interest rates with n periods to
maturity are linear in the expected growth state, investor confidence and consumption
variance:

rft,n = −F0,n − Fx,nx̂t − Fv,nVt − Fσ,nσ
2
t . (2.3)

where the bond coefficients are given in the Appendix A. In particular, real yields
increase in the expected growth state, and decrease with positive shocks to confidence
measure or aggregate volatility.
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2.2 Risk-Neutral Probability

The evolution of the consumption process in (1.20)-(1.22), confidence measure in
(1.14) and consumption volatility in (1.7) is specified under the objective probability
measure in the data. The economy dynamics can also be written under the risk-
neutral probability, which is characterized by the condition that the price of any
payoff Rt+1 can be computed by taking the expectation of its payoff under the risk-
neutral measure discounted by the risk-free rate:

Et(Mt+1Rt+1) = e−rftEq
tRt+1, (2.4)

where Eq
t refers to the expectation of the payoff tomorrow under the risk-neutral

measure.

Given the solution to the discount factor, the dynamics of the states under the
risk-neutral measure is given by,

∆ct+1 = µ+ x̂t − γV art+1(ac,t+1) − λxCovt+1(ac,t+1, K2ax,t+1) + aqc,t+1, (2.5)

x̂t+1 = ρx̂t − λxV art+1(K2ax,t+1) − γCovt+1(ac,t+1, K2ax,t+1) +K2a
q
x,t+1,(2.6)

σ2
t+1 = σ2 + νc(σ

2
t − σ2) − λσϕ

2
wσ

2
t + ϕwσtw

q
c,t+1, (2.7)

Vt+1 = σ2
v + ν(Vt − σ2

v) − λvxσ
2
wVt + σw

√

Vtw
q
t+1 +Qq

t+1. (2.8)

The risk-neutral transformation of the probability measure is standard and reflects
risk compensation for the underlying shocks in the economy. The drifts of consump-
tion growth and expected consumption in (2.5) and (2.6) are adjusted by the risk
prices multiplied by the variance-covariance of the corresponding shocks aqc,t+1 and
aqx,t+1, while the conditionally Gaussian distributions of these shocks are unchanged.
Further, under the objective measure, expected growth shocks ax,t+1 are Gaussian
given current volatility states and next-period confidence measure Vt+1 :

V art+1(ax,t+1| It, Vt+1) = ρ2K2Vt + ϕ2
eσ

2
t + Vt+1, (2.9)

so V art+1(ax,t+1) depends on Vt+1 (see Appendix A.1). Then, as is evident from
expression (2.6), the total innovation into expected growth under the risk-neutral
measure incorporates confidence shocks in Vt+1.Hence, under the risk-neutral measure
investors’ estimate of expected growth state exhibits large moves, as positive jumps in
confidence measure (high uncertainty) cause negative jumps in the expected growth
magnified by the price of risk parameter λx. In contrast, under the objective measure,
shocks in expected growth and investors’ confidence are uncorrelated. Due to the
negative correlation of shocks into expected state and confidence measure, the risk
adjustment of confidence shocks, λvx = λv− 1

2
λ2
xK

2
2 , depends on the price of confidence

risks λv and risk compensation for shocks to expected growth λx.
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Confidence jump shocks are compound Poisson both under the objective and risk-
neutral measures,

Qq
t+1 =

Nq
t+1
∑

i=1

J̃i,t+1 − µjλt, (2.10)

but the frequency and distribution of jumps are different under the two measures.
When investors prefer an early resolution of uncertainty, they dislike positive shocks
to V, (λvx < 0), so that the jump component in the confidence measure is magnified
under the risk-neutral measure. Indeed, relative to objective measure, jumps are
expected to arrive more frequently,

λqt ≡ EQ
t N

q
t+1 =

λt
1 + µjλvx

> λt, (2.11)

and their size is larger,

µqj =
µj

1 + µjλvx
> µj, (2.12)

under the risk neutral measure.

2.3 Equity Prices

To obtain implications for equity prices, I consider a dividend process of the form

∆dt+1 = µd + φ(∆ct+1 − µ) + ϕdσtηd,t+1, (2.13)

where ηd,t+1 is a dividend shock independent from all other innovations in the econ-
omy. I continue to maintain the assumption that the average signal data is much
more informative about the expected growth than consumption or dividend data, so
investors learn about the expected state only from the average signals (see specifica-
tion (1.20)-(1.22)).

The equilibrium price-dividend ratio is linear in the expected growth state and
the confidence level of the investors:

pdt = H0 +Hxx̂t +HvVt +Hσσ
2
t , (2.14)

where solutions for the loadings are provided in Appendix A. Similar to the valuation
of consumption asset, equity prices increase in expected growth factor and decrease
when the confidence of investors is low or the aggregate volatility is high. In particular,
large positive moves in Vt endogenously translate into large jumps in asset valuations
and returns. Indeed, the equilibrium log return on the dividend asset satisfies

rd,t+1 = µr + bxx̂t + bvVt + bσσ
2
t + φac,t+1 + κd,1HxK2ax,t+1

+ κd,1Hv

(

σw
√

Vtwt+1 +Qt+1

)

+ κd,1Hσϕwσtwc,t+1 + ϕdσtηd,t+1,
(2.15)

14



for certain loadings bx, bv and bσ. As the return beta to confidence measure is negative
(Hv < 0), large positive shocks in confidence measure translate into negative moves
in returns, magnified by the loading Hv. This channel plays an important role to
empirically explain large moves in asset prices and over-pricing of out-of-the-money
put options, keeping the consumption dynamics smooth as in the data.

The dynamics of returns under the objective measure in (2.15) and the evolution of
the states under the risk-neutral measure in (2.5)-(2.8) can be also used to characterize
the variation in returns under both probability measures. The conditional variance
of returns under the two measures is linear in confidence measure and consumption
variance. Hence, positive jumps in confidence measure endogenously translate into
simultaneous positive jumps in conditional variance of returns and negative jumps
in prices. In a related model, Eraker and Shaliastovich (2008) show that positive
jumps in aggregate volatility of consumption σ2

t can also lead to negative jumps in
equilibrium returns and positive jumps in the conditional variance of returns.

2.4 Option Prices

The equilibrium asset-pricing framework can be used to compute prices of options
written on the dividend claim. In Appendix A.4 I show that price Ct(K/Pt, n) of a
put option contract with moneyness K/Pt and maturity n depends on the underlying
expected growth, confidence measure and aggregate volatility states:

Ct(K/Pt, n)

Pt
=

1

2π

K

Pt

∫ izi+∞

izi−∞

eG0,n+Gx,nx̂t+Gv,nVt+Gσ,nσ2
t +iz log(K/Pt)

iz − z2
dz, (2.16)

where zi ≡ Im(z) < 0, and complex-valued loadings G depend on the model and
preference parameters. The option price can be easily computed numerically for
given states and parameters of the economy.

I convert theoretical option prices Ct(K/Pt, n) into Black-Scholes implied volatil-
ity units σ2

BS,t using model-implied interest rate rft,n and log price-dividend ratio pdt
(see expressions (2.3) and (2.14), respectively). This transformation is convenient,
as the implied volatilities are easier to interpret than the original option prices. In-
deed, implied volatilities are directly comparable across strikes and maturities; in
fact, the observed differences in implied volatilities constitute major puzzles in the
option pricing literature. In addition, while the price of the option in (2.16) can
in principle depend on all the expected growth, confidence and aggregate volatility
states, in numerical simulations I verify that Black-Scholes implied volatilities are
driven nearly entirely by the confidence measure and aggregate volatility alone. This
is not surprising, as the variance of market returns under physical and risk-neutral
measure depends linearly on Vt and σ2

t , so the expected growth state is expected to
have an insignificant effect on the volatilities implied in the option contracts. This
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insight proves very useful in the MLE estimation of the model, as it allows me to back
out the confidence measure and aggregate volatility states directly from the implied
volatilities, while inferring about the expected growth state using macroeconomic and
asset price data.

In addition, as option-implied volatilities in the model are driven nearly entirely
by the confidence measure and consumption volatility, positive jumps in confidence
measure endogenously translate into positive jumps in the option-implied variance.
The timing of these moves corresponds to negative jumps in returns.

3 Empirical Evidence

3.1 Data

I collect monthly data on European S&P 500 index option prices for the period of
January 1996 to June 2007 from the OptionMetrics database. The dataset also in-
cludes index price level, zero coupon yields at different maturities and dividend yield
implied from the put-call parity relationship in the option market. The option con-
tracts typically expire at the end of every third week of the month. As the theoretical
model is specified on a monthly frequency, I use Wednesday prices every third week
of the month to ensure that the time to expiration is an integer. Specifically, I use
options with maturities of 1 and 2 months and moneyness closest to 0.9, 0.95, 1.00,
1.05 and 1.10, which are among the most actively traded contracts on the exchange.
To mitigate microstructure problems, I exclude all observations with option prices
less than one eights of a dollar, as well as those with no trading volume or with open
interest less than 100 contracts. In the last step, I check for basic arbitrage violations
in the option markets. For estimation, I consider put option prices only, as they are
more actively traded than call options and the latter would be redundant given the
put-call parity relationship.

