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Abstract

Recurrent intervals of inattention to the stock market are optimal if consumers
incur a utility cost to observe asset values. When consumers observe the value of
their wealth, they decide whether to transfer funds between a transactions account
from which consumption must be financed and an investment portfolio of equity and
riskless bonds. Transfers of funds are subject to a transactions cost that reduces
wealth and consists of two components: one is proportional to the amount of assets
transferred, and the other is a fixed resource cost. Because it is costly to transfer funds,
the consumer may choose not to transfer any funds on a particular observation date.
In general, the optimal adjustment rule—including the size and direction of transfers,
and the time of the next observation—is state-dependent. Surprisingly, unless the fixed
resource cost of transferring funds is large, the consumer’s optimal behavior eventually
evolves to a situation with a purely time-dependent rule with a constant interval of time
between observations. This interval of time can be substantial even for tiny observation
costs. When this situation is attained, the standard consumption Euler equation holds
between observation dates if the consumer is sufficiently risk averse.
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A pervasive finding in studies of microeconomic choice is that adjustment to economic

news tends to be sluggish and infrequent. Investors rebalance their portfolios and revisit

their spending behavior at discrete and potentially infrequent points of time. Between these

times, inaction is the rule. If individuals take several months or even years to adjust their

portfolios and their spending plans, the standard predictions of the consumption smoothing

and portfolio choice theories might fail, and the standard intertemporal Euler equation re-

lating asset returns and consumption growth may not hold. Similar sorts of inaction also

characterize the financing, investment, and pricing behavior of firms. These observations

have led economists to formulate models that are consistent with infrequent adjustment.1

Formal models of infrequent adjustment are often described as either time-dependent or

state-dependent. In time-dependent models, adjustment is triggered simply by calendar time.

In state-dependent models, adjustment takes place only when a particular state variable

reaches some trigger value, so the timing of adjustments depends on factors other than, or

in addition to, calendar time alone. A classic example of state-dependent adjustment is the

(S,s) model. The distinction between time-dependent and state-dependent models can have

crucial implications for important economic questions. For instance, monetary policy has

substantial real effects that persist for several quarters if firms change their prices according

to a time-dependent rule. However, if firms adjust their prices according to a state-dependent

rule, then monetary policy may have little or no effect on the real economy. (See e.g. Caplin

and Spulber (1987) and Golosov and Lucas (2007).)

In this paper we develop and analyze an optimizing model that can generate both

time-dependent adjustment and state-dependent adjustment. The economic context is an

infinite-horizon continuous-time model of consumption and portfolio choice that builds on

the framework of Merton (1971). We augment Merton’s model by requiring consumption to

be purchased with the liquid asset and by introducing two sorts of costs – a utility cost of ob-

serving the value of the consumer’s wealth; and a resource cost of transferring assets between

a transactions account consisting of liquid assets and an investment portfolio consisting of

risky equity and riskless bonds. We motivate the utility cost of observing the value of wealth

as a reduction in leisure associated with obtaining and analyzing information.2 We model

the resource cost of transferring assets as the sum of two components: (1) a component that

is proportional to the amount of assets transferred; and (2) a component that is a homo-

geneous linear function of the balances in the transactions account and in the investment

portfolio. Since the second component is independent of the amount of assets transferred,

we refer to it as a fixed resource cost of transferring assets.
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Because it is costly to observe the value of wealth, the consumer chooses to observe this

value only at discretely-spaced points in time. At these observation times, the consumer

chooses when next to observe the value of wealth, executes any transfers between the invest-

ment portfolio and the transactions account, and chooses the path of consumption until the

next observation date. During intervals of time between consecutive observations, optimal

behavior is characterized by inattention to the value of the consumer’s wealth, in particular,

to the value of equities.

In general, the timing of asset transfers is state-dependent. The relevant state of the

consumer’s balance sheet at time t is the ratio of the balance in the transactions account

to the contemporaneous value of the investment portfolio. We denote this ratio as xt.

The consumer may or may not transfer assets between the investment portfolio and the

transactions account on an observation date tj depending on the value of xtj . Because the

timing of asset transfers depends on the value of xtj , these transfers are state-dependent.

A surprising result of our analysis, however, is that, provided the fixed resource cost of

transferring assets is not large, eventually an optimally inattentive consumer’s asset transfers

are purely time-dependent. Indeed, when asset holdings get to this stage, the optimal time

between successive asset transfers is constant.

When the consumer has relatively large holdings in the transactions account on an obser-

vation date, he will transfer some of these assets to the investment portfolio. Alternatively,

when the consumer’s holdings in the transactions account are low on an observation date, he

will sell some assets from the investment portfolio to replenish the transactions account in

order to finance consumption until the next observation date. However, when the transac-

tions account has an intermediate balance, measured by an intermediate value of xtj on an

observation date, the consumer will not find it worthwhile to pay the costs associated with

transferring assets between the investment portfolio and the transactions account. We show

that eventually optimal behavior by a consumer facing observation costs leads to a low value

of xtj on an observation date. Once a low value of xtj is realized on an observation date, the

consumer transfers only enough assets to the transactions account to finance consumption

until the next observation date, provided that the fixed resource cost of transferring assets

is not too large. This behavior is optimal because it is costly to transfer assets, and the

liquid asset in the transactions account earns a lower rate of return than the riskless bond

in the investment portfolio. In this case, the consumer plans to hold a zero balance in the

transactions account on the next observation date, so that xtj will equal zero on the next

observation date. Thus, on the next observation date, xtj will again have a low value and
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the situation repeats itself.

This paper is related to two strands of literature. The first strand is the large literature

on transactions costs. In Baumol (1952) and Tobin (1956), which are the forerunners of the

cash-in-advance model used in macroeconomics, consumers can hold two riskless assets that

pay different rates of return: money, which pays zero interest, and a riskless bond that pays

a positive rate of interest. As in our paper, consumers are willing to hold money, despite

the fact that its rate of return is dominated by the rate of return on riskless bonds, because

goods have to be purchased with money. That is, money offers liquidity services.

A more recent literature on portfolio transactions costs, including Constantinides (1986)

and Davis and Norman (1990), models the cost of transferring assets between stocks and

bonds in the investment portfolio as proportional to the size of the transfers. Here we

also include proportional transactions costs, but these costs apply only to transfers between

the liquid asset in the transactions account on the one hand and the investment portfolio

of stocks and bonds on the other. We do not model the costs of reallocating stocks and

bonds within the investment portfolio. For a retired consumer who finances consumption by

withdrawing assets from a tax-deferred retirement account, the cost of withdrawing assets

from the investment portfolio includes taxes paid at the time of withdrawal. For most

consumers in this situation, the marginal tax rate, which is part of the cost of transferring

assets from the investment portfolio to the transactions account, is likely to be far greater

than any costs associated with reallocating stocks and bonds within the investment portfolio.

A second strand of the literature analyzes the infrequent adjustment of choice variables

that arises because it is costly to observe and process information. This strand of litera-

ture itself has proceeded in two directions. One direction, which includes Sims (2003) and

Moscarini (2004), uses the information-theoretic concept of entropy in a linear-quadratic

framework to model rational inattention as the outcome of the limited ability of people to

process information. In those papers, the decisionmaker generally receives noisy information

about important state variables and can choose the timing and information content of these

signals.3

The other direction pursued in the literature on infrequent adjustment does not build on

directly on entropy, but instead, specifies costs of obtaining and processing information. The

two closest antecedents to our current paper4 are Duffie and Sun (1990) and Abel, Eberly,

and Panageas (2007).5 These papers, as well as the current paper require consumption to

be purchased with a liquid asset, such as cash. In addition, because these papers include an

observation cost, the consumer will not continuously observe the value of the stock market.

3



In our current paper, we show that when xtj is low, the consumer will plan to arrive at

the next observation date with a zero balance in the transactions account, and that the

length of time between subsequent observations is constant if the fixed cost of transferring

assets is sufficiently small. Duffie and Sun derive inattention intervals of constant length,

but they implicitly confine attention to low values of xtj by explicitly assuming that xtj = 0

on the first observation date. Here we show that optimal behavior is potentially different for

intermediate and high values of xtj —situations not considered by Duffie and Sun. Moreover,

we show conditions under which eventually xtj will indeed become low on an observation date

and optimal behavior converges to time-dependence. In this sense, Duffie and Sun confine

attention to the long run for the case with low fixed costs of transferring assets, while we

consider the transition path to the long run and long-run behavior, as well as the conditions

necessary for this absorption to occur. Importantly, consideration of behavior outside of the

long-run situation allows the model to incorporate state-dependent adjustment as well as

purely time-dependent adjustment. In addition, we also offer a quantitative assessment of

the length of the interval of time between consecutive observations in the long run. Finally,

relative to our own earlier paper, the current paper explicitly allows separate consideration

of observation costs and transactions costs and models the observation cost as a utility cost

rather than a resource cost.6,7

Section 1 sets up the consumer’s decision problem. Section 2 characterizes the optimal

trigger and return values for the state variable xt. In addition, this section contains a detailed

discussion of a typical indifference curve of the value function to illustrate various aspects of

optimal adjustment behavior. The dynamic evolution of xt is analyzed in Section 3, which

also characterizes the long-run situation that is eventually attained if the fixed component of

transactions costs is sufficiently small. In addition, Section 3 presents a numerical illustration

of the constant length of time between consecutive observations in the long run, followed by

a discussion of the Euler equation. Section 4 concludes. The Appendix contains proofs of

various results.

1 Consumer’s Decision Problem

Consider an infinitely-lived consumer who does not earn any labor income but has wealth

that consists of risky equity, riskless bonds, and a riskless liquid asset. Consumption must be

purchased with the liquid asset, which the consumer holds in a transactions account. Risky

equity and riskless bonds are held in an investment portfolio and cannot be used directly
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to purchase consumption. The consumer is not permitted to take either a leveraged or a

negative position in equity.

1.1 Asset Returns

Equity is a non-dividend-paying stock with a price Pt that evolves according to a geometric

Brownian motion
dPt
Pt

= µdt+ σdz, (1)

where µ > 0 is the mean rate of return and σ is the instantaneous standard deviation. The

riskless bond in the investment portfolio has a constant instantaneous rate of return rf that

is positive and less than the mean rate of return on equity, so 0 < rf < µ. The total value

of the investment portfolio, consisting of equity and riskless bonds, is St at time t.

At time t, the consumer holds Xt in the liquid asset, which pays a riskless instantaneous

rate of return rL, where rL < rf . The rate of return on the liquid asset, rL, is lower than the

rate of return on the riskless bond in the investment portfolio, rf , because the liquid asset

provides transactions services not provided by the bond in the investment portfolio.

Suppose the consumer observes the value of the investment portfolio at time tj and next

observes its value at time tj+1 = tj + τj . Immediately upon observing the values of Stj

and Xtj ,
8 the consumer may transfer assets between the investment portfolio and the liquid

asset in the transactions account (at a cost described below) so that at time t+j the value of

the investment portfolio is St+j
. The consumer chooses to hold a fraction φj of St+j

in risky

equity and a fraction 1−φj in riskless bonds and does not rebalance the investment portfolio

before the next observation.9 Since the consumer cannot take a negative position in equity

and cannot take a leveraged position in equity, we have 0 ≤ φj ≤ 1. When the consumer

next observes the value of the investment portfolio, at time tj+1 = tj + τj , its value is

Stj+1
= R (τj)St+j

(2)

where

R (τj) ≡ φj
Ptj+1

Ptj
+ (1 − φj) e

rf τj (3)

is the gross rate of return on the investment portfolio over the j − th interval of time, which

extends from t+j to tj+1 = tj + τj .
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1.2 Costs of Transferring Assets

The consumer can transfer assets between the investment portfolio and the transactions

account by incurring a resource cost that is proportional to the size of the transfer and

a “fixed” resource cost that is independent of the size of the asset transfer. Specifically,

if the consumer sells −ys ≥ 0 dollars of assets from the investment portfolio, there is a

proportional transfer cost of −ψsy
s dollars, where 0 ≤ ψs < 1, so that a sale of −ys dollars

from the investment portfolio is accompanied by an increase in X of − (1 − ψs) y
s dollars.

