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Introduction

In this paper, we introduce a new analytically tractable, yet flexible, multivariate framework,

which allows stochastic volatilities, stochastic correlations, and jumps to be consistently modeled

by means of a matrix-valued affine jump diffusion (AJD) process. With this approach, we propose

a new way to conveniently model many of the most salient features of financial data in a multi-

dimensional setting. Since we specify the model by means of a matrix-valued process that is affine,

we are able to retain a high degree of analytical tractability. This tractability is very useful for

studying various important financial problems with a unifying methodology, such as option pricing,

term structure modeling, and portfolio allocation.

We start with the specification of a new class of matrix AJD processes convenient for our

purposes. This class includes the Wishart pure diffusion process of Bru (1991) and the pure-jump

matrix Ornstein-Uhlenbeck subordinator in Barndorff-Nielsen and Stelzer (2007). We then provide

analytical transform analysis for this class of models, which allows us to study in a tractable way

a large class of new multivariate asset pricing models, in which stochastic volatilities, stochastic

correlations and stochastic intensities can arise together with discontinuous price processes, as well

as discontinuous multivariate second moments and leverage effects.

From a methodological point of view, our approach extends the transform analysis of AJD

processes in Duffie, Pan, and Singleton (2000) from a state space R
m+ × R

n−m to another one

including the convex cone of symmetric positive definite matrices. This approach has several

advantages, in that it can naturally specify covariance matrix processes for multivariate asset

pricing and at the same time it allows the formulation of multifactor models with a rich conditional

dependence structure between factors. Examples of natural application fields of our framework

cover are fixed-income problems with stochastically correlated risk factors and default intensities,

multivariate option pricing with general volatility and correlation leverage structures, dynamic

portfolio choice with jumps in returns, volatilities or correlations, the pricing of credit derivatives

on a basket of defaultable assets and, more generally, multi-asset option pricing with quanto,

rainbow, basket and spread based pay-offs. We illustrate our matrix AJD approach by deriving

explicit asset pricing implications for three concrete asset pricing applications to multifactor option

pricing, term structure modeling and dynamic multivariate portfolio choice.

A large part of the early literature in finance has adopted the assumption that prices are driven

by diffusion processes, mostly geometric Brownian motion. However, the behavior of many financial
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time series differs significantly from what we would expect from such an assumption. Two main

adjustments have been made in the literature to account for these deviations. The first stream

of literature introduces the concept of stochastic volatility, by modeling volatility with a separate

diffusion process. These models are of great analytical convenience and have been applied in many

areas, such as derivatives pricing, where they have been shown to be able to account for part of the

cross-sectional and time-series properties of implied volatilities. Early contributions include Hull

and White (1987) and Heston (1993), among many others.

However, there is considerable discussion in the literature about whether diffusive stochastic

volatility can be consistent with the extreme movements sometimes observed in financial time

series, or with the cross-sectional smile features of some option markets. Therefore, a second stream

of literature has introduced processes with discontinuous sample paths, such as jump diffusions.

Jump diffusions share the intuitive appeal of pure diffusion models, because they let prices change

smoothly most of the time, but at the same time they allow for larger infrequent jumps that might

be difficult to explain with a diffusion model. Jump diffusion models have a long and rich history

in financial economics dating back at least to Merton (1976). They often come at the expense of

analytical tractability.

Convincing empirical evidence for jumps in interest rates and asset prices was given as early

as in Ball and Torous (1985) and Jorion (1988), among many others, making jumps an essential

modeling device for many modern asset pricing models. The more recent literature has extended

these early works by providing models with stochastic volatility and jumps in returns or in returns

and volatility. Andersen, Benzoni, and Lund (2002) conclude that a reasonable continuous-time

model for equity index returns must include both stochastic volatility as well as jumps in the

return process. Further support for their conclusion using option data is provided in Bakshi, Cao,

and Chen (1997), Bates (2000), Pan (2002), and Broadie, Chernov, and Johannes (2007), among

others. Finally, Chernov, Gallant, Ghysels, and Tauchen (2003), Eraker, Johannes, and Polson

(2003), Eraker (2004) find evidence that both price and volatility dynamics exhibit discontinuities

in their time series behavior and that these models fare better in fitting options and returns data

simultaneously.1 Jones (2003) shows that the volatilities implied by the square-root volatility

process are too smooth to be reconciled with the empirical evidence. These finding are confirmed

also by Duan and Yeh (2007), who use data from the VIX volatility index, instead of option implied

1An stylized model with jumps in both asset prices and volatilities has been already presented in Naik (1993).
In this model, the volatility switches between different discrete states, while the stock price follows a jump diffusion
process.
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volatilities, to estimate different stochastic volatility models with jumps in the price process only.

They show that the Heston (1993) square-root stochastic volatility process performs poorly, even

when jumps in the price process are allowed. In addition to providing a good description of

the time series properties of returns and volatility, univariate jump diffusion processes have been

successfully proposed to explain the cross-sectional patterns of the smile observed in some option

markets. Particularly, their ability to generate steep negative skews at short maturities have been

exploited convincingly in explaining the large asymmetric skew of index options implied volatilities

at short maturities; see, e.g., Duffie, Pan, and Singleton (2000) and Carr, Geman, Madan, and Yor

(2003), among others.

The usefulness of models with stochastic volatility and discontinuous trajectories for many

applications is well supported by the empirical evidence. At the same time, multivariate or multi-

factor models are key for many areas in finance, such as option pricing, term structure modeling

and dynamic portfolio choice, to mention just a few. As noted, in the option pricing literature it

is well documented that single-factor stochastic volatility models with jumps can generate smiles

and smirks; see, e.g., Duffie, Pan, and Singleton (2000). However, many single-factor models

implicitly impose quite a restrictive relationship between volatility and the level and slope of the

smile. In particular, they fail to capture salient features of option prices in some markets, such

as the variability of the skew of the smile; see Carr and Wu (2006) for recent evidence on the

topic in currency option markets.2 Such a behavior of volatility smiles is observed also for index

and single stock options, even if these markets highlight quite different pricing patters, with index

option smiles that are typically much steeper than those of single stock options; see, e.g., Bakshi

and Madan (2000). Some of these tensions can be potentially addressed by means of multi-factor

stochastic volatility models. Skiadopoulos, Hodges, and Clewlow (2000) find that the level and the

variation of option implied volatilities are well explained by the first two principal components of

the option implied volatility surface. Egloff, Leippold, and Wu (2007) show that at least two factors

are needed to explain the term structure of variance swaps on the S&P500 index. Related evidence

has been produced by Christoffersen, Heston, and Jacobs (2007), who propose an extended Heston

model with two independent factors to generate a stochastic leverage. Even if the stochastic leverage

structure implied by their setting is restricted by two artificial boundaries, their empirical findings

show that two-factor stochastic volatility models improve substantially on single-factor models in

explaining the cross-sectional and time series patterns of index option implied volatilities. Given

2Implied volatility data also suggest that, in addition to the slope, the curvature of the smile is also stochastic,
however to a much lesser extent.
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that the differential pricing of index and single stock options is related to a correlation risk premium

for a stochastic correlation component among stocks, as shown recently by Driessen, Manhout,

and Vilkov (2008), multi-factor option pricing models with stochastically correlated factors and a

positive jump intensity offer a natural setting for studying more consistently the pricing of these

derivatives. In some simple pricing exercises, we illustrate the extent to which models with factors

following a matrix AJD process can improve the pricing performance of standard AJD option

pricing models.

Multi-factor diffusion models with stochastically correlated factors and a positive jump intensity

also offer a potentially convenient framework for term structure modeling. Standard affine term

structure models typically impose restrictive assumptions on the factor dependence structure, in

order to guarantee admissibility and econometric identification of the latent state variables. Dai

and Singleton (2000), for instance, emphasize the implied trade off between factors’ dependence

and their stochastic volatilities, as well as the arising drawbacks for explaining the empirical yield

curve regularities. In order to match the physical dynamics of the yield curve, these models have

introduced progressively richer specifications of the market price of risk, starting from the early

“completely affine” models3, to the “essentially affine” extension class in Duffee (2002), and con-

cluding with the most general “extended affine” specification in Cheridito, Filipovic, and Kimmel

(2007), which allows the market price of risk of all factors to be inversely proportional to their

volatilities. Recently, Buraschi, Cieslak, and Trojani (2007) developed a completely affine yield

curve model in which factors follow a matrix affine diffusion process that grants a new flexibility in

the simultaneous modeling of stochastic volatilities and correlations of factors. In their empirical

analysis, this modeling approach is shown to provide a unified and parsimonious answer to several

empirical term structure regularities, such as the deviations from the expectation hypothesis, the

persistence of yield volatilities, and the humped term structure of cap implied volatilities. The

inclusion of a jump component in this setting can prove useful in several other dimensions, also

because it can generate naturally an incomplete bond market. Ball and Torous (1999) and Chen

and Scott (2001), among others, find that innovations in interest rate levels are largely uncorre-

lated with innovations in the volatility of interest rates. In a related vein, Heidari and Wu (2003)

document that interest rate factors explaining most of the variation in the yield curve, can explain

only little of the variation in swaption implied volatilities: A large portion of the variation of option

prices seems to be driven by factors that are uncorrelated with those driving the underlying swap

3These models have been systematically characterized by Dai and Singleton (2000).
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rates. Collin-Dufresne and Goldstein (2002) regress changes in straddle prices of caps and floors

on changes in swap rates and find very modest R2-values, which are are in sharp contrast with the

high R2 of 90% they obtain when using an estimated affine diffusion model. This is the so-called

unspanned volatility, or incomplete bond market, phenomenon, which has been further investigated

more recently in Han (2007) and Joslin (2007), among others. Affine models with diffusion factors

are able to generate incomplete markets by means of parameter restrictions that typically further

restrict the model flexibility. Affine jump diffusion models can generate a more general form of

incompleteness, due to unspanned jump risk. Wright and Zhou (2007) note explicitly that a poten-

tially important source of unspanned volatility may be the presence of jump risk in bond returns.

They additionally show empirically that a good fraction of the predictability of bond returns can

be due to a time varying jump size and jump intensity. We calibrate a simple completely affine

yield curve model in which factors follow a matrix AJD process and we show that such a setting is

also able to account for these further stylized facts of bond returns.

A sufficiently flexible yet tractable model for returns and their stochastic conditional second

moments is potentially very important for applications to dynamic portfolio choice. For instance,

Ball and Torous (2000) examine the correlation process of a number of international stock market

indices and find an estimated correlation structure that is changing dynamically over time. They

argue that the stochastic nature of the inter-relation between these markets may follow from differ-

ent responses to shifts in government policy and other fundamental economic changes, and conclude

that ignoring the stochastic component of correlation can lead to erroneous portfolio allocations

and risk management. Buraschi, Porchia, and Trojani (2007) extend the seminal work of Merton

(1971) and propose a general multivariate portfolio choice model with stochastic volatilities and

stochastic correlations driven by a matrix diffusion process. They derive in closed form the hedging

portfolio against volatility and correlation risk, estimate the model in some real data applications,

and find that the hedging demand in the multivariate setting can be be substantially larger than

the volatility hedging demand implied by univariate models. Matrix AJD processes usefully extend

this multivariate portfolio choice setting by accounting for the empirical evidence of a non smooth

dynamics of returns and second moments, which cannot be easily neglected in some concrete ap-

plications. For instance, Huang and Tauchen (2005) find strong evidence for the presence of jumps

in S&P Index data, even using a test with likely low power, which account for about 4.5 to 7.0

percent of the total daily variance of the S&P Index, cash or futures. However, they leave open the

question about the economic significance of the contribution of jumps to the total daily variance
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of returns. An interesting answer along this dimension is provided by Das and Uppal (2004), who

study a multivariate jump diffusion model with a diffusion part that follows a geometric Brownian

motion and a jump part driven by a common Poisson process with constant intensity. They show

that if jumps are neglected when selecting the optimal portfolio, the potential for conditional di-

versification is substantially overstated. Our matrix AJD approach allows us to go beyond these

portfolio choice settings, and to study further aspects relevant for dynamic portfolio choice. We

study the intertemporal hedging demand against stochastic variance covariance risk in a matrix

AJD setting in which second moments of returns have a jump component driven by a stochastic

intensity. In this setting, jumps in second moments increase the sensitivity of the marginal utility

of wealth to variance covariance shocks, leading to a larger and economically significant hedging

demand against variance covariance risk than in the pure diffusion model of Buraschi, Porchia, and

Trojani (2007).

The extension of stochastic volatility models to a multivariate setting poses significant chal-

lenges, mainly because a covariance matrix processes has so satisfy well-known properties like

symmetry and positive definiteness. Bru (1991) has proposed the Wishart matrix diffusion process

as a convenient process of symmetric positive definite matrices. Following this work, Gourieroux

and Sufana (2003) and Gourieroux and Sufana (2004) have first used the Wishart diffusion process

to model multivariate risk in financial applications. We go one step further in this direction and

introduce matrix AJD processes, which include the Wishart diffusion as special case, study their

main properties and implications for financial purposes, and consider several application possibili-

ties. In order to introduce a jump component with an affine stochastic intensity, we specify directly

the jump part of matrix AJD as a process taking values in the state space of positive definite

symmetric matrices. This simple approach is very different from the one followed by Cheng and

Scaillet (2007), who specify linear-quadratic jump diffusions for standard state spaces by means of a

squared affine jump diffusion with an affine intensity, and avoids some of the restrictions necessary

in their setting to preserve both positivity of the intensity and the affine structure of the whole

process.