Using the interpolated zero coupon rates and price-dividend ratios, I convert op-
tion prices into Black-Scholes implied volatility units. That is, I solve for the implied
Black-Scholes volatility of the put contract given the observed option price, its strike
price, time to maturity, current index level and the interest rate and log price-dividend
ratio in the data. As discussed in the previous section, implied volatilities are easier
to interpret than the original option prices; further, focusing on implied volatilities
forces the estimation to directly address the key option pricing puzzles.

I obtain the data on real consumption growth rate, monthly, for the same period of
1996 to 2007 from the BEA Tables. Additionally, I construct an empirical measure of
the confidence of investors as an estimate of the cross-sectional variance of the average
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forecast of real GDP from the Survey of Professional Forecasts. The calculations
follow Bansal and Shaliastovich (2008a), and the details are provided in Appendix B.

The key features of consumption and return data, shown in Table 1, are compa-
rable to the standard estimates in the literature. Mean log return is 7% and mean
inflation-adjusted interest rate is 1.6%, so the average excess return in the sample
is 5.4%. Interest rates are quite persistent, with autocorrelation coefficient of 0.97
and annualized volatility of 0.5%. Consumption growth averages 2% and has a stan-
dard deviation of just below 1%. A well-known feature of consumption growth data
at monthly frequency is negative autocorrelation. In my sample, the estimated per-
sistence coefficient is −0.37, while the persistence of consumption growth is reliably
positive at lower frequencies and longer historical sample; see Table 5. To deal with
the data issues in monthly consumption, I introduce a measurement noise in log
consumption level in the MLE estimation of the model.

I discuss the option-price evidence and related dimensions of return and macroe-
conomic data in the next section.

3.2 Option Pricing Puzzles

One of the key puzzles in option markets is that out-of-the-money put options appear
overpriced, so that the insurance for large downward movements in asset prices is too
expensive relative to standard models (see e.g. Rubenstein, 1994). According to the
Black-Scholes model, the option-implied volatilities across all strikes and maturities
should be equal to the volatility of the underlying asset. Table 1 reports that in the
data, the average volatility of out-of-the money options of 21.4% exceeds the at-the-
money volatility of 17.7% by nearly 4%. In fact, this difference (’volatility smirk’) is
always positive in the sample and ranges between 2% and 7%, as shown in the second
panel of Figure 1. Similar results obtain for a broader range of put option strikes
and for longer maturities (see Table 2). The empirical evidence of over-pricing of
out-of-the-money put options suggests that the cross-section of option prices cannot
be explained by standard Gaussian models and points to the jump risk factors in the
economy.4

Consistent with this evidence, option and asset prices exhibit large moves (jumps)
in the data. The unconditional distribution of returns is characterized by negative
skewness of −0.7 and high kurtosis of 4.5 — for Normal distribution, these statistics
are 0 and 3, respectively. Excess kurtosis and negative skewness are indicative of large
negative moves in returns. Similarly, positive skewness in implied variance indicates
the presence of large positive movements in the series. Sizeable variation across

4Statistical evidence on the importance of jumps for option prices is discussed in Bakshi et al.
(1997), Bates (2000), Pan (2002), Broadie et al. (2007), Santa-Clara and Yan (2008).
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time and occasional large positive spikes are apparent on the plot of option-implied
volatility on Figure 1. Direct evidence for large moves can be obtained by isolating
abnormal movements in prices. Specifically, I identify large move as a two standard
deviation or higher innovation based on the AR(1)-GARCH(1,1) fit. In the data, the
frequency of identified large moves in returns and implied variance is the same, once
every 17 months. 75% of the identified large moves in returns are negative, while
all of the large moves in implied variance are positive. The timing of large moves in
implied variance and returns is highly related, as 5 out of 8 identified large moves in
the two series occur at the same time. These findings on large moves in asset prices
are broadly consistent with jump evidence from the parametric models of asset-prices
discussed in Singleton (2006), and with empirical results in Tauchen and Todorov
(2008), who present strong evidence for common jumps in stock price and implied
volatility from the option markets based on the high-frequency data.

While there is strong support for large common moves in asset and option prices,
there is no evidence for large moves in the real economy that can economically ac-
count for the jump features of financial data at the considered frequencies. In my
sample, none of the large moves in financial prices can be explained by a simultane-
ous large jump in real consumption. The estimated conditional mean and variance
of consumption growth are even smoother than the underlying series and also show
no large moves that could explain jumps in prices. Similar evidence is presented in
Bansal and Shaliastovich (2008a), who document that there is no link in the data
between large moves in equity returns and moves in a variety of macroeconomic vari-
ables, while Bansal and Shaliastovich (2008b) argue that years with daily jumps in
returns are not predictable by the level of the real economy.

While there is no direct empirical evidence for jump risks in consumption, mea-
sures of investors’ uncertainty about future growth exhibit substantial fluctuations
and large moves in the data, which can potentially explain the cross-section of option
prices and the time-series dynamics of asset and option prices. Indeed, confidence
measure has significant information about the option price volatilities in the data.
As shown in Table 2, option volatilities across all strikes and maturities are about
7% higher in quarters where the uncertainty is high, relative to quarters where the
uncertainty about future growth is low. Further, the confidence measure in the data
has significant information about future option-implied volatilities, even controlling
for the current implied volatility of the contract. Table 3 documents that, in pro-
jections of option-implied volatilities 2 and 3 quarters ahead, the slope coefficient on
confidence measure is large and significant at all strikes, while the slope coefficient on
the current value of option volatility is small and is typically decreasing with horizon.
(Beyond 3 quarters, both slopes become insignificant.) This evidence is consistent
with Buraschi and Jitsov (2006), who show that the cross-sectional dispersion of fore-
casts from the Survey of Professional Forecasts and the Consumer Confidence Survey
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has information about the level and slope of the option smile and future realized
volatility of returns.

The empirical confidence measure exhibits large positive moves, whose frequencies
and magnitudes are plausible to account for the jump features of option and asset
market data. As shown in the last panel of Table 1, the unconditional distribution
of the confidence measure in the data is very heavy-tailed and positively skewed,
especially for the full period from 1968 to 2008. The large positive spikes in the
series depicted on Figure 2 indicate the possibility of large positive shocks to the
uncertainty about future growth. Indeed, using formal econometric analysis, Bansal
and Shaliastovich (2008a) find significant evidence for a jump-like component in the
confidence measure and document that large moves in confidence measure in the data
are related to large moves in returns and in variance of returns implied from the option
markets.

Hence, based on the empirical evidence, a measure of investors’ uncertainty about
future growth provides a channel to explain option prices puzzles and the jump fea-
tures of financial market data, without relying on jumps in consumption. I formally
assess the ability of the model with time-varying confidence jump risks to explain
option, return and macroeconomic data in the next section.

4 GMM Model Estimation

4.1 Consumption Calibration

I calibrate the parameters of consumption dynamics and estimate preference, confi-
dence measure and dividend parameters using a GMM approach.

The consumption dynamics parameters are calibrated on monthly frequency. The
baseline values for the parameters, which are reported in Table 4, are very similar to
those used in the long-run risks literature (see e.g. Bansal and Yaron, 2004). Specif-
ically, the annualized consumption growth rate is set at 2%. The persistence in the
expected growth ρ of 0.978 and the magnitudes of the scale parameters ϕe and σ
ensure that the model can match historic volatility of consumption growth of 2% and
its persistence of about 0.45. Similar to Bansal and Yaron (2004), I set the persistence
of the consumption variance to νc = 0.987, and calibrate the volatility of volatility
parameter to ϕw = 5.72 × 10−4. I calibrate the model on monthly frequency and
then time-aggregate to an annual horizon. Table 5 shows that the model can success-
fully match mean, volatility, auto-correlations and variance ratios of the consumption
dynamics over the long period in the data.
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4.2 GMM Estimation

I estimate preference, confidence measure and dividend parameters using standard
GMM approach. In particular, I bring in quarterly observations on confidence mea-
sure, based on real GDP forecasts from the Survey of Professional Forecasts, and
corresponding observations on monthly returns, interest rates and volatilities implied
from option contracts with moneyness closest to 0.95, 1.00 and 1.05 and maturities of
1 and 2 months, for the period from 1996 to mid 2007. As the confidence measure in
the data is based on quarterly forecasts of real GDP, I adjust the confidence measure
data to account for scale and time-aggregation issues, as discussed in Appendix B.

In estimation, I set up four blocks of orthogonality conditions which correspond
to the moments of confidence measure, real excess return, interest rate and option
prices. For the confidence measure, I choose to match its first four unconditional
moments and quarter-ahead auto-covariance, which characterize the level, variation,
persistence, and non-Gaussian properties of the series. For the stock market data,
I also use the first four moments of excess equity returns, its auto-covariance as
well as the covariance of excess returns with confidence measure. Further, I construct
orthogonality conditions based on the level, variation and persistence of interest rates,
and the levels of 6 option volatilities which span three moneyness categories (0.95,
1.00 and 1.05) and two maturities (1 and 2 months). Further details of moment
conditions are provided in the Appendix C.

Let gt(Θ) stand for the overall vector of orthogonality conditions based on con-
fidence measure, equity return, interest rate and option price data, Θ is the vector
of estimated parameter and ḡ(Θ) denotes the sample average of moment conditions
across time. Then, the GMM objective function is given by,

QGMM (Θ) = T ḡ(Θ)′Σ−1
T ḡ(Θ). (4.1)

As usual, the estimation proceeds in two steps, and the optimal weighting matrix
Σ−1
T corresponds to the inverse of the Newey-West estimate of the variance of the

moment conditions based on the first-step parameter estimates. The computation of
standard errors and hypothesis testing follows standard asymptotic results for GMM,
as discussed in Hansen (1982).