For transfers in the other direction, in which the consumer uses the transactions account

to buy additional assets in the investment portfolio, a purchase of yb ≥ 0 dollars in the

investment portfolio is accompanied by a decrease in X of (1 + ψb) y
b dollars, where ψb ≥ 0.

We assume that ψs+ψb > 0 so that at least one of the proportional transfer cost parameters

is positive. Perhaps the most obvious interpretation of the proportional transactions costs,

ψs and ψb, is that they represent brokerage fees. Another interpretation presents itself if we

consider the investment portfolio to be a tax-deferred account such as a 401k account. In

this case, the consumer must pay a tax on withdrawals from the investment portfolio, and

ψs would include the consumer’s income tax rate, which would be substantially higher than

a brokerage fee.10

The fixed resource cost is independent of the size of the asset transfer but is a linear

function of the amounts of assets held in the transactions account and in the investment

portfolio. Specifically, the fixed resource cost is θXX + θSS, where 0 ≤ θX << 1 and

0 ≤ θS < 1 − ψs.
11 We assume that θXX is paid from the transactions account and θSS is

paid from the investment portfolio. Of course, if θX = θS, the fixed resource cost is simply

proportional to total wealth X + S.12

Define

x ≡
X

S
(4)

as the ratio of the transactions account to the investment portfolio. It will be convenient to

calculate the change in S that accompanies a given change in x when the consumer transfers

assets between the investment portfolio and the transactions account. Specifically, suppose

that the consumer arrives at observation date tj with
(
Xtj , Stj

)
, so that xtj = Xtj/Stj . If

the consumer buys yb ≥ 0 dollars of assets in the investment portfolio or sells −ys ≥ 0 dollars

of assets from the investment portfolio, the new vector of holdings is
(
Xt+j

, St+j

)
where

Xt+j
=
[
1 −

(
1{yb>0} + 1{ys<0}

)
θX

]
Xtj − (1 + ψb) y

b − (1 − ψs) y
s (5)
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and

St+j
=
[
1 −

(
1{yb>0} + 1{ys<0}

)
θS

]
Stj + yb + ys, (6)

where 1{yb>0} is an indicator function that equals 1 if yb > 0 and equals 0 otherwise, and

1{ys<0} is an indicator function that equals 1 if ys < 0 and equals 0 otherwise. Use equations

(5) and (6) to obtain13

St+j
Stj

=

[
1 −

(
1{yb>0} + 1{ys<0}

)
θX

]
xtj +

[
1 −

(
1{yb>0} + 1{ys<0}

)
θS

] [
(1 + ψb)1{yb>0} + (1 − ψs)1{ys<0}

]

xt+j
+ (1 + ψb)1{yb>0} + (1 − ψs)1{ys<0}

.

(7)

1.3 The Utility Function

1.3.1 Consumption between Observation Dates

Suppose that the consumer observes the value of the investment portfolio only at discretely-

spaced points in time t0, t1, t2, .... At observation date tj , after observing the value of the

investment portfolio, lifetime utility is

Etj

{∫ ∞

tj

1

1 − α
c1−αt e−ρ(t−tj)dt−

∞∑

i=j+1

Aie
−ρ(ti−tj)

}
, (8)

where ct is consumption at time t, Ai is the utility cost of observing the investment portfolio

at time ti, 0 < α 6= 1, and the rate of time preference, ρ > 0, is large enough so that

e−ρτjEtj
{
[R (τj)]

1−α} < 1. (9)

We will specify the observation cost Ai more precisely in subsection 1.3.2. For now, treat

Ai as exogenous.

Once the consumer observes the value of assets at date tj , he will not observe any new

information until the next observation date, tj+1. Therefore, at time tj , the consumer can

plan the entire path of consumption from time t+j to time tj+1 . Let C (tj, τj) be the present

value, discounted at rate rL, of the flow of consumption over the interval of time from t+j
until the next observation date, tj+1 ≡ tj + τj . Specifically,

C (tj, τj) =

∫ tj+1

t+j

cse
−rL(s−tj)ds, (10)

where the path of consumption cs, t
+
j ≤ s ≤ tj+1, is chosen to maximize the discounted value

of utility over the interval from t+j to tj+1. Let

U (C (tj, τj)) = max
{cs}

tj+1

s=t
+
j

∫ tj+1

t+j

1

1 − α
c1−αs e−ρ(s−tj)ds, (11)
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subject to a given value of C (tj , τj) in equation (10). Since the consumer does not observe

any new information between time t+j and time tj+1, the maximization in equation (11) is a

standard intertemporal optimization under certainty. It is straightforward to show that14

U (C (tj , τj)) =
1

1 − α
[h (τj)]

α [C (tj , τj)]
1−α , (12)

C (tj , τj) = h (τj) ct+j
, (13)

and

U ′ (C (tj, τj)) = c−α
t+j

, (14)

where

h (τj) ≡

∫ τj

0

e−ωsds =
1 − e−ωτj

ω
(15)

and we assume that

ω ≡
ρ− (1 − α) rL

α
> 0. (16)

Since all of the consumption during the interval of time from t+j to tj+1 is financed from

the liquid asset in the transactions account, which earns an instantaneous riskless rate of

return rL, we have

Xtj+1
= erLτj

(
Xt+j

− C (tj , τj)
)

. (17)

1.3.2 Cost of Observing the Value of the Investment Portfolio

Now we specify the observation cost Ai in more detail. We motivate the specification of Ai

by thinking of the observation cost as foregone leisure and building on a utility formulation

widely used in the real business cycle and growth literatures. Specifically, in those literatures,

instantaneous utility at time t is specified as u (ct, lt) = 1
1−α

c1−αt υ (lt), where ct is the flow

of consumption at time t and lt is the flow of leisure at time t.15 If we were to adopt this

formulation directly, we would specify υ (lt) = 1 at times that the consumer does not observe

the value of the investment portfolio and υ (lt) = 1− (1 − α) θ1, θ1 > 0, at observation times

tj , reducing instantaneous utility by a multiplicative factor at observation times. Specifically,

the utility cost of observing the investment portfolio at time tj+1 would be Aj+1 = θ1c
1−α
tj+1

.

However, if the observation cost were specified in this way, an optimizing consumer would

plan a discontinuous jump in consumption at time tj+1 in order to reduce the observation

cost. We regard this planned discontinuity in the path of consumption in the absence of new

information as an unattractive feature. Therefore, we adopt an alternative specification of

the observation cost that avoids this problem but yields the same value of the observation

cost. Specifically, suppose that immediately after observing the value of the investment
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portfolio at time tj , the consumer chooses the path of consumption from t+j to tj+1 ignoring

any effect of consumption on the observation cost Aj+1. In this case, the standard Euler

equation for a deterministic intertemporal consumption problem implies (see equation * in

footnote 14) that ctj+1
= e−

ρ−rL
α

τjct+
j

so that the utility cost can be written as

Aj+1 = θ1e
−(1−α)

ρ−rL
α

τjc1−α
t+j

. (18)

Equations (12) and (13) imply

c1−α
t+j

= (1 − α)
U (C (tj , τj))

h (τj)
. (19)

Substitute equation (19) into equation (18), multiply both sides of the resulting equation by

e−ρτj , and use the definition of h (τ) in equation to (15) to obtain the present value of Aj+1

discounted back to time tj

e−ρτjAj+1 = θ1 (1 − α)
U (C (tj , τj))

eωτjh (τj)
. (20)

We adopt equation (20) as the fundamental expression for the discounted value of the

observation cost Aj+1. Because Aj+1 is proportional to the integral of utility from consump-

tion over the interval (tj , tj+1], it does not distort the path of consumption over this interval.

In particular, an optimizing consumer will plan to have a continuous path of consumption

over this entire interval.

Use equation (20) and the expression for lifetime utility in (8) to obtain the value function

at observation date tj . The value function, immediately after observing the value of the

investment portfolio at date tj , can be represented recursively by

V
(
Xtj , Stj

)
= max

C(tj ,τj),yb,ys,φj ,τj

(
1 −

θ1 (1 − α)

eωτjh (τj)

)
U (C (tj , τj)) (21)

+βτjEtj

{
V
(
erLτj

(
Xt+

j
− C (tj , τj)

)
, R (τj)St+

j

)}
.

where βτj ≡ e−ρτj and the maximization in equation (21) is subject to equations (5) and (6)

and the inequality constraints C (tj, τj) ≤ Xt+j
, 0 ≤ φj ≤ 1, yb ≥ 0, and ys ≤ 0.

The value function in equation (21) is homogeneous of degree 1 − α in Xtj and Stj , and

consequently the optimal length of time between consecutive observations, τj , is a function

of xtj . Because the value function is homogeneous of degree 1− α in Xtj and Stj , it can be

written as

V
(
Xtj , Stj

)
=

1

1 − α
S1−α
tj

v
(
xtj
)
. (22)
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Define the marginal rate of substitution at observation date tj between Xtj and Stj as

m
(
xtj
)
≡
VS
(
Xtj , Stj

)

VX
(
Xtj , Stj

) . (23)

The expression for V
(
Xtj , Stj

)
in equation (22) can be used to rewrite the marginal rate of

substitution in equation (23) as

m
(
xtj
)

=
(1 − α) v

(
xtj
)

v′
(
xtj
) − xtj . (24)

2 Trigger and Return Values of x

The value of xtj ≡
Xtj

Stj

on an observation date tj determines whether, and in which direction,

the consumer transfers any assets between the investment portfolio and the transactions

account. There are two trigger values of x, ω1 and ω2, that determine whether the consumer

transfers assets, and there are two return values of x, π1 and π2, that characterize the optimal

value of xt+j immediately after a transfer.

To define and characterize the trigger values, ω1 and ω2, we first define the restricted

value function Ṽ
(
Xtj , Stj

)
at observation date tj as the maximized expected value of utility

over the infinite future, subject to the restriction that the consumer does not transfer any

assets between the transactions account and the investment portfolio at time tj (but optimally

transfers assets between the transactions account and the investment portfolio at all future

observation dates). Formally,

Ṽ
(
Xtj , Stj

)
= max

C(tj ,τj),φj ,τj

(
1 −

θ1 (1 − α)

eωτjh (τj)

)
U (C (tj, τj)) (25)

+βτjEtj
{
V
(
erLτj

(
Xtj − C (tj , τj)

)
, R (τj)Stj

)}
,

subject to C (tj, τj) ≤ Xt+j
and 0 ≤ φj ≤ 1. For the remainder of this section, we will sup-

press the time subscripts, with the understanding that the results apply at any observation

date.

Like the value function, the restricted value function is homogeneous of degree 1−α and

can be written as

Ṽ (X,S) =
1

1 − α
S1−αṽ (x) . (26)

On any observation date, Ṽ (X,S) ≤ V (X,S), with equality only if the optimal values of yb

and ys are both zero.
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Define

ω1 ≡ inf x > 0 : ṽ (x) = v (x) (27)

and

ω2 ≡ sup x > 0 : ṽ (x) = v (x) . (28)

The proposition below shows that ω1 and ω2 are trigger values for x in the sense that if x

is less than ω1 on an observation date, the consumer will transfer assets to the transactions

account, and if x exceeds ω2 on an observation date, the consumer will transfer assets to

the investment portfolio. To ensure that ω2 is finite, we assume that θX is not too large.

