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Abstract

This paper analyzes the asset pricing implications of commonly-used portfolio manage-
ment contracts linking the compensation of fund managers to the excess return of the
managed portfolio over a benchmark portfolio. The contract parameters, the extent of
delegation and equilibrium prices are all determined endogenously within the model we
consider. Symmetric (“fulcrum”) performance fees distort the allocation of managed
portfolios in a way that induces a significant and unambiguous positive effect on the
prices of the assets included in the benchmark and a negative effect on the Sharpe
ratios. Asymmetric performance fees have more complex effects on equilibrium prices
and Sharpe ratios, with the signs of these effects fluctuating stochastically over time in
response to variations in the funds’ excess performance.
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1 Introduction

In modern economies, a significant share of financial wealth is delegated to professional
portfolio managers rather than managed directly by the owners, creating an agency rela-
tionship. In the U.S., as of 2004, mutual funds managed assets in excess of $8 trillion, hedge
funds managed about $1 trillion and pension funds more than $12 trillion. In other indus-
trialized countries, the percentage of financial assets managed through portfolio managers
is even larger than in the U.S. (see, e.g., Bank for International Settlements (2003)).

While the theoretical literature on optimal compensation of portfolio managers in dy-
namic settings points to contracts that are likely to have very complicated path depen-
dencies,1 the industry practice seems to favor relatively simple compensation schemes that
typically include a component that depends linearly on the value of the managed assets
plus a component that is linearly or non-linearly related to the excess performance of the
managed portfolio over a benchmark.

In 1970, the U.S. Congress amended the Investment Advisers Act of 1940 so as to allow
contracts with registered investment companies to include performance-based compensa-
tion, provided that this compensation is of the “fulcrum” type, that is, provided that it
includes penalties for underperforming the chosen benchmark that are symmetric to the
bonuses for exceeding it. In 1985, the SEC approved the use of performance-based fees in
contracts in which the client has either at least $500,000 under management or a net worth
of at least $1 million. Performance-based fees were also approved by the Department of
Labor in August 1986 for ERISA-governed pension funds. As of 2004, 50% of U.S. cor-
porate pension funds with assets above $5 billion, 35% of all U.S. pension funds and 9%
of all U.S. mutual funds used performance-based fees.2 Furthermore, Brown, Harlow and
Starks (1996), Chevalier and Ellison (1997) and Sirri and Tufano (1998) have documented
that, even when mutual fund managers do not receive explicit incentive fees, an implicit
nonlinear performance-based compensation still arises with periodic proportional fees as a
result of the fact that the net investment flow into mutual funds varies in a convex fashion
as a function of recent performance.3

Given the size of the portfolio management industry, studying the implications of this
delegation and of the fee structures commonly used in the industry on equilibrium asset
prices appears to be a critical task. The importance of models addressing the implications
of agency for asset pricing was emphasized by Allen (2001): “In the standard asset-pricing

1A distinctive feature of the agency problem arising from portfolio management is that the agent’s
actions (the investment strategy and possibly the effort spent acquiring information about securities’ returns)
affect both the drift and the volatility of the relevant state variable (the value of the managed portfolio),
although realistically the drift and the volatility cannot be chosen independently. This makes the problem
significantly more complex than the one considered in the classic paper by Holstrom and Milgrom (1987) and
its extensions. With a couple of exceptions, as noted by Stracca (2006) in his recent survey of the literature
on delegated portfolio managent, “the literature has reached more negative rather than constructive results,
and the search for an optimal contract has proved to be inconclusive even in the most simple settings.”

2The use is concentrated in larger funds: the percentages of assets under management controlled by
mutual funds charging performance fees out of funds managing assets of $0.25-1 billion, $1-5 billion, $5-10
billion, and above $10 billion were 2.8%, 4.4%, 9.2%, and 14.2% respectively (data obtained from Greenwich
Associates and the Investment Company Institute).

3Lynch and Musto (2003) and Berk and Green (2004) provide models in which this convex relationship
between flows and performance arises endogenously.
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paradigm it is assumed investors directly invest their wealth in markets. While this was an
appropriate assumption for the U.S. in the 1950 when individuals directly held over 90% of
corporate equities, or even in 1970 when the figure was 68%, it has become increasingly less
appropriate as time has progressed [. . .] For actively managed funds, the people that make
the ultimate investment decisions are not the owners. If the people making the investment
decisions obtain a high reward when things go well and a limited penalty if they go badly
they will be willing to pay more than the discounted cash flow for an asset. This is the type
of incentive scheme that many financial institutions give to investment managers.”

Existing theoretical research on delegated portfolio management has been primarily
restricted to partial equilibrium settings and has focused on two main areas. The first ex-
amines the agency problem that arises between investors and portfolio managers, studying
how compensation contracts should be structured: it includes Bhattacharya and Pflei-
derer (1985), Starks (1987), Kihlstrom (1988), Stoughton (1993), Heinkel and Stoughton
(1994), Admati and Pfleiderer (1997), Das and Sundaram (2002), Palomino and Prat (2003),
Ou-Yang (2003), Larsen (2005), Liu (2005), Dybvig, Farnsworth and Carpenter (2006),
Cadenillas, Cvitanić and Zapatero (2007) and Cvitanić, Wan and Zhang (2007). The sec-
ond examines how commonly-observed incentive contracts impact managers’ decisions: it
includes Grinblatt and Titman (1989), Roll (1992), Carpenter (2000), Chen and Pennac-
chi (2005), Hugonnier and Kaniel (2006) and Basak, Pavlova and Shapiro (2007).

We complement this literature by considering a different problem. As in the literature
on optimal behavior of portfolio managers, we take the parametric class of contracts as
exogenously given, motivated by commonly observed fee structures. However, we carry the
analysis beyond partial equilibrium by studying how the behavior of portfolio managers
affects equilibrium prices when the extent of portfolio delegation and the parameters of the
management contract are all determined endogenously.

A first step in studying the implications of delegated portfolio management on asset
returns was made by Brennan (1993), who considered a static mean-variance economy with
two types of investors: individual investors (assumed to be standard mean-variance opti-
mizers) and “agency investors” (assumed to be concerned with the mean and the variance
of the difference between the return on their portfolio and the return on a benchmark
portfolio). Equilibrium expected returns were shown to be characterized by a two-factor
model, with the two factors being the market and the benchmark portfolio. Closely-related
mean-variance models have appeared in Gómez and Zapatero (2003) and Cornell and Roll
(2005).4

To our knowledge, the only general equilibrium analyses of portfolio delegation in dy-
namic settings are in two recent papers by Kapur and Timmermann (2005) and Arora, Ju
and Ou-Yang (2006). Kapur and Timmermann consider a restricted version of our model
with mean-variance preferences, normal returns and fulcrum performance fees, while Arora,
Ju and Ou-Yang assume CARA utilities and normal dividends and do not endogenize the
extent of portfolio delegation: as a result of these assumptions, fulcrum performance fees
are optimal in their model.5 More importantly, both papers consider settings with a single

4Brennan (1993) found mixed empirical support for the two-factor model over the period 1931–1991,
while Gómez and Zapatero (2003) found stronger support over the period 1983–1997.

5In the model of Kapur and Timmerann, performance fees do not dominate fees depending only on the
terminal value of the assets under managent.
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risky asset. A key shortcoming of models with a single risky asset (or of static models) is
that they are unable to capture the shifting risk incentives of portfolio managers receiving
implicit or explicit performance fees (and hence the impact of these incentives on port-
folio choices and equilibrium prices), as extensively described in both the theoretical and
empirical literature.6

In contrast to the papers mentioned above, we study the asset pricing implications of
delegated portfolio management in the context of a dynamic (continuous-time) model with
multiple risky assets and endogenous portfolio delegation. Specifically, we consider an econ-
omy with a continuum of three types of agents: “active investors”, “fund investors” and
“fund managers”. Active investors, who trade on their own account, choose a dynamic trad-
ing strategy so as to maximize the expected utility of the terminal value of their portfolio.
Fund investors, who implicitly face higher trading or information costs, invest in equities
only through mutual funds: therefore, their investment choices are limited to how much to
delegate to fund managers, with the rest of their portfolio being invested in riskless assets.
Fund managers, who are assumed not to have any private wealth, select a dynamic trading
strategy so as to maximize the expected utility of their compensation.

The compensation contracts we consider are restricted to a parametric structure that
replicates the contracts typically observed in practice, consisting of a combination of the
following components: a flat fee, a proportional fee depending on the total value of the
assets under management, and a performance fee depending in a piecewise-linear manner
on the differential between the return of the managed portfolio and that of a benchmark
portfolio.7

Departing from the traditional formulation of principal-agent problems, we assume that
individual fund investors are unable to make “take it or leave it” contract offers to fund
managers and thus to extract the entire surplus from the agency relation: instead, we assume
that the market for fund investors is competitive, so that individual investors take the fee
structure as given when deciding what fraction of their wealth to delegate.8 Similarly, we
assume competition on the market for portfolio managers. The contract parameters are
selected in our model so that they are constrained Pareto efficient, i.e., so that there is
no other contract within our parametric class that provides both fund investors and fund
managers with higher welfares.

As shown in Section 5, even when fund investors and fund managers have identical pref-
erences, the principle of preference similarity (Ross (1973)) does not apply in our setting
and asymmetric performance contracts Pareto-dominate purely proportional contracts (as
well as fulcrum performance contracts): intuitively, convex performance fees are a way to
incentivise fund managers to select portfolio strategies having higher overall stock alloca-
tions, benefiting fund investors who have direct access to riskless investment opportunities.

6Clearly, in the presence of performance fees, tracking error volatility directly affects the reward of
portfolio managers and this volatility can be dynamically controlled by varying the composition of the
managed portfolio.

7While our framework allows for both “fulcrum” and “asymmetric” performance fees, it does not allow
for “high water mark” fees (occasionally used by hedge funds and discussed by Goetzmann, Ingersoll and
Ross (2003)) in which the benchmark equals the lagged maximum value of the managed portfolio.

8As noted by Das and Sundaram (2002), the existence of regulation, such as the Investment Advisors Act
of 1940, meant to protect fund investors through restrictions on the allowable compensation contracts can
be viewed as tacit recognition that these investors do not dictate the form of the compensation contracts.
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Because of this incentive role of performance fees, the optimal benchmark typically differs
from the market portfolio.9

Portfolio delegation can have a substantial impact on equilibrium prices. With fulcrum
fees, the presence of a penalty for underperforming the benchmark portfolio leads risk-averse
fund managers to be overinvested in the stocks included in the benchmark portfolio and
underinvested in the stocks excluded from this portfolio. The bias of managed portfolios in
favor of the stocks included in the benchmark portfolio results in the equilibrium expected
returns and Sharpe ratios of these stocks being lower than those of comparable stocks not in
the benchmark and in their price/dividend ratios being higher. At the same time, stocks in
the benchmark portfolio tend to have lower equilibrium volatilities than those of comparable
stocks not in the benchmark: this is due to the fact that, as the price of benchmark
stocks starts to rise, the tilt of managed portfolios toward these stocks increases, lowering
their equilibrium price/dividend ratios and hence moderating the price increase. Therefore,
consistent with empirical evidence, our model implies that, if fund managers are mostly
compensated with fulcrum fees, a change in the composition of widely-used benchmark
portfolios (such as the S&P 500 portfolio) should be accompanied by a permanent increase
in the prices and volatilities of the stocks being added to the index and a corresponding
permanent decrease in the prices and volatilities of the stocks being dropped from the
index. With asymmetric performance fees, the signs of these changes become ambiguous,
depending on the current average excess performance of managed portfolios relative to the
benchmark.

The remainder of the paper is organized as follows. The economic setup is described
in Section 2. Section 3 provides a characterization of the optimal investment strategies.
Section 4 focuses on the characterization of equilibria. Section 5 discusses the optimality
of performance contracts in our model. Sections 6 provides a detailed numerical analysis
of equilibrium under asymmetric and fulcrum performance fees. Section 7 concludes. The
Appendix contains all the proofs.