4.3 GMM Parameter Estimates

The estimation uses 20 moment conditions to estimate 10 parameters of investor pref-
erences, confidence measure, and dividend growth rate. The consumption dynamics
parameters are calibrated as discussed in the Section 4.1. For identification reasons, I
also fix the subjective discount factor at 0.999. Bansal, Gallant, and Tauchen (2007a)
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discuss that it is difficult to separately identify the subjective discount factor and the
inter-temporal elasticity of substitution.

The estimated parameters of the full model, which features time-varying consump-
tion volatility and fluctuating confidence driven by Normal and jump-like innovations,
are presented in the left column of Table 6. The estimated preference parameters are
quite standard in the long-run risk literature: the inter-temporal elasticity of substitu-
tion is 1.36, while the risk aversion is 11.03. This parameter configuration implies that
agents prefer early resolution of uncertainty, so that they dislike negative shocks to
expected consumption and positive shocks to consumption volatility and confidence
measure.

The leverage of dividend growth to expected consumption is estimated at φ =
3.7, and the dividend volatility scale is ϕd = 4.9. These values are consistent with
the literature (see e.g. Bansal and Yaron, 2004), and imply the annualized dividend
volatility of 11% and the persistence of 0.4, which agree well with the historical data.

The estimated parameters of the confidence dynamics are presented in the lower
panel of Table 6. The unconditional level of confidence measure is 15 times smaller
than the level of consumption volatility, which is consistent with the evidence in
the data. The level of the confidence measure is directly related to the uncertainty
that investors face about their estimate of expected growth. Indeed, as shown in
equation (1.24), the variance of the filtering error ω2

t due to Kalman Filter learning
about the state is proportional to the confidence measure, where the proportionality
coefficient K2 (Kalman Filter weight on the forecast innovations) is equal to 0.5, based
on the estimates of the model. Hence, the model-implied two standard deviations
band around the investors’ estimate of expected consumption growth is on average
±0.25%, annualized. The average uncertainty about expected growth is quite small;
for comparison, the calibrated standard deviation of the consumption growth is 2%
on annual basis.

The estimated model parameters indicate that the confidence measure signifi-
cantly fluctuates over time. Indeed, the persistence of confidence shocks is 0.91,
which translates into a half-life of 7 months. The model for the confidence mea-
sure in (1.14) allows both for Gaussian and jump-like confidence shocks, however,
the estimation results suggest that nearly all the variation in the series is driven by
Poisson jumps. The Gaussian volatility parameter σw is very small and insignificant,
while all the jump parameters µj, λ0, λ1 are highly significant individually. Further,
the Wald test for their joint significance overwhelmingly rejects the null that jump
parameters are zero with p-value well below 1%. The average frequency of jumps in
confidence measure is one every 5 months, which agrees with the estimate in Bansal
and Shaliastovich (2008a), who estimate the univariate model for confidence mea-
sure by MLE and find jumps occurring once every 4 months in the long sample from
1968 to 2008. Finally, the results indicate that the probability of confidence jump
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is increasing when the confidence measure is high (high uncertainty): the intensity
parameter λ1 is estimated positive and statistically significant.

The right column of Table 6 presents the estimation results for the restricted
model with no jumps in the confidence measure. To generate enough variation in the
confidence measure, the volatility of Gaussian shocks increases thirtyfold relative to
the model with jumps, while the persistence of shocks goes up to 0.94. The estima-
tion results suggest that the fit of the model with no confidence jumps substantially
worsens, as the Likelihood Ratio test based on the difference in GMM objective func-
tions of full and restricted models overwhelmingly rejects the restrictions that jump
parameters are zero, consistent with an earlier result on the joint significance of the
jump parameters based on the Wald Test.

4.4 Option Pricing Implication

Confidence jump risks play an important role to explain the cross-section of option
prices and jump-like features of asset market data. Indeed, as shown on Figure 3,
the model with confidence jump risks can quantitatively explain overpricing of the
out-of-the-money put options in the data. On the other hand, in the restricted model
with no confidence jumps, the implied volatility curve is virtually flat. This result
is consistent with Pan (2002), Bates (2000), Bakshi et al. (1997), who show that
standard models with Gaussian shocks cannot account for the cross-section of option
prices in the data.

The full model with confidence jumps can deliver an implied volatility smile similar
to the data. While the model somewhat under-predicts the volatilities of the deep
out-of-the-money options, the magnitudes of option pricing errors are comparable to
other studies. On average, the difference between option volatility in the data and in
the model are less than 2% in Black-Scholes volatility units for put contract used in
the estimation. For comparison, Santa-Clara and Yan (2008) document root-square
errors of 2%, while Pan (2002) reports absolute pricing errors in the range from 1%
to 3%. The underlying tension in the estimation is between fitting the tails of return
and confidence measure distributions and the slope of the option smile. Indeed,
higher jump contribution can substantially increase the deep out-of-the-money option
volatilities; however, it will adversely impact the fit of return and confidence measure
by making their distribution more heavy-tailed.

In the model with confidence jump risks, out-of-the-money put options hedge
large positive moves in the uncertainty about future growth, which explains the over-
pricing of these contracts relative to standard models. As discussed in Section 2.3,
large positive jumps in confidence measure endogenously translate into negative moves
in returns and positive contemporaneous moves in the conditional variance of returns.
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This can account for the heavy tails of the unconditional distribution of returns and
implied option volatility, as well as the evidence on common large moves in these
series in the data. The model with confidence jumps delivers the kurtosis of the
unconditional distribution of excess returns equal to 6 and negative skewness of -0.2.
These values are broadly consistent with statistics in the data, shown in Table 1. For
comparison, in the model with no confidence jumps, kurtosis of return distribution is
3.8 and skewness is 0. The plots of the unconditional distributions of excess returns
from the two model specifications and from the data are shown on Figure 4. These
plots visually indicate that the model with jumps provides a better fit to the return
distribution in the data than the model with no confidence jumps. To focus on tail
properties of returns, on Figure 5 I show the QQ plot of quantiles of return distribution
in the model versus the data. In a model with confidence jumps, the points cluster
along the 45-degree line, which indicates a close fit of the model-implied distribution
of returns to the data. On the other hand, the model with no jumps cannot account
for the left tail of the distribution of return in the data, as in absence of jump risks
the model cannot generate negative skewness of returns.

In the model, jumps in the asset prices are endogenously driven by large moves in
investor’s confidence about future growth. At the estimated parameters, the average
frequency of jumps is about one every 5 months. An average jump in returns implied
from the model is −3.3%, monthly. The moves of such magnitudes are quite common
in the data; indeed, in my sample monthly returns fall below the cutoff of −3.3% once
every 6 month. As shown in Section 2.2, preference for early resolution of uncertainty
implies that the contribution of confidence jump risk is magnified under the risk-
neutral measure, with jumps being larger and more frequent relative to the objective
measure. Indeed, the mean jump in return is −3.6%, and the average frequency of
jumps is 4 months under the risk-neutral measure.

I discuss the implications of the confidence jump risks for the total premium in
the economy in the next section.

4.5 Equity Premium

Table 8 shows the magnitude of the model-implied equity premium and its decompo-
sition due to sources of risks in the economy. For a benchmark specification, I con-
sider a standard, complete information long-run risks model where the uncertainty
about expected growth is zero (see Bansal and Yaron, 2004). Based on the calibra-
tion of consumption dynamics and the estimated dividend and preference parameters
from the full model, the implied equity premium in the model with no learning is
6.3%. Most of the compensation (3.3%) is due to investors’ exposure to the long-
run risks; consumption volatility risks demand 2.1%, while immediate consumption
growth shocks — about 1.4%. Learning and fluctuating confidence channels change
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the compensation for the fundamental risks in the economy relative to the benchmark
case. As investors cannot separate true short-run and long-run consumption inno-
vations, the compensation for the expected growth risks decreases to 3.2% while the
compensation for immediate consumption shocks increases slightly; this is consistent
with Croce et al. (2006). In addition, as discussed in Section 2.1, fluctuating confi-
dence of investors diminishes the importance of consumption volatility channel and
reduces risk compensation for consumption volatility risks, compared to the complete
information setup. Based on the parameter estimates of the full model, consumption
volatility risks now contribute less than 0.2% to the total equity premium of 6.1%.
On the other hand, confidence risk is the second most important risk channel in the
economy, adding 1.7% to the equity premium. As nearly all of the confidence risks are
jump risks, the compensation for confidence risks of almost 2% determines the overall
contribution of jump risks to the equity premium in the economy. This magnitude
is consistent with other studies. For example, Broadie et al. (2007) and Pan (2002)
estimate the jump risk premium between 2%−3% and 3.5%, respectively, or one third
of the total equity premium in the sample, which agrees with the estimate provided in
this paper. Finally, in the model with no jumps in confidence measure, the estimated
equity premium drops to 4.9%, as the compensation for purely Gaussian confidence
shocks decreases to 0.3%.

I also verify that the model with confidence jump risks delivers sensible impli-
cations for the bond markets. The model-implied 1 month interest rate is 2%. Its
volatility is 0.4%, annualized, and the persistence is 0.91. These values broadly agree
with the statistics for interest rate reported in Table 1. The model-implied real term-
structure is nearly flat, and the real interest rate at 5 year maturity is 1%.