Specifically, we assume

θX < θX ≡ (1 + ν)−1 (1 + ν−1
)−ν

[1 + (1 − α)ωθ1]
− ν

1−α

[
(1 − θS)

1 − ψs
1 + ψb

]ν
< 1, (29)

where ν ≡ ω
rf−rL

> 0. We also define

π1 ≡ sup

{
x ≥ 0 : ∀z ∈

(
0, xS

1−ψs

]
, (1) V (xS, S) ≥ V (xS − (1 − ψs) z, S + z)

and (2) V (xS, S) > Ṽ (xS − (1 − ψs) z, S + z)

}

(30)

and

π2 ≡ inf

{
x ≥ 0 : ∀z ∈ (0, S] , (1) V (xS, S) ≥ V (xS + (1 + ψb) z, S − z)

and (2) V (xS, S) > Ṽ (xS + (1 + ψb) z, S − z)

}
. (31)

The proposition below shows that π1 and π2 are the return values for x. Specifically,

if x ≤ ω1, the consumer will transfer enough assets from the investment portfolio to the

transactions account to increase x to π1. Alternatively, if x ≥ ω2, the consumer will use the

transactions account to buy enough assets in the investment portfolio to decrease x to π2.

Proposition 1 1. 0 < ω1 ≤ π1 ≤ π2 ≤ ω2 <∞.

2. If xtj < ω1, then

(a) ys < 0

(b) xt+j = π1

(c) m
(
xtj
)

= (1 − ψs)
1−θS

1−θX

(d) v
(
xtj
)

=
[

(1−θX)xtj
+(1−θS)(1−ψs)

(1−θX)ω1+(1−θS)(1−ψs)

]1−α
v (ω1)

11



3. v (ω1) =
[

(1−θX)ω1+(1−θS)(1−ψs)
π1+1−ψs

]1−α
v (π1)

4. If xtj > ω2, then

(a) yb > 0

(b) xt+j = π2

(c) m
(
xtj
)

= (1 + ψb)
1−θS

1−θX

(d) v
(
xtj
)

=
[

(1−θX)xtj
+(1−θS)(1+ψb)

(1−θX)ω2+(1−θS)(1+ψb)

]1−α
v (ω2)

5. v (ω2) =
[

(1−θX)ω2+(1−θS)(1+ψb)
π2+1+ψb

]1−α
v (π2)

Proposition 1 is proved in the appendix. Here we use the indifference curves in Figure

1 to illustrate this proposition and the definitions of the trigger and return points. For

simplicity, Figure 1 is drawn for the case in which θX = θS . The indifference curve of the

value function V (X,S) passes through points A, B, C, D, E, and F , and the indifference

curve of the restricted value function Ṽ (X,S) passes through points K, B, C, D, E, and J .

In Regions II, III, and IV, the two indifference curves are identical so that the marginal rate

of substitution between X and S is the same for both the value function and the restricted

value function. In addition, V (X,S) = Ṽ (X,S) in these regions so that the maximized

value of expected lifetime utility is obtained by the restricted value function, which assumes

that the consumer does not transfer any assets between the investment portfolio and the

transactions account on the current observation date. Therefore, Regions II, III, and IV

represent the ”inaction region” in which the consumer optimally chooses not to transfer

assets between the investment portfolio and the transactions account.

The consumer will transfer assets if V (X,S) > Ṽ (X,S), which is the case in Regions I

and V. For instance, in Region I, the indifference curve of the restricted value function passes

through point B and lies above the indifference curve of the value function that also passes

through point B, thereby implying that V (X,S) > Ṽ (X,S) in this region.16 In order to

attain the maximized value of expected lifetime utility, the consumer must transfer assets

between the investment portfolio and the transactions account. As shown in statement

2a of Proposition 1, ys < 0 so the consumer sells assets from the investment portfolio to

increase the amount of liquid assets in the transactions account. Similarly, according to

statement 4a, if the consumer is in Region V on an observation date, the optimal policy is

to use some of the liquid assets in the transactions account to purchase additional assets in

the investment portfolio.

12
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Figure 1: Indifference Curve of the Value Function When θX = θS.

Now consider the return value π1. We proceed in two steps. First, assume that the

consumer has already paid the fixed transfer cost θ2 (X + S), where θ2 is the common value of

θX = θS, and that the consumer is choosing the size of the asset transfer from the investment

portfolio to the transactions account. In the second step, we consider the impact of the

fixed transfer cost, θ2 (X + S), on the optimal transfer.

Suppose that, after paying the fixed cost θ2 (X + S), the consumer is located somewhere

to the right of point C along the dashed line through point C with slope − (1 − ψs). For

instance, suppose that the consumer is at point A′. Having already paid the fixed cost,

the consumer can move instantaneously to any point up and to the left of point A′ along

the dashed line with slope − (1 − ψs) by reducing S by −ys > 0 dollars and increasing

X by (1 − ψs) (−ys) dollars. The consumer will sell assets from the investment portfolio,

until (X,S) reaches point C, where the dashed line with slope − (1 − ψs) is tangent to the

indifference curve, which is essentially a smooth-pasting condition. At point C, the ratio of

X to S, i.e., x, is equal to π1, as indicated by the line through points O, C, and G, which

has slope equal to π1.

Now let’s consider the impact of the fixed cost θ2 (X + S) on the optimal transfer of

assets. If θ2 > 0, the consumer cannot move from point A′ to point C. To see the impact

13



of θ2 > 0, consider the line through points G, B, and A, which is parallel to the line through

points C, B′, and A′, and hence has slope − (1 − ψs). Point G lies on the half-line through

the origin with slope π1 and is located so that the length of OC is 1 − θ2 times the length

of OG. The properties of similar triangles imply that the length of OB′ is 1 − θ2 times the

length of OB and that the length of OA′ is 1 − θ2 times the length of OA.

Now suppose that the consumer starts at point A and sells −ys > 0 dollars from the

investment portfolio, thereby incurring a cost of θ2 (X + S) − ψsy
s dollars. The fixed cost

of θ2 (X + S) dollars reduces both X and S by the fraction θ2 and can be represented by

the movement from point A to point A′; the sale of −ys > 0 dollars from the investment

portfolio can be represented by a movement from point A′ upward and leftward along the

dashed line through points C, B′, and A′. The consumer will be willing to move from A to

point C only if doing so increases (or at least does not lower) the value of the value function.

That is, the gain in value from moving to an improved allocation between X and S, with

x = π1, must outweigh the fixed cost θ2 (X + S) represented by the movement downward

and leftward from the line through points G, B, and A to the line through points C, B′, and

A′. For a large change in the ratio x, such as the change in moving from point A to point C,

the net gain in value is positive. For a small change in x, the change is not worthwhile. At

point B, the gain from the improved allocation between X and S is exactly offset by the cost

of moving from the line through points G, B, and A to the line through points C, B′, and

A′. Formally, this equality of gain and benefit is represented by statement 3 in Proposition

1, which is essentially a value-matching condition.

For points along the segment GB, the change in the value of x is small enough that the

improved allocation between X and S is outweighed by the fixed cost θ2 (X + S). Therefore,

the consumer will not transfer assets from any points along this segment. The fact that the

consumer will not move from points along segment GB to point C is illustrated by the fact

that these points lie above the indifference curve of the value function that passes through

point C. Alternatively, for points below and to the right of point B along the line through

points A and B, the improved asset allocation made possible by moving to point C, and the

associated increase in value, are large enough to compensate for the fixed transfer cost, and

the consumer will move from any of these points to C (statements 2a and 2b). Since the

consumer ends up at the same point, namely point C, from any point below and to the right

of point B, all of these points have the same value. Thus, all of these points lie on the same

indifference curve (statement 2d), so that indifference curve has slope equal to − (1 − ψs)

below and to the right of point B, which is statement 2c in Proposition 1.17

We have used Figure 1 to illustrate the trigger point ω1 and the return point π1 when the
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consumer chooses to sell assets from investment portfolio. A similar set of arguments can

explain the trigger point ω2 and the return point π2 when the consumer chooses to use some

of the liquid assets in the transactions account to buy assets in the investment portfolio.

We conclude this section with the following corollary to Proposition 1.

Corollary 1 ω1 ≤ xt+j ≤ ω2.

This corollary states that the value of xt immediately following any observation date

tj (and following any optimal asset transfers at date t+j ) is confined to the closed interval

[ω1, ω2]. This result will be useful when we analyze the dynamic behavior of asset holdings

in the next section.

3 Dynamic Behavior

We have shown that the direction of the optimal transfer on an observation date depends

on the value of xtj . In this section, we examine the dynamic behavior of X and S between

observation dates. Because no new information arrives between observation dates and the

rate of return on the transactions account is riskless, the evolution of X between observation

dates is deterministic. By contrast, the value of the investment portfolio evolves stochas-

tically over time. If the value of X is positive on the subsequent observation date, then,

depending on the outcome of the stochastic process for S, the consumer potentially could be

in any of the five regions on the next observation date. However, if θX and θS are sufficiently

small, the stochastic process for xtj will eventually be absorbed at xtj = 0.

Proposition 2 For sufficiently small values of θX ≥ 0 and θS ≥ 0, if xtj < ω1 on observa-

tion date tj, then xtk = 0 on all subsequent observation dates tk > tj.

The proof of Proposition 2 is in the Appendix. Here we provide an intuitive argument.

First, consider the case in which θX = θS = 0. If xtj < ω1 on observation date tj, the optimal

transfer is to sell assets from the investment portfolio to increase the transactions account

so that xt+j increases to π1. Since each additional dollar that is sold from the investment

portfolio incurs a transactions cost ψs, and since the transactions account earns a lower

riskless rate of return than the riskless rate of return on bonds in the investment portfolio,

the consumer would never sell more assets from investment portfolio than are needed to

finance consumption until the next observation date. Thus, the consumer will arrive at the

next observation date with zero liquid assets, so that xtj+1
will be zero. Since xtj+1

= 0 < ω1,
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the process will repeat itself ad infinitum with xtk = 0 on every observation date tk > tj and

xt+
k

= π1 immediately after every future observation date.

If θX and θS are positive, then we need to consider the possibility that the consumer would

want to arrive at the next observation date with enough liquid assets in the transactions

account to avoid transferring assets from the investment portfolio and thus avoid paying the

fixed transactions cost at that date. As we prove in the Appendix, if θX and θS are small

enough, the consumer will still optimally choose to arrive at the next observation date with

a zero balance in the transactions account, even though this action necessitates payment of

the fixed transaction cost at the next observation date.

The following lemma together with Proposition 2 allows us to prove that the stochas-

tic process for xtj is eventually absorbed at zero, if the fixed cost of transferring assets is

sufficiently small.

Lemma 1 Eventually, xtj < ω1 on an observation date.

The proof of Lemma 1 is in the Appendix. Here we provide an intuitive argument.

Because the expected rate of return on equity, µ, exceeds the riskless rate of return, rf , on

bonds in the investment portfolio, the optimal share of equity, φj, is positive (see Lemma 4).

Therefore, there is a chance that R (τj) will be sufficiently high that xtj+1
=

e
rLτj

(
X

t
+
j

−C(tj ,τj)

)

R(τj)S
t
+
j

will be less than ω1. Eventually, this event will occur.

Proposition 3 For sufficiently small values of θX ≥ 0 and θS ≥ 0, the stochastic process

for xtj is eventually absorbed at zero.

Proof. Lemma 1 states that eventually xtj < ω1 on an observation date. Proposition

2 implies that when this event occurs, xtj+1
= 0 on the next observation date and on all

subsequent observation dates, provided that θX ≥ 0 and θS ≥ 0 are sufficiently small.

Corollary 2 For sufficiently small θX ≥ 0 and θS ≥ 0, in the long run: (a) xtj = 0 on

every observation date and (b) the consumer sells assets from the investment portfolio so

that xt+j = π1 immediately after every observation date.