The plan of the paper is as follows. Section I introduces the matrix-valued affine jump diffusion

process. In Section II, we focus on derivative pricing and we additionally include jumps in the

return process. We specify our model both in a multi-factor setting as well as for multivariate

return processes and we derive tractable solutions for option pricing. Section III proposes a term

structure model based on our AJD process. We investigate to what extent such a term structure
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model can account for unspanned volatility. Section IV derives the optimal portfolio allocation in

the presence of jumps in the covariance process and we discuss the potential impact of these jumps

on the intertemporal hedging demand. Section V concludes.

I. Transform Analysis of AJD State Matrices

In this section, we introduce our matrix valued state-process and the general solutions to the

different transforms needed to solve various asset pricing problems. We also derive closed-form

transform formulas for all cases in which the jump intensity of the state process is constant.

A. Matrix Affine Jump-Diffusions

We fix a probability space (Ω,F , P) and a filtration {Ft} satisfying the usual conditions. We

suppose that X is a Markov process with respect to {Ft}, taking values in some state space D ⊂ S+
n ,

with S+
n the positive cone of symmetric positive semi definite n × n matrices. We also denote by

S++
n the strictly positive cones of positive definite matrices. ei, i = 1, . . . , n, denotes the i − th

unit vector in R
n. In comparison to the standard affine literature, the main distinction of our

approach lies in the choice of the state space D. Instead of working with a subset of R
+m ×R

n−m,

where n ≥ m, we use the cone of symmetric positive semi definite matrices. As we show below,

this approach has several convenient features for modeling multivariate sources of diffusive and/or

jump risk in finance.

Assumption 1 The Markov process X solves the stochastic differential equation:

dXt =
(

ΩΩ′ + MXt + XtM
′
)

dt +
√

XtdBtQ + Q′dB′
t

√

Xt + dJt , X0 = x ∈ S+
n (1)

where Ω,M,Q ∈ R
n×n, B is a matrix of standard Brownian motions in R

n×n, and J is a pure jump

process taking values in S+
n . Jump sizes ξX are IID and follow a finite probability distribution νX

on S+
n . Jumps are realized with an intensity {λX(Xt) : t ≥ 0}, where the function λX : D → R

+ is

affine,

λX(x) = λX,0 + tr(λX,1x) , (2)

with λX,0 ≥ 0 and λX,1 ∈ S+
n . Finally, we denote by ΘX the Laplace transform of the jump size
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ξX :

ΘX(Γ) =

∫

S+
n

exp(tr(Γx))νX(dx) (3)

for Γ ∈ S+
n .

The restriction that ΩΩ′ ≫ Q′Q guarantees that Xt is positive definite. The positivity of λX(Xt)

then follows directly, since λX,0 ≥ 0 and both matrices λX,1 and Xt are symmetric positive semi

definite. In the case where the jump intensity is zero, we obtain the (pure diffusion) Wishart

process introduced by Bru (1991) and studied in Gouriéroux and Sufana (2004). For ΩΩ′ = kQ′Q,

k > n−1, the transition density of this process is Wishart (see, e.g., Muirhead (1982), p. 44). If ΩΩ′

and Q are both matrices of zeros, then X is a pure jump process in the class of Ornstein-Uhlenbeck

matrix subordinators analyzed by Barndorff-Nielsen and Stelzer (2007). The closed form solution

for this process is given by

Xt = exp(tM)X0 exp(tM ′) +

∫ t

0
exp((t − s)M)dJs exp((t − s)M ′) . (4)

Note that there are many candidate distributions for the jump sizes of J , which we specify as a pure

jump process taking values in S+
n . These distributions include e.g., the Wishart, Inverse Wishart,

and matrix-variate Gamma, Beta, Dirichlet, Liouville, and confluent Hypergeometric distributions

of kind 1 and 2.

Under regularity conditions, the Lévy infinitesimal generator LX of the matrix Markov process

X is defined for bounded C2 functions f : D → R by:

LXf(x) = tr[(ΩΩ′ + Mx + xM ′)D + 2xDQ′QD]f(x) + λX(x)

∫

S+
n

(f(x + z) − f(x))dνX(z), (5)

where D is a n × n matrix of differential operators with ij-component given by ∂
∂Xij

. The affine

dependence of this generator on state x ∈ S+
n emphasizes the fact that the process defined by (1)

is an AJD with state space S+
n . This feature implies that many transforms used to solve several

important problems in asset pricing are computable explicitly as exponentially affine functions of

the current state of process X.
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B. Correlation, Volatility and Intensity Processes

Matrix AJD are convenient to specify the asset returns process of many asset pricing models.

Due to their positive semi definite state space, they are the natural processes to model stochastic

covariance matrices having potentially discontinuous trajectories, with jumps that are realized

according to a stochastic intensity. Moreover, matrix AJD are useful to specify flexible multivariate

risk structures, in which both positive and negative factors can feature stochastic co-volatility and

co-jumps. In this section, we illustrate these properties focusing on the implied correlation processes

ρij := Xij/
√

XiiXjj, 1 ≤ i ≤ j ≤ n.

Proposition 1 The dynamics of the ij−th correlation coefficient implied by the positive semi def-

inite matrix AJD process X in Assumption 1 is given by:

dρijt = m(ρijt)dt +
e′i
√

XtdBtQj + e′j
√

XtdBtQi
√

XiitXjjt

− ρijt

(

e′i
√

XtdBtQi

Xiit
+

e′j
√

XtdBtQj

Xjjt

)

+ρijtζ
X
ij dJρ

t ,

where Qi and Qj are the i−th and j−th column of matrix Q, respectively, and Jρ is a pure jump

process with intensity λX(Xt) and IID (percentage) correlation jump size given by:

ζX
ij =

1 +
ξX
ij

Xijt
√

(

1 +
ξX
ii

Xiit

)

(

1 +
ξX
jj

Xjjt

)

− 1 . (6)

m(ρijt) = Aijtρ
2
ijt + Bijtρijt + Cijt is a quadratic drift function with stochastic coefficients, given

explicitly in Appendix A, which depend only on Xkk and ρkl, 1 ≤ k, l ≤ n. The instantaneous

conditional variance of the correlation process has the form:

1

dt
Et

(

dρ2
ijt

)

= v2(ρijt) + λX(Xt)E
(

ζX
ij

2
)

, (7)

where

v2(ρijt) = (ρ2
ijt − 1)

(

2ρijt
Q′

iQj
√

XiitXjjt

− Q′
iQi

Xiit
− Q′

iQj

Xjjt

)

. (8)

The correlation drift m(ρijt) is a quadratic function of ρijt with stochastic coefficients Aijt, Bijt

and Cijt. From the explicit expressions in Appendix A, the coefficient Aijt is a function only of the
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conditional variances Xiit and Xjjt, but coefficients Bijt and Cijt depend on all conditional variances

Xkk, 1 ≤ k ≤ n, and all other correlations ρik, ρjk, k 6= i, j. The conditional variance of dρijt is

the sum of v(ρijt) and λ(Xt)E[(ζX
ij )2]. The first term, which is the contribution of the continuous

part of the correlation process to the conditional variance, depends only on the correlation ρijt

and the corresponding variance terms Xiit and Xjjt. The contribution of the discontinuous part

of the process to the conditional variance of the correlation depends, instead, on all correlations

and variances ρijt, Xiit and Xjjt, where 1 ≤ i, j ≤ n, via the stochastic intensity λ(Xt). This

last feature generates potentially very rich dynamics in conditional second moments, which are not

generally mappable into a low–dimensional factor structure.

To investigate the dynamic properties of our matrix AJD setting, we simulate a 3 × 3 matrix

AJD and illustrate the resulting co-volatility, co-jump and intensity dynamics. The parameters of

the process are arbitrarily chosen and listed in Panel A of Table III. Figure 2 presents simulated

trajectories for volatilities
√

X11,
√

X22,
√

X33 and correlations ρ12, ρ13, ρ23 in the 3 × 3 matrix

AJD model. All volatilities and correlations feature rich mean reversion features, stochastic second

moments and volatility/correlation clustering patterns.

[Figure 1 about here.]

Figure 2, top panel, illustrates the correlation co-jump dynamics.

[Figure 2 about here.]

Correlations can feature both positive and negative jumps, with a large variation in jumps sizes,

which can range range between −0.15 to approximately 0.33. Jumps tend to cluster in dependence

of the value of the intensity λ(Xt), plotted in the bottom panel of Figure 2. Realized intensities vary

stochastically over time between approximately 0.15% and 0.7% and feature clustering patterns,

with high (low) jump intensities that tend to be followed by high (low) future jump intensities.

C. Exponentially Affine Transforms

We now analyze the Laplace transform of the matrix AJD process. To this end, let ΨX(Γ,Xt, t, T )

denote the discounted Laplace transform of XT :

ΨX(Γ,Xt, t, T ) = E

[

exp(−
∫ T

t
R(Xs)ds + tr(ΓXT ))|Ft

]

, (9)
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where Γ ∈ S+
n and {R(Xt) : t ≥ 0} is the short interest rate process. This transform is exponentially

affine if the short rate process R(Xt) is affine.

Assumption 2 The short rate process is affine: R(x) = ρ0 + tr(ρ1x), where ρ0 ≥ 0 and ρ1 ∈ S+
n .

Assumption 2 directly implies a positive short rate, which is convenient to ensure existence of a

well-defined transform ΨX . Given Assumptions 1 and 2, the discounted Laplace transform of XT

is exponentially affine, with coefficients that are obtained by solving a corresponding system of

matrix Riccati differential equations.

Proposition 2 Let Assumptions 1, 2 and additional regularity conditions be satisfied. Then, the

discounted Laplace transform (9) is exponentially affine:

ΨX(Γ,Xt, t, T ) = exp (B(T − t) + tr(A(T − t)Xt)) (10)

with functions B(u) ∈ R and A(u) ∈ S+
n that solve the system of matrix Riccati equations:

dA(τ)

dτ
= −ρ1 + M ′A(τ) + A(τ)M + 2A(τ)Q′QA(τ) + λX,1

[

ΘX(A(τ)) − 1
]

, (11)

dB(τ)

dτ
= −ρ0 + tr

(

A(τ)ΩΩ′
)

+ λX,0

[

ΘX(A(τ)) − 1
]

, (12)

subject to terminal conditions B(0) = 0 and A(0) = Γ.

Despite the multivariate state space structure, closed-form solutions for functions A(u) and B(u)

in Proposition 2 are available in the case where the intensity λX(Xt) is constant (λX,1 = 0). In

models with stochastic intensity, accurate asymptotic approximations can be developed starting

from the closed form solution for the case λX,1 = 0. This analytical approach circumvents the need

for numerical solutions, which are unavoidable in many standard multivariate affine models with

state space R
+m × R

n−m, n ≥ m. The closed form transform solution for the constant intensity

case is given next.

Corollary 1 Let Assumptions 1, 2 and additional regularity conditions be satisfied. Assume further

that λX,1 = 0. Then, the closed form expressions for function A(τ) in Proposition 2 is as follows:

A(τ) = C22(τ)−1C21(τ) , (13)
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where C12(τ) and C22(τ) are n × n blocks of the following matrix exponential:





C11(τ) C12(τ)

C21(τ) C22(τ)



 := exp



τ





M −2Q′Q

−ρ1 −M ′







 . (14)

Given the solution for A(τ), the coefficient B(τ) follows by direct integration:

B(τ) = −ρ0τ − k

2
tr[ln C22(τ) + τM ′] + λX,0

[∫ τ

0
ΘX(A(s))ds − τ

]

(15)

D. Transform Inversion Formula

Given the solutions in Corollary 1, we can efficiently perform the transform analysis of matrix

AJD models and apply it to several multivariate financial and econometric problems, in which

state variables are modeled by a matrix AJD process. For instance, for option pricing purposes we

can consider for any A,B ∈ Sn the following transform, which is the matrix AJD version of the

transform used in Duffie, Pan, and Singleton (2000) to price several types of European options in

affine models with state space D = R
+m × R

n−m:

GA,B(y;X0, T ) := E

[

exp[−
∫ T

0
R(Xs)ds] exp(tr(AXT ))Itr(BXt)≤y

]

(16)

where IC is the indicator function of event C, y ∈ R, and A,B ∈ S+
n . The Fourier-Stieltjes transform

of GA,B, if well defined, is given by:

GA,B(v;X0, T ) =

∫

R

exp(ivy)dGA,B(y;X0, T )

= E

[

exp[−
∫ T

0
R(Xs)ds] exp[tr((A + ivB))Xt]

]

= ΨX(A + ivB,X0, 0, T ) (17)

where v ∈ R and i =
√
−1. The inversion formula for GA,B(y,X0, T ) then immediately follows (see

Duffie, Pan, and Singleton (2000)).