4.6 GMM Model Fit

As shown in Hansen (1982), under the null hypothesis that the model is correctly
specified the GMM criterion function in (4.1) has a χ2 distribution, which can be
used for an overall goodness-of-fit test of the model. The test does not reject the null
that the orthogonality conditions based on the full model with confidence jump risks
are equal to zero: the p-value for the test is 0.30. In addition, I follow Eichenbaum,
Hansen, and Singleton (1988) to test the blocks of moment equations corresponding
to the confidence measure, equity returns, interest rate and option-price data, respec-
tively; see Appendix C for details. These moment restrictions are not rejected in the
data: the p-value for the test that confidence measure moments are zero is 0.60, it
is 0.8 for the return moments, 0.5 for the moments of interest rate and 0.3 for the
orthogonality conditions based on the option price data.

In the estimation, I do not incorporate deep out- and in-the-money options with
moneyness closest to 0.9 and 1.1, respectively, at 1 and 2 months to maturity; these
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options can be used now for an out-of-sample test of the model. The orthogonality
conditions for the levels of these option volatilities are not rejected at 5% significance
level; in Section 4.4 I showed that the model somewhat under-predicts the implied
volatility for deep out-of-the-money options, especially for longer maturity. Similarly,
I can use the available data from 1968 to 1996 for an out-of-sample test of the orthog-
onality restrictions on the confidence measure. The average uncertainty is higher in
the earlier period, so that the moment condition for the level of the series is rejected
at 1% significance level. However, the joint test of all the higher moment restrictions
which characterize the variation and non-Gaussian features of confidence measure
cannot be rejected at 5%.

The goodness of fit of the model substantially deteriorates when confidence shocks
do not include a jump-like component. The blocks of moment restrictions correspond-
ing to confidence measure, return and option volatility data are rejected in sample at
a 1% significance level. Further, the out-of-sample tests of moment conditions based
on the additional option price data for moneyness 0.9 and 1.1 and the confidence data
from 1968 to 1996 are also rejected with p-value below 1%.

5 Latent State MLE Model Estimation

5.1 Econometric Method

In the second approach, I treat confidence measure, as well as consumption volatil-
ity and expected growth state, as latent factors and estimate the model using the
maximum likelihood method. The estimation framework allows me to use monthly
observations on real consumption growth, equity returns, interest rates and the cross-
section of 6 option prices to recover preference, consumption and confidence dynamics
parameters and back out the unobserved states.

The main idea in the estimation is that in the model, option-implied volatilities
are driven almost entirely by the confidence measure and aggregate volatility states.
This allows me to back out volatility states from the implied volatilities alone and to
estimate expected growth using the data on consumption, risk-free rate and equity
return. The method is similar to Pan (2002), who inverts the option price to solve
for the latent market volatility, and Santa-Clara and Yan (2008), who use two option
prices to solve for the unobserved variance and stochastic intensity states. More
generally, this approach is motivated by the literature on estimation of affine dynamic
term structure models, see for example Duffie and Singleton (1997) and Duffee (2002).
I outline the estimation approach below, and provide further details in Appendix D.
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Denote Θ the parameters of the model, and let a vector Zt =
[

rf datat rd,t ∆cdatat+1

]

′

contain period-t observations on interest rate, log real return and log consumption
growth. I allow for i.i.d. Normal measurement errors in the log consumption level
and interest rate to deal with measurement issues of these series in the data.

Each period, given the parameters Θ, I solve for the unobserved confidence mea-
sure and consumption volatility states Vt(Θ) and σ2

t (Θ) to directly match Black-
Scholes volatilities of out- and at-the-money short-term put options in the model
with moneyness of 0.95 and 1, respectively, and maturity of 1 month to their counter-
parts in the data. Using the model for confidence measure and consumption volatility
specified in (1.14) and (1.8), I can compute the conditional likelihood of the two im-
plied option volatilities lt(σ

2
BS,t) which are used to invert the states. Further, given

the history of observed macro and return data and the current implied confidence
and consumption volatility states, the conditional distribution of asset market and
consumption data Zt is Normal. Therefore, I can apply standard Kalman Filter
methods to write down the likelihood of the observed data lt(Zt) and the evolution
of the estimate of the expected state x̃t(Θ). To bring into the estimation the implied
volatilities of the remaining put options, I assume that the pricing errors ξbs,t, that is,
the difference between the model predicted and observed implied volatility for these
contracts, are pure measurement errors which are Normal and independent from each
other and fundamental shocks in the economy. Hence, their conditional likelihood
lt(ξbs,t) is Normal.

I can combine the information from the consumption and asset-price data and the
cross-section of option volatilities into the period-t log likelihood:

lt(Zt, σ
2
BS,t, ξbs,t) = lt(Zt) + lt(σ

2
BS,t) + lt(ξbs). (5.1)

The total log likelihood function of the sample is given by,

L(Θ) =
T
∑

t=1

lt(Zt, σ
2
BS,t, ξbs,t). (5.2)

The optimal parameter value maximizes the sample likelihood function L(Θ) given
that the solution to the model and the implied states exist, and that the implied
confidence measure Vt(Θ) and consumption variance σ2

t (Θ) are greater than zero.
I use parametric bootstrap method to compute standard errors on the estimated
parameters.

5.2 MLE Estimation Results

Table 7 presents parameter estimates for the full model with fluctuating confidence
and time-varying consumption volatility. As before, I fix the subjective discount
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factor at 0.999. In addition, I set the mean of consumption and dividend growth to
be equal to 2%. This is a standard estimate in the data; indeed, Tables 1 and Table 5
report the average consumption growth of 2%, both for the recent and long historical
samples. Finally, to stabilize estimation I also fix the dividend leverage parameter φ
to 3.5, which is a common value in the literature (see e.g. Bansal and Yaron, 2004).

The estimation results for the model parameters are comparable to the ones from
unconditional GMM. The estimated risk aversion coefficient is almost 10 and the
intertemporal elasticity of substitution is 2.4; this indicates preference for early reso-
lution of uncertainty. Expected consumption growth is very persistent, ρ = 0.976, so
that the half-life of expected growth shocks is almost 2.5 years. At the same time, the
variation in expected growth is very small and accounts for less than 5% of the total
variation in consumption. Estimated consumption volatility is on average 2%, and it
is moderately persistent, with an autoregression coefficient of 0.85. As for the esti-
mates of confidence dynamics, its average level, in volatility units, is about 30 times
lower than the unconditional volatility of consumption growth. Confidence shocks
are quite persistent, with an autocorrelation coefficient of 0.92. Most of the fluctua-
tion in the confidence measure is driven by non-Gaussian shocks, as jumps account
for three quarters of the conditional variance of the series. Though the consumption
and confidence measure parameters are estimated using a recent sample from 1996
to 2007, the implied dynamics of the series is consistent with a long historical sam-
ple from 1930-2006 for consumption and from 1968 to 2008 for confidence measure.
I simulate the model and verify that the key features of their distribution, such as
volatility, skewness and kurtosis of confidence measure and the ratio of confidence
over the time-series volatility, match very well their counterparts in the data. The
details are omitted in the interest of space.

The confidence measure and consumption volatility states implied from option
prices are plotted in Figure 6. Confidence measure exhibits substantial variation over
time, with occasional large positive spikes, while nearly hitting a zero boundary in the
late period of the sample. At the quarterly frequency, the correlation of confidence
measure implied from option prices and confidence measure in the data constructed
from the professional forecasts of future GDP is 0.4. The estimated expected growth
state is depicted in Figure 7. The extracted drift component significantly predicts
next-period consumption with R2 of 2%.

5.3 Option and Asset Prices

The model with confidence jump risks can quantitatively explain the cross-section
of option prices and the variation in option-implied volatilities. As shown in Table
9, the absolute pricing errors for implied volatilities are 1.2% for 1 month in-the-
money options and less than 0.8% for those with 2 months to maturity, so that the
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option fit of the model improves relative to GMM. In the right panel of Table 9 I
quantify the amount of variation in implied volatilities that can be explained by the
confidence and aggregate variance states. In linear projections, these states account
for more than 95% of the total variation in option volatilities. Due to jumps and
higher persistence, confidence measure is more important for out-of-the-money and
longer maturity contracts. For a graphical representation of the model fit, on Figure
9 I show the implied volatility curves for 9 representative days with low, medium and
high values for confidence measure and consumption volatility. Overall, the results
suggest that the model with confidence jumps provide an adequate fit to the cross-
section of option prices.

The model implications for the distribution of return and implied volatility and
jumps are similar to the ones based on GMM fit. Relative to GMM, the frequency of
large moves in returns decreases to one every 9 months, while average jump in return
is higher, −7.5%, monthly. The jump dimensions of return distribution are consistent
with the data.

The model-implied equity premium is 5.2% (see Table 8) which is close to the es-
timate in the data of 5.5%. Expected growth shocks and confidence shocks contribute
about 2.4% to the total equity premium, so that the relative contribution of confi-
dence jump risks somewhat increases relative to the unconditional GMM parameter
fit. The time-series of the fitted equity premium, as well as the premia due to expected
growth and confidence shocks, are shown on Figure 8. The implied equity premium
in the economy shows substantial variation over time, driven by the compensation for
the expected growth and confidence jump risks.

A model without confidence jumps cannot explain the cross-section of option prices
in the data. For robustness checks, I also estimate the model without time-varying
consumption volatility. Most of the results are qualitatively similar; however, the
cross-sectional fit of option prices deteriorates.