Proposition 3 and its corollary imply that, provided the fixed transaction cost parameters

θX and θS are sufficiently small, the consumer will eventually reach a repeating pattern in

which a constant amount of time elapses between consecutive observations of the stock

market. The consumer will arrive at each observation date having just exhausted the liquid
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(1) (2) (3) (4)
Observation cost τ ∗, θ2 = 0 θ∗2 × 106 τ ∗, θ2 = θ∗2

(dollar equivalent) (years) (dollar equivalent) (years)
Baseline 2.3 0.096 6.6 0.191
θ1 = 0.001 23.3 0.308 63.0 0.590
ρ = 0.02 2.6 0.097 7.4 0.193
α = 3 2.3 0.092 6.1 0.176
rL = 0 2.3 0.079 11.4 0.195
rf = 0.03 2.8 0.084 27.0 0.279
µ = 0.07 2.6 0.088 6.1 0.161
σ = 0.2 2.1 0.096 6.3 0.198

Table 1: θ∗2 is the largest value of θ2 = θX = θS that leads to constant optimal inattention spans.

Baseline Parameters: α = 4, ρ = 0.01, rL = 0.01, rf = 0.02, µ = 0.06, σ = 0.16, θ1 = 0.0001.

assets in the transactions account and will liquidate just enough assets from the investment

portfolio to finance consumption until the next observation date. Thus, the consumer’s

behavior has a Baumol-Tobin flavor to it. The model in Duffie and Sun (1990) shares this

property because it assumes that the consumer starts with xt = 0. Our results are also

consistent with Duffie and Sun, despite some differences in the details of modeling of the

observation costs and the fixed component of transfer costs.

Proposition 3 and its corollary are remarkable because they imply that even though the

choices of observation dates and transactions dates follow state-dependent rules in general,

they will eventually converge to pure time-dependent rules, provided that the fixed transac-

tions costs are small. Table 1 presents the optimal time between consecutive observation

dates in the long run for the case in which θX = θS = θ2 for the baseline parameter values

reported in the table’s caption. To present the observation cost and the fixed component

of the transactions cost in terms of dollars, we assume that the consumer has $1 million in

the investment portfolio on an observation date. The observation cost in column (1) is the

dollar equivalent of the reduction in utility associated with the observation cost.18 In the

baseline case, the observation cost is $2.30 per observation. Column (2) reports the optimal

time between consecutive observations when θ2 = 0 so that fixed cost parameters θX and

θS are both zero. The time between observations is measured in years, so in the baseline

case, the optimal time between observations is slightly longer than one month. Column

(3) reports θ∗2, which is the largest value of θX = θS = θ2 that is small enough to ensure

that eventually the time between consecutive observations is constant. The values reported

in column (3) are actually θ∗2 × 106 so that, for instance, in the baseline case, the fixed
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transactions cost is $6.60 for a millionaire. Finally, column (4) reports the time between

consecutive observations when θ2 = θ∗2.

Table 1 allows us to draw two broad conclusions. First, even tiny observation costs can

lead to substantial inattention intervals. Column (2) shows that even when the fixed costs of

transacting are zero (θX = θS = 0), a consumer who owns one million dollars, and incurs an

observation cost equivalent to about two dollars, will observe her portfolio at approximately

a monthly frequency. Second, fixed transaction costs can significantly magnify the effect of

observation costs to produce even larger inattention spans. The inattention spans in column

(4) are about twice as large as the inattention spans in column (2). Intuitively, when fixed

transaction costs are not too large compared to the observation costs, the consumer will find

it optimal to synchronize transaction and observation dates, in order to avoid “wasting” ob-

servation costs without using the obtained information to undertake a transaction. Because

of this synchronization, the optimal inattention interval is determined as if fixed transaction

costs and observation costs are bundled together, effectively magnifying the impact of the

observation cost. For instance, with an observation cost of $2.30, the optimal time between

observations can be more than two months, if θ2 = θ∗2.

The calculations reported in Table 1 are invariant to the proportional transaction cost

parameters ψb and ψs. The irrelevance of ψb results from the fact that in the long run the

consumer does not ever transfer any assets from the transactions account to the investment

portfolio and thus never incurs any cost ψby
b. The proposition below implies that ψs is also

irrelevant for calculating the optimal time between observations in the long run when θX

and θS are sufficiently small.

Proposition 4 Define V
(
0, Stj ;ψs

)
as the value function, for a given value of the transac-

tions cost parameter ψs, on observation date tj when
(
Xtj , Stj

)
=
(
0, Stj

)
, and define π1 (ψs)

as the optimal return value of xt+j for xtj < ω1. Suppose that θX and θS are sufficiently

small that for any admissible value of ψs, if xtj < ω1 on observation date tj, then on all

subsequent observation dates xtj+1
= 0.

1. V
(
0, Stj ;ψs

)
= (1 − ψs)

1−α V
(
0, Stj ; 0

)

2. the optimal observation dates tk = tj + (k − j) τ ∗, for k ≥ j, are invariant to ψs

3. π1 (ψs) = (1 − ψs) π1 (0) .

The proof of this proposition is in the Appendix. The intuitive argument underlying

this proposition is that when Xtj = 0 on an observation date, so that all of the consumer’s
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wealth is in the investment portfolio, Stj , the consumer can only pay for future consumption

by selling assets from the investment portfolio and incurring the proportional transaction cost

ψs. In effect, ψs is a pure consumption tax that does not distort the intertemporal profile

of consumption; it simply shifts the entire profile of consumption downward by a fraction

ψs, thereby multiplying lifetime utility by (1 − ψs)
1−α, which is statement 1 of Proposition

4. The value of ψs does not affect the timing of observations and transactions in the long

run (statement 2 of Proposition 4), nor does it affect the amount of assets transferred out

of the investment portfolio. However, because each dollar transferred out of the investment

portfolio yields only 1 − ψs dollars of liquid assets, xt+j
= π1 (ψs) = (1 − ψs)π1 (0), which is

statement 3 of Proposition 4.

Optimal consumption and transfers of assets imply an Euler equation relating the in-

tertemporal marginal rate of substitution and excess returns on equity between two obser-

vation dates.19 We prove the following proposition in the Appendix.

Proposition 5 If θX and θS are sufficiently small, and α >
µ−rf
σ2 , then in the long run we

have Etj

{
c−α
t+j+1

(
Ptj+1

Ptj

− erf τj
)}

= 0.

Proposition 5 states that if the fixed transactions costs, parameterized by θX and θS , are

sufficiently small, then for sufficiently risk-averse consumers, the relevant Euler equation in

the long run is the same as the standard Euler equation, provided that attention is confined

to observation dates.20

4 Concluding Remarks

Rules governing infrequent adjustment are typically categorized as time-dependent or state-

dependent. Time-dependent rules depend only on calendar time and can optimally result

from costs of gathering and processing information. State-dependent rules depend on the

value of some state variable, typically reaching some trigger threshold, and can be the op-

timal response to a transactions cost. Our model combines costly information and costly

transactions. In general, on any observation date, the consumer chooses the length of time

until the next date at which to gather information and re-optimize, but that length of time

may be state-dependent. Moreover, conditional on the information observed at that future

date, the agent’s action (or lack thereof) may also be state-dependent. Thus, the model has

elements of both state- and time-dependent rules in general.

In the long run, however, the optimal behavior converges to a rule that is purely time-

dependent, provided that the fixed component of the transfer costs is sufficiently small.
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Once the consumer arrives at an observation date with a sufficiently small balance in the

transactions account, he will optimally choose to arrive at all subsequent observation dates

with zero liquid assets in the transactions account. In our model, this behavior results

from the facts that (1) the consumer can save on costs by synchronizing observation and

transactions dates and (2) the consumer would prefer to hold as little as possible of his

wealth in the liquid asset because the return on the transactions account is dominated by

the return on the investment account.

We have emphasized the tendency toward pure time-dependence in our model, but there

are forces that could prevent this situation from arising, even within the model. If the fixed

component of the transactions cost is large, then our proof that the consumer will choose

to arrive at the next observation date with zero liquid assets no longer holds. And if the

consumer arrives at an observation date with a positive amount of liquid assets, then the

state variable xt could potentially take on any positive value, and a purely time-dependent

rule would not be optimal even in the long run. Outside the model, one might consider

allowing for the arrival of labor income in the transactions account or the occurrence of

attention-grabbing events that occur when the consumer is not at a planned observation

date.21

Even though such modifications undermine convergence to a purely time-dependent rule,

the fundamental forces driving this result still seem to create a tendency to exhaust (or keep

a very low balance in) the liquid account: the transactions account is dominated in rate of

return, and synchronizing observations and transactions reduces costs. Therefore, the con-

sumer would routinely find himself in region I in the long run and would repeatedly transfer

enough assets from the investment account to arrive at x+
tj

= π1. Since the inattention span

τ is a function of x+
tj
, the distributions of inattention intervals would have a point mass at

τ (π1). In the special case of a purely time-dependent rule, that point mass is equal to one.
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A Appendix

Proof of Proposition 1. We start by proving the following Lemma.

Lemma 2 Optimal behavior requires ysyb = 0. If the optimal asset transfer increases x, then

ys < 0. If the optimal transfer decreases x, then yb > 0.

Proof of Lemma 2. To prove that ysyb = 0, suppose ysyb 6= 0, which implies that ys < 0

and yb > 0. Now consider reducing yb by ε and increasing ys by ε, which will have no effect on

the value of S relative to the original transfer but will increase X by (ψs + ψb) ε relative to the

original transfer by reducing the amount of proportional transactions cost incurred. Therefore, it

could not have been optimal for ysyb 6= 0. Hence, ysyb = 0.

The value function V (X,S) is strictly increasing in X and S, so an optimal transfer will never

decrease both X and S. Therefore, if the optimal transfer increases x ≡ X
S

, then the optimal

transfer cannot decrease X and must decrease S, which implies that yb = 0 and ys > 0. Similarly,

if the optimal transfer decreases x ≡ X
S

, then the optimal transfer cannot decrease S and must

decrease X, which implies that ys = 0 and yb > 0.

Proof of statement 2a. Suppose that x < ω1. The definition of ω1 in equation (27) implies

that v (x) 6= ṽ (x). The optimal asset transfer will change the value of x to some value z for which

v (z) = ṽ (z). The definition of ω1 implies that such a z cannot be less than ω1, so the optimal

transfer increases x. Lemma 2 implies that ys < 0.

Proof of statement 2b. Start from (X0, S0) where X0 < ω1S0. Statement 2a implies that

optimal ys < 0. Let ys be the optimal value of ys. Therefore,

V ((1 − θX)X0 − (1 − ψs) ys, (1 − θS)S0 + ys) = Ṽ ((1 − θX)X0 − (1 − ψs) ys, (1 − θS)S0 + ys)

(A.1)

and

V ((1 − θX)X0 − (1 − ψs) ys, (1 − θS)S0 + ys) (A.2)

≥ V ((1 − θX)X0 − (1 − ψs) (ys − ζ) , (1 − θS)S0 + ys − ζ) ,

for ζ ∈ [0, (1 − θS)S0 + ys].

Define ys∗ as the value of ys that will lead to x0+ = π1. Use equation (7) to show that

ys∗ = S0+ − (1 − θS)S0 =

[
(1 − θX) x0 − (1 − θS)π1

π1 + 1 − ψs

]
S0.

From this point onward, the proof proceeds by contradiction. Assume ys > ys∗ so that the

magnitude of the transfer ys is smaller than the transfer needed to increase x0+ to π1. Since ys is
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optimal, equations (A.1) and (A.2) imply that

(A.3)

Ṽ ((1 − θX)X0 − (1 − ψs) ys, (1 − θS)S0 + ys) = V ((1 − θX)X0 − (1 − ψs) ys, (1 − θS)S0 + ys)

≥ V ((1 − θX)X0 − (1 − ψs) y
s∗, (1 − θS)S0 + ys∗)

But definition of π1 implies that

Ṽ ((1 − θX)X0 − (1 − ψs) ys, (1 − θS)S0 + ys) < V ((1 − θX)X0 − (1 − ψs) y
s∗, (1 − θS)S0 + ys∗) ,

which contradicts equation (A.3).