Corollary 2 Under regularity conditions, the transform in equation (16) is given by:

GA,B(y;X0, T ) =
ΨX(A,X0, 0, T )

2
− 1

π

∫ ∞

0

Im
[

ΨX(A + ivB,X0, 0, T ) exp(−ivy)
]

v
dv (18)

where Im(c) is the imaginary part of c ∈ C.
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Formula (18) and Proposition 2 allow us to extend the range of known transform solutions in Duffie,

Pan, and Singleton (2000) to general matrix AJD processes of the type (1). For R(Xt) = 0 and

A = 0, formula (18) gives us the conditional probability distribution of tr(BXT ) given X0. The

corresponding density of tr(BXT ) follows by differentiation of GA,B(·;X0, T ).

E. Stochastic Discount Factor and Risk Neutral Pricing

Let Assumption 1 be satisfied and P be the physical probability measure. An exponentially

affine stochastic discount factor is a process ξ = {ξt : 0 ≤ t ≤ T} defined by

ξt = exp

(

−
∫ t

0
R(Xs)ds

)

exp(α(t, T ) + tr(β(t, T )Xt)) , (19)

such that {ξt exp
(

∫ t
0 R(Xs)ds

)

: 0 ≤ t ≤ T} is a martingale process under P, for given contin-

uous functions α(·, T ) : [0, T ] → R and β(·, T ) : [0, T ] → S+
n with α(0, T ) = 0 and β(0, T ) =

0. It follows that we can define an equivalent martingale measure P
∗ by the density dP

∗

dP
:=

ξT exp(
∫ T
0 R(Xs)ds). Therefore, the arbitrage-free time−t price Vt of any T−measurable contingent

claim VT := V (XT , T ) satisfies the risk neutral valuation formula:

Vt =
1

ξt
Et [ξT VT ] = E

∗

t

[

exp

(

−
∫ T

t
R(Xs)ds

)

VT

]

(20)

where E
∗

t [·] denotes conditional expectation with respect to probability P
∗. Under these conditions,

X is a matrix AJD, but with time-dependent coefficients, also with respect to the risk neutral

probability.

Proposition 3 The dynamics of matrix AJD process X in Assumption 1 with respect to the risk

neutral probability P
∗ takes the form:

dXt = (ΩΩ′ + M∗(t)Xt + XtM
∗′(t))dt +

√

XtdB∗
t Q + Q′dB∗

t
′
√

Xt + dJt (21)

where B∗ is a n × n standard Brownian motion and J is a pure jump process with value in S+
n

and having independent jump sizes ξX
t with distribution νX∗(t) and affine intensity λ∗

X(Xt, t) =

λ∗
X,0(t) + tr(λ∗

X,1(t)Xt). The parameters of the X−dynamics (21) under risk neutral probability

P
∗ are M∗(t) = M + 2Q′Qβ(t, T ), λ∗

X,0(t) = λX,0Θ
X(β(t, T )), λ∗

X,1(t) = λX,1Θ
X(β(t, T )) and

ΘX∗
(Γ, t) = ΘX(Γ + β(t, T ))/ΘX (β(t, T )).
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The main implication of Proposition 5 is that under the risk neutral probability P
∗, implied by

the exponentially affine density dP
∗

dP
= exp(

∫ T
0 R(Xs)ds)ξT , the discounted Laplace transform (9)

is again exponentially affine. The coefficients in the exponential of this transform satisfy the same

system of matrix Riccati differential equations as in Proposition 2, but with (time dependent)

parameters M∗(t), λ∗
X,0(t), λ∗

X,1(t) and ΘX∗(Γ, t). Hence, with the exponentially affine stochastic

discount factor (38), the matrix AJD structure of process X is preserved both under the physical

and the risk neutral probabilities.

II. Derivatives Pricing

Our approach extends in a natural way the single asset transform analysis in Duffie, Pan and

Singleton (2000) from the classical affine state space D ⊂ R
+m × R

n−m to settings in which state

variables can be driven by matrix AJD. We first present the results for the single asset case and

then we move on to the multi-asset case, for which the advantage of our modeling approach becomes

particularly obvious.

A. Multi Factor Double-Jump Option Pricing Models

A convenient feature of our matrix AJD model is that it can easily model flexible factor co-

volatilities together with a double-jump structure in assets returns and their multi factor volatility.

To this end, we need to specify a joint jump diffusion process for some asset return and the AJD

state process X.

A.1. Double-Jump Matrix AJD Process for Asset Returns

Denote by Yt = log St the log return of asset S. To specify a joint AJD process for (Yt,Xt) ∈
R × S+

n , we first introduce assumptions on the corresponding double-jump structure.

Assumption 3 (L, J) is a pure jump process with values in R × S+
n . IID jump sizes (ξY , ξX) ∈

R ×S+
n follow a finite joint probability distribution νY X = νY |XνX on R ×S+

n . Jumps are realized

with an affine intensity λY X(Xt) = λY X,0 + tr(λY X,1Xt), where λY X,0 ≥ 0 and λY X,1 ∈ S+
n . The

Laplace transform ΘY X of the jump size is given by:

ΘY X(γ,Γ) =

∫

S+
n

(∫

R

exp(γy)νY |X(dy)

)

exp(tr(Γx))νX(dx). (22)
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We use the notation ΘY (γ) = ΘY X(γ, 0) to denote the Laplace transform of jump sizes ξY .

This jump process specification allows us to model both correlated or independent jumps be-

tween returns and volatility, in dependence of the choice of the joint jump size distributions. The

affine form of λY X(Xt) is necessary to preserve the affine form of the joint jump process for returns

and (multi factor) volatility.

Remark 1 A convenient assumption in the above model for the conditional distribution of ξY given

ξX is a normal distribution:

νY |X ∼ N (µY + tr(βY ξX), σ2
Y ) (23)

for parameters µY ∈ R, βY ∈ Sn and σ2
Y ≥ 0. The marginal distribution νX of jump size ξX can

then be taken to be one among the available tractable probability distributions on S+
n .4

Given the double-jump structure in Assumption 3, we specify the AJD process for (Yt,Xt) as

follows.

Assumption 4 The dynamics for the return process Yt are given by:

dYt =

[

R(Xt) + µe(Xt) −
1

2
tr(Xt)

]

dt + tr
(

√

XtdZt

)

+ dLt , (24)

where µe(Xt) = µe,0 + tr(µe,1Xt), µe,0 ∈ R and µe,1 ∈ Sn, is an affine function of Xt. In equation

(24), Z is a n × n standard Brownian motion:

Zt = BtP
′ + Wt

√

In − PP ′ (25)

where W is another n × n standard Brownian motion, independent of B, and P is a fixed n × n

matrix of correlation coefficients.

AJD dynamics for (Yt,Xt) can be specified both under the physical or the risk neutral proba-

bility measures. In the latter case, no-arbitrage constraints have to be imposed on the functional

form of the excess return process µe(Xt).

4E.g., a Wishart distribution with degrees of freedom kX , noncentrality parameter MX ∈ R
n×n and scale parameter

ΣX ∈ S
+
n .
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Remark 2 If the dynamics of (Yt,Xt) are written with respect to the risk neutral probability mea-

sure, absence of arbitrage requires:5

µe(Xt) = −λXY (Xt)(Θ
Y (1) − 1) (27)

where the jump intensity λXY and the jump size Laplace transform ΘY are both specified with

respect to the risk neutral probability measure. In this case, the affine functional form of µe(Xt)

is equivalent to the affine functional form of the intensity process λY X(Xt) under the risk neutral

probability measure.

A.2. Multifactor Volatility and Stochastic Leverage Properties

A convenient feature of the matrix AJD setting introduced above is that it can model, in a

tractable way, a multifactor volatility together with a stochastic leverage. We can exploit this

property to approach successfully many open problems in empirical asset pricing. E.g., there is

quite consistent empirical evidence for the fact that the implied volatility surface of index options

is driven by more than one latent risk factor.6 Similarly, the skew of the implied volatility smile

of some option markets, e.g., exchange rate option markets, is highly stochastic, with a sign that

can sometimes even change over time. Leverage is intimately linked to the skewness of asset

returns and the slope of the implied volatility smile. Therefore, a model with stochastic leverage

and general multifactor volatility is potentially useful to explain the cross-sectional and the time

varying patterns of the skew and the term structure of implied volatility in these markets.

The first row in Table I summarizes the volatility structure of multifactor matrix AJD diffusion.

In the pure diffusion case (λY X,0 = 0, λY X,1 = 0), the conditional variance of Yt is Vt = tr(Xt), i.e.,

Vt is the sum of the positive factors in the matrix AJD state Xt. Note that even if the off-diagonal

factors of Xt do not impact directly on Vt, they drive the stochastic conditional correlation of the

diagonal elements of Xt and, consequently, the dynamics of Vt. In the presence of jumps, Vt is

increased by the affine term λY X(Xt)E
[

(ξY )2
]

. This term is larger when the second moment of

5To see this, note that by Itò’s Formula:

St − S0 =

∫ t

0

SuR(Xu)du +

∫ t

0

Sutr(XudZu) +
∑

0<u≤t

Su−(exp(∆Lu) − 1) −

∫ t

0

Su(ΘY (1) − 1)λY X(Xu)du (26)

where ∆Lu := Lu − Lu− denotes the jump of L at time u > 0. Since the last three terms on the RHS define a local
martingale, we obtain the definition of the risk neutral dynamics for Y .

6See, e.g., Christoffersen, Heston, and Jacobs (2007) and Egloff, Leippold, and Wu (2007) for the term structure
of variance swaps on the S&P 500.
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the return jump size or the intensity λY X(Xt) is larger. The last property arises in states in which

Xt is larger as a positive definite matrix.

The second row in Table I summarizes the volatility of volatility structure of multifactor matrix

AJD diffusions. In the pure diffusion case (λY X,0 = 0, λY X,1 = 0), the volatility of volatility is

1
dtV art(dVt) = 4tr(Q′QXt) and it is completely determined by parameter Q: the larger Q′Q as

a positive definite matrix the larger the volatility of volatility. Jumps increase the volatility of

volatility in two distinct ways. First, jumps in X with size ξX increase the volatility of X, which

in turn increases the returns volatility of volatility. This increase is driven by the matrix H, which

we define as

H := In + λY X,1E
[

(ξY )2
]

.

Second, jumps in Y with size ξY increase the sensitivity of the volatility to changes in the matrix

AJD state X. E.g., when the intensity is constant, we obtain:

1

dt
Var t(dVt) = 4tr(Q′QXt) + λY X,0E

[

tr(ξX)2
]

(28)

In this case, the jump size of ξY has no impact on the volatility of volatility, because the return

volatility itself is not affected by changes in the intensity of jumps. However, when λY X,1 > 0

changes in the intensity affect Vt in a way that is proportional to the second moment E
[

(ξY )2
]

.

This feature further increases the volatility of Vt.

The last row in Table I summarizes the leverage structure of multifactor matrix AJD. In the

pure diffusion case (λXY,0 = 0, λXY,1 = 0), the leverage is 1
dtCovt(dYt, dVt) = tr(PQXt). Given

a volatility of volatility parameterization, matrix P completely determines the leverage between

returns and volatility. The multifactor structure of this leverage expression implies a stochastic

correlation between return and volatility shocks,

Corr t(dYt, dVt) = tr(PQXt)/
√

tr(Xt)tr(Q′QXt).

The introduction of jumps can both increase or decrease the leverage between volatility and returns,

depending on the joint second moments of ξY and ξX . For instance, in the constant intensity case

(λY X,1 = 0), the sign of the joint second moments E[ξY ξX
ii ], i = 1, . . . , n, completely determines

the direction of the impact of jumps in Y and X on leverage. More generally, when the intensity

is not constant, all joint second moments of ξY and ξX
ij , 1 ≤ i, j ≤ n, will impact on this leverage.
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In addition, in the AJD case the stochastic leverage can jump itself, when the matrix AJD X has

a discontinuity over time, leading to potential discontinuities in stochastic skewness of returns over

time.

A.3. Transform Analysis

(Y,X) is a Markov process with values in R × S+
n . The Lévy infinitesimal generator LY X of

(Y,X) is defined for bounded C2 functions f : R × D → R by:

LY,Xf(y, x) =

[

R(x) + µe(x) − 1

2
tr(x)

]

∂f(y, x)

∂y
+

1

2
tr(x)

∂2f(y, x)

∂2y

+tr[(ΩΩ′ + Mx + xM ′)D + (DQ′P ′x + xPQD)
∂

∂y
+ 2xDQ′QD]f(y, x)

+λY X(x)

∫

R×S+
n

(f(y + w, x + z) − f(y, x))dνY X(w, z) (29)

where D is a n×n matrix of differential operators with ij-component given by ∂
∂Xij

. This generator

is affine in x ∈ S+
n , which implies the exponentially affine form for the Laplace transform of YT .