6 Conclusion

I present a long-run risks type model which features learning and fluctuating investor
confidence about their estimate of unobserved expected growth. Uncertainty about
expected growth (confidence measure) is time-varying and subject to jump-like risks.
This confidence jump risk channel can quantitatively account for the cross-section
of option prices and large moves in asset prices, without hard-wiring jumps into
consumption. Out-of-the-money put options hedge jump risks in confidence and
thus appear expensive relative to models with no jump risks. Positive jumps in
confidence measure endogenously translate into negative jumps in equilibrium prices,
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which can account for large downward moves and negatively skewed and heavy-tailed
unconditional distribution of returns.

I provide empirical evidence that confidence measure in the data contains signif-
icant information about current and future implied volatilities. Further, I use two
econometric approaches to formally estimate and test the model. The empirical re-
sults provide a strong support for a long-run risks model with learning, fluctuating
confidence of investors and jump-like confidence risks. The model is not rejected in
the data and provides a good fit to the option price, confidence measure, returns, and
consumption data. Overall, empirical results strongly indicate that confidence jump
risk plays an important role to explain option and equity prices in the data without
introducing jumps into fundamental consumption.
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A Model Solution

A.1 Kalman Filter

Given the dynamics of the underlying economy in (1.5)-(1.6) and the specification of signals
in (1.8), the distribution of the states given the current information set and next-period
confidence measure is conditionally Normal:





xt+1

∆ct+1

x̄t+1



 | It, Vt+1 ∼ N









ρx̂t
µ+ x̂t
ρx̂t



 ,Σt+1



 , (A.1)

where the variance-covariance matrix is given by,

Σt+1 =





ρ2ω2
t + ϕ2

eσ
2
t ρω2

t ρ2ω2
t + ϕ2

eσ
2
t

ρω2
t ω2

t + σ2
t ρω2

t

ρ2ω2
t + ϕ2

eσ
2
t ρω2

t ρ2ω2
t + ϕ2

eσ
2
t + Vt+1



 . (A.2)

The innovation representation of the system can then be written in the following way:

∆ct+1 = µ+ x̂t + ac,t+1, (A.3)

x̄t+1 = ρx̂t + ax,t+1, (A.4)

x̂t+1 = ρx̂t +K1,t+1ac,t+1 +K2,t+1ax,t+1, (A.5)

where the Kalman Filter weights and the update for the filtering variance ω2
t satisfy standard

equations

Kt+1 = Σ12
t+1

(

Σ22
t+1

)

−1
,

ω2
t+1 = Σ11

t+1 − Σ12
t+1

(

Σ22
t+1

)

−1
Σ21
t+1,

(A.6)

where the superscripts refer to the partitioning of Σt+1 into four blocks, such that Σ11
t+1 is

the (1, 1) element of the matrix, Σ12
t+1 contain the elements from the first row and second

and third columns, etc. The explicit solutions for the Kalman Filter weights satisfy

K1,t+1 =
ρω2

t Vt+1

(ω2
t + σ2)Vt+1 + (ϕ2

eσ
2 + (ϕ2

e + ρ2)ω2
t )σ

2
, (A.7)

K2,t+1 =
(ϕ2

eσ
2 + (ϕ2

e + ρ2)ω2
t )σ

2

(ω2
t + σ2)Vt+1 + (ϕ2

eσ
2 + (ϕ2

e + ρ2)ω2
t )σ

2
, (A.8)

while the evolution of the variance of the filtering error is given by

ω2
t+1 = Vt+1K2,t+1. (A.9)

In the preferred specification, the Kalman Filter weights in the innovations representa-
tion of the system are constant. When investors do not look at consumption data and only
update based on the average forecast, K1 = 0 and K2 is a steady-state solutio to

K2,t+1 =
ρ2ω2

t + ϕ2
eσ

2
t

ρ2ω2
t + ϕ2

eσ
2
t + Vt+1

. (A.10)
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To solve for the steady state of the system, I plug the solution for filtering uncertainty in
w2
t = K2Vt into the above equation and solve a quadratic equation for the constant value

of K2 when the volatility processes Vt and σ2
t are set to their unconditional means.

A.2 Discount Factor

The aggregate consumption volatility σ2
t follows a square-root process specified in (1.7),

while the dynamics of confidence measure is given by a discrete-time jump-diffusion spec-
ification outlined in (1.14). The distribution of jump size Ji,t+1 is defined by its moment
generating function,

l(y) ≡ EeyJi . (A.11)

For example, when jump size follows exponential distribution with mean jump µj,

l(y) = (1 − µjy)
−1. (A.12)

The conditional variance-covariance of consumption and expected growth shocks is given
by,

Σcx,t+1 = V ar

([

ac,t+1

ax,t+1

])

=

[

K2Vt + σ2
t ρK2Vt

ρK2Vt ρ2K2Vt + ϕ2
eσ

2
t + Vt+1

]

. (A.13)

The log price-to-consumption ratio pct is linear in the states of the economy:

pct = B0 +Bxx̂t +BvVt +Bσσ
2
t . (A.14)

Using Euler equation (1.4), I can directly solve for the loading Bx :

Bx =
1 − 1

ψ

1 − κ1ρ
. (A.15)

The loading on the confidence measure Bv satisfies non-linear equation

1

2
θκ2

1σ
2
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θ
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(A.16)
for z = Bv + 1

2θκ1B
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2
2 , while Bσ solves a quadratic equation
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= 0. (A.17)

Finally, the log-linearization parameter, which is pinned down by the equilibrium level
of the price-consumption ratio, satisfies the following non-linear equation:

log κ1 = log δ + (1 − 1

ψ
)µ+Bσ (1 − κ1νc)σ

2

+ (Bv(1 − κ1) + κ1(1 − ν)z)σ2
v +

λ0

θ
(l(θκ1z) − θκ1zµj − 1) .

(A.18)
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As in Eraker and Shaliastovich (2008), in case of multiple roots for Bσ and Bv I choose
the solution which is non-explosive as the variation in Vt or σ2

t is approaching zero.

Using the equilibrium solution to the price-consumption ratio, I can write down the
expression for the discount factor in the following way:

mt+1 = m0 +mxxt +mvVt +mσσ
2
t

− λcac,t+1 − λxK2ax,t+1 − λv

(

σw
√

Vtwt+1 +Qt+1

)

− λσϕwσtwc,t+1,
(A.19)

where the discount factor loadings and the prices of risks are pinned down by the dynamics
of factors and preference parameters of the investors. Their solutions are given by,

mx = − 1

ψ
, mv = (1 − θ)Bv(1 − κ1ν), mσ = (1 − θ)Bσ(1 − κ1νc),

m0 = θ log δ + (1 − θ) log κ1 − γµ−mvσ
2
v −mσσ

2,

(A.20)

and

λx = (1 − θ)κ1Bx, λσ = (1 − θ)κ1Bσ, λv = (1 − θ)κ1Bv. (A.21)

A.3 Asset Prices

Consider a log payoff tomorrow expressed as,

pn−1,t+1 = F0,n−1 + Fx,n−1x̂t+1 + Fv,n−1Vt+1 + Fσ,n−1σ
2
t+1 + Fg,n−1∆ct+1 + Fd,n−1σtηd,t+1.

(A.22)

Then, the solution for the coefficients in its log price today pn,t satisfies

Fg,n = Fd,n = 0,

Fx,n = mx + Fx,n−1ρ+ Fg,n−1,

Fσ,n = mσ + Fσ,n−1νc +
1

2

(

(Fg,n−1 − λc)
2 + ϕ2

e(Fx,n−1 − λx)2K2
2 + ϕ2

w(Fσ,n−1 − λσ)2 + F 2
d,n−1

)

,

Fv,n = mv +
1

2
(Fg,n−1 − λc + ρ(Fx,n−1 − λx)K2)

2K2 + (qvx + λv) ν +
1

2
q2vxσ

2
w + λ1(l(qvx) − qvxµj − 1),

F0,n = m0 + F0,n−1 + Fg,n−1µ+ Fσ,n−1σ
2(1 − νc) + (qvx + λv)σ2

v(1 − ν) + λ0(l(qvx) − qvxµj − 1)

(A.23)

for qvx = Fv,n−1 − λv + 1
2(Fx,n−1 − λx)

2K2
2 .

Setting F0,n−1 = Fx,n−1 = Fv,n−1 = Fσ,n−1 = Fg,n−1 = Fd,n−1 = 0 in the above
recursion, I can obtain the solution to n−period real risk-free rate.

On the other hand, the price-dividend ratio is given by,

pdt = H0 +Hxx̂t +HvVt +Hσσ
2
t , (A.24)
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where the loadings satisfy the following equations:

Hx = mx + κd,1ρHx + φ,

Hσ = mσ + κd,1Hσνc +
1

2
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(A.25)

for qvx = κd,1Hv − λv + 1
2(κd,1Hx − λx)

2K2
2 , and the log-linearization parameter

log κd,1 = m0 + µd +

(

Hv(1 − κd,1ν) +
1

2
(κd,1Hx − λx)

2K2
2 (1 − ν)

)

σ2
v

+Hσ(1 − κd,1νc)σ
2 + λ0(l(qvx) − qvxµj − 1).