Proof of statement 2c. Consider the point (X0, S0) with x0 ≡ X0

S0
= ω1 and define D as the

set of (X,S) for which x < ω1 and from which the consumer can instantaneously move to (X0, S0)

by selling assets from the investment portfolio. Specifically,

D ≡

{
(X,S) with X < ω1S :

∃ys < 0 for which (1 − θX)X − (1 − ψs) y
s = X0 and (1 − θS)S + ys = S0

}
. (A.4)

Define F as the set of (X,S) for which x ≥ ω1 and to which the consumer can instantaneously

move from any point in D by selling assets from the investment portfolio. Specifically,

F ≡

{
(X,S) with X ≥ ω1S :

∃ys < 0 for which X = X0 − (1 − ψs) y
s and S = S0 + ys ≥ 0

}
. (A.5)

Consider two arbitrary points (X1, S1) and (X2, S2) in set D. Since x1 < ω1 and x2 < ω1, the

optimal value of ys will be strictly negative starting from either point. Moreover, ys must be large

enough in absolute value so that the post-transfer value of (X,S) satisfies x ≡ X
S
≥ ω1 because it is

always optimal to sell assets from the investment portfolio from any point in set D. Therefore, the

post-transfer value of (X,S) will be an element of set F . Thus, regardless of whether the consumer

starts from point (X1, S1) or (X2, S2), the consumer’s choice of asset transfer can be described as

choosing (X+, S+) ∈ F to maximize the value function. Therefore, V (X1, S1) = V (X2, S2), so all

of the points in set D lie on the same indifference curve of V (X,S). The slope of this indifference

curve is dX
dS

= dX
dys

dys

dS
= − (1 − ψs)

1−θS

1−θX
, which proves statement 2c.

Proof of statement 2d. We have shown that if x < ω1, then m (x) = (1 − ψs)
1−θS

1−θX
. Using

the expression for the marginal rate of substitution in equation (24) yields the differential equation

(1 − α) v (x)

v′ (x)
− x = (1 − ψs)

1 − θS
1 − θX

, for 0 ≤ x < ω1, (A.6)

which implies

v (x) =

[
(1 − θX) x+ (1 − θS) (1 − ψs)

(1 − θX)ω1 + (1 − θS) (1 − ψs)

]1−α

v (ω1) , for 0 ≤ x ≤ ω1. (A.7)

Proof of statement 1. We start by proving the following Lemma.
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Lemma 3 For sufficiently small x > 0, 1
1−α ṽ (x) < 1

1−αv (x) for all x ∈ (0, x).

Proof of Lemma 3. Substitute the expression for U (C (tj, τj)) from equation (12) into the

restricted value function in equation (25) to obtain

Ṽ
(
Xtj , Stj

)
= max

C(tj ,τj),φj ,τj

(
1 −

θ1 (1 − α)

eωτjh (τj)

)
1

1 − α
[h (τj)]

α [C (tj , τj)]
1−α (A.8)

+βτjEtj
{
V
(
erLτj

(
Xtj − C (tj, τj)

)
, R (τj)Stj

)}
.

Use equation (13) to rewrite the first term on the right hand side of equation (A.8) as

(
1 −

θ1 (1 − α)

eωτjh (τj)

)
1

1 − α
[h (τj)]

α [C (tj , τj)]
1−α =

1

1 − α
c−α
t+j
C (tj , τj) −

θ1
eωτj

c1−α
t+j

. (A.9)

Substitute equation (A.9) into equation (A.8) to obtain

Ṽ
(
Xtj , Stj

)
= max

C(tj ,τj),φj ,τj

1

1 − α
c−α
t+j
C (tj , τj)−

θ1
eωτj

c1−α
t+j

+βτjEtj
{
V
(
erLτj

(
Xtj − C (tj , τj)

)
, R (τj)Stj

)}
.

(A.10)

Because the choice of C (tj , τj) must satisfy the constraint Xtj − C (tj, τj) ≥ 0, the partial

derivative with respect to C (tj, τj) of the maximand on the right hand side of (A.8) must be

non-negative. Therefore, differentiation of this maximand with respect to C (tj, τj) yields

(
1 −

θ1 (1 − α)

eωτjh (τj)

)
[h (τj)]

α [C (tj , τj)]
−α−erLτjβτjEtj

{
VX
(
erLτj

(
Xtj − C (tj, τj)

)
, R (τj)Stj

)}
≥ 0.

(A.11)

Since VX () > 0, [h (τj)]
α [C (tj, τj)]

−α > 0, and erLτjβτj > 0, equation (A.11) implies that

1 −
θ1 (1 − α)

eωτ
∗

j h
(
τ∗j

) > 0, (A.12)

where φ∗j and τ∗j are the values of φj and τj that maximize the restrictive value function. Now we

consider the cases in which α < 1 and α > 1 separately.

Case I: α < 1. When α < 1, equation (A.12) implies a lower bound on τ∗. Use the definition

of h (τj) in equation (15) to rewrite equation (A.12) as

τ∗j > τ ≡
1

ω
ln (1 + ωθ1 (1 − α)) > 0. (A.13)

Equation (13) implies that

c
t+j

=
C (tj , τj)

h (τj)
<

Xtj

h (τ)
, (A.14)

where the inequality follows from the constraint C (tj, τj) ≤ Xtj and the facts that h (τj) is strictly

increasing in τj and τ∗j > τ . Equation (A.14) implies limXtj
→0 ct+

j
= 0. Therefore, taking the
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limits of both sides of equation (A.10) as Xtj → 0, and using the facts that 0 ≤ C (tj , τj) ≤ Xtj ,

τ∗j > τ > 0 and limXtj
→0

(
Xtj − C (tj, τj)

)
= 0, implies

lim
Xtj

→0
Ṽ
(
Xtj , Stj

)
= lim

Xtj
→0

βτjEtj
{
V
(
0, R (τj)Stj

)}
= lim

Xtj
→0

βτ
∗

j Etj

{[
R
(
τ∗j
)]1−α} 1

1 − α
S1−α
tj

v (0)

(A.15)

Use equation (9), the definition βτj ≡ e−ρτj , and the fact that τ∗ > τ to obtain

lim
Xtj

→0
Ṽ
(
Xtj , Stj

)
<

1

1 − α
S1−α
tj

v (0) = V
(
0, Stj

)
. (A.16)

Case II: α > 1. In the case with α > 1, ct+j
does not go to zero asXtj approaches 0, because the

instantaneous flow of utility would be unboundedly negative. Thus, c ≡ limXtj
→0 ct+j

> 0. Hence,

equation (13) implies that limXtj
→0 τj = 0. We now that show that c < ∞, i.e., the consumption

flow ct+j
approaches a finite limit. To see this, define Ψ (τj) as

Ψ (τj) ≡
h′ (τj)

h (τ)

(
α+

θ1 (1 − α)

h (τj) − θ1 (1 − α) e−ωτj

)
, (A.17)

and note that the first order condition of (A.8) with respect to τj can be expressed as22

Ψ (τj)

(
1 −

θ1 (1 − α)

eωτjh (τj)

)
1

1 − α
[h (τj)]

α [C (tj , τj)]
1−α = −

d

dτj

[
βτjEtj

{
V
(
erLτj

(
Xtj − C (tj, τj)

)
, R (τj)Stj

)}]
.

(A.18)

As Xtj → 0, equation (22) implies that the right hand side of (A.18) approaches

− 1
1−αv(0)S

1−α
tj

d
dτj

[
βτjEtjR

1−α (τj)
]
, which is finite. Hence, the left hand side of (A.18) must

also approach a finite limit. Now suppose (counterfactually) that limXtj
→0 ct+j

= ∞, and re-write

the left hand side of (A.18) as
{
h (τj)Ψ (τj)

1
1−α

}
×

{(
1 − θ1(1−α)

e
ωτjh(τj)

) [
C(tj ,τj)
h(τj)

]−α}
×
(
C(tj ,τj)
h(τj)

)
.

By equations (A.17) and (15), limXtj
→0

{
h (τj)Ψ (τj)

1
1−α

}
= limτj→0

{
h (τj)Ψ (τj)

1
1−α

}
= −1.

Equation (A.11) implies that limXtj
→0

{(
1 − θ1(1−α)

e
ωτjh(τj)

) [
C(tj ,τj)
h(τj)

]−α}
> 0, and the (counterfactual)

assumption that limXtj
→0 ct+j

= ∞ implies that limXtj
→0

C(tj ,τj)
h(τj)

= ∞ by equation (13). Hence,

the left hand side of (A.18) approaches −∞, so that equation (A.18) cannot hold. Therefore,

limXtj
→0 ct+j

= c <∞.

Now, taking the limits of both sides of equation (A.10) as Xtj → 0, and using the facts that

0 ≤ C (tj, τj) ≤ Xtj and limτj→0R (τj) = 1, implies

lim
Xtj

→0
Ṽ
(
Xtj , Stj

)
= −θ1c

1−α
t+j

+ V
(
0, Stj

)
< V

(
0, Stj

)
.

Proof of ω1 > 0. Since limxtj
→0

1
1−α ṽ

(
xtj
)
< 1

1−αv (0), ∃ x > 0 s.t. 1
1−α ṽ (x) < 1

1−αv (0) ≤
1

1−αv (x) ∀x ∈ [0, x]. Therefore, ω1 ≥ x > 0.
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Proof of π2 ≥ π1. To prove that π2 ≥ π1, suppose the contrary, i.e., that π1 > π2,

and consider three points (XA, SA), (XB , SB), and (XC , SC), where XA = π1SA, (XB , SB) =

(π1SA − (1 − ψs) z
∗, SA + z∗) where z∗ ≡ π1−π2

π2+1−ψs
SA, which implies XB = π2SB, (XC , SC) =

(π2SB + (1 + ψb) z
∗∗, SB − z∗∗) where z∗∗ ≡ π1−π2

π1+1+ψb
SB , which implies XC = π1SC . The definition

of π1 implies that V (XA, SA) ≥ V (XB , SB) and the definition of π2 implies that V (XB , SB) ≥

V (XC , SC) so that V (XA, SA) ≥ V (XC , SC). But SC = SB−z
∗∗ = SB−

π1−π2

π1+1+ψb
SB = π2+1+ψb

π1+1+ψb
SB

= π2+1+ψb

π1+1+ψb

π1+1−ψs

π2+1−ψs
SA =

(
(π1−π2)(ψs+ψb)

(π1+1+ψb)(π2+1−ψs) + 1
)
SA > SA, since ψs + ψb > 0. Therefore, since

XC = π1SC and XA = π1SA, we have XC > XA. Hence, since V (X,S) is strictly increasing

in X and S, we have V (XC , SC) > V (XA, SA), which contradicts the earlier statement that

V (XA, SA) ≥ V (XC , SC).

Proof of ω1 ≤ π1. We will prove this statement using a geometric argument to show that

ω1 > π1 leads to a contradiction. We consider three cases: θS < θX , θS > θX , and θS = θX .

Suppose that ω1 > π1 and consider the case in which θS < θX , so that in Figure 2(a) the line

through points B, C, and E, which has slope − (1 − ψs)
1−θS

1−θX
, is steeper than the line through

points C and D, which has slope − (1 − ψs). Statement 2c of Proposition 1 implies that for

values of x ≡ X
S

less than ω1, indifference curves of the value function are straight lines with slope

− (1 − ψs)
1−θS

1−θX
. Therefore, V (B) = V (C) = V (E), where the notation V (J) indicates the

value of the value function evaluated at point J . The definition of π1 implies that V (C) ≥ V (D).

Therefore, V (E) ≥ V (D), which contradicts strict monotonicity of the value function since both

X and S are larger at point D than at point E. Therefore, ω1 ≤ π1 if θS < θX .

Suppose that ω1 > π1 and consider the case in which θS > θX , so that in Figure 2(b) the

line through points D and E, which has slope − (1 − ψs)
1−θS

1−θX
, is less steep than the line through

points C and E, which has slope − (1 − ψs). Statement 2c of Proposition 1 implies that the line

from point D through point E is an indifference curve and all points on this indifference curve are

preferred to all points below and to the left of the indifference curve for which x < ω1. In particular,

point E is preferred to all points below point E along the line through points E and C. Since the

value of x at point E is higher than π1, the fact that the value function evaluated at point E is

greater than the value function, and hence greater than the restricted value function, evaluated at

all points below point E with slope − (1 − ψs) contradicts the definition of π1. Therefore, ω1 ≤ π1

if θS > θX .