2 The Economy

We consider a continuous-time economy on the finite time span [0, T ], modeled as follows.
Securities. The investment opportunities are represented by a riskless bond and two

risky stocks (or stock portfolios). The bond is a claim to a riskless payoff B > 0. The
interest rate is normalized to zero (i.e., the bond price is normalized to B).

Stock j (j = 1, 2) is a claim to an exogenous liquidation dividend Dj
T at time T , where

Dj
t = Dj

0 +
∫ t

0
µjD(Dj

s, s) ds+
∫ t

0
σjD(Dj

s, s) dw
j
s, (1)

for some functions µjD, σjD satisfying appropriate Lipschitz and growth conditions and two
Brownian motions wj with instantaneous correlation coefficient ρ ∈ (−1, 1). Since dividends
are paid only at the terminal date T , without loss off generality we take µjD ≡ 0, so that Dj

t

can be interpreted as the conditional expectation at time t of stock j’s liquidation dividend.

9This is in contrast to the existing mean-variance equilibrium models of portfolio delegation, in which
the optimal benchmark is the market portfolio and performance fees are dominated by linear contracts.
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We let DT = (B,D1
T , D

2
T ) denote the vector of terminal asset payoffs and denote by

St = (B,S1
t , S

2
t ) the vector of asset prices at time t. The aggregate supply of each asset is

normalized to one share and we denote by θ̄ = (1, 1, 1) the aggregate supply vector.
Security trading takes place continuously. A dynamic trading strategy is a three-

dimensional process θ, specifying the number of shares held of each of the traded secu-
rities, such that the corresponding wealth process W = θ · S satisfies the dynamic budget
constraint

Wt = W0 +
∫ t

0
θs · dSs (2)

and Wt ≥ 0 for all t ∈ [0, T ]. We denote by Θ the set of dynamic trading strategies.10

Agents. The economy is populated by three types of agents: active investors, fund
investors and fund managers. We assume that there is a continuum of agents of each type
and denote by λ ∈ (0, 1) the mass of fund investors in the economy and by 1− λ the mass
of active investors. Without loss of generality, we assume that the mass of fund managers
also equals λ: this is merely a normalization, since the aggregate wealth managed by fund
managers is determined endogenously by the portfolio choices of fund investors, as described
later in this section.

Active investors receive an endowment of one share of each traded asset at time 0, so
that their initial wealth equals W a

0 = θ̄ ·S0. They choose a dynamic trading strategy θa ∈ Θ
so as to maximize the expected utility

E[ua(W a
T )]

of the terminal value of their portfolio W a
T = θaT · ST , taking equilibrium prices as given.

Fund investors also receive an endowment of one share of each asset, so that their initial
wealth is W f

0 = W a
0 = θ̄ · S0. However, because of higher trading or information costs

(which we do not model explicitly), they do not hold stocks directly and instead delegate
the choice of a dynamic trading strategy to fund managers: at time 0 they simply choose
to invest an amount θf0B ≤ W f

0 in the riskless asset and invest the rest of their wealth in
mutual funds.11

Fund managers receive an initial endowmentWm
0 = W f

0 −θ
f
0B from fund investors, which

they then manage on the fund investors’ behalf by selecting a dynamic trading strategy
θm ∈ Θ. For this, they are compensated at time T with a management fee FT which is a
function of the terminal value of the fund portfolio, Wm

T = θmT · ST , and of the terminal
value of a given benchmark portfolio W b

T = θbT ·ST , where θb ∈ Θ.12 Specifically, we assume

10Implicit in the definition of Θ is the requirement that the stochastic integral in equation (2) is well
defined.

11Because fund investors in our model do not trade dynamically and are not assumed to know the return
distribution of the individual assets (only knowledge of the the return distribution of the fund they invest in
being assumed), their behavior could be rationalized with a combination of trading and information costs.
Of course, in reality there is a wide range of investors with different trading and information costs: the
assumption that investors are either “active”, with full information and costless access to stock trading,
or “passive”, requiring the intermediation of mutual funds to obtain exposure to risky assets, is clearly a
simplifying one and is made for tractability.

12Letting the benchmark to be the terminal value of a dynamic (not necessarily buy-and-hold) trading
strategy allows for the possibility of changes in the composition of the benchmark portfolio.
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that

FT = F (Wm
T ,W

b
T )

= α+ βWm
T − γ1W

m
0

(
Wm
T

Wm
0

− W b
T

W b
0

)−
+ γ2W

m
0

(
Wm
T

Wm
0

− W b
T

W b
0

)+

(3)

= α+ βWm
T − γ1(Wm

T − δW b
T )− + γ2(Wm

T − δW b
T )+,

where α, β, γ1 and γ2 are given parameters, δ = Wm
0 /W b

0 and x+ = max(0, x) (respectively,
x− = max(0,−x)) denotes the positive part (respectively, the negative part) of the real
number x.

Thus, the fund managers’ compensation at time T can consist of four components: a
load fee α which is independent of the managers’ performance, a proportional fee βWm

T

which depends on the terminal value of the fund portfolio, a performance bonus γ2(Wm
T −

δW b
T )+ which depends on the performance of the managed portfolio relative to that of the

benchmark portfolio, and an underperformance penalty γ1(Wm
T − δW b

T )−. We assume that
α ≥ 0, β ≥ 0, γ2 ≥ γ1 ≥ 0 and β+γ2 > 0, so that the fund managers’ compensation F is an
increasing and convex function of the terminal value of the fund portfolio and a decreasing
function of the terminal value of the benchmark portfolio.13 In addition, we assume that
α+ β > 0, so that the fund managers always have at least one feasible investment strategy
(buying the benchmark portfolio) that yields a strictly positive fee.

When γ1 = γ2, the performance-related component of the managers’ compensation is
linear in the excess return of the fund over the benchmark. This type of fees are known
as fulcrum performance fees. As noted in the Introduction, the 1970 Amendment of the
Investment Advisers Act of 1940 restricts mutual funds’ performance fees to be of the
fulcrum type. Hedge funds’ performance fees are not subject to the same restriction, and
for these funds asymmetric performance fees with γ1 = 0 and γ2 > 0 are the norm.

Fund managers are assumed not to have any private wealth. They therefore act so as
to maximize the expected utility

E[um(F (Wm
T ,W

b
T ))]

of their management fees, while taking equilibrium prices and the investment choices of
fund investors as given. Similarly, fund investors select the amount of portfolio delegation
W f

0 − θ
f
0B so as to maximize the expected utility of their terminal wealth, while taking the

equilibrium net-of-fees rate of return on mutual funds

RT =
Wm
T − F (Wm

T ,W
b
T )

Wm
0

, (4)

as given, subject to the constraint W f
0 − θ

f
0B ≥ 0.

We assume throughout that

ua(W ) = um(W ) = uf (W ) = u(W ) =
W 1−c

1− c
13We do not necessarily require that β+γ2 < 1, i.e., that ∂

∂W mF (Wm,W b) < 1. In order to guarantee the
existence of an equilibrium, we will however later impose a condition that implies that the optimal terminal
wealth of fund investors is increasing in aggregate wealth (see equation (23)).
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for some c > 0, c 6= 1.14

Equilibrium. An equilibrium for the above economy is a price process S for the traded
assets and a set {θa, θm, θf0} ∈ Θ×Θ× IR of trading strategies such that:

1. the strategy θa is optimal for the active investors given the equilibrium stock prices;

2. the strategy θm is optimal for the fund managers given the equilibrium stock prices and
the fund investors’ choice of θf0 ;

3. the choice θf0 is optimal for the fund investors given the equilibrium stock prices and the
equilibrium net-of-fees funds’ return;

4. the security markets clear:

(1− λ)θat + λθmt + λ(θf0 , 0, 0) = θ̄ for all t ∈ [0, T ]. (5)

3 Optimal Investment Strategies

Since active investors and fund managers face a dynamically complete market, we use the
martingale approach of Cox and Huang (1989) to characterize their optimal investment
strategies.

3.1 Active Investors

Given the equilibrium state-price density πT at time T , the optimal investment problem for
the active investors amounts to the choice of a non-negative random variable W a

T (repre-
senting the terminal value of their portfolios) solving the static problem

max
WT≥0

E
[
u(WT )

]
s.t. E

[
πTWT

]
≤W a

0 .

This implies

W a
T = ga(ψaπT ), (6)

where ga(y) = y−
1
c denotes the inverse marginal utility function and ψa is a Lagrangian

multiplier solving

E
[
πT g

a(ψaπT )
]

= W a
0 = θ̄ · S0. (7)

14If γ1 > 0, the fee specified in equation (3) can be negative for sufficiently low values of W . However,
given our assumption of infinite marginal utility at zero wealth, the fund managers will always optimally act
so as to ensure the collection of a strictly positive fee. Thus, exactly the same equilibrium would be obtained
if the fee schedule specified above were replaced with the nonnegative fee schedule F ′(W,S) = F (W,S)+.

7



3.2 Fund Managers

Given the equilibrium state-price density πT and the allocation to mutual funds by fund
investors Wm

0 = θ̄·S0−θf0B, the optimal investment problem for the fund managers amounts
to the choice of a non-negative random variable Wm

T (representing the terminal value of the
funds’ portfolios) solving the static problem

max
WT≥0

E
[
u
(
F (WT ,W

b
T )
)]

s.t. E
[
πTWT

]
≤Wm

0 .
(8)

The added complexity in this case arises from the fact that, unless γ1 = γ2, the fund man-
agers’ indirect utility function over the terminal portfolio value, u(F (W,W b)) is neither
concave nor differentiable in its first argument at the point W = δW b (the critical value
at which the performance of the fund’s portfolio equals that of the benchmark): see Fig-
ure 1. This is a consequence of the convexity and lack of differentiability of the fee function
F (W,W b). Therefore, the optimal choice Wm

T is not necessarily unique and it does not
necessarily satisfy the usual first-order condition. Moreover, the non-negativity constraint
can be binding in this case (if α > 0).

On the other hand, the fact that managers have infinite marginal utility at zero wealth
implies that the optimal investment strategy must guarantee that a strictly positive fee is
collected at time T , i.e., that Wm

T > W (W b
T ), where

W (W b) = inf
{
W ≥ 0 : F (W,W b) ≥ 0

}
=

{(
γ1δW b−α
β+γ1

)+
if β + γ1 6= 0,

0 otherwise.
(9)

Since for any W b > 0 the function u(F (·,W b)) is piecewise concave and piecewise continu-
ously differentiable on the interval [W (W b),∞), we can follow Shapley and Shubik (1965),
Aumann and Perles (1965) and Carpenter (2000) in constructing the concavification v(·,W b)
of u(F (·,W b)) (that is, the smallest concave function v satisfying v(W,W b) ≥ u(F (W,W b))
for all W ≥ W (W b)) and then verifying that the solutions of the non-concave problem (8)
can be derived from those of the concave problem

max
WT≥0

E
[
v(WT ,W

b
T )
]

s.t. E
[
πTWT

]
≤Wm

0 .
(10)

Lemmas 1 and 2 below provide a characterization of the concavifying function v while
Proposition 1 and Theorem 1 identify the fund managers’ optimal investment policies.