(A.26)

A.4 Option Prices

The option prices are computed using the approach in Lewis (2000). Unlike other methods
in the literature, it relies on a single integration along the complex line, which reduces
computational burden (see Eraker and Shaliastovich, 2008).

The option price with strike K and maturity n is given by,

Ct(K/Pt, n) = Et [Mt,t+n max (ept+n −K, 0)]

=
1

2π

[∫ izi+∞

izi−∞

Et
(

Mt,t+ne
−izpt+n

)

ŵ(z)dz

]

, (A.27)

where Mt,t+n is the discount factor which can be used to price n−period ahead payoffs, pt
is the log equity price and ŵ(z) is the generalized Fourier transform of the payoff function
of the option equal to,

ŵ(z) =

∫

∞

−∞

eizx (ex −K)+ dx

= − Kiz+1

z2 − iz
.

(A.28)

The integration region is parallel to the real line in the complex plane, and zi ≡ Im(z) > 1
for call options and zi < 0 for put options.

Using the equilibrium solution to the discount factor and asset valuations, the expecta-
tion inside the integral in (A.27) is given by

logEte
mt+n−izpt+n = G0,n +Gx,nx̂t +Gv,nVt +Gσ,nσ

2
t − izpt, (A.29)

where complex-valued loadings G0,n, Gx,n, Gv,n and Gσ,n satisfy recursive equations similar
to those computed in Appendix A.3.

Hence, the equilibrium put option price normalized by the equity price satisfies

Ct(K/Pt, n)

Pt
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1

2π

K
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dz

]

(A.30)

33



B Confidence Measure

I use the cross-section of individual forecasts from the Survey of Professional Forecasts
to calculate the average (consensus) forecast and its standard error for the next-quarter
GDP for the period of 1996 to 2007. The survey started in the last quarter of 1968 as a
joint project of the American Statistical Association and the National Bureau of Economic
Research; in 1990 it was taken by the Federal Reserve Bank of Philadelphia. The data set
contains quarterly forecasts on a variety of macroeconomic and financial variables made by
the professional forecasters who largely come from the business world and Wall Street, see
Croushore (1993) for details and Zarnowitz and Braun (1993) for a comprehensive study of
the survey.

I use forecasts of nominal GDP and price index and to back out the average forecast and
uncertainty in average forecast for real GDP. Specifically, for each quarter t let NGDPi,t
and Pi,t denote the next quarter forecasts of nominal GDP and price level of forecaster i.
If nt is the number of available forecasts, then the average forecast for the log real GDP
(RGDP ) growth rate is

∆ log(RGDP )t =
1

nt

nt
∑

i=1

(

log
NGDPi,t
NGDPt

− log
Pi,t
Pt

)

, (B.1)

where NGDPt and Pt are the current values of the series known to the forecasters. For my
sample, the average number of forecasts each period is about 40.

The cross-sectional variance of forecasts divided by the number of forecasts then deter-
mines the uncertainty (variance) in the average forecast:

Vt =
1

nt
V ar

(

log
RGDPi,t
RGDPt

)

=
1

nt

(

1

nt − 1

nt
∑
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(

log
NGDPi,t
NGDPt

− log
Pi,t
Pt

− ∆ log(RGDP )t

)2
)

.

(B.2)

The cross-sectional variance of the forecasts adjusted by the number of forecasts provides
an unbiased estimate for the confidence measure in the model. To make the inference robust
to possible outliers and errors, I delete observations which are more than two standard
deviations from the sample mean. The above calculations of the confidence measure in the
data follow Bansal and Shaliastovich (2008a); David and Veronesi (2008) and Buraschi and
Jitsov (2006) use similar approach to compute the uncertainty measures which rely on the
cross-sectional dispersion in signals.

The confidence measure in the data is based on quarterly forecasts of real GDP, however,
in the model the signals are for the next month expected consumption growth. To deal
with the difference in scale, I adjust confidence measure in the data by the ratio of the
calibrated unconditional consumption variance σ2 over the variance of realized GDP over
the sample period (its standard deviation is 1%, annualized). Indeed, the properties of
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the scaled confidence measure are very similar across different macroeconomic series in
the data; Bansal and Shaliastovich (2008a) document that the ratio of confidence measure
over conditional variance behaves very similarly for real GDP and industrial production
forecasts.

I next deal with the time-aggregation in the uncertainty in forecasts using the approx-
imation of multi-period consumption growth dynamics developed in Bansal et al. (2007b).
Using Taylor expansion, log quarterly consumption is approximately equal to,

log(Ct+1 + Ct+2 + Ct+3) ≈ log(3Ct) + ∆ct+1 +
2

3
∆ct+2 +

1

3
∆ct+3. (B.3)

Using the specification of the consumption dynamics, the true expected quarterly con-
sumption can be written as

Etruet log(Ct+1 + Ct+2 + Ct+3) ≈ log(3Ct) + 2µ+ (1 +
2

3
ρ+

1

3
ρ2)xt. (B.4)

The true expected quarterly consumption growth is proportional to the true expected
monthly consumption growth, up to known constants and consumption levels. Hence,
the uncertainty in the estimate of expected quarterly consumption is proportional to the
uncertainty in the estimate of expected monthly consumption, with the proportionality
coefficient of (1 + 2

3ρ+ 1
3ρ

2)2.

I use the above scaling factor to further adjust the confidence measure based on quarter-
ahead forecasts to obtain its counterpart for the next month expected growth.

C GMM Estimation

The unconditional moments of V are given by,
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j (λ0 + λ1σ
2
v)) + 3σ4

w + 10µ2
jσ

2
wλ1 + 12µ3

jνλ1)E(Vt − σ2
v)

2

+(3σ4
w + 10µ2

jσ
2
wλ1)σ

4
v + (10µ2

jσ
2
wλ0 + 16µ4

jλ1)σ
2
v + 16µ4

jλ0

)

,

E(Vt+mVt) = σ4
v + νmE(Vt − σ2

v)
2.

(C.1)
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Moments of consumption volatility follow directly from above by setting jump param-
eters to zero. The moments of excess returns can be computed in a similar way using the
model dynamics for returns; the results are available upon request.

Denote gvt (Θ) the vector of orthogonality condition based on the confidence data:

gvt (Θ) =
[

Vt V 2
t V 3

t V 4
t VtVt−3

]

′ −mv(Θ),

where Θ are the estimated parameters and mV (Θ) is the corresponding vector of uncondi-
tional moments implied by the model.

Denote ert+1 = rd,t+1 − rft the excess return in the data. Then, the orthogonality
conditions based on the return data can be expressed in the following way:

gert (Θ) =
[

ert er2t er3t er4t ertert−3 ertVt
]

′ −mr(Θ), (C.2)

where mr(Θ) is the vector of unconditional moments calculated based on the return dy-
namics in Section 2.3. Further, I use the information in the level, variation and persistent
of the interest rate, so I construct the orthogonality conditions based on the interest rate
data,

grft (Θ) =
[

rft rf2
t rftrft−3

]

′ −mrf (Θ), (C.3)

and I use the level of 6 option price volatilities, stacked in vector σBS,t, which span three
moneyness categories (0.95, 1.00 and 1.05) and two maturities (1 and 2 months). The
orthogonality conditions based on the option price data are then,

gBSt (Θ) = σBS,t −mBS(Θ), (C.4)

where mBS(Θ) are the corresponding implied volatilities from the model.

Let gt(Θ) stand for the overall vector of orthogonality conditions based on confidence
measure, equity return, interest rate and option price data:

gt(Θ) =
[

gvt (Θ) gert (Θ) grft (Θ) gBSt (Θ)
]

, (C.5)

and ḡ denote its sample average across time. Then, the GMM objective function is given
by,

QGMM (Θ) = T ḡ(Θ)′Σ−1
T ḡ(Θ). (C.6)

As usual, the estimation is proceeded in two steps, and the optimal weighting matrix Σ−1
T

corresponds to the inverse of the Newey-West estimate of the variance of the moment
conditions based on the first-step parameter estimates. The computation of standard errors
and hypothesis testing follows from the standard asymptotic results for GMM.

Hansen (1982) shows that, under the null hypothesis that the model is correctly specified
the GMM criterion function in (C.6) has a χ2 distribution with 10 degrees of freedom, which
can be used for an overall goodness-of-fit test of the model. I follow Eichenbaum et al. (1988)
to test individual blocks of moment conditions (see also Singleton, 2006). For instance,
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under the null hypothesis that moment conditions for the confidence measure are satisfied,
a statistics

T min
Θ
ḡ(Θ)′Σ−1

T ḡ(Θ) − T min
Θ

[

gert (Θ) grft (Θ) givt (Θ)
]

′

Σ−1
T,2

[

gert (Θ) grft (Θ) givt (Θ)
]

follows a χ2 distribution with degrees of freedom equal to the number of moment restrictions
in confidence measure block, while the weighting matrix Σ−1

T,2 can be constructed using the
corresponding lower-right block of the estimate of the variance of the vector of moment
conditions under the null. Then LR test that jump parameters are zero is conducted in a
similar way by comparing the GMM objective functions of the restricted and unrestricted
specifications.

For an out-of-the-sample test of moment conditions corresponding to the deep out- and
in-the-money put options, I construct moment conditions for the levels of these volatilities
ḡIV as in (C.4). Then, the statistics

T ḡIV (Θ)′Σ−1
T,IV ḡ

IV (Θ) ∼ χ2(4),

where Σ−1
T,IV refers to the appropriate partition of the variance-covariance matrix Σ−1

T , is

distributed χ2 with 4 degrees of freedom under the null that orthogonality conditions are
satisfied. Similar test procedure is used for the orthogonality conditions for the confidence
data from 1968 to 1996.