Proposition 4 Let Assumptions 1–4 and additional regularity conditions be satisfied. Then, the

discounted Laplace transform of YT has the exponentially affine form:

ΨY (γ) := E

[

exp(−
∫ T

t
R(Xs)ds + γYT )

]

= exp(γYt) exp(B(t − T ) + tr(A(T − t)Xt)) (30)

with functions B(u) ∈ R and A(u) ∈ S+
n that solve the system of matrix differential Riccati equa-

tions:

∂A

∂τ
= (γ − 1)ρ1 + γµe,1 +

γ(γ − 1)

2
In + A(τ)(M + γQ′P ′) + (M ′ + γPQ)A(τ) + 2A(τ)Q′QA(τ)

+λY X,1[Θ
Y X(γ,A(τ)) − 1] (31)

∂B

∂τ
= (γ − 1)ρ0 + γµe,0 + tr(ΩΩ′A(τ)) + λY X,0[Θ

Y X(γ,A(τ)) − 1] (32)

subject to terminal conditions B(0) = 0 and A(0) = 0.

The structure of the system of matrix Riccati differential equations in Proposition 4 is identical

to the system of Matrix Riccati equations in Proposition 2. Therefore, the same solution approach

as the one in Corollary 1 applies.
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Corollary 3 Let Assumptions 1–4 and additional regularity conditions be satisfied. Assume further

that λY X,1 = 0. Then, the closed form expressions for function A(τ) in Proposition 4 is as follows:

A(τ) = C22(τ)−1C21(τ) , (33)

where C12(τ) and C22(τ) are n × n blocks of the following matrix exponential:





C11(τ) C12(τ)

C21(τ) C22(τ)



 := exp



τ





M + γQ′P ′ −2Q′Q

(γ − 1)ρ1 + γµe,1 + γ(γ−1)
2 In −(M ′ + γPQ)







 . (34)

Given the solution for A(τ), the coefficient B(τ) follows by direct integration:

B(τ) = ((γ − 1)ρ0 + γµe,0)τ − k

2
tr[ln C22(τ) + τ(M + γQ′P ′)]

+λY X,0

[
∫ τ

0
ΘY X(γ,A(s))ds − τ

]

(35)

Given the discounted Laplace transform expression for Yt, option prices can be again computed

by standard transform methods with the results in Duffie, Pan and Singleton (2000).

Corollary 4 Define for any a, b ∈ R the discounted Laplace transform:

Ga,b(y;Y0, T ) := E

[

exp[−
∫ T

0
R(Xs)ds] exp(aYT )IbYt≤y

]

(36)

It then follows, under regularity conditions:

Ga,b(y;Y0, T ) =
ΨY (a, Y0, 0, T )

2
− 1

π

∫ ∞

0

Im
[

ΨY (a + ivb, Y0, 0, T ) exp(−ivy)
]

v
dv (37)

where Im(c) is the imaginary part of c ∈ C.

With the formula in Corollary 4 and the results in Proposition 4, we can now price any European

option on ST by transform methods, given concrete assumptions on the distribution of the jump

size (ξY , ξX) as given, e.g., in Remark 1.
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A.4. State Price Density and Risk Neutral Pricing

Let Assumption 3 and 4 be satisfied with respect to the physical probability measure. An

exponentially affine stochastic discount factor is a process ξ = {ξt : 0 ≤ t ≤ T} defined by

ξt = exp

(

−
∫ t

0
R(Xs)ds

)

exp (α(t, T ) + tr(β(t, T )Xt) + γ(t, T )Yt) , (38)

such that {ξt exp
(

∫ t
0 R(Xs)ds

)

: 0 ≤ t ≤ T} is a martingale process under P, for given continuous

functions α(·, T ) : [0, T ] → R, γ(·, T ) : [0, T ] → R and β(·, T ) : [0, T ] → S+
n with α(0, T ) = γ(0, T ) =

0 and β(0, T ) = 0. It follows that we can define an equivalent martingale measure P
∗ on FT by the

density dP
∗

dP
:= ξT exp(

∫ T
0 R(Xs)ds). As a consequence, the arbitrage-free t−time price Vt of any

T−measurable contingent claim VT := V (YT ,XT , T ) satisfies the risk neutral valuation formula:

Vt =
1

ξt
Et [ξT VT ] = E

∗

t

[

exp

(

−
∫ T

t
R(Xs)ds

)

VT

]

(39)

where E
∗

t [·] denotes conditional expectation with respect to probability P
∗. Under these conditions,

X is a matrix AJD, but with time-dependent coefficients, also with respect to the risk neutral

probability.

Proposition 5 The dynamics of the matrix AJD process Y in Assumption 4 with respect to the

risk neutral probability P
∗ takes the form:

dYt =
(

R(Xt) − λ∗
XY (Xt, t)(Θ

Y ∗(1) − 1)
)

dt + tr
(

√

Xt

(

dB∗
t P ′ + dW ∗

t

√

In − PP ′
))

+ dLt (40)

where B∗ and Z∗ a two independent n×n standard Brownian motions and L is a pure jump process

with value in R and having independent jump sizes ξY
t with distribution νY ∗(t) and affine intensity

λ∗
Y X(Xt, t) = λ∗

Y X,0(t)+tr(λ∗
Y X,1(t)Xt). The parameters of the Y −dynamics (40) under risk neutral

probability P
∗ are λ∗

Y X,0(t) = λX,0Θ
Y X(γ(t, T ), β(t, T )), λ∗

X,1(t) = λX,1Θ
Y X(γ(t, T ), β(t, T )) and

ΘY X∗
(γ,Γ, t) = ΘY X(γ + γ(t, T ),Γ + β(t, T ))/ΘY X(γ(t, T ), β(t, T )).

The main implication of Proposition 5 is that under the risk neutral probability P
∗, implied by

the exponentially affine density dP
∗

dP
= exp(

∫ T
0 R(Xs)ds)ξT , the discounted Laplace transform (9)

is again exponentially affine. The coefficients in the exponential of this transform satisfy the same

system of matrix Riccati differential equations as in Proposition 2, but with (time dependent)

parameters M∗(t), λ∗
X,0(t), λ∗

X,1(t) and ΘX∗(Γ, t). If follows that with the exponentially affine
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stochastic discount factor (38) the matrix AJD structure of process X is preserved both under the

physical and the risk neutral probabilities.

A.5. Application: Volatility Surface and Skew Dynamics

[ TO BE COMPLETED ]

B. Multivariate Return Process and Option Pricing

For univariate option pricing models, it well-known that specifications with a jump intensity in

returns, volatility or both are able to obtain a better description of the steep skew of short-term

index options. In multivariate settings, it has been recently recognized that time varying corre-

lations and correlation risk premia can explain part of the differential pricing of index and single

stock options. In this section, we extend the previous setting to a general AJD model for multi-

variate asset return processes, which can feature stochastic conditional volatilities and correlations,

double-jumps in returns and conditional moments, and a multivariate stochastic leverage structure.

B.1. Double-Jump Process of Multivariate Asset Returns

Let {St := (S1t, S2t, . . . , Snt)
′ ∈ R

n : t ≥ 0} be the price process of n assets and denote by

Yt = (log S1t, log S2t, . . . , log Snt)
′ the log return vector. To specify the AJD process for (Yt,Xt) ∈

R
n × S+

n we start again from the assumptions on the multivariate double-jump structure.

Assumption 5 (L, J) is a pure jump process with values in R
n × S+

n . IID jump sizes (ξY , ξX) ∈
R

n × S+
n follow a finite joint probability distribution νY X = νY |XνX on R

n × S+
n . Jumps are

realized with an affine intensity λY X = λY X,0 + tr(λY X,1Xt), where λY X,0 ≥ 0 and λY X,1 ∈ S+
n .

The Laplace transform ΘY X of the jump size is given by:

ΘY X(γ,Γ) =

∫

S+
n

(∫

Rn

exp(γ′y)νY |X(dy)

)

exp(tr(Γx))νX(dx) (41)

We use the notation ΘY (γ) = ΘY X(γ, 0) to denote the Laplace transform of jump sizes ξY .

The affine form of λ(Xt) is necessary to preserve the affine structure of the multivariate joint process

for returns and their stochastic covariance matrix.
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Remark 3 A convenient assumption for the conditional distribution of the jump size ξY in the

multivariate context is:

νY |X ∼ N (µY + ξXβY ,ΣY ) (42)

with parameters µY ∈ R
n, βY ∈ R

n and ΣY ∈ S+
n . The marginal distribution νX of jump size ξX

can be then taken within the class of tractable probability distributions on S+
n , as in the previous

model settings.

Given the multivariate jump structure in Assumption 5, we specify the following multivariate

AJD for Y .

Assumption 6 The dynamics of the return process Yt under the probability P are given by:

dYt =

[

R(Xt)1n + µe(Xt)β + Xtη − 1

2
diag [Xt]

]

dt +
√

XtdZt + dLt . (43)

where µe(Xt) = µe,0 + tr(µe,1Xt), with µe,0 ∈ R and µe,1 ∈ Sn, β, η ∈ R
n, and diag [X] is a n × 1

vector with i−th component equal to Xii. In equation (43), Z is a n× 1 standard Brownian motion

defined by:

Zt = Btρ +
√

1 − ρ′ρWt , (44)

where W is another n × 1 standard Brownian motion, independent of B, and ρ = (ρ1, ρ2, . . . , ρn)′

is a fixed n × 1 correlation vector with the restriction that ρ′ρ ≤ 1.

The implications of the specification in Assumption 6 for the resulting multivariate expected return

process are discussed below.

Remark 4 If the dynamics of (Yt,Xt) are written with respect to the risk neutral probability mea-

sure, then absence of arbitrage requires:

µe(Xt)βi = −λY X(Xt)(Θ
Y (ei) − 1) (45)

for any i = 1, . . . , n, where both the jump intensity λXY and the jump size Laplace transform ΘY

are specified with respect to the risk neutral probability measure. In this case, the affine functional

form of µe(Xt) is equivalent to the affine functional form of the intensity process λY X(Xt) under
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the risk neutral probability measure. More generally, the process:

µe(Xt)β + Xtη + λY X(Xt)((Θ
Y (e1),Θ

Y (e2), . . . ,Θ
Y (en))′ − 1) (46)

can be used to specify a flexible multivariate excess return process under the physical probability

measure. This setting includes as a special case, when β = (ΘY (e1),Θ
Y (e2), . . . ,Θ

Y (en))′ and

µe(Xt) = −λY X(Xt), the linear expected excess return case Et[dYt] = R(Xt)1 + Xtη.

B.2. Variance-Covariance, Co-Volatility and Multivariate Leverage Properties

Our matrix AJD setting can feature a variety of stochastic co-volatility and leverage structures

in the multivariate return process Y . The first row in Table II highlights the variance-covariance

features of matrix AJD. In the no-jump case (λY X,0 = λY X,1 = 0), we obtain a Wishart-type

process for Xt and the conditional covariance matrix of the return process is

Vt :=
1

dt
V art(dYt) = Xt (47)

In the case of jumps, the returns covariance matrix is

Vt = Xt + λY X(Xt)E[ξY ξY ′
] (48)

and is again an affine function of Xt. Every component of the returns covariance matrix depends

on all elements in the state of matrix Xt. Compared to the no-jump case, the returns covariance

matrix is increased by the positive definite matrix of second moments E[ξY ξY ′
] of return jump

sizes, weighted by the stochastic intensity λY X(Xt). The higher the conditional intensity, which is

equivalent to a more positive definite matrix Xt, the larger the contribution of the jump part of

process Yt to the conditional covariance matrix of returns. Overall, the larger matrix Xt, the larger

the return covariance matrix Vt.

The second row in Table II summarizes the different co-volatility structures that can arise in

our matrix AJD setting. In the no-jump case, co-volatilities are affine in Vt. In particular, the co-

volatility 1
dtCov(dViit, dVjjt) is proportional to Vijt = Xijt, with a proportionality coefficient given

by the scalar product of the i−th and j−th column of matrix Q. It follows that the instantaneous
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correlation between Viit and Vjjt is given by:

1

dt
Corr t(dViit, dVjjt) =

Q′
iQj

√

Q′
iQiQ′

jQj

Vijt
√

ViitVjjt

(49)

and is proportional to the correlation between asset returns Yi and Yj. In the unconstrained AJD

model, co-volatilities are affine in Xt and depend on all components of the state process X, via the

stochastic intensity λY X(Xt). This feature breaks down the strong link between covariances and

co-volatilities arising in the model without jumps and implies a more general conditional correlation

between Vii and Vjj, which is not anymore proportional to the one between Yi and Yj .

When jumps are absent, the general (affine) leverage formula is:

1

dt
Covt(dYit, dVijt) = ρ′(XiitQj + XijtQj) . (50)

As a special case, the expression of the leverage between returns and volatility arises for i = j:

1

dt
Covt(dYit, dViit) = 2ρ′QiXiit , (51)

which implies a constant correlation between shocks in returns and their volatility,

corrt(dYit, dViit) =
ρ′Qi
√

Q′
iQi

. (52)

The sign of the correlation in (52) is completely driven by the sign of the scalar product ρ′Qi

between the vector ρ of correlation parameters and the i−th column of matrix Q. Therefore,

the model cannot admit a stochastic skewness between asset returns and their volatility. When

correlated jumps between Y and X are present, we obtain the more general leverage formula:

1

dt
Covt(dYit, dVijt) = ρ′Q(Hij + H ′

ij)Xtei + λY X(Xt)E
[

ξY
i tr(Hijξ

X)
]

= ρ′(XiitQj + XijtQj) + 2ρ′QλY X,1XteiE
[

ξY
i ξY

j

]

+ λY X(Xt)E
[

ξY
i tr(Hijξ

X)
]

,

where the matrix Hij is defined as

Hij := eje
′
i + λY X,1E

[

ξY
i ξY

j

]

.