Lemma 1 Suppose that γ1 6= γ2 and W b > 0. Then there exist unique numbers W1(W b)
and W2(W b) with

W (W b) ≤W1(W b) < δW b < W2(W b)

such that
u(F (W1(W b),W b)) = u(F (W2(W b),W b))

+ u′(F (W2(W b),W b))(β + γ2)(W1(W b)−W2(W b))
(11)
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Figure 1: The graph plots three different possible cases for the fund manager’s utility function
u(F (W,W b)) (lighter solid lines) and the corresponding concavified utility function v(W,W b) (heav-
ier solid lines). In panel (a) β+γ1 = 0. In panel (b) β+γ1 > 0 and W1 = 0. In panel (c) β+γ1 > 0
and W1 > 0.
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and
u′(F (W1(W b),W b))(β + γ1) ≤ u′(F (W2(W b),W b))(β + γ2), (12)

with equality if W1(W b) > 0. In particular, letting η =
(
β+γ2
β+γ1

)1− 1
c ,

W1(W b) =

(1− η
c

) α−γ1δW b

β+γ1
− η

(
1− 1

c

)
α−γ2δW b

β+γ2

η − 1

+

(13)

if β + γ1 6= 0 and W1(W b) = 0 otherwise. Moreover,

W2(W b) = W1(W b) +
1
c

(
α− γ1δW

b

β + γ1
− α− γ2δW

b

β + γ2

)

if W1(W b) > 0.

Lemma 2 Let W1(W b) and W2(W b) be as in Lemma 1 if γ1 6= γ2 and let W1(W b) =
W2(W b) = δW b otherwise. Also, let

A(W b) = [W (W b),W1(W b)] ∪ [W2(W b),∞),

Then the function

v(W,W b) =


u(F (W,W b)) if Wm ∈ A(W b),

u(F (W1(W b),W b))
+ u′(F (W2(W b),W b))(β + γ2)(W −W1(W b))

otherwise

is the smallest concave function on [W (W b),∞) satisfying

v(W,W b) ≥ u(F (W,W b)) ∀W ∈ [W,∞).

Moreover, v(W,W b) is continuously differentiable in W .

The construction of the concavification v(W,W b) of u(F (W,W b)) is illustrated in Fig-
ure 1. Since u(F (W,W b)) is not concave at W = δW b when γ1 6= γ2, the idea is to replace
u(F (W,W b)) with a linear function over an interval (W1(W b),W2(W b)) bracketing δW b

(a linear function is the smallest concave function between two points). The two points
W1(W b) and W2(W b) are uniquely determined by the requirement that the resulting con-
cavified function v(W,W b) be continuously differentiable and coincide with u(F (W,W b))
at the endpoints of the interval. When β + γ1 = 0, this requirement necessarily implies
W1(W b) = 0 (as shown in panel (a) of Figure 1): this is the case studied by Carpenter
(2000). On the other hand, when β + γ1 > 0, both the case W1(W b) = 0 and the case
W1(W b) > 0 are possible (as illustrated in panels (b) and (c) of Figure 1), depending on
the sign of the expression in equation (13).

Letting
v−1
W (y,W b) =

{
W ∈ [W (W b),∞) : vW (W,W b) = y

}
be the inverse marginal utility correspondence of the concavified utility v, we then obtain
the following characterization of the fund managers’ optimal investment policies.

10



Proposition 1 A policy Wm
T is optimal for the fund managers if and only if: (i) it satis-

fies the budget constraint in equation (8) as an equality and (ii) there exists a Lagrangian
multiplier ψm > 0 such that

Wm
T ∈ v−1

W (ψmπT ,W b
T ) ∩A(W b

T ) if Wm
T > 0, (14)

and
vW (Wm

T ,W
b
T ) ≤ ψmπT if Wm

T = 0.

To understand the characterization of optimal policies in Proposition 1, consider first
the concavified problem in equation (10). The standard Kuhn-Tucker conditions for this
problem are the same as the conditions of Proposition 1, but with equation (14) replaced
by

Wm
T ∈ v−1

W (ψmπT ,W b
T ) if Wm

T > 0. (15)

It follows immediately from Lemma 2 that vW (W,W b) is strictly decreasing for W ∈ A(W b)
and constant and equal to

vW (W2(W b),W b) = u′(F (W2(W b),W b))(β + γ2)

for W ∈ (W1(W b),W2(W b)). Thus, the sets v−1
W (y,W b) are singletons unless

y = vW (W2(W b),W b),

in which case v−1
W (y,W b) = [W1(W b),W2(W b)]. Equation (15) then implies that opti-

mal policies for the concavified problem (10) are uniquely defined for values of the nor-
malized state-price density ψmπT different from vW (W2(W b

T ),W b
T ), but not for ψmπT =

vW (W2(W b
T ),W b

T ): at this critical value of the normalized state-price density, any wealth
level between W1(W b

T ) and W2(W b
T ) can be chosen as part of an optimal policy (subject of

course to an appropriate adjustment of the Lagrangian multiplier ψm), reflecting the fact
that v(·,W b

T ) is linear over this range.
Consider now policies satisfying the stronger condition in equation (14). It can be easily

verified from the definitions that

v−1
W (y,W b) ∩A = v−1

W (y,W b) for y 6= vW (W2(W b),W b)

and
v−1
W (y,W b) ∩A =

{
W1(W b),W2(W b)

}
for y = vW (W2(W b),W b).

Thus, the policies satisfying the conditions of Proposition 1 are a subset of the policies that
are optimal for the concavified problem in equation (10): when the normalized state-price
density ψmπT equals vW (W2(W b

T ),W b
T ), they are restricted to take either the value W1(W b

T )
or the value W2(W b

T ), rather than any value in the interval [W1(W b
T ),W2(W b

T )]. It is easy to
see why any such policy Wm

T must be optimal in the original problem in equation (8): since
Wm
T is optimal for the concavified problem in equation (10) and takes values in A(W b

T ), it
follows that

E[u(F (WT ,W
b
T ))] ≤ E[v(WT ,W

b
T )] ≤ E[v(Wm

T ,W
b
T )] = E[u(F (Wm

T ,W
b
T ))]

11



for any feasible policy WT , where the first inequality follows from the fact that

u(F (WT ,W
b
T )) ≤ v(WT ,W

b
T ),

the second inequality follows from the fact that Wm
T is optimal for the problem in equa-

tion (10), and the last equality follows from the fact that u(F (W,W b
T )) = v(W,W b

T ) for
W ∈ A(W b

T ).
Since managers are indifferent between selecting W1(W b

T ) or W2(W b
T ) as the terminal

value of the fund’s portfolio when the scaled state-price density equals vW (W2(W b
T ),W b

T ),
we allow them to independently randomize between W1(W b

T ) and W2(W b
T ) in this case: in

other words, we allow, for this particular value of the scaled state-price density, the optimal
policy to be a lottery that selects W1(W b

T ) with some probability p ∈ [0, 1] and W2(W b
T )

with probability (1− p), and denote such a lottery by

p ◦W1(W b
T ) + (1− p) ◦W2(W b

T ).

Of course, p can depend on the information available to the agents at time T , i.e., be a
random variable. Using the expression for v in Lemma 2 and Proposition 1, we then obtain
the following result.

Theorem 1 Let PT be a random variable taking values in [0, 1] and let

gm(y,W b, p) =



y−
1
c

(β+γ2)1−
1
c
− α−γ2δW b

β+γ2
> W2(W b) if y < vW (W2(W b),W b),

p ◦W1(W b) + (1− p) ◦W2(W b) if y = vW (W2(W b),W b),(
y−

1
c

(β+γ1)1−
1
c
− α−γ1δW b

β+γ1

)+

< W1(W b) if y > vW (W2(W b),W b)
and β + γ1 6= 0,

0 otherwise.

(16)

Then the policy
Wm
T = gm(ψmπT ,W b

T , PT ), (17)

where ψm is a Lagrangian multiplier solving

E
[
πT g

m(ψmπT ,W b
T , PT )

]
= Wm

0 = θ̄ · S0 − θf0B,

is optimal for the fund managers.

Given the existence of a continuum of mutual funds,15 the aggregate terminal value of
the funds’ portfolios equals

λgm(ψmπT ,W b
T , PT ),

15Since the fund managers’ indirect utility functions are non-convex, our assumption of a continuum of
mutual funds is critical to ensure the convexity of the aggregate preferred sets and hence the existence of
an equilibrium. Aumann (1966) was the first to prove that, with a continuum of agents, the existence of an
equilibrium could be assured even without the usual assumption of convex preferences.

12



where

gm(ψmπT ,W b
T , PT ) =

{
gm(ψmπT ,W b

T , PT ) if y 6= vW (W2(W b
T ),W b

T )

PT W1(W b
T ) + (1− PT )W2(W b

T ) otherwise.

As it will become clear in the next section, this in turn implies that the randomizing
probabilities P are uniquely determined in equilibrium by market clearing.

3.3 Fund Investors

Fund investors select the allocation θf0 to bonds so as to maximize the expected utility
of their terminal wealth, while taking the equilibrium net-of-fees rate of return on mutual
funds RT (defined in equation (4)) as given. That is, they solve

max
θ0∈IR

E
[
uf
(
θ0B + (W f

0 − θ0B)RT
)]

s.t. θ0B ≤W f
0 .

Since this is a strictly concave static maximization problem, the optimal choice θf0 satisfies
the standard Kuhn-Tucker conditions

E
[
(θf0B + (W f

0 − θ
f
0B)RT )−c(1−RT )

]
− ψf = 0

ψf (W f
0 − θ

f
0B) = 0

(18)

for some Lagrangian multiplier ψf ≥ 0.

4 Equilibrium: Characterization

In equilibrium the terminal stock prices equal the liquidation dividends, i.e., ST = DT .
Multiplying the market-clearing condition (5) at time T by DT and using equations (6) and
(17), it then follows that the equilibrium state-price density πT must solve

(1− λ)ga(ψaπT ) + λgm(ψmπT ,W b
T , PT ) + λθf0B = θ̄ ·DT . (19)

This shows that the equilibrium the state-price density πT and the randomizing probabilities
PT must be deterministic functions of DT and W b

T . Letting

Π(DT ,W
b
T ) = ψmπT

and
ϕ = (ψa/ψm)−

1
c ,

substituting in (19), recalling the definitions of ga and gm and rearranging gives

θ̄ ·DT − λθf0B − (1− λ)ϕΠ(DT ,W
b
T )−

1
c

13



=



λ

(
Π(DT ,W

b
T )−

1
c

(β+γ2)1−
1
c
− α−γ2δW b

T
β+γ2

)
if Π(DT ,W

b
T ) < vW (W2(W b

T ),W b
T ),

λ
(
PT W1(W b

T ) + (1− PT )W2(W b
T )
)

if Π(DT ,W
b
T ) = vW (W2(W b

T ),W b
T ),

λ

(
Π(DT ,W

b
T )−

1
c

(β+γ1)1−
1
c
− α−γ1δW b

T
β+γ1

)+ if Π(DT ,W
b
T ) > vW (W2(W b

T ),W b
T )

and β + γ1 6= 0,

0 otherwise.

(20)

Solving the above equation shows that the scaled state-price density Π(DT ,W
b
T ) can take

one of four different functional forms (corresponding to the four different cases on the right-
hand side of equation (20)),

Π1(DT ,W
b
T ) =

(
(β + γ2)(θ̄ ·DT − λθf0B) + λ(α− γ2δW

b
T )

λ(β + γ2)
1
c + (1− λ)ϕ(β + γ2)

)−c
,

Π2(DT ,W
b
T ) = vW (W2(W b

T ),W b
T ) = F (W2(W b

T ),W b
T )−c(β + γ2),

Π3(DT ,W
b
T ) =

(
(β + γ1)(θ̄ ·DT − λθf0B) + λ(α− γ1δW

b
T )

λ(β + γ1)
1
c + (1− λ)ϕ(β + γ1)

)−c
,

Π4(DT ,W
b
T ) =

(
θ̄ ·DT − λθf0B

(1− λ)ϕ

)−c
.

It then follows from the inequality conditions in equation (20) and the fact that equation
(16) implies

gm(Π1(DT ,W
b
T ),W b

T , PT ) > W2(W b
T ),

W1(W b
T ) ≤ gm(Π2(DT ,W

b
T ),W b

T , PT ) ≤W2(W b
T ),

0 < gm(Π3(DT ,W
b
T ),W b

T , PT ) < W1(W b
T )

that the scaled equilibrium state-price density is given by:

Π(DT ,W
b
T ) =



Π1(DT ,W
b
T ) if Π1(DT ,W

b
T ) < Π2(DT ,W

b
T ),

max[Π2(DT ,W
b
T ),

Π3(DT ,W
b
T ),Π4(DT ,W

b
T )]

if Π1(DT ,W
b
T ) ≥ Π2(DT ,W

b
T ),

W1(W b) > 0 and β + γ1 6= 0,

max[Π2(DT ,W
b
T ),Π4(DT ,W

b
T )] otherwise.