D Latent Factor MLE Estimation

Given the dynamics of the economy, the conditional log-likelihood for the implied confidence
measure and consumption volatility states is given by,

lt(Vt(Θ), σ2
t (Θ)) = l

(

Vt(Θ), σ2
t (Θ) | {Zt−j , Vt−j(Θ), σ2

t−j(Θ)}j=1,2,...

)

=

= lt(Vt(Θ)|Vt−1(Θ)) + lt(σ
2
t (Θ)|σ2

t−1(Θ)).
(D.1)

This decomposition reflects the assumption that the two processes are independent. As the
consumption variance follows a square-root process, its conditional distribution is Gaussian.
Confidence measure follows a mixture of Normal-Gamma, and the details of the computation
of its likelihood are provided below in Appendix D.1.

Given the likelihood of these states, I can write down the conditional likelihood of the
two implied volatilities that are used to invert the confidence and consumption variance
states:

lt(σ
2
BS,t) = lt

(

σ2
BS,t | {Zt−j , Vt−j(Θ), σ2

t−j(Θ)}j=1,2,..., Vt(Θ), σ2
t (Θ)

)

= lt(Vt(Θ), σ2
t (Θ)) − log(abs(Jt)),

(D.2)

where Jt is the Jacobian of the transformation of confidence and consumption variance
into the two implied variance states. As the option variances are nearly linear in the
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confidence measure and consumption variance, the Jacobian is computed numerically from
the projection of implied option variances on the two variance states.

As for the observed consumption and interest rate data, I assume that one-period risk-
free rate and log consumption level are observed with a measurement error:

rfdatat = rft + ξrf,t,

= −F0 − Fxx̂t − FvVt − Fσσ
2
t + ξrf,t.

(D.3)

and

cdatat = ct + ξc,t, (D.4)

so that
∆cdatat+1 = µ+ x̂t + ac,t+1 + ξc,t+1 − ξc,t. (D.5)

Indeed, real interest rates are not observed in the data, so ξrf,t captures measurement
errors due to inflation adjustment of nominal yields, interpolation and other data issues. The
measurement error in observed consumption ξc,t can account for a negative autocorrelation
of monthly consumption growth rate. For simplicity, the measurement errors ξrf,t and ξc,t
are assumed to be Normal, homoscedastic and independent from each other and all the
other shocks in the economy.

In Appendix D.2 I show that the conditional distribution of observed asset market and
consumption data Zt given the history of Zt and past and current values of implied states
σ2
t (Θ) and Vt(Θ) is Normal. Therefore, I can apply standard Kalman Filter methods to

write down the conditionally Normal likelihood of the observed data,

lt(Zt) = l
(

Zt | {Zt−j , Vt−j(Θ), σ2
t−j(Θ)}j=1,2,..., Vt(Θ), σ2

t (Θ)
)

(D.6)

and the evolution of the estimate of the expected state x̃t(Θ) in a recursive way as a function
of the observed macro and asset-price data and the implied confidence and volatility states.

D.1 Likelihood for Confidence Measure

To simplify the exposition, I drop the dependence of the implied state Vt(Θ) on model
parameters Θ.

The dynamics for confidence measure is given by,

Vt+1 = σ2
v + ν(Vt − σ2

v) + σw
√

Vtwt+1 +

Nt+1
∑

i=1

Ji,t+1 − µjλt, (D.7)

where wt+1 is Gaussian shock, Nt+1 is the Poisson process with stochastic intensity λt =
λ0 + λ1Vt, and Ji,t+1 is jump size, whose distribution is i.i.d exponential with mean µj.

38



To simplify the notations, denote the total variance shock ξt+1,

ξt+1 = Vt+1 − (σ2
v + ν(Vt − σ2

v) − µjλt),

which is equal to the sum of conditionally Normal shock σw
√
Vtwt+1 and jump shocks

∑Nt+1

i=1 Ji,t+1.

To find the conditional likelihood of variance shocks f(ξt+1|Vt) I can first condition on
the number of jumps Nt+1, so that

f(ξt+1|Vt) =
∞
∑

N=0

f(ξt+1|Vt, Nt+1 = N)Pr(Nt+1 = N),

where the conditional probability function of the Poisson distribution is given by

Pr(Nt+1 = N) = λNt exp(−λt)/N !.

As the sum of N exponentially distributed variables follows Gamma distribution, given
previous state Vt and the number of jumps Nt+1 jump shock has Gamma distribution
Gamma(N,µj), so that the distribution of the total variance shock ξt+1 is Normal-Gamma.
For N = 0, its conditional likelihood is Normal; for N > 1 it can be written in the following
way:

f(ξt+1|Vt, N) =
(σw

√
Vt)

N−1

√
2πΓ(N)µNj

exp

(

−ξt+1

µj
+
σ2
wVt
2µ2

j

)

∫

∞

bt

(t− bt)
N−1exp

(

− t
2

2

)

dt,

for

bt = − ξt+1

σw
√
Vt

+
σw

√
Vt

µj
.

To calculate the integral on the right-hand side, I use the fact the representation

∫

∞

bt

tN−1exp

(

− t
2

2

)

dt = 2
N−2

2 Γ(N/2)(1 − sgn(bt)
NFχ2(b2t |N)),

where Fχ2(.|N) is the cdf of χ−square distribution with N degrees of freedom, and sgn(bt)
gives the sign of bt.

D.2 Likelihood for Consumption and Asset-Price Data

To simplify the exposition, I drop the dependence of the implied states Vt(Θ) and σ2
t (Θ) on

model parameters Θ.

Denote by Ht the period-t history of data and implied volatility states observed by
econometrician:

Ht =
{

Zt−j , Vt−j , σ
2
t−j

}

j=0,1,...
, (D.8)
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and let x̃t and ξ̃c,t denote the filtered value of unobserved expected growth state and mea-
surement error in consumption, respectively, while ω2

xc,t stand for the variance of the filtering
error of the econometrician,

[

x̃t
ξ̃c,t

]

= E

([

x̂t
ξc,t

]

|Ht

)

, ω2
xc,t = E

(

[

x̃t − x̂t
ξ̃c,t − ξc,t

]2

|Ht

)

. (D.9)

The one-step ahead conditional distribution of unobserved states and consumption and
asset-price data is Normal,





x̂t+1

ξc,t+1

Zt+1



 | Ht, Vt+1, σ
2
t+1 ∼ N









ρx̃t
0
µZt



 ,Ωt+1



 , (D.10)

where the drift is given by

µZt =





−F0 − Fxρx̃t − FvVt+1 − Fσσ
2
t+1

r0 + 1
ψ x̃t +Hv(κd,1Vt+1 − Vt) +Hσ(κd,1σ

2
t+1 − σ2

t )

µ+ x̃t − ξ̃c,t



 ,

r0 = µ− log κd,1 + (1 − κd,1)(Hvσ
2
v +Hσσ

2),

(D.11)

and the variance-covariance matrix satisfies

Ωt+1 = N × diag













Σcx,t+1

ω2
xc,t

σ2
rf

σ2
ξ,c

σ2
t













×N ′, N =













0 K2 ρ 0 0 0 0
0 0 0 0 0 1 0
0 −FxK2 −Fxρ 0 1 0 0
φ κ1HxK2

1
ψ 0 0 0 ϕd

1 0 1 1 0 1 0













. (D.12)

The updates for the filtered states and the variance of the filtering error satisfy standard
Kalman Filter recursions

[

x̃t+1

ξ̃c,t+1

]

=

[

ρx̃t
0

]

+Kt+1 (Zt+1 − µZt)

ω2
xc,t+1 = Ω11

t+1 − Ω12
t+1

(

Ω22
t+1

)

−1
Ω21
t+1,

(D.13)

where the Kalman Filter Gain is given by

Kt+1 = Ω12
t+1

(

Ω22
t+1

)

−1
. (D.14)

The superscripts refer to the partitioning of Ωt+1 into four blocks, such that Ω11
t+1 is the

two by two upper corner of the matrix, Ω12
t+1 contain the elements from first two rows and

third to fourth columns, etc. The conditional distribution of the observed asset-price and
macro data in Zt+1 is Normal with mean µZt and variance-covariance matrix given by Ω22

t+1

which allows me write down the conditional likelihood lt(Zt).
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Tables and Figures

Table 1: Summary Statistics

Mean AR(1) Std. Dev. Skew Kurt

Implied volatility 17.66 0.78 5.85 0.78 3.41
(0.97) (0.04) (0.52) (0.23) (0.59)

Smirk 3.72 0.46 0.86 0.50 3.95
(0.12) (0.09) (0.08) (0.31) (0.71)

Consumption growth 2.00 -0.37 0.93 -0.11 4.00
(0.20) (0.07) (0.09) (0.21) (0.45)

Interest rate 1.56 0.97 0.51 -0.29 1.71
(0.33) (0.04) (0.02) (0.29) (0.25)

Log return 6.99 -0.06 15.17 -0.69 4.51
(4.36) (0.08) (1.41) (0.25) (0.71)

Confidence Measure
1996-2007 0.07 0.45 0.02 1.55 5.77

(0.01) (0.11) (0.002) (0.27) (1.42)
1968-2007 0.11 0.53 0.06 4.36 30.80

(0.01) (0.07) (0.01) (0.69) (9.67)

Summary statistics for implied volatility and smirk (top pane), real consumption growth,

inflation-adjusted interest rate and log real returns (middle panel) and confidence measure

for the overlapping and long sample (bottom panel). Implied volatility is computed for the

short-term at-the-money option (time to expiration of 1 month and moneyness closest to

K/P = 1), while smirk is given by the difference between the implied volatility of out-of-

the-money and at-the-money short-term put options (moneyness of 0.95 and 1, respectively

and maturity of 1 month). Mean and volatility for confidence measure are computed for

the square root of the confidence measure in the data. Statistics are annualized, in percent.