Suppose that ω1 > π1 and consider the case in which θS = θX , so that in Figure 2(c) the slope

of the line through points C and E is − (1 − ψs)
1−θS

1−θX
= − (1 − ψs). Statement 2c of Proposition

1 implies that for values of x ≡ X
S
< ω1, indifference curves of the value function are straight lines

with slope − (1 − ψs)
1−θS

1−θX
so points E and C are on the same indifference curve. Indeed, point E

yields the same value of the value function as all points below point E on the line through points

E and C. That is, for any point J below point E along the line through points E and C with

X ≥ 0, V (E) = V (J). Since x < ω1 at point J , the definition of ω1 implies that V (J) > Ṽ (J).
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Figure 2:

Therefore, V (E) = V (J) > Ṽ (J). Since x > π1 at point E, the facts that for arbitrary point J

we have V (E) = V (J) and V (E) > Ṽ (J) contradict the definition of π1. Therefore, ω1 ≤ π1 if

θS = θX .

Putting together the cases in which θS < θX , θS > θX , and θS = θX , we have proved that

ω1 ≤ π1.

Proof of ω2≥ π2. Use a set of arguments similar to the proof that ω1 ≤ π1.

Proof of ω2<∞. We will prove that ω2 is finite by showing that if the investment portfolio has

zero value on an observation date, the consumer will use some of the liquid assets in the transactions

account to buy assets for the investment portfolio. We use proof by contradiction. That is,

suppose that time 0 is an observation date, and that at this observation date, the transactions

account has a balance X0 > 0 and the investment portfolio has a zero balance so that S0 = 0 and

x0 is infinite. Suppose that whenever the investment portfolio has zero value on an observation

date, the consumer does not transfer any assets to the investment portfolio. Then the consumer

will simply consume from the transactions account over the infinite future, never incurring any

observation costs or transactions costs. In this case, with the values of the variables denoted with
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asterisks, c∗0+ = X0

h(∞) = ωX0, c
∗
t = exp

(
−ρ−rL

α
t
)
c∗0+ = ωX∗

t , so X∗
t = exp

(
−ρ−rL

α
t
)
X0. Equation

(12) implies that lifetime utility is

U∗ =
1

1 − α
[h (∞)]αX1−α

0 =
1

1 − α
ω−αX1−α

0 (A.19)

Now consider an alternative feasible path that sets ct = c∗t for 0 < t ≤ T and at time 0+

transfers to the investment portfolio any liquid assets in the transactions account that will not be

needed to finance consumption until time T . Under this alternative policy, the present value of

consumption up to date T is h (T ) c∗0+ = h (T )ωX0, so

X0+ = h (T )ωX0. (A.20)

The consumer uses (1 − θX − ωh (T ))X0 liquid assets to purchase assets in the investment port-

folio. After paying the transactions cost,

S0+ =
1 − θX − ωh (T )

1 + ψb
X0. (A.21)

Suppose that the consumer invests the investment portfolio entirely in the riskless bond. At

time T , the transactions account has a zero balance, and the investment portfolio is worth ST =

exp (rfT ) 1−θX−ωh(T )
1+ψb

X0. The consumer converts the entire investment portfolio to the liquid

asset in the transactions account, so that after paying the transactions costs, the balance in the

transactions account is

XT+ = (1 − θS)
1 − ψs
1 + ψb

exp (rfT ) [1 − θX − ωh (T )]X0. (A.22)

Define P ≡
X

T+

X∗

T
as the ratio of the transactions account balance at time T+ under this alterna-

tive policy to the transactions account balance under the initial policy. Use equation (A.22) and

X∗
T = exp

(
−ρ−rL

α
T
)
X0, along with ω ≡ ρ−(1−α)rL

α
, to obtain

P ≡
XT+

X∗
T

= (1 − θS)
1 − ψs
1 + ψb

F (T ) , (A.23)

where

F (T ) ≡ exp [(rf − rL)T ] [1 − θX exp (ωT )] . (A.24)

Now choose T to maximize F (T ). Differentiate F (T ) and set the derivative equal to zero to obtain

exp (−ωT ) =

(
1 +

ω

rf − rL

)
θX < 1, (A.25)

where the inequality follows from the assumption that θX < θX in equation (29) and the fact that
ω

rf−rL
> 0. Use equation (A.25) to evaluate F (T ) to obtain

F (T ) =

(
1 +

ω

rf − rL

)−1−
rf−rL

ω ω

rf − rL
θ
−

rf−rL

ω

X . (A.26)
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Use equation (A.25) and the definition of h (T ) to obtain

ωh (T ) = 1 −

(
1 +

ω

rf − rL

)
θX . (A.27)

The present value of lifetime utility under the alternative plan is

U =

(
1 −

θ1 (1 − α)

eωTh (T )

)
1

1 − α
[h (T )]α [X0+ ]1−α + exp (−ρT )

1

1 − α
[h (∞)]α [XT+ ]1−α (A.28)

Substitute equations (A.20) and (A.22) into equation (A.28) and use the facts that h (∞) = 1
ω

and 1 − ωh (T ) = exp (−ωT ), and the definitions of F (T ) and ω to obtain

U =

(
1 −

θ1 (1 − α)

eωTh (T )

)
1

1 − α
h (T ) [ωX0]

1−α (A.29)

+ exp (−ρT )
1

1 − α

[
1

ω

]α [
(1 − θS)

1 − ψs
1 + ψb

F (T ) exp

(
−
ρ− rL
α

T

)
X0

]1−α

.

Now divide the utility under the alternative plan in equation (A.29) by utility under the initial

plan in equation (A.19) and use the definition of ω to obtain

U

U∗
= ωh (T ) − θ1 (1 − α)ω exp (−ωT ) + exp (−ωT )

[
(1 − θS)

1 − ψs
1 + ψb

F (T )

]1−α
. (A.30)

Use the fact that ωh (T ) = 1 − exp (−ωT ) to rewrite equation (A.30) as

U

U∗
= 1 +

([
(1 − θS)

1 − ψs
1 + ψb

F (T )

]1−α

− 1 − θ1 (1 − α)ω

)
exp (−ωT ) . (A.31)

If α < 1, utility under the alternative plan, U , will exceed U∗ if U
U∗

> 1; if α > 1, utility

under the alternative plan, U , will exceed U∗ if U
U∗

< 1. A sufficient condition for U to exceed U∗,

regardless of whether α is less than or greater than one, is

F (T ) >

[
(1 − θS)

1 − ψs
1 + ψb

]−1

[1 + θ1 (1 − α)ω]
1

1−α . (A.32)

Since F (T ) in equation (A.26) is proportional to θ
−

rf−rL

ω

X , the condition in equation (A.32) will be

satisfied if θX ≥ 0 is sufficiently small. Specifically, this condition will be satisfied if

θX <

(
1 +

ω

rf − rL

)−1(rf − rL
ω

+ 1

)− ω
rf−rL

[
(1 − θS)

1 − ψs
1 + ψb

] ω
rf−rL

[1 + θ1 (1 − α)ω]
−1

1−α
ω

rf−rL ,

(A.33)
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which is equivalent to θX < θX in equation (29). Since θX < θX , the original plan, in which the

consumer does not buy any assets in the investment portfolio, is not optimal.

The proof of statement 1 is now complete

Proof of statement 3. Suppose that on observation date tj the consumer has
(
Xtj , Stj

)
=(

ω1Stj , Stj
)

so that xtj = ω1. The proof of statement 2b implies that if the consumer sells assets

from the investment portfolio, he will choose
(
Xt+j

, St+j

)
=
(
π1St+j

, St+j

)
so that xt+j

= π1 ≥ ω1,

and equation (7) implies that

St+j
Stj

=
(1 − θX)ω1 + (1 − θS) (1 − ψs)

π1 + 1 − ψs
. (A.34)

The value-matching condition states that the consumer is indifferent between the initial allocation

with xtj = ω1 and the new allocation with x
t+j

= π1 so that

V
(
ω1Stj , Stj

)
= V

(
π1St+j

, St+j

)
. (A.35)

Use equation (22), which is based on the homogeneity of the value function, to obtain

S1−α
tj

v (ω1) = S1−α
t+j

v (π1) . (A.36)

Divide both sides of equation (A.36) by S1−α
tj

and use equation (A.34) to obtain

v (ω1) =

[
(1 − θX)ω1 + (1 − θS) (1 − ψs)

π1 + 1 − ψs

]1−α

v (π1) . (A.37)

Observe from equation (A.37) that if θX = θS = 0, then ω1 = π1. In this case, π1 is both a trigger

value and a return value. That is, if xtj < π1 on observation date tj, the consumer will sell assets

from the investment portfolio to make xt+j
= π1.

Proof of statements 4 and 5. The proof of statement 4 follows the proof of statement 2,

and the proof of statement 5 follows the proof of statement 3.

The proof of Proposition 1 is now complete.

Proof of Proposition 2. Proof by contradiction. Since θ1 > 0, the consumer will not

continuously observe the value of the investment portfolio. That is τj > 0. If xtj < ω1 on an

observation date tj, then the consumer sells assets from the investment portfolio, increasing Xtj

and decreasing Stj until xt+j
= π1. The consumer chooses τj and C(tj, τj), which is the present

value of consumption between times t+j and tj+1 = tj + τj. Suppose that the consumer chooses

C (tj, τj) < Xt+
j
, which implies Xtj+1 =

[
Xt+

j
− C (tj, τj)

]
erLτj > 0. We will show that there exists

a deviation from this choice that will increase the consumer’s expected lifetime utility, and hence

Xtj+1
> 0 cannot be optimal.

Consider a deviation in which the consumer reduces the amount of assets that she sells from

the investment portfolio at time t+j by
X

t
+
j

−C(tj ,τj)

1−ψs
=

e
−rLτjXtj+1

1−ψs
and invests this amount in the
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riskless bond. With this deviation, the value of the investment portfolio at time tj+1 will exceed

its value under the original policy by
Xtj+1

1−ψs
e(rf−rL)τj and the transactions account will have a zero

balance at time tj+1.

The deviation from the original path will take one of two forms at time t+j+1, depending on

whether the consumer would transfer assets under the original plan at time t+j+1. First, consider

the case in which the consumer transfers assets at time t+j+1. In this case, the consumer can

sell the additional
Xtj+1

1−ψs
e(rf−rL)τj in the investment portfolio to obtain additional liquid assets

worth Xtj+1
e(rf−rL)τj . Of course, this transfer of assets at time tj+1 will incur a fixed cost equal to

θS

[
Stj+1 +

Xtj+1

1−ψs
e(rf−rL)τj

]
. However, since the consumer would have transferred assets under the

original plan, she would have had to incur a fixed cost equal to θXXtj+1
+θSStj+1

. Therefore the net

gain of the deviation is
[
Xtj+1

e(rf−rL)τj −Xtj+1

]
−
[
θS

(
Stj+1 +

Xtj+1

1−ψs
e(rf−rL)τj

)
− (θXXtj+1

+ θSStj+1
)
]

=
[(

1 − θS

1−ψs

)
e(rf−rL)τj − 1 + θX

]
Xtj+1

. Since (rf − rL) τj > 0,

limmax(θX ,θS)→0

[(
1 − θS

1−ψs

)
e(rf−rL)τj − 1 + θX

]
Xtj+1

=
(
e(rf−rL)τj − 1

)
Xtj+1

> 0, and the net

gain of the deviation is positive.