(21)

In addition, the equality in equation (20) corresponding to the case

Π(DT ,W
b
T ) = vW (W2(W b

T ),W b
T ) = Π2(DT ,W

b
T )

can be solved for the market-clearing randomizing probabilities PT , yielding

PT = P (DT ,W
b
T ) =

λW2(W b
T )− θ̄ ·DT + λθf0B + (1− λ)ϕΠ2(DT ,W

b
T )−

1
c

λ(W2(W b
T )−W1(W b

T ))
. (22)
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Equation (21) provides an explicit expression for the scaled state-price density Π(DT ,W
b
T )

in terms of three yet-undetermined constants, δ, θf0 and ϕ. In turn, δ = Wm
0 /W b

0 is a known
function of θf0 and the initial stock prices S1

0 and S2
0 .

It follows from the shape of the state-price density that the optimal consumption poli-
cies are piecewise linear functions of the liquidation dividends. In order to guarantee the
existence of an equilibrium, we require that the coefficients of these functions be positive,
i.e., that increases in aggregate consumption be shared among the agents. Assuming that
θ̄b ≥ 0 (i.e., that the benchmark portfolio does not include short positions), this amounts
to the following parameter restriction:

(β + γ2)θ̄j − λγ2δθ̄
bj > 0 for j = 1, 2, (23)

where θ̄j (respectively, θ̄bj) denotes the number of shares of stock j in the market (respec-
tively, in the benchmark) portfolio.

The following theorem completes the characterization of equilibria by providing neces-
sary and sufficient conditions for existence, together with an explicit procedure to determine
the unknown constants θf0 , ϕ, S1

0 and S2
0 .

Theorem 2 Assume that the condition (23) is satisfied. Then an equilibrium exists if and
only if there exist constants (θf0 , ψ

f , ϕ, S1
0 , S

2
0) with θf0 ≤ (B + S1

0 + S2
0)/B and ψf ≥ 0

solving the system of equations

E
[
(θf0B + (B + S1

0 + S2
0 − θ

f
0B)RT )−c(1−RT )

]
− ψf = 0

ψf (B + S1
0 + S2

0 − θ
f
0B) = 0

E
[
Π(DT ,W

b
T )(ϕΠ(DT ,W

b
T )−

1
c − θ̄ ·DT )

]
= 0

E
[
Π(DT ,W

b
T )(D1

T − S1
0)
]

= 0

E
[
Π(DT ,W

b
T )(D2

T − S2
0)
]

= 0

(24)

where

RT = R(DT ,W
b
T )

=
gm(Π(DT ,W

b
T ),W b

T , P (DT ,W
b
T ))− F (gmP (Π(DT ,W

b
T ),W b

T , P (DT ,W
b
T )),W b

T )

B + S1
0 + S2

0 − θ
f
0B

is the equilibrium net return on mutual funds defined in (4) and gmP , Π and P are the
functions defined in (16), (21) and (22), respectively.

Given a solution (θf0 , ψ
f , ϕ, S1

0 , S
2
0), the equilibrium state-price density is given by

πt = Et[Π(DT ,W
b
T )]/ψm,

the equilibrium stock price processes are given by

Sjt = Et[πTD
j
T ]/πt (j = 1, 2), (25)
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the optimal investment policy for the fund investors is given by θf0 and the optimal wealth
processes for the active investors and fund managers are given by

W a
t = Et[πT ga(ψaπT )]/πt (26)

and
Wm
t = Et[πT gm(Π(DT ,W

b
T ),W b

T , P (DT ,W
b
T ))]/πt (27)

respectively, where ψa = ψmϕ−c and ψm = E[Π(DT ,W
b
T )].

The five equations in (24) can be easily identified, respectively, with the first-order
conditions for the fund investors in equation (18), the budget constraint for the active
investors in equation (7) and the two Euler equations that define the initial stock prices.

The next corollary provides an explicit solution for the equilibrium trading strategies in
the case in which the performance fees are of the fulcrum type (γ2 = γ1) and there are no
load fees.

Corollary 1 If γ1 = γ2 and F (0,W b) ≤ 0 for all W b ≥ 0, then in equilibrium the fund
managers’ portfolio consists of a combination of a long buy-and-hold position in the market
portfolio, a long buy-and-hold position in the benchmark portfolio and a short buy-and-hold
position in the riskless asset:

θmt =
(β + γ2)

1
c θ̄ + ϕ(1− λ)γ2δθ̄

b
t −

(
λ(β + γ2)

1
c θf0 + ϕ(1− λ) αB

)
θ̄1

λ(β + γ2)
1
c + ϕ(1− λ)(β + γ2)

(28)

for all t ∈ [0, T ], where θ̄1 = (1, 0, 0). Similarly, the active investors’ portfolio consists of
a long buy-and-hold position in the market portfolio, a short buy-and-hold position in the
benchmark portfolio and a buy-and-hold position in the riskless asset (which can be either
long or short):

θat = ϕ
(β + γ2)θ̄ − λγ2δθ̄

b
t − λ

(
(β + γ2)θf0 − α

B

)
θ̄1

λ(β + γ2)
1
c + ϕ(1− λ)(β + γ2)

. (29)

In addition, if γ1 6= 0 and D1
T and D2

T are identically distributed conditional on the informa-
tion at time t, then S1

t > S2
t (respectively, S1

t < S2
t ) if and only if the benchmark portfolio

is certain to hold more (respectively, less) shares of stock 1 than of stock 2 at time T .

The above corollary shows that, if performance fees are of the fulcrum type and there
are no load fees (or, more generally, if α ≤ γ1δW

b
T ), then in equilibrium the fund managers

hold more (respectively, fewer) shares of stock 1 than of stock 2 at time t if and only if they
are benchmarked to a portfolio holding more (respectively, fewer) shares of stock 1 than of
stock 2 at time t. This tilt in the fund portfolios toward the stock more heavily weighted in
the benchmark portfolio results in the equilibrium price of this stock being higher, ceteris
paribus, than the equilibrium price of the other stock. Moreover, if the benchmark portfolio
is buy-and-hold, then the equilibrium trading strategies are also buy-and-hold. Thus, in our
model, performance fees of the fulcrum type do not increase the fund portfolios’ turnover.16

16Clearly, this buy-and-hold result is due to the fact that fund managers and active investors are assumed
to have the same utility function.
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It can be easily verified that for this case the parameter restrictions in equation (23) are
equivalent to the requirement that the fixed shares holdings in equations (28) and (29) are
strictly positive.

5 Optimality of Performance Contracts

While our objective in this paper is to understand the impact of commonly observed per-
formance contracts on equilibrium returns, we briefly address in this section the rationale
for performance contracts within our model.

Given that in our model investors and managers have utilities with linear risk tolerance
and identical cautiousness, the principle of preference similarity of Ross (1973) would seem
to imply that a linear fee should be optimal. Specifically, Ross showed that, under the stated
assumption on preferences, a linear fee achieves first best. However, two distinctive features
of our model are that fund investors have direct access to riskless investment opportunities
and that they take the fee structure as given when formulating their investment decisions:
this is in contrast to standard models of delegated portfolio management, in which the
principal is assumed to delegate the management of his entire portfolio and to be able to
dictate the fee structure (subject only to the managers’ participation constraint).

To see why these features negate the optimality of a linear fee, recall from Ross (1973)
or Cadenillas, Cvitanić and Zapatero (2007) that the first-order condition for a linear fee
F (W ) = α+ βW to achieve first best is

u′(θf0B +Wm
T − F (Wm

T )) = ω−c u′(F (Wm
T ), (30)

where ω is a positive constant that depends on the managers’ reservation utility: equa-
tion (30) states that the fee should make the marginal utility for the principal proportional
to that of the manager, ensuring Pareto-optimal risk sharing. This condition is satisfied if
and only if α = θf0B/(1 + ω) ≥ 0 and β = 1/(1 + ω) > 0. Thus, in order for a linear fee to
achieve first best, the load component α must depend on the portfolio allocation chosen by
fund investors (in particular, α = 0 if the fund investors delegate their entire portfolios). If
fund investors were able to choose the managers’ compensation contract while committing
to delegating the amount W f

0 − θf0B, this fee would indeed be optimal. However, since
in our model the fund investors choose their portfolio allocation taking the fee as given,
equation (30) being satisfied becomes equivalent to the investors choosing θf0B = α/β ex
post when confronted with a fee F (W ) = α + βW with α ≥ 0 and β > 0. It is immediate
to see that this would not be the case when α = 0, as having θf0 = 0 (that is, delegating
the entire portfolio) is clearly suboptimal if β > 0. More generally, whenever there is some
portfolio delegation (i.e., θf0B < W f

0 ), θf0 satisfies the first-order condition in equation (18),
which can in this case be written as

E
[
u′(θf0B +Wm

T − F (Wm
T ))(Wm

T − F (Wm
T )−Wm

0 )
]

= 0. (31)

Equations (30) and (31) imply that the fund investors choosing ex-post the level of delega-
tion that ensures that a linear fee achieves first best is equivalent to having

E
[
u′(F (Wm

T ))(Wm
T − F (Wm

T )−Wm
0 )
]

= 0. (32)
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However, since v(W,W b) = u(F (W )) and A(W b) = [0,∞) with linear fees, it follows from
equation (14) that βu′(F (Wm

T )) = ψmπT . Substituting in equation (32) and using the fact
that πtWm

t and πt are martingales gives:

E
[
u′(F (Wm

T ))(Wm
T − F (Wm

T )−Wm
0 )
]

= −ψ
m

β
(α+ βWm

0 ) < 0.

Hence, given a linear fee, individual fund investors would not choose ex post the level of
delegation that ensures that a linear fee achieves first best: since individual investors do
not internalize the fact that fees will have to increase if they “underinvest” in mutual funds
in order to continue to guarantee a given certainty equivalent to fund managers, they will
always invest less than the amount needed to achieve efficient risk sharing.17

What types of compensation contracts could dominate linear fees? Since investors do
not pay management fees on bonds they hold directly, but do pay fees on bonds they hold
indirectly through mutual funds, it is in their best interest to select compensation contracts
that induce portfolio managers to hold portfolios with high equity exposures. Contracts
with convex payoffs provide a possible way to incentivise managers to increase the overall
equity exposure, although, as noted by Ross (2004), this incentive does not necessarily hold
over the entire state space.18

Figure 2 plots the Pareto frontiers for purely proportional contracts and for contracts
including asymmetric or load fees.19 For low managers’ reservation utilities neither asym-
metric performance fees nor load fees generate significant Pareto improvements over purely
proportional contracts: this is consistent with the above discussion, as when fees are low
fund investors optimally choose to delegate almost their entire portfolio and the “under-
investment” relative to the amount ensuring efficient risk sharing with proportional fees is
minimal. However, for high managers’ reservation utilities both load fees and asymmetric
performance fees Pareto-dominate purely proportional contracts, with performance fees in
turn dominating load fees.20,21 This is again what could be expected from the above dis-
cussion: when fund investors hold a significant amount of bonds in their private accounts,
linear contracts with positive load fees dominate purely proportional contracts. On the
other hand, any positive load fee α is, given the ex post allocation chosen by fund in-
vestors, always higher that what would be needed to ensure optimal risk sharing, resulting

17For simplicity, in the sequel we will refer to the utility (or certainty equivalent) provided to managers
by their compensation as the managers’ reservation utility (or certainty equivalent), although as noted this
utility is not necessarily that required by a binding participation constraint, but possibly the equilibrium
outcome of some more complicated bargaining game.