Newey-West standard errors with 4 lags. Monthly observations from January 1996 to June

2007.
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Table 2: Option-Implied Volatility

Moneyness 0.90 0.95 1.00 1.05 1.10

1 month to maturity:

Average implied vol 25.79 21.38 17.66 15.68 15.74
(0.94) (0.52) (0.97) (0.88) (0.76)

Low uncertainty V 20.56 15.70 11.85 10.29 11.45
High uncertainty V 28.01 23.61 19.71 17.40 17.19

2 months to maturity:

Average implied vol 24.15 21.14 18.42 16.97 16.64
(0.96) (0.96) (0.95) (0.89) (0.80)

Low uncertainty V 18.62 15.54 12.66 11.39 11.67
High uncertainty V 26.30 23.22 20.42 18.71 18.37

Black-Scholes implied volatilities for 1 and 2 months to maturity options. Average volatil-

ities are based on monthly observations of put option prices from January 1996 to June

2007. Low and high uncertainty V panels report average implied volatilities for the quar-

ters with high and low confidence measure; high and low values correspond to above 75%

and below 25% percentile of the unconditional distribution of confidence measure in the

data, respectively.
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Table 3: Option Price Predictability by Confidence Measure

Option Variance Confidence Measure R2

Out-of-the-Money

1 quarter ahead 0.52∗∗ 0.11 0.31
(0.08) (0.11)

2 quarters ahead 0.27 0.43∗ 0.29
(0.15) (0.18)

3 quarters ahead 0.31 0.51∗∗ 0.39
(0.17) (0.18)

At-the-Money

1 quarter ahead 0.42∗∗ 0.09 0.40
(0.10) (0.07)

2 quarters ahead 0.33∗∗ 0.24∗∗ 0.38
(0.08) (0.11)

3 quarters ahead 0.13 0.30∗∗ 0.23
(0.10) (0.10)

In-the-Money

1 quarter ahead 0.27∗∗ 0.12 0.26
(0.09) (0.08)

2 quarters ahead 0.30∗∗ 0.19∗∗ 0.37
(0.06) (0.08)

3 quarters ahead 0.08 0.24∗∗ 0.18
(0.06) (0.10)

Projection of future option-implied variance on current option variance and current confi-

dence measure. Table reports slope coefficients on the two regressors and the R2. Option

variance and confidence measure are standardized. Put options contracts are 1 month to

maturity. Standard errors are Newey-West adjusted with 3 lags. One and two starts indicate

significance at 5% and 1%, respectively.
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Table 4: Calibration of Consumption Dynamics

Parameter Value

µ 0.0017
ρ 0.978
σ 0.0058
νc 0.987
ϕw 5.72e-04
ϕe 0.044

Calibrated parameter values, monthly frequency.

Table 5: Consumption Dynamics: Data and Model Calibration

Data Model
Estimate S.E. 5% Median 95%

Mean 1.95 (0.32) 1.13 1.97 2.73
Vol 2.13 (0.52) 1.51 2.08 2.71
AR(1) 0.44 (0.13) 0.22 0.47 0.68
AR(2) 0.16 (0.18) -0.05 0.21 0.49
AR(5) -0.01 (0.10) -0.18 0.06 0.28
VR(2) 1.58 (0.18) 1.24 1.47 1.66
VR(5) 2.23 (0.86) 1.39 2.12 3.04

Calibration of consumption dynamics. Data is annual real consumption growth for 1930-

2006. Model is based on 100 simulations of 80 years of monthly consumption data aggre-

gated to annual horizon, based on the full specification with fluctuating confidence and

consumption volatility.
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Table 6: GMM Parameter Estimates

Full Model No Jumps
Estimate S.E. Estimate S.E.

Preference:

δ 0.999 0.999
ψ 1.36 (0.11) 1.43 (0.15)
γ 11.03 (1.30) 10.56 (5.09)
Dividend:

φ 3.68 (0.85) 4.01 (2.00)
ϕd 4.88 (1.49) 5.52 (3.03)
Confidence Measure:

σv × 104 3.73 (0.11) 3.07 (0.11)
ν 0.91 (0.01) 0.94 (0.03)
σw × 105 0.34 (1.15) 10.34 (0.60)
λ0 × 102 6.37 (2.76)
λ1 × 10−6 1.00 (0.51)
µj × 107 1.95 (0.25)

GMM Parameter Estimates of the full model (left panel) and the model with no jumps in

confidence measure (right panel).
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Table 7: MLE Parameter Estimates

Full Model
Estimate S.E.

Preference:

δ 0.999
ψ 2.44 (0.78)
γ 9.66 (1.23)
Consumption:

µ× 103 1.66
ρ 0.976 (0.003)
ϕe × 102 4.50 (0.71)
Dividend:

φ 3.5
ϕd 6.22 (0.41)
Confidence Measure:

σv × 104 2.01
ν 0.92 (0.01)
σw × 105 9.81 (1.07)
λ0 × 102 3.47 (0.40)
λ1 × 10−6 1.96 (0.29)
µj × 107 1.06 (0.13)
Aggregate Volatility:

σ × 103 5.95 (0.47)
νc 0.86 (0.03)
ϕw × 103 2.07 (0.13)

MLE parameter estimates of the model
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Table 8: Equity Premium Decomposition

Expected Consumption Confidence Aggregate Total
Growth Growth Measure Volatility

No Learning 3.32 1.35 0.00 2.07 6.27
GMM - Full Model 3.19 1.36 1.73 0.17 6.11
GMM - No Jumps 3.52 1.37 0.28 0.21 4.87

Latent Factor MLE 2.36 0.95 2.44 0.02 5.18

Decomposition of equity risk premium into contributions from expected growth, consump-

tion, confidence and aggregate volatility innovations. No Learning refers to standard com-

plete information setup with no learning (perfect confidence). GMM - Full Model and

GMM - No Jumps panels show premium decomposition based on GMM estimation of the

full model with confidence jump risks and model with no jumps in confidence, respectively.

Calculations in Latent Factor MLE are based on the MLE estimation of the model. Equity

premium is annualized, in percent.

Table 9: Implied Volatilities Fit from MLE

K/P Pricing error Explained Variation
RMSE Abs. Mean V σ2 Total

1 month

0.95 0.83 0.17 1.00
1.00 0.70 0.30 1.00
1.05 1.33 1.15 0.52 0.43 0.95

2 months

0.95 0.90 0.75 0.83 0.14 0.97
1.00 0.86 0.68 0.78 0.20 0.98
1.05 0.89 0.75 0.69 0.28 0.96

Implied volatility fit based on the MLE estimation of the model. The left panel shows the

standard deviation of the measurement error in implied volatility, annualized, percent. The

right panel shows the total explained variation in implied variance and the contributions of

confidence measure and aggregate volatility, based on the linear projection.
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Figure 1: Time Series of Implied Volatility
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Top panel depicts the implied volatility of at-the-money, short-term options (time to expi-

ration of 1 month and moneyness closest to K/P = 1). Second panel plots the difference

between the implied volatility of out-of-the-money and at-the-money short-term put options

(moneyness of 0.95 and 1, respectively and maturity of 1 month). Monthly observations

from January 1996 to June 2007.

Figure 2: Confidence Measure
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Confidence measure based on forecasts of next-quarter real GDP, annualized in percent.
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Figure 3: Implied Volatility Smile
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Implied volatility smile based on the GMM estimations of the full model (solid line) and

model with no jumps (dashed line). Data (circles) are based on quarterly observations from

January 1996 to June 2007. Top and bottom panel refer to option contracts expiring in 1

and 2 months, respectively.
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Figure 4: Unconditional Distribution of Returns
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Unconditional distribution of excess returns based on the GMM estimations of the full

model (solid line) and model with no jumps (dashed line). Return data (circles) is from

January 1996 to June 2007.

Figure 5: QQ Plot of Return Distribution
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Plot of quantiles of unconditional excess return distribution in the data versus full model

(left panel) and model with no confidence jumps (right panel), based on the GMM estima-

tion. Return data is from January 1996 to June 2007.
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Figure 6: Model-Implied Confidence Measure and Consumption Volatility
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Times-series of implied confidence measure (top panel) and aggregate volatility (bottom

panel). Monthly data from January 1996 to June 2007.

Figure 7: Model-Implied Expected Consumption
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Times-series of expected consumption growth (solid line) and realized monthly consumption

(dashed line). Monthly data from January 1996 to June 2007.

51



Figure 8: Equity Risk Premium
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Times-series of total equity risk premium (solid line) and the premia for expected growth

(dashed line) and confidence risks (dash-dotted line) implied from the MLE estimation of

the model. Monthly data from January 1996 to June 2007.
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Figure 9: Option-Implied Volatility Smile
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