Note that the leverage depends here on all components of the state process X. For instance, the
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leverage between returns and volatility is:

1

dt
Covt(dYit, dViit) = 2ρ′(XiitQi + QλY X,1XteiE

[

(ξY
i )2
]

) + λY X(Xt)E
[

ξY
i tr(Hiiξ

X)
]

, (53)

which implies the following stochastic conditional correlation between shocks in returns and their

volatility:

Corr t(dYit, dViit) =
2ρ′
(

XiitQi + QλY X,1XteiE
[

(ξY
i )2
])

+ λY X(Xt)E
[

ξY
i tr(Hiiξ

X)
]

√

(Xii + λY X(Xt)E
[

(ξY
i )2
]

)(4tr(HiiQ′
iQHiiXt) + λY X(Xt)E [tr(HiiξX)2])

This correlation is stochastic, because of its dependence on all components of Xt. If follows that

every asset in the general matrix AJD setting can feature stochastic multifactor dynamics for the

correlation between returns and their volatilities. Moreover, the correlation can jump itself with a

potentially time-varying intensity λX(Xt). This structural property of the model can prove useful

in some applications, e.g., to consistently price multi-asset options when the return skewness of the

involved assets, either under the physical or the risk neutral probability, is stochastic and potentially

characterized by a non smooth behavior over time.

[Figure 3 about here.]

In Figure 3, we plot the correlation Corr t(dYit, dViit) for different specifications of the jump

component. When there are no jumps involved, the volatility leverage is constant (dashed line).

Adding a jump component into the return process gives rise to a stochastic volatility leverage (dash-

dotted line). The same effect, and even stronger, occurs when we add jumps in the covariance matrix

instead of the return process (dotted line). By combining the two jump specifications, we find that

we can generate a stochastic leverage effect with a variability large enough to generate stochastic

sign switches. From a theoretical viewpoint, the introduction of jumps into the return process

may generate a sign of the volatility leverage which may change. With jumps in the covariance

process only, we would fail to do so. Obviously, by combining the two jump specifications, we can

generate a volatility leverage structure and hence implied volatility smiles, which is flexible enough

to account for the behavior of single stock options.
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B.3. Transform Analysis

Under Assumption 5 and 6, (Y,X) is a Markov process with values in R
n × S+

n . The Lévy

infinitesimal generator LY X of (Y,X) is defined for bounded C2 functions f : R
n × D → R by:

LY,Xf(y, x) =

[

R(x)1n + µe(x)β + xη − 1

2
diag [x]

]′ ∂f(y, x)

∂y
+

1

2
tr

(

x
∂2f(y, x)

∂y∂y′

)

+tr

[

(ΩΩ′ + Mx + xM ′)D + DQ′ ∂

∂y
ρx + x

∂

∂y′
ρ′QD + 2xDQ′QD

]

f(y, x)

+λY X(x)

∫

Rn×S+
n

(f(y + w, x + z) − f(y, x))dνY X(w, z) (54)

where D is a n× n matrix of differential operators with ij-component given by ∂
∂Xij

and ∂
∂y′ is the

gradient operator. The affine form of the generator (54) implies a discounted Laplace transform of

the return vector YT that is exponentially affine.

Proposition 6 Let Assumptions 1 2, 5, 6, and additional regularity conditions be satisfied. Then,

the discounted Laplace transform of YT has the exponentially affine form:

ΨY (γ) := E

[

exp(−
∫ T

t
R(Xs)ds + γ′YT )

]

= exp(γ′Yt) exp(B(t − T ) + tr(A(T − t)Xt)) (55)

with functions B(u) ∈ R and A(u) ∈ S+
n that solve the system of matrix differential Riccati equa-

tions:

∂A

∂τ
= (γ′1− 1)ρ1 + γ′βµe,1 + ηγ′ +

1

2

(

γγ′ −
n
∑

i=1

γieie
′
i

)

+A(τ)(M + Q′ργ′) + (M ′ + γρ′Q)A(τ) + 2A(τ)Q′QA(τ) + λY X,1[Θ
Y X(γ,A(τ)) − 1]

∂B

∂τ
= (γ′1− 1)ρ0 + γ′βµe,0 + tr(ΩΩ′A(τ)) + λY X,0[Θ

Y X(γ,A(τ)) − 1]

subject to terminal conditions B(0) = 0 and A(0) = 0.

The structure of the system of matrix Riccati differential equations in Proposition 6 is again as

the one of the system of equations in Proposition 2. Therefore, for the constant intensity case, the

following closed form solution is obtained.

Corollary 5 Let Assumptions 1, 2 and additional regularity conditions be satisfied. Assume further
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that λY X,1 = 0. Then, the closed form expressions for function A(τ) in Proposition 2 is as follows:

A(τ) = C22(τ)−1C21(τ) , (56)

where C12(τ) and C22(τ) are n × n blocks of the following matrix exponential:





C11(τ) C12(τ)

C21(τ) C22(τ)



 := exp



τ





M + Q′ργ′ −2Q′Q

D −M ′ − γρ′Q







 . (57)

with D := (γ′1 − 1)ρ1 + γ′βµe,1 + ηγ′ + 1
2(γγ′ −∑n

i=1 γieie
′
i). Given the solution for A(τ), the

coefficient B(τ) follows by direct integration:

B(τ) = ((γ′1− 1)ρ0 + γ′βµe,0)τ − k

2
tr[ln C22(τ) + τ(M + Q′ργ′)] + λY X,0

[
∫ τ

0
ΘY X(γ,A(s))ds − τ

]

The immediate expression for the transform Ga,b(y;Y0, T ) needed to compute the prices of European

options in the multivariate context is given below (see Duffie, Pan, and Singleton (2000)).

Corollary 6 Define for any a, b ∈ R
n the discounted Laplace transform:

Ga,b(y;Y0, T ) := E

[

exp[−
∫ T

0
R(Xs)ds] exp(a′YT )Ib′Yt≤y

]

(58)

It then follows, under regularity conditions:

Ga,b(y;Y0, T ) =
ΨY (a, Y0, 0, T )

2
− 1

π

∫ ∞

0

Im
[

ΨY (a + ivb, Y0, 0, T ) exp(−ivy)
]

v
dv (59)

where Im(c) is the imaginary part of c ∈ C.

Given concrete assumptions on the distribution of the jump size (ξY , ξX), closed form option pricing

formulae for European derivatives on YT readily follow. Conditional normality of ξY given ξX , as

given, e.g., in Remark 3, is a convenient assumption in this multivariate return context.

B.4. State Price Density and Risk Neutral Pricing

[ TO BE COMPLETED ]
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III. Term Structure Models

Given the matrix jump diffusion dynamics (1), a rich class of multi factor affine yield curve

models with jumps can be obtained. Let dynamics (1) hold under a risk neutral measure P
∗. Then,

the zero-bond prices are given by:

B(t, T ) = E
P
∗

[exp(−
∫ T

t
R(Xs)ds)|Ft] = ΨX(0,Xt, t, T ) . (60)

In particular, zero bond yields are affine in Xt:

R(t, T ) = − log
B(t, T )

T − t
= − 1

T − t
[B(T − t) + tr(A(T − t)Xt)] (61)

and we can specify the short rate as

R(t) = lim
Tցt

R(t, T ) = δ + tr [DXt] ,

Bond yields are stochastically correlated and, at the same time, they are subject to common jumps,

for which the imperfectly correlated jump sizes are generated by an IID n(n + 1)/2 dimensional

random matrix ξX . Yields covariances are given by:

Covt (dR(t, T1), dR(t, T2)) =
tr[A(T1 − t)Q′QA(T2 − t)Xt] + Et [tr(A(T1 − t)dJt)tr(A(T2 − t)dJt)]

(T1 − t)(T2 − t)

Suppose, for instance, that dJt = dNtξ
X , where {N(t) : t ≥ 0} is a Poisson process in R

+ and the

jump size ξX is IID distributed in S+
n . We can write the part of yields co-movement due to jumps

in X as

Et [tr(A(T1 − t)dJt)tr(A(T2 − t)dJt)]

(T1 − t)(T2 − t)
= (λX,0 + tr(λX,1Xt))

Et

[

tr(A(T1 − t)ξX)tr(A(T2 − t)ξX)
]

(T1 − t)(T2 − t)
,

and is an affine function of Xt, via the multi factor intensity process λX that depends on the

n(n + 1)/2 components of the matrix AJD process X. Using concrete assumptions on the form of

the distribution of the jump size,7 this covariance structure can be made completely explicit.

7E.g., a Wishart distribution with degrees of freedom kX , noncentrality parameter MX ∈ R
n×n and scale parameter

ΣX .

28



A. Predictability and Unspanned Volatility

To validate our modeling approach, we briefly perform a simulation exercise and benchmark our

multivariate AJD term structure model against recent work on the stylized facts of term structure

dynamics, particularly on predictability and unspanned volatility. Cochrane and Piazzesi (2005)

showed that forward rates can predict future excess bond returns with R2-values around 30% to

40%. At the same time, Collin-Dufresne and Goldstein (2002), argue that under the unspanned

volatility hypothesis (USV), some state variables do not lie in the span of the term structure of

yields. Motivated by these two findings, Wright and Zhou (2007) develop a test for the USV

hypothesis following similar arguments as in Almeida, Graveline, and Joslin (2006) and Joslin

(2007). As expected excess bond returns are a function of all the state variables it follows that, if

the USV hypothesis is false, expected excess returns are spanned by term structure yields and any

other predictor must be insignificant.

One potential source of USV may be the presence of jump risk. Identifying jumps is inherently

difficult. Building on the work of Barndorff-Nielsen and Shephard (2004) and Barndorff-Nielsen

and Shephard (2006), Wright and Zhou (2007) investigate a long data set of high-frequency bond

data spanning the period from 1982 to 2006. They find significant evidence for jumps in the term

structure dynamics. Furthermore, augmenting the regression of bond excess returns on forward

rates by the realized bond jump mean greatly increases the predictability of excess bond returns.

Compared to the R2 values of around 30% using the regression specification in Cochrane and

Piazzesi (2005), Wright and Zhou (2007) report R2 values up to 60 percent when including the

jump mean as explanatory variable. The inclusion of jump intensity and jump volatility does not

lead to a significant increase in predictability. Also, regressions based on forward rates and realized

as well as implied volatility does not alter the R2 values. The latter finding was also reported in

Collin-Dufresne and Goldstein (2002) and Andersen and Benzoni (2006), indicating the existence

of unspanned risk factors.

Standard diffusion-based affine term structure models have difficulties in explaining the exis-

tence of unspanned risk factors without unreasonable assumptions on second moments of interest

rates (see, Roberds and Whiteman (1999), Dai and Singleton (2000), Bansal, Tauchen, and Zhou

(2004)). Only with richer specifications of market prices of risk or preferences, these models may

explain some predictability in excess bond returns (see, Duffee (2002), Dai and Singleton (2002),

Duarte (2004), Wachter (2006) ). Therefore, we perform a simulation with a very simple specifica-
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tion of an AJD term structure model to investigate whether we are capable of accounting for the

stylized facts of bond returns recently reported in Wright and Zhou (2007).

We follow closely the methodology in Wright and Zhou (2007) to assess the predictability

of excess bond returns in our term structure model. In particular, to minimize the near-perfect

collinearity problem, we use only three forward rates in the regression instead of five as in Cochrane

and Piazzesi (2005). However, in contrast to Wright and Zhou (2007), we do not augment the

regression with implied volatility, since they find no evidence of predictability for this measure as

an explanatory variable. Writing the return on holding a zero bond with maturity T for a holding

period s as

Re(t, s, T ) = log B(s, T ) − log B(t, T − s) + log B(t, s), (62)

we consider five different regression equations, which are all nested in the specification:

Re(t, s, T ) = β0+β1f1(t, 1)+β2f1(t, 3)+β3f1(t, 5)+β4mJ(t, h)+β5vJ(t, h)+β6rv(t, h)+ǫt+s, (63)

where f1(t, T ) is the T forward rate at time t with a one year period, and mJ(t, h) and vJ(t, h) are

the realized mean and volatility of the short rate jumps measured in rolling windows of length h

ending at time t. For our regression exercise, we set both s and h equal to one year. To assess the

predictability of the jump components, our first regression (A) uses just the three forward rates

f1(t, 1), f1(t, 3), and f1(t, 5). The second regression (B) augments the regression by the realized

mean of the interest rate jumps mJ(t, h). For regression (C), we add the realized jump volatility

vJ(t, h) and for regression (D), we add the realized volatility of the short interest rate rv(t, h).

Finally, for regression (E) we use the forward rates and the realized volatility of the short interest

rate, but no information from the jump measures. We simulate our model daily over a time period

of 20 years and compute the jump measures and the realized volatilities using a time period of one

year. We then estimate the various specifications of equation (63) based on monthly data and using

Newey-West adjusted heteroscedastic-serial consistent least-squares regression with lag parameter

11.