18Simply restricting fund managers to trade only equity is suboptimal if the allocation to mutual funds
cannot be continuously rebalanced, as it leads to significant variations over time in fund investors’ effective
portfolio mix of bonds and equity.

19The managers’ certainty equivalent (CEm) is defined by um(CEm) = E
[
um
(
F (Wm

T ,W b
T )
)]

. Similarly,

the fund investors’ certainty equivalent (CEf ) is defined by uf (CEf ) = E
[
uf
(
θf
0B + (W f

0 − θf
0B)RT

)]
,

where RT is the net return on mutual funds defined in equation (4).
20When the managers’ reservation certainty equivalent is 0.15 (respectively, 0.275), the percentage increase

in the fund investors’ certainty equivalent when asymmetric performance contracts are used instead of purely
proportional contracts is two basis points (respectively, 140 basis points).

21Some empirical support for the existence of welfare gains associated with the use of performance fees is
provided by Coles, Suay and Woodbury (2000), who find that closed-end funds that use performance fees
tend to command a premium that is about 8% larger than similar funds that do not use these fees.
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Figure 2: The graph plots the Pareto frontier at time t = 0 with asymmetric performance fees (solid
line). The managers’ certainty equivalent is on the horizontal axis and the fund investors’ certainty
equivalent is on the vertical axis. Panel (a) also plots the active investors’ certainty equivalent
(dotted line). Panel (b) also plots the Pareto frontiers with load fees (dashed line) and proportional
fees (dotted line): the plot range is reduced so that the difference between the different frontiers is
clearly visible.

in significant utility losses for fund investors in states in which their terminal wealth is low.
This creates the potential for performance fees to dominate load fees, although, as it will
become clear in Section 6.3, performance fees have a negative impact in terms of portfolio
diversification. It is worthwhile to point out that in Figure 2 the benchmark portfolio is
exogenously fixed to coincide with the first stock: thus, selecting the benchmark optimally
would lead to an even stronger dominance of performance fees over load fees. We will return
to this point in Section 6.4.

Adding asymmetric performance fees to a purely proportional contract (that is, letting γ2

increase from zero while keeping β fixed) intially increases the welfares of both fund investors
(due to the higher allocation to equity by mutual funds) and fund managers (due to higher
overall fees). After a given level, however, the welfare of fund managers becomes decreasing
in γ2, due to the increasing risk of their compensation and the decreasing extent of delegation
by fund investors. The contracts along the efficient frontier are characterized by levels of
the performance sensitivity parameter γ2 that are beyond the point at which the utility of
fund managers starts being decreasing in γ2. Thus, moving along the efficient frontier with
asymmetric performance contracts, increases in the fund managers’ certainty equivalent are
associated with simultaneous increases in both the proportional fee component and the in
asymmetric performance fee component: the optimal proportional fee parameter β increases
from 0% to 37.26%, while the optimal performance sensitivity parameter γ2 increases from
0% to 27.07%. In particular, the model implies a positive correlation between managers’
overall compensation and contract performance sensitivity, which appears to be consistent
with anecdotal empirical evidence.

As shown in panel (b) of Figure 2, within our model, fulcrum fees never generate a
Pareto improvement over purely proportional fees.22 Adding a fulcrum fee to a proportional

22Das and Sundaram (2002) find that asymmetric performance fees also dominate fulcrum fees in a sig-
naling model with fund managers of different skills, although this dominance arises in their model for a
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contract increases the welfare of fund investors (since fulcrum fees also induce an increase
in the equity allocation chosen by fund managers) but strongly decreases the welfare of
fund managers, due to the utility losses in states in which the excess return of the managed
portfolio over the benchmark is negative.

6 Analysis of Equilibrium

This section contains a numerical analysis of the asset pricing implications of delegated
portfolio management. The dividend processes in equation (1) are taken to be geomet-
ric Brownian motions with D1

0 = D2
0 = 1. Through most of the section, we assume that

σ1
D(D, t) = σ2

D(D, t) = 0.2D, implying that the two liquidation dividends are uncondi-
tionally identically distributed. Since the only ex ante difference between the two stocks
(portfolios) arises from their weighting in the benchmark portfolio, this assumption enables
us to clearly isolate the price effects arising from benchmarking when comparing the equilib-
rium price processes of the two stocks. We assume that stock (portfolio) 1 is the benchmark
portfolio, i.e., that θ̄b = (0, 1, 0): we address in Subsection 6.4 the robustness to our re-
sults to alternative choices of the benchmark (including optimal choice). The correlation
between the two Brownian motions is set to ρ = 0.9: clearly, a lower correlation would allow
for larger pricing differences across the two stocks to emerge in equilibrium as a result of
benchmarking.

We set the fraction λ of fund investors in the economy to 0.5 and the investors’ relative
risk aversion coefficient c to 10. Based on evidence reported by Del Guercio and Tkac (1998)
that 42.6% of the pension fund sponsors who use performance-based fees to compensate
managers rely on a 3-5 years investment horizon to measure performance and that the
median holding period among the mutual fund investors who totally redeem their shares is
5 years, we set T = 5.23 Finally, the aggregate supply of the bond is set to B = 0.72: this
value implies an equilibrium stocks-to-bonds ratio at time t = 0 of about 1.

Our goal is to understand the asset pricing implications of commonly observed perfor-
mance contracts. We consider two performance fee structures: fulcrum fees (γ1 = γ2 > 0)
and asymmetric performance fees (γ1 = 0, γ2 > 0). In both cases the performance compen-
sation is added on top of a proportional fee (β > 0), as is typically done in practice.

6.1 Benchmark Economy and Proportional Fees

Before moving to economies in which fund managers receive performance fees, it is useful
to review equilibrium prices in the version of our economy in which all agents have direct
costless access to the equity market (i.e., λ = 0 or equivalently α = β = γ1 = γ2 = 0)
and in the version in which purely proportional management contracts are used (i.e., α =
γ1 = γ2 = 0). Figure 3 plots key equilibrium quantities at the midpoint of our time horizon
(t = T/2 = 2.5) as a function of the second stock’s dividend share, D2

t /(D
1
t +D2

t ), for a value

completely different reason: the ability of fund managers to more easily signal their skill, and thus to extract
a higher surplus, in the presence of fulcrum fees. Ou-Yang (2003) provides a model in which investors are
assumed to delegate the management of their entire portfolio and fulcrum fees are optimal.

23The section of the working paper comparing investment horizons in the pension fund and mutual fund
industry does not appear in the published article (Del Guercio and Tkac (2002)).
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Figure 3: The graph plots key equilibrium quantities at time t = T/2 with proportional fees as a
function of the second stock’s dividend share. The proportional fee parameter β is set at 19.02%.
For comparison, the corresponding values in the benchmark economy (β = 0) are also plotted.
The quantities plotted are: the funds’ portfolio weights (panel (a)), the active investors’ portfolio
weights (panel (b)), the stock instantaneous expected returns (panel (c)), the stock volatilities (panel
(d)), the stock Sharpe ratios (panel (e)) and the stock price/dividend ratios (panel (f)). The solid
(respectively, dotted) line refers to first stock (respectively, the second stock) with proportional fees,
while the dashed (respectively, dot-dashed) line refers to the first stock (respectively, the second
stock) in the benchmark economy.
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of the proportional fee component β equal to 19.02%.24 Variations in the dividend share are
obtained by simultaneously varying the two state variables D1

t and D2
t by equal amounts

in opposite directions so as to keep the sum D1
t + D2

t constant at its expected level. For
comparison, the figure also plots the corresponding equilibrium values with costless access
to the equity market, an economy we will refer to in the sequel as the benchmark economy.25

Starting from the benchmark economy with costless portfolio delegation, since fund
managers and active investors have identical preferences and wealths in this case (as fund
investors optimally delegate the management of their entire endowment), they must each
hold a constant number of shares in equilibrium. Hence, when a stock’s dividend share
increases, resulting in an increase in the price of that stock relative to the price of the other
stock, investors must be induced to allocate a higher fraction of their portfolios to that stock
in order for the market to clear, as shown in panels (a) and (b) of Figure 3. This equilibrium
incentive takes the form of a higher instantaneous expected return (which compensates
investors for the higher correlation between the stock’s dividend and aggregate consumption)
and a higher Sharpe ratio (panels (c) and (e)). Stock volatility also falls in response to an
increased dividend share, although this effect is small (panel (d)). Finally, reflecting the
increasing expected returns, price/dividend ratios are monotonically decreasing functions
of the dividend shares (panel (f)).

Moving from the benchmark economy to an economy with costly portfolio delegation
and proportional fees, the allocation to mutual funds by fund investors decreases to less that
100% and the allocation to bonds becomes strictly positive. As a result, a lower fraction of
aggregate wealth is available for investment in the equity market and, in order to restore
market clearing, fund managers and active investors must be induced to increase their equity
holdings relative to the benchmark economy, as shown in panels (a) and (b) of Figure 3. To
ensure this, expected returns and Sharpe ratios increase relative to the benchmark economy,
while price/dividend ratios decrease (Figure 3, panels (c), (e) and (f)). Stock volatilities
slightly rise relative to the benchmark economy reflecting a small increase in the variance
of the price/dividend ratios (panel (d)). Clearly, in the absence of benchmarking, delegated
portfolio management has a symmetric price impact on the two stocks.

Although not shown, the deviations between stock expected returns, volatilities, Sharpe
ratios and price/dividend ratios in the presence of proportional fees and the corresponding
values in the the benchmark economy are monotonic in the proportional fee parameter β.
The qualitative pricing effects are identical in the presence of load fees.

6.2 Fulcrum Fees

As discussed in Section 5, within our model fulcrum fees are suboptimal. However, for
completeness and given that the 1970 Amendment of the Investment Advisers Act of 1940
restricts mutual fund performance fees to be of the fulcrum type, we examine next their
impact on equilibrium. Figure 4 plots the key equilibrium quantities at time t = T/2

24The value β = 19.02% is chosen so as to match that used in Figures 6 and 8. A proportional management
fee of 19.02% over 5 years is equivalent to an annual fee of 4.13%.

25Our benchmark economy is similar to the two-trees Lucas economy studied in Cochrane, Longstaff and
Santa-Clara (2007), the differences being that Cochrane, Longstaff and Santa-Clara assume logarithmic
utility, infinite horizon, intertemporal consumption and bonds in zero net supply, while we assume general
CRRA utilities, finite horizon, consumption at the terminal date only and bonds in positive net supply.
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Figure 4: The graph plots key equilibrium quantities at time t = T/2 with fulcrum performance
fees as a function of the second stock’s dividend share. The contract parameters (β = 21.00%,
γ1 = γ2 = 3.91%) are chosen so that the resulting contract provides the fund managers a certainty
equivalent of 0.22. For comparison, the corresponding values with proportional fees (γ1 = γ2 = 0)
are also plotted. The quantities plotted are: the fund managers’ portfolio weights (panel (a)), the
active investors’ portfolio weights (panel (b)), the stock instantaneous expected returns (panel (c)),
the stock volatilities (panel (d)), the stock Sharpe ratios (panel (e)) and the stock price/dividend
ratios (panel (f)). The solid (respectively, dotted) line refers to first stock (respectively, the second
stock) with asymmetric fees, while the dashed (respectively, dot-dashed) line refers to the first stock
(respectively, the second stock) with proportional fees.