Now consider the case in which the consumer would not make any transfers between investment

portfolio and the transactions account at time t+j+1 under the original policy, which implies that

ω1 ≤ xtj+1
≤ ω2. In this case, instead of selling the additional

Xtj+1

1−ψs
e(rf−rL)τj assets in the

investment portfolio, the consumer only sells z ≡ (1 − θS)
(
Stj+1

+
Xtj+1

1−ψs
e(rf−rL)τj

)
− Stj+1

from

the investment portfolio at time t+j+1. We observe that if θS is small enough, then z > 0. Moreover,

by construction of z, the consumer has the same value of assets in the investment portfolio under

both the original plan and the deviation, since Stj+1
= (1 − θS)

(
Stj+1

+
Xtj+1

1−ψs
e(rf−rL)τj

)
− z .

Hence, the consumer will prefer the deviation if z (1 − ψs) > X
t+j+1

= Xtj+1
. Using the definition

of z, the consumer will prefer the deviation if (1 − θS)Xtj+1
e(rf−rL)τj − θS (1 − ψs)Stj+1

> Xtj+1
,

which is equivalent to (1 − θS) e(rf−rL)τj − θS(1−ψs)
xtj+1

> 1. Since (rf − rL)τj > 0 and xtj+1
≥ ω1 > 0,

limθS→0

[
(1 − θS) e(rf−rL)τj − θS(1−ψs)

xtj+1

]
> 1. Therefore, for sufficiently small θS , the consumer

prefers the deviation.

We have shown that if xtj < ω1, then xtj+1
= 0 < ω1. Therefore, xtj+2

= 0 and so on, ad

infinitum.

Proof of Lemma 1. Lemma 4 states that the optimal value of φj is positive. Since

τj > 0 as a consequence of the observation cost, there exists some δ > 0 such that between

any two consecutive observation dates, tj and tj+1, Pr
{
e−rLτjR (τj) >

ω2

ω1

}
≥ δ. Therefore, since

xtj+1
≡

Xtj+1

Stj+1

= e
rLτj

R(τj)

X
t
+
j

−C(tj ,τj)

S
t
+
j

< e
rLτj

R(τj)

X
t
+
j

S
t
+
j

=
x

t
+
j

e
−rLτjR(τj)

≤ ω2

e
−rLτjR(τj)

(where the final inequality

follows from Corollary 1), Pr
{
xtj+1

< ω1

}
≥ δ. Let tk ≥ tj be the first observation date at which

xtk < ω1. Then by Williams (1991), p. 233, Pr {tk <∞} = 1 and E {tk} <∞.

Proof of Proposition 4. Suppose that ψs = 0 and let {S∗
t }
t=∞
t=tj

be the path of the St under
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the optimal policy starting from observation date tj when the consumer observes Xtj = 0 and

Stj = S∗
tj

. Let τ∗ be the constant optimal interval of time between consecutive observations so that

observation date tk = tj + (k − j) τ∗, for k ≥ j. For any observation date tk ≥ tj, the transactions

account balance will be Xtk = 0, and immediately after each observation date the transactions

account balance will be Xt+
k

= X∗
t+
k

≡ π1 (0)S∗
t+
k

. Since 0 = X∗
tk+1

= erLτ
∗

(
X∗
t+
k

− C (tk, τ
∗)
)
, we

have C (tk, τ
∗) = X∗

t+
k

.

Now let ψs take an arbitrary admissible and suppose that the consumer continues to observe

the value of the investment portfolio on dates tk = tj + (k − j) τ∗, for k ≥ j, and maintains the

same path of St, i.e., that St = S∗
t for t ≥ tj. Since the consumer will make the same transfers

out of the investment portfolio as in the initial case with ψs = 0, a feasible path of the transaction

account balance immediately after each observation date would be Xt+
k

= (1 − ψs)X
∗
t+
k

, which

supports a feasible path of consumption of C (tk, τ
∗) = (1 − ψs)X

∗
t+
k

. Therefore, V
(
0, Stj ;ψs

)
≥

(1 − ψs)
1−α V

(
0, Stj ; 0

)
.

A similar argument starting with an arbitrary admissible value of ψs less than one implies

V
(
0, Stj ; 0

)
≥
(

1
1−ψs

)1−α
V
(
0, Stj ;ψs

)
. Therefore, V

(
0, Stj ;ψs

)
≥ (1 − ψs)

1−α V
(
0, Stj ; 0

)
≥

V
(
0, Stj ;ψs

)
, which implies V

(
0, Stj ;ψs

)
= (1 − ψs)

1−α V
(
0, Stj ; 0

)
(statement 1). We showed

that by maintaining the same observation dates when ψs is positive as when ψs = 0 allows a path

of consumption that achieves V
(
0, Stj ;ψs

)
≥ (1 − ψs)

1−α V
(
0, Stj ; 0

)
= V

(
0, Stj ;ψs

)
. Similarly,

by maintaining the same observation dates when ψs = 0 as when ψs is positive allows a path

of consumption that achieves V
(
0, Stj ; 0

)
≥
(

1
1−ψs

)1−α
V
(
0, Stj ;ψs

)
= V

(
0, Stj ; 0

)
. Therefore,

we have proven statement 2. For any observation date tk ≥ tj , xt+
k

= π1 (ψs). Therefore,

π1 (ψs) =
X

t
+

k

S
t
+

k

=
(1−ψs)X∗

t
+

k

S∗

t
+

k

= (1 − ψs) π1 (0), which proves statement 3.

Proof of Proposition 5. At each observation date tj the consumer chooses the share

φj of the investment portfolio to allocate to equity to maximize Etj
{
V
(
Xtj+1

, Stj+1

)}
subject to

the constraints 0 ≤ φj ≤ 1. Using equations (2) and (3), we can write the Lagrangian for this

constrained maximization as

Lj=Etj

{
V

(
Xtj+1

, φj
Ptj+1

Ptj
St+

j
+ (1 − φj) e

rf τjSt+
j

)}
+ δjSt+

j
φj + ξjSt+

j
(1 − φj) (A.38)

where δjSt+j
≥ 0 is the Lagrange multiplier on the constraint φj ≥ 0 and ξjSt+j

≥ 0 is the Lagrange

multiplier on the constraint φj ≤ 1. Differentiating the Lagrangian in equation (A.38) with respect

to φj , setting the derivative equal to zero, and then dividing both sides by S
t+j

yields

Etj

{
VS
(
Xtj+1

, Stj+1

)(Ptj+1

Ptj
− erf τj

)}
= ξj − δj . (A.39)

Next, we prove the following lemma.

Lemma 4 φj > 0 and δj = 0.
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Proof of Lemma 4. We will proceed by contradiction. Suppose that φj = 0, which

implies that ξj = 0 and that Stj+1
is known at time tj. Therefore, equation (A.39) can be

written as VS
(
Xtj+1

, Stj+1

)
Etj

{(
Ptj+1

Ptj
− erf τj

)}
= −δj ≤ 0, which is a contradiction because

VS
(
Xtj+1

, Stj+1

)
> 0 and, by assumption, the expected equity premium, Etj

{(
Ptj+1

Ptj
− erf τj

)}
, is

positive. Therefore, φj must be positive, which implies δj = 0.

To replace the marginal valuation of the investment portfolio, VS
(
Xtj+1

, Stj+1

)
, by a function

of the marginal utility of consumption, first use the definition of the marginal rate of substitution

m
(
xtj+1

)
to obtain

VS
(
Xtj+1

, Stj+1

)
= m

(
xtj+1

)
VX
(
Xtj+1

, Stj+1

)
. (A.40)

Then use the envelope theorem to obtain

VX
(
Xtj+1

, Stj+1

)
=

[
1 −

(
1{

yb
tj+1

>0
} + 1{

ys
tj+1

<0
}
)
θX

](
1 −

θ1 (1 − α)

eωτjh (τj+1)

)
U ′ (C (tj+1, τj+1))

(A.41)

which implies that VX
(
Xtj+1

, Stj+1

)
, the increase in expected lifetime utility made possible by a

one-dollar increase in Xtj+1
, equals the increase in utility that would accompany an increase of

1 −

(
1{

yb
tj+1

>0
} + 1{

ys
tj+1

<0
}
)
θX dollars in C (tj+1, τj+1). That is, if consumer transfers assets

between the investment portfolio and the transactions account at time t+j+1, a one-dollar increase

in Xtj+1
would allow C (tj+1, τj+1) to increase by 1 − θX dollars; otherwise, C (tj+1, τj+1) can

increase by one dollar. Substitute equation (A.41) into equation (A.40) and use the expression for

the marginal utility of consumption from equation (14) to obtain

VS
(
Xtj+1

, Stj+1

)
= m

(
xtj+1

) [
1 −

(
1{

yb
tj+1

>0
} + 1{

ys
tj+1

<0
}
)
θX

](
1 −

θ1 (1 − α)

eωτjh (τj+1)

)
c−α
t+j+1

.

(A.42)

Substituting the right hand side of equation (A.42) for VS
(
Xtj+1

, Stj+1

)
in equation (A.39) and

using Lemma 4 to set δj = 0 yields

Etj

{
m
(
xtj+1

) [
1 −

(
1{

yb
tj+1

>0
} + 1{

ys
tj+1

<0
}
)
θX

](
1 −

θ1 (1 − α)

eωτjh (τj+1)

)
c−α
t+j+1

(
Ptj+1

Ptj
− erf τj

)}
= ξj .

(A.43)

In standard models without observation costs and transfer costs, and without the constraints 0 ≤

φj ≤ 1, the corresponding Euler equation, which is widely used in financial economics, is

Et

{
c−αs

(
Ps
Pt

− erf (s−t)

)}
= 0 for s > t. (A.44)

In general, the Euler equation in the presence of observation costs and transactions costs in

equation (A.43) differs from the standard Euler equation in equation (A.44) in three ways: (1)

the Euler equation in equation (A.43) contains the Lagrange multiplier on the constraint φj ≤
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1 but this Lagrange multiplier does not appear in the standard Euler equation; (2) the Euler

equation in equation (A.43) contains the marginal rate of substitution m
(
xtj+1

)
, which is a random

variable, but this marginal rate of substitution is absent (or implicitly equal to a constant) in

the standard Euler equation;23 (3) the Euler equation in equation (A.43) contains the term 1 −(
1{

yb
tj+1

>0
} + 1{

ys
tj+1

<0
}
)
θX , which reflects the additional fixed transfer cost associated with

having an additional dollar in the transactions account; (4) the Euler equation in equation (A.43)

contains the term 1− θ1(1−α)
e
ωτjh(τj+1)

, which reflects the utility cost of the next observation; and (5) in the

presence of observation costs, the Euler equation holds only for rates of return between observation

dates, whereas the Euler equation in the standard case holds for rates of return between any

arbitrary pair of dates because all dates are observation dates in the standard case. We show that

in the long run in an interesting special case, the first four of these differences disappear. Before

showing this result, we prove the following lemma.

Lemma 5 Suppose that θX and θS are sufficiently small, in the sense described in the proof of

Proposition 2. If xtj ≤ ω1, then (i) φj < 1 if α >
µ−rf
σ2 and (ii) φj = 1 if α ≤

µ−rf
σ2 .

Proof of Lemma 5. Proposition 2 implies that if xtj ≤ π1, then xtj+1
= 0. The optimal

value of φj, 0 ≤ φj ≤ 1, maximizes Etj
{
V
(
Xtj+1

, Stj+1

)}
= 1

1−αEtj

{
S1−α
tj+1

v (0)
}

, which is equiv-

alent to maximizing ϕ (φj;α) ≡ 1
1−αEtj

{[
φj

Ptj+τj

Ptj
+ (1 − φj) e

rf τj

]1−α}
. Define α∗ such that

arg maxφj
ϕ (φj ;α

∗) = 1 and note that ϕ′ (1;α∗) = 0.

Differentiating the definition of ϕ (φj ;α) with respect to φj and setting φj = 1 yields

ϕ′ (1;α) = Etj

{(
Ptj+τj
Ptj

)1−α
}

− erf τjEtj

{(
Ptj+τj
Ptj

)−α
}
.

Use the fact that
Ptj+τj

Ptj
is lognormal to obtain

ϕ′ (1;α) = exp

[
(1 − α)

(
µ−

1

2
ασ2

)
τj

]
− erf τj exp

[
−α

(
µ+

1

2
(−α− 1)σ2

)
τj

]
.