For the simulation, we assume a time-varying jump intensity that is affine in Xt and impose

a simple structure on the risk premium which is proportional to variance and affine in the jump

intensity. We use the set of parameters reported in Panel B of Table III. These values are set

arbitrary, but they give some reasonable term structure dynamics. We leave the estimation of AJD

term structure models for future research. Since Wright and Zhou (2007) report also negative jumps
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in the interest rate dynamics, we have to abandon the assumption that D is positive semidefinite.

However, the probability of generating negative interest rates is small and could be further offset

by a sensible choice of δ. For our simulation, we find a jump mean and standard deviation of the

short interest rate are 0.034% and 0.053%, respectively. The mean intensity is 0.0838. Except for

the standard deviation of jumps, these values are almost identical to the values reported in Wright

and Zhou (2007). They find a jump mean of 0.03%, a jump mean intensity of 0.08, and a jump

volatility of 0.41%. Finally, the volatility of our simulated short rate is slightly above 2%, which

is also approximately consistent with what we observe in interest rate data. As an illustration, we

plot in Figure 4 the mean term structure of the simulated sample path. The mean term structure

is upward sloping and shows most of its curvature at the short end. We additionally plot two

arbitrary term structures generated during the simulation.

[Figure 4 about here.]

Table IV summarizes the R2 values for our regression of bond excess returns with a one year

holding period and different maturities ranging from two to five years. Running the regression of

the excess bond returns on the forward rates alone gives an R2 between 24 to 29 percent. These

numbers are slightly lower than the numbers reported in Wright and Zhou (2007) (34-38 percent).

In accordance with Wright and Zhou (2007), we observe that when we augment the regression

based on forward rates with the jump mean, the R2 value rises significantly to values between 37

and 43 percent. This finding indicates that the information content of the jump mean complements

that of forward rates. In contrast to Wright and Zhou (2007), we also find that adding the jump

volatility increases the R2 values, although slightly less than the jump mean. However, adding

realized volatility (Regression (D) and (E)), does not increase predictability at all.

Table V summarizes the coefficient estimates and the associated t-statistics for several specifi-

cations of the regression equation (63). For all regressions, the forward rates exhibit the familiar

tent-shaped pattern. The coefficients are mostly significant. If we add the jump mean to the

regression of excess returns on forward rates (Regression (B)), the coefficient on the jump mean

(β4) is highly negative and statistically significant for each regression specification. A negative

coefficient indicates that the jump mean is a negative predictor of future excess returns, i.e., down-

ward jumps in bond prices are followed by large positive excess returns. Adding the jump mean

does not significantly alter the coefficients for the forward rates. Hence, the forward rates and the

jump mean measure different components of the bond risk premia. The bond jump mean may act
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as an unspanned stochastic mean factor that cannot be hedged with the current yields, but can

forecast excess bond returns. These findings are also consistent with the findings in Wright and

Zhou (2007).

In summary, we obtain a tractable affine yield curve setting with at least two remarkable

properties. First, the model implies a flexible covariance structure with stochastically correlated

yields. Second, it implies a potentially significant fraction of yields variation due to multivariate

jumps in the latent state process. The variation due to jumps cannot be hedged theoretically

by portfolios of zero bonds, which makes the market incomplete. It follows that the model can

potentially feature a flexible covariance structure and incomplete bond markets together. These

two properties are well-known to be key for explaining the empirical predictability of bond returns

and the main stylized facts on interest rate derivatives, such as the pricing patterns of interest rate

caps and swaptions (see, e.g., Han (2007)).

IV. Portfolio Choice

Accounting for the possibility of jumps in asset returns is also important for portfolio choice

problems. Das and Uppal (2004) develop a model of international equity returns using a multivari-

ate system of jump-diffusion processes where the arrival of jumps is simultaneous across assets. In

their model, the introduction of jumps in the return process reduces the international diversifica-

tion gains and makes leveraged portfolios much more susceptible to large losses. However, jumps

in volatilities and even more so jumps in correlations are less studied in the literature8 and we may

wonder, whether they indeed play an economically significant role.

To isolate the impact of jumps in the covariance process on portfolio allocation, we simplify

our multivariate model and assume that there are no jumps in the associated price processes. We

further equip an investor with a standard CRRA utility over terminal wealth WT , who can allocate

her initial wealth Wt in n risky assets with price process {St := (S1t, S2t, . . . , Snt)
′ ∈ R

n : t ≥ 0}.
Under the historical probability P, the stock prices follow:

dSt = diag [St]
(

[R(Xt)1n + Xtη] dt +
√

XtdZt

)

, (64)

where Xtη represents the excess return vector. In equation (64), Z is a n × 1 standard Brownian

8One notable exception is the literature based on regime switching models as, e.g., in Ang and Bekaert (2002),
where they study an international portfolio allocation problem in discrete time framework.
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motion defined by:

Zt = Btρ +
√

1 − ρ′ρWt, ρ′ρ ≤ 1 , (65)

where W is another n × 1 standard Brownian motion, independent of B, and ρ = (ρ1, ρ2, . . . , ρn)′

is a fixed n × 1 correlation vector.

For simplicity, we consider a money-market account with a constant interest rate R(Xt) = r.

In this setup, the wealth dynamics follow

dWt

Wt
= rdt + w′

tXtηdt + w′
t

√

XtdZt, (66)

where wt ∈ R
n is the vector of relative wealth invested in the n assets. Assuming a constant relative

risk aversion coefficient γ > 0, we can write the indirect utility function as,

J(t,W,X) = sup
wt

E

(

W 1−γ
T

1 − γ
|Wt = W,Xt = X

)

, γ 6= 1 ,

subject to the budget constraint in (66).

Proposition 7 The indirect utility function has the solution

J(t,Wt,Xt) =
W 1−γ

t

1 − γ
exp (tr [A(τ)Xt] + B(τ)) . (67)

and the optimal portfolio weights are

w⋆ =
1

γ

(

η + 2A(τ)Q′ρ
)

, (68)

where A(τ) and (Bτ) solve the following system of ordinary differential equations:

A′(τ) = A(τ)

(

M +
1 − γ

γ
Q′ρη′

)

+

(

M ′ +
1 − γ

γ
ηρ′Q

)

A(τ) (69)

+2A(τ)Q′

(

I +
1 − γ

γ
ρρ′
)

QA(τ) − 1 − γ

2γ
ηη′ + λX,1[Θ

X(A(τ)) − 1],

B′(τ) = (1 − γ)r + tr
[

ΩΩ⊤A(τ)
]

+ λX,0[Θ
X(A(τ)) − 1]. (70)

Obviously, when we have jumps in the covariance matrix only and the jump intensity is a constant,

i.e., λX,1 = 0, then jumps do not have any impact on the optimal portfolio allocation w⋆, but only
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on the level of the value function J(t,W,X).

To study the potential economic significance of jumps in the covariance matrix, we briefly

calculate the intertemporal hedging demand for the optimal portfolios in Proposition 7 using a

simple numerical example with two assets. As input we use the estimated values in Buraschi,

Porchia, and Trojani (2007) for the S&P 500 Index Futures and the 30-year Treasury Bond Futures

sampled at monthly frequencies. For completeness, these values are reported in Panel C of Table

III together with our baseline assumption on the jump size matrix ξX , for which we make an ad-hoc

choice, and we set ΩΩ′ = kQQ′ with k = 10. For the jump intensity, we set λ0 = 0 and we choose

the matrix λ1 so that we obtain reasonable average jump probabilities.

[Figure 5 about here.]

To get a quick sense of our parameter choices for the jump components, we plot in Figure 5 the

simulated processes for the return volatilities and correlations over a time period of five years. For

our reference choice of λ1, we get an average jump probability of approximately 1% per day. Given

the small jump sizes, such a choice seems reasonable. Inspecting the time series of the resulting

volatilities (solid lines) in the upper panel of Figure 5, there is no significant difference to the time

series without jumps (dash-dotted lines).9 At the same time, we notice that the correlation process

in the lower panel exhibits more violent moves when jumps are present (solid line). From this rather

heuristic comparison, we can conclude that our jump parameters represent a reasonable choice.

[Figure 6 about here.]

In Figure 6, we calculate the hedging demand in an optimal portfolio of a CRRA utility investor

with relative risk aversion coefficient γ = 6 and for different investment horizons up to ten years.

The left panels display the hedging demand as a fraction of the myopic portfolio for different time

horizons, ranging from zero to ten years. As already argued in Buraschi, Porchia, and Trojani

(2007), the presence of stochastic correlation induces a substantial hedging demand between 20%

to 30% of the myopic portfolio fraction. For the given parameter set, we observe that this hedging

demand is further increased, almost up to 40% of the myopic portfolio for time horizons beyond

three years. Representing the jump-induced component as a fraction of the hedging portfolio, the

presence of jumps may lead to a 30% increase in total hedging demand.

9Using the same set of variables, we simulate the volatilities for a daily time series spanning 100 years. We find that
the means of the volatilities differ by -2% and 9% for the first and second asset with and without jumps, respectively.
For the standard deviation of volatilities, the respective numbers are -1% and 15%.

34



[Figure 7 about here.]

In Figure 7, we further investigate the impact of different levels of jump intensities and jump

sizes. For the jump intensities, we start with an average daily jump probability of around 0.3% per

day and we increase this number up to 10%, while keeping ξX constant as in Panel C of Table III.

For the right panels, we change the distribution of the jump sizes ξX , while keeping the average

jump probability at 1%. In particular, we start with 1
5ξX and increase it up to 4ξX . Depending

on the different values for jump intensities and jump sizes, we observe that the hedging demand

may increase to more than double that of the hedging demand implied by the diffusive part of

the covariance process. At this point, we note that our choices for the jump parameters are ad

hoc and the impact of jumps in covariances on the portfolio allocation warrants further empirical

investigation. We leave this challenging but interesting avenue for future research and note for now

that jumps in covariances may play an economically significant role for the intertemporal hedging

demand.

V. Conclusions

STILL TO COME....

[....] Finally, our modeling approach allows the pricing of multi-asset options with quanto,

rainbow, basket and spread based pay-offs. Various types of these multi-asset equity options recently

emerged in the markets. They are either sold separately over-the-counter or as an “equity kicker”

of bond-like structures, where they usually offer a certain participation in equity performance or a

large coupon conditionally on a defined performance of a basket of stocks. Often, they have barrier

features. Also these kind of products come with a very large lifetime (up to 10-15 years), and

contain intrinsic barriers, or even some of their underlyings may be withdrawn at certain fixing

dates. For instance, if the respective barrier of one of the underlying stocks was touched during

its term and if the final fixing price of the worst performing underlying is equal to or lower than

the strike price, the potential capital loss is the difference between the respective strike price and

the value of the worst performing underlying at final fixing. The nature of these products make a

multivariate and flexible modeling of the underlying risk factors indispensable.
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Appendix

A. Correlation Process of Matrix AJD

Itô’s Lemma implies the following dynamics for the correlation process ρij := Xij/
√

XiiXjj,

1 ≤ i ≤ j ≤ n, implied by the matrix AJD in Assumption 1:

dρijt =
dXijt√

Xiit

√

Xjjt

− dXijtdXiit

2X
3/2
iit

√

Xjjt

− dXijtdXjjt

2X
3/2
jjt

√
Xiit

+ρijt

(

dXiitdXjjt

4XiitXjjt
− dXiit

2Xiit
− dXjjt

2Xjjt
+

3dX2
iit

8X2
iit

+
3dX2

jjt

8X2
jjt

)

+ρijt









1 +
ξij

Xijt
√

(

1 + ξii

Xiit

)(

1 +
ξjj

Xjjt

)

− 1









dNt,

where {Nt : t ≥ 0} is a Poisson process in N with stochastic intensity {λ(Xt) : t ≥ 0}. Since

dXijtdXklt

dt
= e′iQ

′QelXikt + e′iQ
′QekXjlt + e′jQ

′QelXikt + e′jQ
′QekXilt ,

where es denotes the s−th unit vector in R
n, we can also write the correlation dynamics as:

dρijt = m(ρijt)dt +
e′i
√

XtdBtQej + e′iQ
′dB′

t

√
Xtej

√

XiitXjjt

− ρijt

(

e′i
√

XtdBtQei

Xiit
+

e′j
√

XtdBtQej

Xjjt

)

+ρijt













1 +
ξX
t,ij

Xt,ij
√

(

1 +
ξX
t,ii

Xt,ii

)(

1 +
ξX
t,jj

Xt,jj

)

− 1













dNt.