23



as a function of the dividend share of the second (non-benchmark) stock, assuming γ1 =
γ2 = 3.91% and β = 21.00%.26 For comparison, the Figure 4 also plots the corresponding
equilibrium values in an economy with purely proportional fees.27

As shown in Corollary 1, the presence of a penalty for underperforming the benchmark
portfolio implicit in fulcrum fees leads fund managers to tilt their portfolios toward the
benchmark stock, while holding a constant number of shares of each stock.28 In addition,
the overall equity allocation by fund managers is higher than with purely proportional fees.
Thus, in order to ensure market clearing, the active investors must be induced to hold
portfolios that have lower equity allocations and are tilted toward the non-benchmark stock
over the entire state space. Given constant share holdings, the proportional tilt toward
the non-benchmark stock must be larger when the price of the benchmark stock is large
relative to that of the non-benchmark stock, i.e., when the second stock’s dividend share is
low, as shown in panel (b) of Figure 4. As a result, the equilibrium price distortions relative
to an economy with purely proportional fees are larger when the second stock’s dividend
share is low, having otherwise the expected signs. Specifically, as shown in panels (c)
and (e) of Figure 4, expected returns and Sharpe ratios are lower than in an economy
with purely proportional fees (in order to induce a lower overall equity allocation by active
investors), with the difference being more pronounced for the benchmark stock (in order
to induce active investors to tilt their portfolios toward the other stock). Correspondingly,
price/dividend ratios are higher than with purely proportional fees, with the difference being
once again more pronounced for the benchmark stock (Figure 4, panel (f)). As a result of
the lower variability in price/dividend ratios, stock volatilities slightly decline, with the
change being once again more pronounced for the benchmark stock (Figure 4, panel (d)).

Harris (1989) has documented a small positive average difference in daily return standard
deviations between stocks in the S&P 500 index (the most commonly used benchmark) and
a matched set of stocks not in the S&P 500 over the period 1983–1987. Since this difference
was insignificant over the pre-1983 period, Harris attributed it to the growth in index
derivatives trading, noticing that the contemporaneous growth in index funds was unlikely
to be a possible alternative explanation, as “it seems unlikely that volatility should increase
when stock is placed under passive management”. Yet, our model delivers this implication
concerning volatilities: integrating the volatilities plotted in panels (d) of Figure 4 over
the distribution of the dividend share, gives an unconditional expected volatility at time
t = T/2 of 16.90% for the benchmark stock and 16.83% for the other stock.29

To further relate the implications of our model to the available empirical evidence con-

26While in the case of asymmetric fees discussed in the next subsection the fee parameters are chosen so as
to guarantee that the resulting contract is efficient and provides the managers a given certainty equivalent, the
suboptimality of fulcrum fees in our setting implies that there is no natural way to endogenously determine
the contract specification. Therefore, we fix the performance sensitivity parameter γ2 to the same level that
is efficient in the case of asymmetric fees (as described in the next subsection) and adjust the proportional
component β so as to provide fund managers the same equilibrium certainty equivalent. The qualitative
results are insensitive to the specific choice of the fee parameters.

27These values are slightly different from those plotted in Figure 3 since the proportional fee coefficient β
is slightly different (21.00% versus 19.02%).

28With a sufficiently large fulcrum fee component, the fund essentially behaves as an index fund, with a
100% allocation to the benchmark stock.

29Increasing the performance sensitivity parameter γ1 = γ2 (which, as already noted, would make the
funds in our model behave more like index funds) would increase this volatility differential.
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Figure 5: The graph plots key equilibrium quantities at time t = T/2 with fulcrum performance fees
as a function of the second stock’s dividend share, immediately following an unanticipated change of
the benchmark from stock 1 to stock 2. The contract parameters (β = 21.00%, γ1 = γ2 = 3.91%) are
chosen so that the resulting contract provides the fund managers a certainty equivalent of 0.22. For
comparison, the corresponding values prior to the benchmark recomposition are also plotted. The
quantities plotted are: the fund managers’ portfolio weights (panel (a)), the active investors’ portfolio
weights (panel (b)), the stock instantaneous expected returns (panel (c)), the stock volatilities (panel
(d)), the stock Sharpe ratios (panel (e)) and the stock price/dividend ratios (panel (f)). The solid
(respectively, dotted) line refers to first stock (respectively, the second stock) after the benchmark
recomposition, while the dashed (respectively, dot-dashed) line refers to the first stock (respectively,
the second stock) before the benchmark recomposition.
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cerning the equilibrium pricing effects of benchmarking, we examine next how equilibrium
quantities change in our model in response to changes in the composition of the benchmark
portfolio. In particular, we consider an unanticipated change in the composition of the
benchmark at time t = T/2 from 100% stock 1 to 100% stock 2. Figure 5 plots the key
equilibrium quantities immediately prior to and immediately following the announcement
of the benchmark recomposition.

As shown in panel (a), the weight in the funds’ portfolio of the stock that is added to
(respectively, deleted from) the benchmark increases (decreases). This is consistent with the
evidence reported in Pruitt and Wei (1989) that changes in the portfolios of institutional
investors are positively correlated with changes in the composition of the S&P 500 index. As
a result, the price of the stock that is added to the benchmark portfolio increases following
the announcement, while its Sharpe ratio decreases (panels (e) and (f)). The changes in the
price and Sharpe ratio of the stock that is deleted from the benchmark have the opposite
sign, although the effects are asymmetric, with the expected absolute percentage changes in
both prices and Sharpe ratios being larger for the stock that is added to the benchmark than
for the stock that is dropped. Shleifer (1986), Harris and Gurel (1986), Beneish and Whaley
(1996), Lynch and Mendenhall (1997) and Wurgler and Zhuravskaya (2002), among others,
have documented a positive permanent price effect of about 3%–5% associated with the
inclusion of a stock in the S&P 500 index. Chen, Noronha and Singal (2004) have reported
that the price effect is asymmetric for additions and deletions, with the permanent price
impact of deletions being smaller in absolute value.30

6.3 Asymmetric Performance Fees

Moving now to equilibria in the presence of asymmetric performance fees, Figure 6 plots
key equilibrium quantities at time t = T/2 as a function of the second stock’s dividend
share. For the analysis in Figure 6, we select the contract parameters (β = 19.02% and
γ2 = 3.91%) to correspond to those of the contract on the Pareto frontier in Figure 2
giving the managers a certainty equivalent of 0.22. For comparison, Figure 6 also plots the
corresponding equilibrium values in an economy with purely proportional fees. It is is useful
to keep in mind for the following discussion that an increase in the dividend share of the
second (non-benchmark) stock is associated with an increase in the difference between the
price of the non-benchmark stock and the price of the benchmark stock: thus, the funds’
excess return over the benchmark portfolio, (Wm

t −δS1
t )/Wm

0 , is a monotonically increasing
function of the second stock’s dividend share, with the excess return being zero in Figure 6
at a dividend share of about 58%.

While fulcrum fees unambiguously induce fund managers to tilt their portfolios toward
the benchmark stock, asymmetric performance fees can induce risk-averse fund managers
either to select portfolios having high correlation with the benchmark in an attempt to hedge
their compensation, or to select portfolios having low correlation with the benchmark in an
attempt to maximize the variance of the excess return of the managed portfolio over the

30Chen, Noronha and Singal interpret the asymmetry of the price effect as evidence against the hypoth-
esis that the effect is due to downward-sloping demand curves and in favor of the alternative hypothesis
that the effect is due to increased investors’ awareness. Our analysis implies that portfolio delegation and
benchmarking is an alternative possible explanation for the asymmetry of the effect.
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Figure 6: The graph plots key equilibrium quantities at time t = T/2 with asymmetric performance
fees as a function of the second stock’s dividend share. The contract parameters (β = 19.02%,
γ2 = 3.91%) are chosen so that the resulting contract is efficient and provides the fund managers
a certainty equivalent of 0.22. For comparison, the corresponding values with proportional fees
(γ2 = 0) are also plotted. The quantities plotted are: the funds’ portfolio weights (panel (a)), the
active investors’ portfolio weights (panel (b)), the stock instantaneous expected returns (panel (c)),
the stock volatilities (panel (d)), the stock Sharpe ratios (panel (e)) and the stock price/dividend
ratios (panel (f)). The solid (respectively, dotted) line refers to first stock (respectively, the second
stock) with asymmetric fees, while the dashed (respectively, dot-dashed) line refers to the first stock
(respectively, the second stock) with proportional fees.
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Figure 7: The graph plots the funds’ overall equity portfolio weight (panel (a), solid line), the
funds’ shares holdings (panel (b), solid and dotted lines) and the funds’ return and tracking error
volatilities (panel (c), solid and dotted lines) with asymmetric performance fees as a function of the
second stock’s dividend share. The contract parameters (β = 19.02%, γ2 = 3.91%) are chosen so
that the resulting contract is efficient and provides the fund managers a certainty equivalent of 0.22.
For comparison, in panels (a) and (b) the corresponding values with proportional fees (γ2 = 0) are
also plotted.
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benchmark (and hence the expected value of their performance fees, which are a convex
function of this excess return). These shifting risk incentives are evident in panel (a) of
Figure 6, which plots the funds’ portfolio weights, or, even more clearly, in panel (a) of
Figure 7, which plots the funds’ share holdings. As shown in the figures, the first incentive
dominates (inducing fund managers to tilt the fund portfolios toward the benchmark stock)
when the fund’s excess return is positive or moderately negative (in Figures 6 and 7, when
the second stock’s dividend share is larger than 56%, corresponding to an excess return
above -6.2%), while the second incentive dominates (inducing fund managers to tilt the
fund portfolios toward the non-benchmark stock) when the fund’s excess return is sufficiently
negative (below -6.2%).31 When the fund’s excess return is strongly negative, so that the
probability of earning positive performance fees is negligible, the fund managers essentially
behave as if they were receiving a purely proportional fee and the difference between the
holdings of the two stocks is close to zero. As shown in panel (b) of Figure 7, the overall
equity allocation by mutual funds exceeds the overall allocation that would have been chosen
with purely proportional fees when the excess return is positive, has a small dip below that
level when the excess return is moderately negative, and converges to that level as the excess
return become more and more negative.

As a result of the described portfolio strategy, the funds’ return volatility and tracking
error volatility are non-linear functions of the funds’ excess return, as shown in panel (c)
of Figure 7. In particular, while tracking error volatility is decreasing in the fund’s excess
return in the region where the funds’ excess return is between -22% and +6%, tracking error
volatility is increasing in excess return outside of this region. This non-linear behavior is
consistent with the evidence on the risk-taking by mutual funds reported by Chevalier and
Ellison (1997) and Basak, Pavlova and Shapiro (2007). It is also interesting to note that
the fund’s total return volatility is increasing in excess return in the region where the funds’
excess return is between -60% and +32%, although the range is small (between 11.43%
and 11.92%). This is consistent with the finding of a positive (although not statistically
significant) relationship by Busse (2001) and Basak, Pavlova and Shapiro (2007).32

The behavior of expected returns and Sharpe ratios in panels (c) and (e) of Figure 6
reflects the behavior that could be expected to ensure market clearing given the fund man-
agers’ portfolio strategy described above. In particular, the non-benchmark stock’s expected
return and Sharpe ratio are above (respectively, below) those of the benchmark stock in the
region in which the fund managers’ portfolios are tilted toward the benchmark (respectively,
the non-benchmark) stock. Moreover, both stock’s expected returns and Sharpe ratios are
below (respectively, above) the corresponding quantities in an economy with purely propor-

31Clearly, which incentive dominates at a given excess return critically depends on both the managers’
risk aversion and the time horizon T . A less risk averse manager has stronger incentives to pick portfolios
with low correlation with the benchmark, in an attempt to maximize the variance of excess return over the
benchmark. A shorter time horizon has a similar effect.