Further rearrangement yields

ϕ′ (1;α) = exp

[(
−αµ+ rf −

1

2
α (1 − α) σ2

)
τj

]
×
[
exp ((µ− rf ) τj) − exp

(
ασ2τj

)]
,

which implies that

ϕ′ (1;α) ⋚ 0 as α R α∗ ≡ (µ− rf ) /σ
2.

Differentiate ϕ (φj ;α) twice with respect to φj to obtain

ϕ′′ (φj;α) = −αEtj

{(
φj
Ptj+τj

Ptj
+ (1 − φj) e

rf τj

)−α−1(Ptj+τj
Ptj

− erf τj
)2
}
< 0,
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which implies that ϕ (φj ;α) is concave. If α > α∗, then ϕ′ (1;α) < 0, so the concavity of ϕ (φj ;α)

implies that the optimal value of φj is less than one and the Lagrange multiplier on the constraint

φj ≤ 1 is ξj = 0. If α ≤ α∗, then ϕ′ (1;α) ≥ 0, so the concavity of ϕ (φj ;α) implies that the

optimal value of φj equals one. If α < α∗, the Lagrange multiplier on the constraint φj ≤ 1 is

ξj > 0.

Suppose that θX and θS are sufficiently small so that in the long run, the stochastic process

for xtj is absorbed at zero. Lemma 5 implies that if the coefficient of relative risk aversion α

exceeds
µ−rf
σ2 , then in the long run the constraint φj ≤ 1 does not bind, and hence ξj = 0. In

this case, the first of the five differences between the Euler equation in equation (A.43) and the

standard Euler equation disappears. In addition, in the long run xtj = 0 on each observation

date tj so (1) m
(
xtj
)

= (1 − ψs)
1−θS

1−θX
on each observation date, (2) the consumer sells assets

from the investment portfolio on each observation date so 1 −

(
1{

yb
tj+1

>0
} + 1{

ys
tj+1

<0
}
)
θX =

1− θX on each observation date, and (3) the time between consecutive observations is constant so

1 − θ1(1−α)
e
ωτjh(τj+1)

is constant. Using the fact that ξj = 0 and dividing both sides of equation (A.43)

by (1 − ψs) (1 − θS)
(
1 − θ1(1−α)

eωτh(τ)

)
, proves proposition 5.

34



Notes

1Stokey (2009) presents a comprehensive analysis of issues related to inaction and infrequent adjustment.
2We call this cost the “observation cost,” though it summarizes all costs associated with obtaining and

processing the information necessary to choose consumption and the allocation of assets.
3Woodford (2008) applies the concept of rational inattention in the context of pricing behavior by firms.
4Reis (2006) develops and analyzes a model of optimal inattention for a consumer who faces a cost of

observing additive income, such as labor income. In that model, the consumer can hold only a single riskless

asset so there is no portfolio allocation problem.
5Gabaix and Laibson (2002) is very similar to Abel, Eberly, and Panageas (2007), except that Gabaix

and Laibson model the cost of observing the stock market as a utility cost and Abel, Eberly, and Panageas

model it as a resource cost. A more important difference, however, is that the formulation of this cost used

by Abel, Eberly, and Panageas preserves the homogeneity of the value function in wealth, thereby permitting

exact analytic solution of the value function. However, the formulation adopted by Gabaix and Laibson does

not preserve this homogeneity. (In private correspondence, Gabaix and Laibson (November 25, 2006) clarify

their observation cost by stating ”that the utility cost is always qw0e
−ρt, not qwte

−ρt,” so that the cost

is not proportional to the contemporaneous value of wealth.) Therefore, Gabaix and Laibson compute an

approximate solution.
6Huang and Liu (2007) apply the concept of rational inattention to study the optimal portfolio decision

of an investor who can obtain costly noisy signals about a state variable governing the expected growth

rate of stock prices. Although the substantive topic of their application of rational inattention is very

close to the topic of our current paper, the economic framework is quite different. Importantly, Huang and

Liu do not impose a cash-in-advance constraint that requires consumption to be purchased with a liquid

asset. As a consequence, they focus on the investment portfolio of risky equity and bonds, but do not have

a transactions account, whereas our focus is on the transfers of assets between the investment portfolio

and the transactions account. In addition, Huang and Liu do not include any costs of trading assets and

they allow continuous observation of stock prices so that the investor continuously trades assets within the

investment portfolio. However, our modeling of transfer costs and infrequent observation of stock prices

leads to infrequent transfers of assets.
7Our earlier paper assumes that the investment portfolio is continuously re-balanced by a portfolio man-

ager who, on each observation date, charges a fee proportional to the size of the portfolio (and thus the fee is

not separately identifiable from an observation cost that is proportional to the size of the portfolio) whereas

the current paper does not allow re-balancing of the investment portfolio between observation dates.
8Because the transactions account does not include any risky assets, the consumer continuously knows

the value of Xt.
9The consumer does not observe any new information between time t+j and time tj+1 and hence cannot

adjust the portfolio in response to any news that arrives during this interval of inattention. It is possible

that the consumer could decide at time t+j to exchange equity for bonds at some time(s) before tj+1, but

we do not consider this possibility in this paper. In Abel, Eberly, and Panageas (2007) a portfolio manager

continuously rebalances equity and bonds in the investment portfolio.
10This interpretation of ψs as a tax rate is most plausible if the consumer only withdraws money from the

investment portfolio and never transfers assets into the investment portfolio. As we will see in Section 3,

the long run is characterized by precisely this situation in which the consumer never transfers funds into the
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investment portfolio, if the fixed component of the transfer cost is sufficiently small.
11We assume that θX is very small so that if X > 0 and S = 0, the consumer will not be deterred from

transferring at least some assets from the transactions account to the investment portfolio. We assume that

ψs + θS < 1 to prevent assets from becoming ”trapped” in the investment portfolio if the consumer were to

try to sell assets from the investment portfolio at a time when X = 0. If, instead, ψs + θS were greater

than or equal to one, then an attempt to sell a dollar of assets from the investment portfolio would cost at

least one dollar and the consumer would not receive any liquid assets as a result of this transaction.
12Duffie and Sun (1990) assume that on each observation date the consumer pays a portfolio management

fee that is proportional to total wealth. In their model, optimal behavior implies that X = 0 on each

observation date, so the fixed transaction cost θXX + θSS is simply θSS; hence, they do not need to

explicitly specify the value of θX .
13As we will show, if Stj

= 0 on observation date tj , the consumer will use some liquid assets from the

transactions account to purchase assets in the investment portfolio, so St+j
> 0. Then on all subsequent

observation dates, Stj
> 0.

14The optimal values of consumption during the interval of time from t+j to tj+1 satisfy the condition that

the product of the intertemporal marginal rate of substitution between times t+j and s,

(
cs

c
t
+
j

)
−α

e−ρ(s−t
+

j ),

and the gross rate of return between those times, erL(s−t+j ), equals one, so that

cs = e−
ρ−rL

α (s−t
+

j )ct+j
, for t+j ≤ s ≤ tj+1. (*)

Substituting cs from equation (*) into equation (10) in the text yields

C (tj , τj) = h (τj) ct+j
, (**)

where h (τj) is defined in equation (15) in the text. Equations (*) and (**) imply that

cs = [h (τj)]
−1
e−

ρ−rL
α (s−t

+

j )C (tj , τj) , for t+j ≤ s ≤ tj+1. (***)

Substituting equation (***) into equation (11), and using the definition of h (τj) in equation (15) yields

U (C (tj , τj)) = 1

1−α
[h (τj)]

α [C (tj , τj)]
1−α, which, along with equation (**), implies that U ′ (C (tj , τj)) =

c−α

t
+

j

.

15King, Plosser, and Rebelo (1988) have shown that this specification of the utility function is the only

specification in a real business cycle model that is consistent with the empirically observed stationarity of

hours worked together with nonstationary consumption.
16To see that V (X,S) > Ṽ (X,S) in Region I, use the fact that V (X,S) is strictly increasing in X and

S to obtain V K > V A = V B = Ṽ B = Ṽ K , where V i is the value of V (X,S) at point i and Ṽ j is the value

of Ṽ (X,S) at point j in the figure.
17If we relax the assumption that θX = θS , then statement 2c of Proposition 1 implies that the slope of

the linear portion of the indifference curve through points B and A is − (1 − ψs)
1−θS

1−θX
while the slope of the

dashed line through points C, B′, and A′ remains − (1 − ψs). The horizontal intercept of the indifference

curve, S, is 1

1−θS
≥ 1 times as large as S, the horizontal intercept of the dashed line through points C,

B′, and A′ because starting from (X,S) =
(
0, S

)
the fixed transaction cost moves the allocation (X,S) to

(
0, (1 − θS)S

)
=
(
0, S

)
. Therefore, even if θX > θS , so that the linear portion of the indifference curve
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slopes downward more steeply than the dashed line, the linear portion of the indifference curve will not cross

the dashed line for any non-negative values of X . Also, statement 4c of Proposition 1 implies that the

slope of the indifference curve through points E and F is − (1 + ψb)
1−θS

1−θX
. The vertical intercept of the

indifference curve is 1

1−θX
≥ 1 times as large as the vertical intercept of the dashed line through point D

and thus the indifference curve does not cross this dashed line for non-negative values of S.

18In order to obtain the dollar equivalent cost, we use the fact that a utility cost of θ1c
1−α
tj+1

is equivalent

to a reduction of consumption by λ where
[
(1 − λ)

1−α
− 1
]

c
1−α
tj+1

1−α
= −θ1c

1−α
tj+1

. Solving for λ gives λ =

1− [1 − (1 − α) θ1]
1

1−α . Since λ is measured as a fraction of consumption, the observation cost is equal to a

fraction λ
(
ctj+1

/Stj

)
of the value of the investment portfolio. Hence for a consumer who has 106 dollars in

Stj
, the observation cost is λ

(
ctj+1

/Stj

)
106. This is the number reported in the second column of Table 1.

19Eberly (1994) shows that a version of the consumption Euler equation also holds in a model with a fixed

cost of adjusting the stock of durables, by considering consumption at consecutive adjustment dates.
20It is worth noting that “sufficiently risk-averse” need not require a very high value of α. For instance,

if the expected equity premium is µ − rf = 0.04 and and the standard deviation of the rate of return on

equity is σ = 0.16, then any value of α greater than 1.5625 will be sufficiently risk averse.
21Recent work by Yuan (2008) has documented that investors appear to react to news that the stock

market has reached a new peak.
22Let D be the partial derivative of the first term on the right hand side of equation (A.8) with respect to

τj , holding C (tj , τj) fixed. Therefore,

D =

[
ω
θ1 (1 − α) e−ωτj

h (τj)
+

(
θ1 (1 − α)

eωτj [h (τj)]
2

)
h′ (τj) + α

h′ (τj)

h (τj)

(
1 −

θ1 (1 − α)

eωτjh (τj)

)]
1

1 − α
[h (τj)]

α [C (tj , τj)]
1−α

Use the facts that h′ (τj) = e−ωτj and ωh (τj) + e−ωτj = 1 to obtain

D =
h′ (τj)

h (τj)

[
θ1 (1 − α)

h (τj) − θ1 (1 − α) e−ωτj
+ α

](
1 −

θ1 (1 − α)

eωτjh (τj)

)
1

1 − α
[h (τj)]

α
[C (tj , τj)]

1−α

Now use the definition of Ψ (τj) in equation (A.17) to obtain

D = Ψ (τj)

(
1 −

θ1 (1 − α)

eωτjh (τj)

)
1

1 − α
[h (τj)]

α
[C (tj , τj)]

1−α
.

23If assets could be transferred without any resource costs (i.e., if θX = θS = ψs = ψb = 0), then

m
(
xtj

)
= 1 at all observation dates, and hence can be eliminated from equation (A.43).
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