In the last equation, the drift coefficient m(ρijt) takes the form:

m(ρijt) = ρ2
ijt

e′iQ
′Qej

√

XiitXjjt

+
e′i(ΩΩ′ − 2Q′Q)ej + e′i (MXt + XtM

′) ej
√

XiitXjjt

(A.1)

+ρijt

(

e′i(Q
′Q − ΩΩ′)ei − 2e′iMXtei

2Xiit
+

e′j(Q
′Q − ΩΩ′)ej − 2e′jMXtej

2Xjjt

)

.
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We first derive the expression for m(ρijt) in terms of ρkl, Xll and Xkk, 1 ≤ k, l ≤ n. Explicit

computations give:

e′i
(

MXt + XtM
′
)

ej =
∑

k

(MikXkjt + XiktM
′
kj)

=
∑

k

(MikXjkt + MjkXikt)

= (Mii + Mjj)Xijt + MjiXiit + MijXjjt +
∑

k 6=i,j

(MikXjkt + MjkXikt)

In a similar way, we obtain:

e′iMXtei =
∑

k

MikXkit = MijXijt + MiiXiit +
∑

k 6=i,j

MikXikt

e′jMXtej =
∑

k

MjkXkjt = MjiXijt + MjjXjjt +
∑

k 6=i,j

MjkXjkt

Overall, this yields:

e′i (MXt + XtM
′) ej

√

XiitXjjt

= (Mii + Mjj)ρijt + Mji

√

Xiit

Xjjt
+ Mij

√

Xjjt

Xiit

+
∑

k 6=i,j

(

Mikρjkt

√

Xkkt

Xiit
+ Mjkρikt

√

Xkkt

Xjjt

)

and

e′iMXtei

Xiit
= Mijρijt

√

Xjjt

Xiit
+ Mii +

∑

k 6=i,j

Mikρikt

√

Xkkt

Xiit

e′jMXtej

Xjjt
= Mjiρijt

√

Xiit

Xjjt
+ Mjj +

∑

k 6=i,j

Mjkρjkt

√

Xkkt

Xjjt

It follows that m(ρijt) is a quadratic polynomial in ρijt:

m(ρijt) = Aijtρ
2
ijt + Bijtρijt + Cijt .

The coefficient of the quadratic term is:

Aijt =
e′iQ

′Qej
√

XiitXjjt

− Mji

√

Xiit

Xjjt
− Mij

√

Xjjt

Xiit
. (A.2)
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The coefficient of the linear term is:

Bijt =
e′i(Q

′Q − 2ΩΩ′)ei

2Xiit
+

e′j(Q
′Q − 2ΩΩ′)ej

2Xjjt
−
∑

k 6=i,j

(

Mikρikt

√

Xkkt

Xiit
+ Mjkρjkt

√

Xkkt

Xjjt

)

The last coefficient takes the form:

Cijt =
e′i(ΩΩ′ − 2Q′Q)ej
√

XiitXjjt

+ Mji

√

Xiit

Xjjt
+ Mij

√

Xjjt

Xiit
+
∑

k 6=i,j

(

Mikρjkt

√

Xkkt

Xiit
+ Mjkρikt

√

Xkkt

Xjjt

)

We now compute the functional form of the second conditional moment of dρij in terms of (i) ρkl,

Xll and Xkk, 1 ≤ k, l ≤ n and (ii) the structure of the jump part of dρij . We first have:

1

dt
Et(dρ2

ijt) = v2(ρijt) + λ(Xt)E
(

ζX
ij

2
)

where

v(ρijt)
2 =

1

dt
Et





(

e′i
√

XtdBtQej + e′iQ
′dB′

t

√
Xtej

√

XiitXjjt

− ρijt

(

e′i
√

XtdBtQei

Xiit
+

e′j
√

XtdBtQej

Xjjt

))2




and

ζX
ij =

1 +
ξX
ij

Xijt
√

(

1 +
ξX
ii

Xiit

)

(

1 +
ξX
jj

Xjjt

)

− 1

is the correlation relative jump size. To compute v(ρijt), we first note that:

Et

(

dBtuv′dBt

)

= Et

(

dB′
tuv′dB′

t

)

= vu′dt

Et

(

dBtuv′dB′
t

)

= Et

(

dB′
tuv′dBt

)

= v′uIndt

It then follows:

1

dt
Et





(

e′i
√

XtdBtQej + e′iQ
′dB′

t

√
Xtej

√

XiitXjjt

)2


 =
e′iXteie

′
jQ

′Qej + e′jXteje
′
iQ

′Qei + 2e′iXteje
′
iQ

′Qej

XiitXjjt

=
e′jQ

′Qej

Xjjt
+

e′iQ
′Qei

Xiit
+ 2ρijt

e′iQ
′Qej

√

XiitXjjt

.
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Similarly,

1

dt
Et





(

e′i
√

XtdBtQei

Xiit
+

e′j
√

XtdBtQej

Xjjt

)2


 =
Xiite

′
iQ

′Qei

X2
iit

+
Xjjte

′
jQ

′Qej

X2
jjt

+ 2
Xije

′
iQ

′Qej

XiitXjjt

=
e′iQ

′Qei

Xiit
+

e′jQ
′Qej

Xjjt
+ 2ρijt

e′iQ
′Qej

√

XiitXjjt

Moreover,

1

dt
Et

[(

e′i
√

XtdBtQej + e′iQ
′dB′

t

√
Xtej

√

XiitXjjt

)

e′i
√

XtdBtQei

Xiit

]

=
e′iXteie

′
iQ

′Qej + e′jXteie
′
iQ

′Qei

Xiit

√

XiitXjjt

=
e′iQ

′Qej
√

XiitXjjt

+
ρijte

′
iQ

′Qei

Xiit
,

and

1

dt
Et

[(

e′i
√

XtdBtQej + e′iQ
′dB′

t

√
Xtej

√

XiitXjjt

)

e′j
√

XtdBtQej

Xjjt

]

=
e′iXteje

′
jQ

′Qej + e′jXteje
′
iQ

′Qej

Xjjt

√

XiitXjjt

=
e′iQ

′Qej
√

XiitXjjt

+
ρijte

′
jQ

′Qej

Xjjt
.

Overall, we obtain:

v2(ρijt) =
e′iQ

′Qei

Xiit
+

e′jQ
′Qej

Xjjt
− 2ρijt

e′iQ
′Qej

√

XiitXjjt

− ρ2
ijt

(

e′iQ
′Qei

Xiit
+

e′jQ
′Qej

Xjjt

)

+ 2ρ3
ijt

(

e′iQ
′Qej

√

XiitXjjt

)

= (1 − ρ2
ijt)

(

e′iQ
′Qei

Xiit
+

e′jQ
′Qej

Xjjt

)

+ 2(ρ2
ijt − 1)ρijt

e′iQ
′Qej

√

XiitXjjt

= (ρ2
ijt − 1)

(

2ρijt
e′iQ

′Qej
√

XiitXjjt

− e′iQ
′Qei

Xiit
−

e′jQ
′Qej

Xjjt

)

This concludes the proof.

B. Proof of Proposition 5

Let B∗
t = Bt − 2

∫ t
0

√
Xsβ(s, T )Q′ds for any 0 ≤ t ≤ T . Then, from Lemma 1 below, ζB∗ is a

local martingale in R
n×n under probability measure P , where ζt := ξt exp(

∫ t
0 R(Xs)ds), 0 ≤ t ≤ T .

This implies that B∗ is a local martingale under risk neutral measure P
∗. By Lévy’s Theorem, it

follows that B∗ is a standard Brownian motion in R
n×n under P

∗. Now, let process N∗ be defined
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by:

N∗
t = Nt −

∫ t

0
ΘX(β(s, T ))λX (Xs)ds (A.3)

where N is the counting process counting the number of jumps of X. Then, using Lemma 3 in

the Appendix of Duffie, Pan and Singleton (2000), ζN∗ is a local martingale in R under P, which

implies that N∗ is a local martingale under P
∗. By the martingale characterization of intensity,10

under P
∗ process N is a counting process with intensity {λ∗

X(Xt, t) : 0 ≤ t ≤ T} such that

λ∗
X(x, t) = λ∗

X,0(t) + tr(λ∗
X,1(t)Xt). The conditional Laplace transform of ξX under P

∗ is given by:

ΘX∗(Γ, t) = E
∗
t−[exp(tr(ΓξX))] = Et−[ζT exp(tr(ΓξX))]/Et−[ζT ] = ΘX(Γ + β(t, T ))/ΘX (β(t, T )).

It follows that the conditional risk neutral discounted transform of XT is exponentially affine:

ΨX∗(Γ,Xt, t, T ) := E
∗[exp(−

∫ T

0
R(Xs)ds + tr(ΓXT ))|Ft] = exp(B∗(T − t) + tr(A∗(T − t)Xt))

with coefficients B∗(τ) ∈ R and A∗(τ) ∈ Sn that satisfy the same system of matrix Riccati equations

as in Proposition 2, but with parameters M , ΘX and λX,0, λX,1 replaced by M∗(t), ΘX∗(·, t), λ∗
X,0(t)

and λ∗
X,1(t), respectively. This concludes the proof.

Lemma 1 The process {ζtB
∗
t : 0 ≤ t ≤ T} is a local martingale under P.

Proof of Lemma 1. For any 0 ≤ t ≤ T , let:

B∗
t = Bt − 2

∫ t

0

√

Xuβ(u, T )Q′du .

10See, e.g., Brémaud (1981).

40



By Itô’s formula, we have for any 0 ≤ s ≤ T :

ζtB
∗
t = ζsB

∗
s +

∫ t

s
ζu−dB∗

u +

∫ t

s
B∗

u−dζu

+
∑

s<u≤t

(ζu − ζu−)(B∗
u − B∗

u−) +

∫ t

s
d[ζ,B∗]cu

= ζsB
∗
s +

∫ t

s
ζu−(dBu − 2

√

Xuβ(u, T )Q′du) +

∫ t

s
B∗

udζu

+

∫ t

s
ζud[tr(β(u, T )Xc

u), B∗
u]

= ζsB
∗
s +

∫ t

s
ζu−(dBu − 2

√

Xuβ(u, T )Q′du) +

∫ t

s
B∗

udζu

+2

∫ t

s
ζud[tr(β(u, T )

√

XuBuQ), B∗
u]

= ζsB
∗
s +

∫ t

s
ζu−(dBu − 2

√

Xuβ(u, T )Q′du) +

∫ t

s
B∗

udζu

+2

∫ t

s
ζud[tr(

√

Xuβ(u, T )Q′B′
u), B∗

u]

Noting that

d[tr(
√

Xuβ(u, T )Q′B′
u), B∗

u] = d[tr(
√

Xuβ(u, T )Q′B′
u), Bu] =

√

Xuβ(u, T )Q′du ,

we obtain

ζtB
∗
t = ζsB

∗
s +

∫ t

s
ζu−dBu +

∫ t

s
B∗

udζu ,

which implies that {ζtB
∗
t : 0 ≤ t ≤ T} is a local martingale under P.

C. Proof of Proposition 7

We can write the corresponding Hamilton-Jacobi-Bellman (HJB) equation as:

0 = sup
w

{

Jt + rWJW + η′XwJW W +
1

2
w′XwW 2JWW + tr

[

(ΩΩ′ + MX + XM ′)JX

]

(A.4)

+Ww′JWXQ′Xρ + ρ′XQJWXwW + 2tr
[

XJXXQ′QJXX

]

+λX(X)E
[

J(t,W, X̃) − J(t,W,X)
]}

,
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where X̃ = X + ξX . The first-order conditions with respect to the portfolio decision w are:

0 = XηWJW + XwW 2JWW +
(

XWJWXQ′ + XQJWX

)

ρW, (A.5)

from which we obtain an implicit equation for the optimal portfolio decision:

w⋆ = − ηJW

WJWW
− 1

WJWW

(

JWXQ′ + QJWX

)

ρ. (A.6)

For a given wealth Wt and a matrix Xt, we can make the following guess for the solution of the

HJB equation:

J(t,Wt,Xt) =
W 1−γ

t

1 − γ
exp (tr [A(τ)Xt] + B(τ)) . (A.7)

Then, the optimal portfolio weights are

w⋆ =
1

γ

(

η + 2A(τ)Q′ρ
)

. (A.8)

Plugging w⋆ into the HJB in (A.4), we see that our guess indeed solves (A.4) and we get the

following system of ordinary differential equations for A(τ) and B(τ) as displayed in (69) and (70).

D. Volatility of Volatility and Leverage in the Multifactor AJD Return Model

The volatility of returns Vt := 1
dtV art(dYt) = tr(Xt)+λ(Xt)E[ξY ξY ] follows with straightforward

calculations using the properties of the matrix AJD model. To compute the volatility of volatility,

note that:

dVt = tr(dXt) + E[ξY ξY ]tr(λY X,1dXt) = tr(HdXt) , (A.9)

where H = In + λY X,1E[ξY ξY ]. It then follows:

1

dt
Var t(dVt) = 4tr(HQ′QHXt) + λY X(Xt)E

[

tr(HξX)tr(HξX)
]

. (A.10)

In a similar way, we obtain for the leverage between return and volatility:

1

dt
Cov t(dYt, dVt) = 2tr(PQHXt) + λY X(Xt)E

[

ξY tr(HξX)
]

. (A.11)
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E. Volatility of Volatility and Leverage in the Multivariate AJD Return Model

The elements of the returns covariance matrix Vijt := 1
dtCov t(dYitdYjt) = Xijt + λ(Xt)E[ξY

i ξY
j ]

follow with straightforward calculations using the properties of the matrix AJD model. To compute

the volatilities of volatility, note that:

dVijt = tr(eje
′
idXt) + E[ξY

i ξY
j ]tr(λY X,1dXt) = tr(HijdXt) , (A.12)

where H = eje
′
i + λY X,1E[ξY

i ξY
j ]. It then follows:

1

dt
Var t(dVijt) = 4tr(HijQ

′QHijXt) + λY X(Xt)E
[

tr(Hijξ
X)tr(Hijξ

X)
]

. (A.13)

To obtain the leverage between return and volatility, we first have:

dYit = (...)dt + e′i
√

Xt(dBtρ +
√

1 − ρ′ρdWt) + e′idLt

= (...)dt + tr(
√

Xt(dBtρe′i +
√

1 − ρ′ρdWte
′
i)) + e′idLt .