32With fulcrum fees, the tracking error volatility is monotonically increasing in the excess return, while
the return volatility is monotonically decreasing. Thus, a convex performance-based compensation is needed
in order to generate the non-linearities described in the text. However, Brown, Harlow and Starks (1996),
Chevalier and Ellison (1997) and Sirri and Tufano (1998) have documented that, even when mutual fund
managers do not receive explicit incentive fees, an implicit nonlinear performance-based compensation still
arises with periodic proportional fees as a result of the fact that the net investment flow into mutual funds
varies in a convex fashion as a function of recent performance.
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Figure 8: The graph plots key equilibrium quantities at time t = T/2 with asymmetric performance
fees as a function of the second stock’s dividend share, immediately following an unanticipated change
in the benchmark from stock 1 to stock 2. The contract parameters (β = 19.02%, γ2 = 3.91%) are
chosen so that the resulting contract provides the fund managers a certainty equivalent of 0.22. For
comparison, the corresponding values prior to the benchmark recomposition are also plotted. The
quantities plotted are: the fund managers’ portfolio weights (panel (a)), the active investors’ portfolio
weights (panel (b)), the stock instantaneous expected returns (panel (c)), the stock volatilities (panel
(d)), the stock Sharpe ratios (panel (e)) and the stock price/dividend ratios (panel (f)). The solid
(respectively, dotted) line refers to first stock (respectively, the second stock) after the benchmark
recomposition, while the dashed (respectively, dot-dashed) line refers to the first stock (respectively,
the second stock) before the benchmark recomposition.
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tional fees in the region in which the overall equity allocation by fund managers is above
(respectively, below) that with purely proportional fees. Price/dividend ratios also have
their expected behavior given their inverse relation to expected returns (panel (f)).

Perhaps surprisingly, equilibrium stock volatilities in the presence of asymmetric perfor-
mance fees tend to be generally smaller than those in an economy with purely proportional
fees, in spite of the higher portfolio turnover.33 The reduction in volatilities is particu-
larly strong in the region in which the funds’ performance is moderately positive (Figure 6,
panel (d)): in fact, in this region the volatility of the first stock is not only lower than the
corresponding volatility in an economy with purely proportional fees, but also lower than
than in the benchmark economy. The source of this volatility reduction can be understood
by noticing that, in the presence of asymmetric performance fees, the turnover by mutual
funds is concentrated in the region in which their excess return is moderately positive and
is associated with a portfolio reallocation away from the stock whose dividend share (and,
hence, whose price) is rising (Figure 7, panel (a)): to ensure market clearing (that is, to
induce active investors to hold even more of the stock whose dividend share is rising), the
price of stock must rise less than what it would have otherwise, lowering its volatility. The
small increase in volatilities over their values in an economy with purely proportional fees
can be explained by a symmetric argument.

Turning now to the effect of changes in the composition of the benchmark portfolio,
Figure 8 plots the key equilibrium quantities immediately before and after an unanticipated
change at time t = T/2 in the benchmark from 100% stock 1 to 100% stock 2.

With asymmetric performance fees the effect of a benchmark change depends on funds’
excess return, reflecting the fund managers’ portfolio allocation decisions described above.
While it is difficult to distinguish this in panel (f) of Figure 8, in the region where funds’
excess return is negative (respectively, below -12.4%), the price of the stock added to (re-
spectively, deleted from) the index slightly decreases (respectively, increases), while the
opposite behavior prevails for larger excess returns. These price effects are however much
smaller than with fulcrum fees, the absolute percentage price change not exceeding 55 basis
points in the calibration in Figure 8. Sharpe ratios exhibit a similar pattern, with typically
an opposite sign of the differential between pre- and post-recomposition values than the one
for prices.

Figures 6–8 were plotted for a single contract on the Pareto frontier in Figure 2. By
contrast, Figure 9 shows how the key equilibrium quantities at time 0 vary as we con-
sider different contracts on the Pareto frontier. As noted in Section 5, along this frontier
higher performance sensitivities γ2 are associated with higher managers’ certainty equiva-
lents. Apart for the expected monotonic widening of the differentials across the two stocks
associated with larger performance sensitivities, the relationship between equilibrium quan-
tities at time 0 plotted in Figure 9 and the performance sensitivity depends critically on
the endogenously-chosen allocation to mutual funds by fund investors in response to the
varying cost of portfolio management (as measured by the fund managers’ certainty equiv-
alent). As the optimal performance sensitivity increases from 0% to 27%, reflecting an
increase in the fund managers’ equilibrium certainty equivalent from 0 to 0.28, the fund
investors’ allocation to mutual funds decreases from 100% to 37% of their endowment. As

33Equilibrium strategies are buy-and-hold in the presence of purely proportional fees, while, as shown in
panel (a) of Figure 7, there is positive turnover in the presence of asymmetric performance fees.
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Figure 9: The graph plots key equilibrium quantities at time t = 0 with asymmetric performance fees
as a function of the performance fee parameter γ2. The proportional fee parameter β is adjusted so
that the resulting contracts are efficient. For comparison, the corresponding values with proportional
fees (γ2 = 0) are also plotted. The quantities plotted are: the fund managers’ portfolio weights
(panel (a)), the active investors’ portfolio weights (panel (b)), the stock instantaneous expected
returns (panel (c)), the stock volatilities (panel (d)), the stock Sharpe ratios (panel (e)) and the
stock price/dividend ratios (panel (f)). The solid (respectively, dotted) line refers to first stock
(respectively, the second stock) with asymmetric fees, while the dashed (respectively, dot-dashed)
line refers to the first stock (respectively, the second stock) with proportional fees.
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a result of this quickly decreasing allocation to mutual funds, the number of shares of both
stocks held by mutual funds is a monotonically decreasing function of γ2 in spite of the
increasing proportional allocation to stocks by mutual funds. Hence, the active investors’
proportional allocation to both stocks must be an increasing function of γ2, as shown in
panel (b) of Figure 9, leading to increasing expected returns and Sharpe ratios (panels (c)
and (e)).

As shown in panel (a) of Figure 9, at time 0, when excess return is null, fund managers are
in the region in which they find it optimal to tilt their portfolios toward the benchmark stock.
This tilt is monotonic in the performance sensitivity parameter γ2. Therefore, equilibrium
prices must adjust so that active investors are induced to tilt their portfolios toward the non-
benchmark stock. As shown in panels (c)–(e), while the equilibrium expected return for the
non-benchmark stock exceeds that of the benchmark stock, this higher expected return is
offset by a higher volatility, resulting in the Sharpe ratio of the non-benchmark stock being
below that of the other stock. Therefore, at time 0, the equilibrium incentive for active
investors to tilt their portfolios toward the non-benchmark stock does not arise from the
benchmark stock having a higher Sharpe ratio or a lower volatility than the non-benchmark
stock, but from hedging considerations. To understand the source of this hedging demand,
it is useful to refer back to Figures 6 and 7. Around the point corresponding to zero excess
performance for mutual funds (a dividend share around 58%), the total equity allocation by
mutual funds is an increasing function of the dividend share and, to ensure market clearing,
the Sharpe ratios of both stocks are decreasing functions of the dividend share. Thus, in
this region, active investors have positive hedging demand for the non-benchmark stock,
whose price (being increasing in the stock’s dividend share) is negatively correlated with
the stocks’ Sharpe ratios and hence with the quality of the invest opportunity set.

6.4 Optimal Benchmarking

In order to clearly isolate the impact of delegated portfolio management on equilibrium
prices, our numerical analysis has focused on the case in which the two liquidation dividends
are identically distributed and the benchmark portfolio is exogenously specified to be one
of the two stocks. However, in equilibrium the composition of the benchmark portfolio
should be determined endogenously and so we briefly address the robustness of our results
to optimal benchmarking in the context of asymmetric performance fees.34

When optimally determining the composition of the benchmark, fund investors seek to
maximize the overall equity allocation by fund managers while at the same time minimizing
the investment distortions induced by benchmarking. In general, the portfolio held by fund
managers is a (dynamically-rebalanced) combination of the market portfolio, the benchmark
portfolio and the riskless asset. Therefore, when the benchmark portfolio coincides with the
market portfolio of risky assets, the fund managers’ equilibrium trading strategy consists
of a combination of this portfolio and the riskless asset, eliminating the distortions in the
allocation to risky assets induced by benchmarking and benefiting fund investors. On the
other hand, because it is suboptimal in this case for fund managers to increase the tracking
error volatility of their portfolio (and hence the expected value of their performance fees) by

34Asymmetric performance fees dominate other fee structures within our piecewise linear class for all
benchmark choices.
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Figure 10: The graph plots the Pareto frontier at time t = 0 with asymmetric performance fees
and three different benchmark portfolios: stock 1 (solid line), stock 2 (dotted line) and the market
portfolio of risky assets (dashed line). Panel (a) is for the case σ1

D = σ2
D = 0.2D, while panel (b)

is for the case σ1
D = 0.3D and σ2

D = 0.1D. The managers’ certainty equivalent is on the horizontal
axis and the fund investors’ certainty equivalent is on the vertical axis.

holding a portfolio of risky assets that deviates from the benchmark portfolio, they optimally
choose to reduce the risk of their compensation by holding a portfolio characterized by a
lower overall equity allocation. Clearly, this latter effect is detrimental to fund investors.

When the two liquidation dividends are identically distributed and the aggregate sup-
plies of both stocks are the same, it is easy to see that the optimal benchmark portfolio
must coincide with the market portfolio of risky assets, as the equilibrium must then be fully
symmetric in the two stocks. As a result, all cross-sectional price distortions are eliminated
in this case, although delegated portfolio management still has an impact on equilibrium
risk premia and volatilities. This is confirmed by panel (a) of Figure 10, which compares the
Pareto frontiers when stock 1 is used as the benchmark and when the market portfolio of
risky assets is used as benchmark, assuming identical dividend distributions and aggregate
supplies.

The above is however a knife-edge case: if the two liquidation dividends are not identi-
cally distributed, the market portfolio of risky assets is not the optimal benchmark. This
is shown in panel (b) of Figure 10 for the case σ1

D(D, t) = 0.3D and σ2
D(D, t) = 0.1D: in-

terestingly, in this case benchmarking fund managers to either asset results in welfare gains
over benchmarking them to the market portfolio of risky assets. In general, the optimal
benchmark is tilted toward the asset with lower volatility, as this induces the opposite tilt
in the portfolio allocation chosen by fund managers, increasing the volatility, and hence the
systematic risk and the expected return, of the fund’s portfolio. As it should be clear, the
optimal benchmark not being the market portfolio of risky assets is all that is needed for
the qualitative results described in the previous section to hold.

7 Conclusion

We have examined the impact of delegated portfolio management on equilibrium prices
within a dynamic general-equilibrium setting in which the parameters of the management
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contract, the extent of delegated portfolio management and the returns of both benchmark
and non-benchmark securities are all determined endogenously.

When fund managers receive performance fees of the fulcrum type, they optimally choose
to tilt their portfolios towards stocks that are part of the benchmark: in equilibrium, this
results in a significant positive price effect associated with the addition of a stock to the
benchmark and a smaller negative price effect associated a deletion. These implications are
consistent with empirical evidence regarding changes in the composition of the S&P 500
index (the most widely used benchmark portfolio). Everything else being the same, we also
find that benchmark stocks have lower expected returns, lower Sharpe ratios and higher
volatilities than similar non-benchmark stocks.

With asymmetric performance fees, the composition of the portfolios selected by fund
managers depends critically on the funds’ excess return. As a result, cross-sectional differ-
ences between benchmark and non-benchmark stocks can have either sign, depending on
the funds’ performance relative to the benchmark. Interestingly, the presence of portfolio
managers receiving asymmetric performance fees can stabilize prices by decreasing the equi-
librium stock volatilities of both benchmark and non-benchmark stocks, although portfolio
turnovers are higher with asymmetric fees.

Previous literature has typically taken asset returns and the level of delegated portfolio
management as given, analyzing managers’ portfolio choice decisions and deriving optimal
contracts. We have complemented this literature by analyzing the asset pricing implications
of a prevalent parametric class of existing contracts, when the level of delegated portfolio
management is determined endogenously. We have also demonstrated that when full dele-
gation is not exogenously imposed, performance contracts may be welfare-improving, even
when there is no asymmetric information and investors and fund managers have CRRA
preferences with the same risk aversion coefficient.

35



Appendix

To simplify the notation, throughout this Appendix we frequently suppress the explicit
dependence of quantities such as W , W1 and W2 on W b.