Therefore, from the independence of B and W :

1

dt
Cov t(dYit, dVijt) =

1

dt
Cov

(

tr(
√

XtdBtρe′i) + e′idLt, dVijt

)

=
1

dt
Cov

(

tr(
√

XtdBtρe′i) + e′idLt, tr(HijdXt)
)

=
1

dt
Cov

(

tr(
√

XtdBtρe′i), tr(Hij

√

XtdBtQ) + tr(HijQ
′dB′

√

Xt)
)

+λY X(Xt)E
[

ξY
i tr(HijξX)

]

This yields:

1

dt
Cov

(

tr(
√

XtdBtρe′i), tr(Hij

√

XtdBtQ)
)

= tr(H ′
ijQ

′ρe′iXt) ,

and

1

dt
Cov

(

tr(
√

XtdBtρe′i), tr(HijQ
′dB′

√

Xt)
)

= tr(HijQ
′ρe′iXt) ,

which implies the expression for 1
dtCov t(dYit, dVijt).
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Table I

Volatility and Leverage Structure in the Single-Asset Model

The table summarizes the conditional variance-covariance and co-volatility structure (Vt := Var t(dYt)/dt)

for the single-asset matrix AJD model together with the leverage effect. The matrix H is defined as H :=

In + λY X,1E
[

(ξY )2
]

.

λY X,0 = 0, λY X,1 = 0 Unconstrained

Var t(dYt)/dt : tr(Xt) tr(Xt) + λY X(Xt)E
[

(ξY )2
]

Var t(dVt)/dt : 4tr(Q′QXt) 4tr(HQ′QHXt) + λY X(Xt)E
[

tr(HξX)2)
]

Cov t(dYt, dVt)/dt : 2tr(PQXt) 2tr(PQHXt) + λY X(Xt)E
[

ξY tr
(

HξX
)]

Table II

Variance-Covariance and Leverage Structure in Multi-Asset Model

The table summarizes the conditional variance-covariance and co-volatility structure (Vijt =

Cov (dYitdYjt)/dt) for the multi-asset matrix AJD model, together with the leverage effect. The matrix

Hij is defined as Hij := eje
′

i + λY X,1E
[

ξY
i ξY

j

]

.

λY X,0 = 0, λY X,1 = 0 Unconstrained

Cov t(dYitdYjt)/dt : Xijt Xijt + λY X(Xt)E
[

ξY
i ξY

j

]

Var t(dViitdVjjt)/dt : 4XijtQ
′
iQj 4tr(HijQ

′QHijXt) + λY X(Xt)E
[

tr(Hijξ
X)2)

]

Cov t(dYit, dVijt)/dt : ρ′(XiitQj + XijtQj) ρ′Q(Hij + H ′
ij)Xtei + λY X(Xt)E

[

ξY
i tr

(

Hijξ
X
)]
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Table III

Parameter Values for Simulations

Panel A: Correlation

Q =





0.0300 0.2100 0.0625
−0.1750 0.0325 0.1375
−0.0300 0.1000 0.0250



 M =





−3.6000 0.2100 0.5000
1.6790 −1.9800 −0.4000
0.8880 −0.2400 −2.4200





λ1 =





0.0004 0.0015 −0.0020
0.0015 0.0010 0.0003

−0.0020 0.0003 0.0200



 ΣX =





0.0004 0.0005 0.0002
0.0005 0.0010 0.0003
0.0002 0.0003 0.0010





k = 10, λ0 = 0.001

Panel B: Term structure

Q =





1.1328 1.2950 −0.2410
0 0.0453 0.0667
0 0 0.6443



 M =





−0.8506 0 0
0.2246 −0.0787 0
0.2800 0.1250 −0.9121





D =





0.1432 0.0747 −0.0017
0.0747 −0.0047 0.0390

−0.0017 0.0390 0.0477



× 0.01 ΣX =





0.1000 −0.0700 0.0800
−0.0700 0.1000 −0.0600

0.0800 −0.0600 0.1000





λ1 =





0.0008 0.0000 0.0001
0.0000 0.0008 0.0001
0.0001 0.0001 0.0002



× 0.01
k = 10 λ0 = 0.05
δ = 0.01 β(t, T ) = 0.002In

Panel C: Portfolio allocation

Q =

(

0.160 0.083
−0.021 0.009

)

M =

(

−1.122 0.747
0.884 −0.888

)

ξX =

(

0.0150 0.0110
0.0110 0.0100

)

× 0.01 η =

(

4.612
2.891

)

ρ =

(

−0.279
−0.247

)

Table IV

R2-values for regression equation for excess returns

The table reports R2-values for different regression equations for excess returns (regressions (A) through

(E)). The estimations are based on monthly data spanning a time period of 20 years. The calculations are

based on Newey-West adjusted heteroscedastic-serial consistent least-squares regressions.

R2-Values
(A) (B) (C) (D) (E)

Re(0, 1, 2) 0.2469 0.3700 0.4663 0.4677 0.2662
Re(0, 1, 3) 0.2834 0.4150 0.5189 0.5214 0.3071
Re(0, 1, 4) 0.2881 0.4248 0.5278 0.5310 0.3147
Re(0, 1, 5) 0.2845 0.4267 0.5264 0.5302 0.3139

50



Table V

Beta coefficients

The table reports the beta coefficients of different regression equations for excess returns (regressions (A)

through (E)). The estimations are based on monthly data spanning a time period of 20 years. T-statistics are

shown in parentheses and are based on Newey-West standard errors with a lag truncation parameter of 11.

Regression (A)
Re(0, 1, 2) Re(0, 1, 3) Re(0, 1, 4) Re(0, 1, 5)

β0 -0.0614 ( -2.90) -0.0635 ( -2.84) -0.0635 ( -2.75) -0.0632 ( -2.69)
β1 9.3517 ( 1.99) 9.9435 ( 2.20) 10.0847 ( 2.25) 10.0983 ( 2.26)
β2 -17.4608 ( -2.43) -18.7929 ( -2.65) -19.1366 ( -2.69) -19.1669 ( -2.68)
β3 10.6014 ( 2.66) 11.4519 ( 2.88) 11.6716 ( 2.90) 11.6852 ( 2.88)

Regression (B)
Re(0, 1, 2) Re(0, 1, 3) Re(0, 1, 4) Re(0, 1, 5)

β0 -0.0274 ( -1.26) -0.0283 ( -1.18) -0.0274 ( -1.10) -0.0263 ( -1.04)
β1 8.2304 ( 1.70) 8.7808 ( 1.90) 8.8943 ( 1.95) 8.8830 ( 1.96)
β2 -15.4556 ( -2.15) -16.7138 ( -2.38) -17.0081 ( -2.42) -16.9938 ( -2.42)
β3 9.3568 ( 2.40) 10.1614 ( 2.63) 10.3504 ( 2.66) 10.3363 ( 2.64)
β4 -61.8879 ( -2.93) -64.1701 ( -2.85) -65.6952 ( -2.85) -67.0706 ( -2.90)

Regression (C)
Re(0, 1, 2) Re(0, 1, 3) Re(0, 1, 4) Re(0, 1, 5)

β0 -0.0378 ( -1.99) -0.0391 ( -1.89) -0.0383 ( -1.77) -0.0370 ( -1.67)
β1 8.1996 ( 2.05) 8.7488 ( 2.30) 8.8622 ( 2.34) 8.8515 ( 2.33)
β2 -14.5328 ( -2.39) -15.7527 ( -2.63) -16.0461 ( -2.65) -16.0471 ( -2.62)
β3 8.5880 ( 2.57) 9.3607 ( 2.78) 9.5490 ( 2.78) 9.5477 ( 2.73)
β4 -106.3084 ( -7.49) -110.4347 ( -6.57) -111.9999 ( -6.05) -112.6382 ( -5.81)
β5 61.3822 ( 4.01) 63.9305 ( 4.12) 63.9859 ( 4.00) 62.9674 ( 3.88)

Regression (D)
Re(0, 1, 2) Re(0, 1, 3) Re(0, 1, 4) Re(0, 1, 5)

β0 -0.0380 ( -2.00) -0.0393 ( -1.91) -0.0385 ( -1.79) -0.0372 ( -1.70)
β1 7.9813 ( 2.04) 8.4492 ( 2.32) 8.5225 ( 2.37) 8.4834 ( 2.37)
β2 -14.1453 ( -2.41) -15.2210 ( -2.71) -15.4432 ( -2.74) -15.3940 ( -2.71)
β3 8.3703 ( 2.61) 9.0620 ( 2.89) 9.2102 ( 2.89) 9.1806 ( 2.85)
β4 -103.9258 ( -7.88) -107.1660 ( -6.71) -108.2929 ( -6.05) -108.6222 ( -5.73)
β5 62.9070 ( 3.63) 66.0224 ( 3.74) 66.3583 ( 3.67) 65.5376 ( 3.57)
β6 -0.1525 ( -0.47) -0.2092 ( -0.66) -0.2373 ( -0.72) -0.2571 ( -0.76)

Regression (E)
Re(0, 1, 2) Re(0, 1, 3) Re(0, 1, 4) Re(0, 1, 5)

β0 -0.0548 ( -2.72) -0.0561 ( -2.62) -0.0556 ( -2.50) -0.0549 ( -2.42)
β1 8.4322 ( 1.77) 8.9212 ( 2.00) 8.9973 ( 2.07) 8.9534 ( 2.08)
β2 -15.8968 ( -2.20) -17.0541 ( -2.48) -17.2872 ( -2.55) -17.2196 ( -2.55)
β3 9.7212 ( 2.45) 10.4733 ( 2.74) 10.6307 ( 2.79) 10.5892 ( 2.78)
β6 -0.4995 ( -1.37) -0.5553 ( -1.44) -0.5907 ( -1.47) -0.6219 ( -1.51)
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Figure 1. Volatility and correlation process.

Panels on the left present realized trajectories of volatilities
√

X11,
√

X22,
√

X33 (from the top to
the bottom) simulated under the matrix AJD process in Assumption 1 for the parameters reported
in Panel A of Table III. Panels on the right present realized trajectories of correlations ρ12, ρ23,
ρ13 (from the top to the bottom) simulated under the same matrix AJD process.
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Figure 2. Jump sizes and jump intensity for correlation processes.

The top panel presents realized correlation jump sizes for ρ12 (red), ρ23 (green), ρ13 (blue) simulated
under the matrix AJD process in Assumption 1 for the parameters reported in Panel A of Table
III. The bottom panel presents realized intensities λ(Xt) simulated under the same matrix AJD
process.

53



0 50 100 150 200 250 300 350

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

V
ol

at
ili

ty
 le

ve
ra

ge

Time (days)

Figure 3. Volatility leverage with and jump specification.

The figure displays the volatility leverage Corr t(dYit, dViit) for an asset i within a multivariate
return setting. The dotted line represents the case when there are no jumps, neither in the covari-
ances nor in the return process. The dash-dotted line correspond to the case when there are jumps
the return process only and the dashed line to the case when there are jumps in the covariance
process only. The solid line represents the volatility leverage, when there are jumps both in the
covariances and in the return process.
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Figure 4. Term structure shapes.

The figure shows different shapes of the term structure of bond yields for different maturities,
ranging from one month to ten years. The solid line represent the mean term structure for the
simulated twenty-year time series using the parameter values .
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Figure 5. Simulation of return volatilities and return correlations.

The upper panel of the figure displays the simulated return variances using the parameter values
in Panel C of Table III, together with ΩΩ′ = kQQ′ with k = 10. We perform a simulation for daily
data over a time horizon of five years. For the constant part of the jump intensity, we set λ0 = 0.
For the matrix λ1 we choose a value such that the covariance matrix exhibits jumps at each time
step with an average probability of approximately 1%.
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Figure 6. Intertemporal hedging demand and jumps in covariances.

The figure displays the intertemporal hedging demand in an optimal portfolio allocation for a
CRRA utility investor with relative risk aversion coefficient γ = 6. In the left panels, we calculate
the hedging demand as a fraction of the myopic portfolio for different time horizons, ranging from
zero to ten years. The dotted lines represent the hedging demand when there is no jump risk
in covariances and the solid lines when there are jumps in covariances. The left panels plot the
fraction of the hedging demand induced by the presence of jumps in covariances.
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Figure 7. Intertemporal hedging with different jump intensities and sizes.

The figure displays the intertemporal hedging demand in an optimal portfolio allocation for a CRRA
utility investor with relative risk aversion coefficient γ = 6. We calculate the hedging demand as
a fraction of the myopic portfolio for different time horizons, ranging from zero to ten years. The
solid line represents the hedging demand when there is no covariance jump risk present. For the
left panels, we start with an average daily jump probability of around 0.3% per day and we increase
this number to 10%, while keeping ξX fixed. For the right panels, we fix the average daily jump
probability to 1% and we vary the jump sizes from 1

5ξX to 4ξX .
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