Proof of Lemma 1. Suppose first that β + γ1 6= 0 and consider the system of equations

u′(α+ βW ∗1 + γ1(W ∗1 − δW b))(β + γ1)
= u′(α+ βW ∗2 + γ2(W ∗2 − δW b))(β + γ2)

u(α+ βW ∗1 + γ1(W ∗1 − δW b))
= u(α+ βW ∗2 + γ2(W ∗2 − δW b))

+ u′(α+ βW ∗2 + γ2(W ∗2 − δW b))(β + γ2)(W ∗1 −W ∗2 )

(33)

in the unknowns (W ∗1 ,W
∗
2 ). Direct computation shows that the system has the unique

solution 
W ∗1 =

(
1− η

c

) α−γ1δW b

β+γ1
− η

(
1− 1

c

)
α−γ2δW b

β+γ2

η − 1

W ∗2 = W ∗1 +
1
c

(
α− γ1δW

b

β + γ1
− α− γ2δW

b

β + γ2

)
,

(34)

where η =
(
β+γ2
β+γ1

)1− 1
c . Moreover,

γ1δW
b − α

β + γ1
< W ∗1 < δW b < W ∗2 . (35)

Letting W (W b) =
(
γ1δW b−α
β+γ1

)+
(as in equation (9)) and W1(W b) = (W ∗1 )+ (as in equa-

tion (13)), it follows from the above inequality that W ≤W1 < δW b.
If W1(W b) > 0, it then immediately follows from the system (33) that equations (11)

and (12) are satisfied, with equality in equation (12)) and W2(W b) = W ∗2 , establishing the
lemma for this case.

If, on the other hand, W1(W b) = 0, then W ∗1 ≤ 0 and it follows from equation (35) that
α− γ1δW

b > 0. Therefore, the function

f(W ) = u(α− γ1δW
b)− u(α+ βW + γ2(W − δW b)) (36)

+ u′(α+ βW + γ2(W − δW b))(β + γ2)W

is well defined for W ≥W b and the existence of a solution W2(W b) > δW b to equation (11)
is equivalent to the existence of a zero of f in (δW b,∞). Clearly, f is continuous and strictly
decreasing on [δW b,∞). Moreover,

f(δW b) = u(α− γ1δW
b)− u(α+ βδW b) + u′(α+ βδW b)(β + γ2)δW b

> u(α− γ1δW
b)− u(α+ βδW b)

+ u′(α+ βW ∗2 + γ2(W ∗2 − δW b))(β + γ2)δW b
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= u(α− γ1δW
b)− u(α+ βδW b)

+ u′(α+ βW ∗1 + γ1(W ∗1 − δW b))(β + γ1)δW b

≥ u(α− γ1δW
b)− u(α+ βδW b) + u′(α− γ1δW

b)(β + γ1)δW b

> 0,

where the second (in)equality follows from the fact that u′ is decreasing and W ∗2 > δW b, the
third from the first equation in the system (33), the fourth from the fact that u′ is decreasing
and W ∗1 < 0 and the last from the fact that the function u(α + βW + γ1(W − δW b)) is
concave in W . Similarly,

f(W ∗2 ) = u(α− γ1δW
b)− u(α+ βW ∗2 + γ2(W ∗2 − δW b))

+ u′(α+ βW ∗2 + γ2(W ∗2 − δW b))(β + γ2)W ∗2
= u(α− γ1δW

b)− u(α+ βW ∗1 + γ1(W ∗1 − δW b))
+ u′(α+ βW ∗1 + γ1(W ∗1 − δW b))(β + γ1)W ∗1

≤ 0,

where the second equality follows from the second equation in the system (33), while the
inequality follows from the concavity of the function u(α+βW +γ1(W −δW b)). Therefore,
there exists a unique W2(W b) ∈ (δW b,W ∗2 ) such that f(W2(W b)) = 0, thus establishing
the existence of a unique solution to equation (11). The inequality in equation (12) follows
from the fact that in this case we have

u′(F (W1(W b),W b))(β + γ1) ≤ u′(F (W ∗1 ,W
b))(β + γ1)

= u′(F (W ∗2 ,W
b))(β + γ2)

< u′(F (W2(W b),W b))(β + γ2),

where the first (in)equality follows from the fact that u′ is decreasing and W1(W b) ≥ W ∗1 ,
the second from the first equation in the system (33), and the last from the fact that u′ is
decreasing and W2(W b) < W ∗2 .

Finally, suppose that β+γ1 = 0 and let W (W b) = 0 (as in equation (9)) and W1(W b) =
0. With f(W ) defined as in equation (36), we then have

f(δW b) = u′(α)γ2δW
b > 0.

Since
2(α+ γ2(W − δW b))δW b

γ2(W − δW b)2
→ 0 as W → +∞

and −Wu′′(W )/u′(W ) = c for all W , there exists a W ∗3 > δW b such that

2(α+ γ2(W ∗3 − δW b))δW b

γ2(W ∗3 − δW b)2
< c

= − (α+ γ2(W ∗3 − δW b))u′′(α+ γ2(W ∗3 − δW b))
u′(α+ γ2(W ∗3 − δW b))

,

or

u′(α+ γ2(W ∗3 − δW b))δW b +
1
2
u′′(α+ γ2(W ∗3 − δW b))γ2(W ∗3 − δW b)2 < 0. (37)
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Moreover, since u′′′ > 0, it follows from a second-order Taylor expansion of the function
u(α+ γ2(W − δW b)) around the point W ∗3 that

u(α) < u(α+ γ2(W ∗3 − δW b))− u′(α+ γ2(W ∗3 − δW b))γ2(W ∗3 − δW b) (38)

+
1
2
u′′(α+ γ2(W ∗3 − δW b))γ2

2(W ∗3 − δW b)2.

Hence,

f(W ∗3 ) = u(α)− u(α+ γ2(W ∗3 − δW b)) + u′(α+ γ2(W ∗3 − δW b))γ2W
∗
3

< u′(α+ γ2(W ∗3 − δW b))γ2δW
b +

1
2
u′′(α+ γ2(W ∗3 − δW b))γ2

2(W ∗3 − δW b)2

< 0,

where the first inequality follows from equation (38), while the second follows from equa-
tion (37). Therefore, f has a zero on (δW b,W ∗3 ), thus establishing the existence of a solution
to equation (11) in this case. The inequality in equation (12) is trivially satisfied, since the
left-hand side equals zero in this case.

Proof of Lemma 2. Equation (11) shows that v(·,W b) is continuous at W2(W b), while
equation (12) shows that v(·,W b) is continuously differentiable at W1(W b) if W1(W b) > 0
(that is, if W1(W b) > W (W b)). It then immediately follows from the definition of v
that v(·,W b) is continuously differentiable and concave on [W (W b),∞). Moreover, since
v(W1(W b),W b) = u(F (W1(W b),W b)) and u(F (·,W b)) is strictly concave on the interval
(W1(W b), δW b] while v(·,W b) is linear, it follows that v(·,W b) > u(F (·,W b)) on that inter-
val. A similar argument implies that v(·,W b) > u(F (·,W b)) on the interval [δW b,W2(W b)).
Since v(·,W b) = u(F (·,W b)) on A(W b), it follows that v(W,W b) ≥ u(F (W,W b)) on the
interval [W (W b),∞).

Finally, if v̂(·,W b) is any other concave function with v̂(·,W b) ≥ u(F (·,W b)) on the in-
terval [W (W b),∞), then v̂(·,W b) ≥ u(F (·,W b)) = v(·,W b) onA(W b). Moreover, v̂(·,W b) ≥
v(·,W b) on (W1(W b),W2(W b)) since v̂(W1(W b),W b) ≥ v(W1(W b),W b), v̂(·,W b) is concave
and v(·,W b) is linear on that interval. Therefore, v is the smallest concave function v̂(·,W b)
with v̂(·,W b) ≥ u(F (·,W b))

Proof of Proposition 1. Standard optimization theory implies that a policy WT is opti-
mal in the concavified problem (10) if and only if WT satisfies the conditions of Proposition 1
with equation (14) replaced by the weaker condition

Wm
T ∈ v−1

W (ψmπT ,W b
T ) if Wm

T > 0.

Thus, a policy Wm
T satisfying the conditions of Proposition 1 is optimal in the concavi-

fied problem (14). The fact that Wm
T takes values in A(W b

T ) implies u(F (Wm
T ,W

b
T )) =

v(Wm
T ,W

b
T ). Since u(F (·,W b

T )) ≤ v(·,W b
T ), optimality of Wm

T in the concavified problem
(10) then implies optimality in the original problem (8). This proves that the conditions in
Proposition 1 are sufficient for optimality.
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Necessity follows immediately by noticing that if WT is any other feasible policy, then

E
[
u
(
F (WT ,W

b
T )
)]
≤ E

[
v
(
WT ,W

b
T

)]
≤ E

[
v
(
Wm
T ,W

b
T

)]
= E

[
u
(
F (Wm

T ,W
b
T )
)]
,

with the first inequality being strict if WT 6∈ A(W b
T ), and the second inequality being strict

otherwise.

Proof of Theorem 1. It can be easily verified that gm(y,W b, p) =
(
v−1
W (y,W b)

)+
for

y 6= vW (W2,W
b). The claim then immediately follows from Proposition 1.

Proof of Theorem 2. The proof of Theorem 2 is straightforward and is thus omitted.

Proof of Corollary 1. Under the stated assumptions, γ1 = γ2 and

α− γ1δW
b
T ≤ 0,

so that
Π1(DT ,W

b
T ) = Π3(DT ,W

b
T ) ≥ Π4(DT ,W

b
T ).

It then follows from equation (21), using the fact that β + γ1 = β + γ2 > 0, that

ψmπT = Π(DT ,W
b
T ) = Π1(DT ,W

b
T ).

In addition, since by Lemma 2 W1 = W2 when γ1 = γ2, it follows from (16) and (17) that

Wm
T = gm(ψmπT ,W b

T , PT ) =
Π1(DT ,W

b
T )−

1
c

(β + γ2)1− 1
c

− α− γ2δW
b
T

β + γ2
= θmT ·DT ,

where

θmT =
ϕ(1− λ)γ2δθ̄

b
T + (β + γ2)

1
c θ̄ −

(
λ(β + γ2)

1
c θf0 + ϕ(1− λ) αB

)
θ̄1

λ(β + γ2)
1
c + ϕ(1− λ)(β + γ2)

It then immediately follows that the optimal trading strategy for the fund managers is as
given in equation (28) for all t ∈ [0, T ]. The optimal trading strategy for the active investors
follows from the market-clearing conditions.

Next, equation (25) implies that S1
t − S2

t ≥ 0 if and only if

Et
[
Π1(DT ,W

b
T )(D1

T −D2
T )
]
≥ 0.

Let D̂T be two-dimensional random variable obtained from DT by exchanging the values of
D1
T and D2

T . Since D1
T and D2

T are identically distributed conditional on the information
at time t, we have

Et
[
Π1(DT ,W

b
T )(D1

T −D2
T )
]

= Et
[
Π1(DT ,W

b
T )(D1

T −D2
T )1{D1

T>D
2
T }

]
+ Et

[
Π1(DT ,W

b
T )(D1

T −D2
T )1{D2

T>D
1
T }

]
= Et

[
Π1(DT ,W

b
T )(D1

T −D2
T )1{D1

T>D
2
T }

]
+ Et

[
Π1(D̂T ,W

b
T )(D2

T −D1
T )1{D1

T>D
2
T }

]
= Et

[(
Π1(DT ,W

b
T )−Π1(D̂T ,W

b
T )
)

(D1
T −D2

T )1{D1
T>D

2
T }

]
.
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The claim regarding the equilibrium stock prices then easily follows from the fact that, when
γ2 6= 0 and D1

T > D2
T , Π1(DT , θ

b
T ) > Π1(D̂T , θ

b
T ) (respectively, Π1(DT , θ

b
T ) < Π1(D̂T , θ

b
T ))

if and only if the benchmark portfolio θbT holds more (respectively, less) of stock 1 than of
stock 2.
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