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1.  Introduction 

Merton (1973) introduces an intertemporal capital asset pricing model (ICAPM) in which an 

asset’s expected return depends on its covariance with the market portfolio and with state variables that 

proxy for changes in investment opportunity set. A large number of studies test the significance of an 

intertemporal relation between expected return and risk in the aggregate stock market. However, the 

existing literature has not yet reached an agreement on the existence of a positive risk-return tradeoff for 

stock market indices. Due to the fact that the conditional mean and volatility of stock market returns are 

not observable, different approaches and specifications used by previous studies in estimating the two 

conditional moments are largely responsible for the conflicting empirical evidence.  

Our study extends time-series tests of the ICAPM to many risky assets. The prediction of Merton 

(1980) that expected returns should be related to conditional risk applies not only to the market portfolio 

but also to individual stocks. Expected returns for any stock should vary through time with the stock’s 

conditional covariance with the market portfolio (assuming that hedging demands are not too large). To 

be internally consistent, the relation should be the same for all stocks, i.e., the predictive slope on the 

conditional covariance represents the average relative risk aversion of market investors. We exploit this 

cross-sectional consistency condition and estimate the common time-series relation across 30 stocks in 

the Dow Jones Industrial Average.
1
 

Using daily data from July 1986 to September 2007, we estimate the mean-reverting dynamic 

conditional correlation (DCC) model of Engle (2002) and generate the time-varying conditional 

covariances between daily excess returns on each stock and the market portfolio. Then, we estimate a 

system of time-series regressions of the stocks’ excess returns on their conditional covariances with the 

market, while constraining all regressions to have the same slope coefficient. Our estimation based on 

Dow 30 stocks and alternative measures of the market portfolio generates positive and highly significant 

risk aversion coefficients, with magnitudes between two and four. The identified positive risk-return 

tradeoff at daily frequency is robust to different market portfolios, different sample periods, alternative 

specifications of the conditional mean and covariance processes, and including a wide variety of state 

variables that proxy for the intertemporal hedging demand component of the ICAPM.  

 

                                                 
1
 There are two reasons why we focus on the 30 stocks in the Dow Jones Industrial Average. First, we have to 

reduce the dimension of the estimation problem. An obvious requirement with the maximum likelihood and panel 

regression estimation is that the parameter convergence occurs reasonably quickly. Unfortunately, it has been our 

experience while running the estimation procedures that parameter estimation can be very tedious and takes very 

long time. In view of these difficulties, we restricted our sample to 30 stocks. Second, Dow stocks have large market 

capitalization, they are liquid and they have relatively low idiosyncratic risk. Hence, they represent a significant and 

systematic portion of the aggregate market portfolio. 
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When the investment opportunity is stochastic, investors adjust their investment to hedge against 

unfavorable shifts in the investment opportunity set and achieve intertemporal consumption smoothing. 

Hence, covariations with state of the investment opportunity induce additional risk premiums on an asset. 

We identify a series of macroeconomic, financial, and volatility factors and examine whether their 

conditional covariances with individual stocks induce additional risk premiums.  

To explore how macroeconomic variables vary with the investment opportunity and test whether 

covariations of Dow 30 stocks with them induce additional risk premiums, we first estimate the 

conditional covariances of these variables with daily excess returns on each stock and then analyze how 

the stocks’ excess returns respond to their conditional covariances with macroeconomic factors. Because 

of data availability at daily frequency, we use the level and changes in federal funds rates, default, and 

term spreads as potential factors that may affect the investment opportunity set. The parameter estimates 

show that incorporating the covariances of stock returns with the aforementioned macroeconomic 

variables does not alter the magnitude and statistical significance of the relative risk aversion coefficients. 

The common slope on the market covariance remains positive and highly significant. The results also 

indicate that the slope coefficients on the conditional covariances with macroeconomic variables are 

statistically insignificant, implying that the level and innovations in macro variables do not contain any 

systematic risks rewarded in the stock market at daily frequency. 

In a series of papers, Fama and French (1992, 1993, 1995, 1996, 1997) provide evidence on the 

significance of size and book-to-market variables in predicting the cross-sectional and time-series 

variation in stock and portfolio returns. Jegadeesh and Titman (1993, 2001) and Carhart (1997) present 

evidence on the significance of past returns (or momentum) in predicting the cross-sectional and time-

series variation in future returns on individual stocks and portfolios. We examine whether the size (SMB), 

book-to-market (HML), and momentum (MOM) factors of Fama and French move closely with 

investment opportunities and whether covariations of individual stocks with these three factors induce 

additional risk premiums on Dow 30 stocks.
2
 Estimation shows that the covariances of daily excess 

returns on Dow stocks and the HML factor (or value premium) generate significantly positive slope 

coefficients. Hence, an increase in a stock’s covariance with HML predicts a higher excess return on the 

stock. The results also indicate that the covariances of stocks with the SMB and MOM factors do not have 

                                                 
2
 The SMB (small minus big) factor is the difference between the returns on the portfolio of small size stocks and the 

returns on the portfolio of large size stocks. The average return on the SMB factor is positive because small stocks 

generate higher average returns than big stocks. The HML (high minus low) factor is the difference between the 

returns on the portfolio of high book-to-market stocks and the returns on the portfolio of low book-to-market stocks. 

The average return on the HML factor is positive because value stocks with high book-to-market ratio generate 

higher average returns than growth stocks with low book-to-market ratio. The positive return difference on the 

portfolios of value and growth stocks is referred to as value premium. The MOM (winner minus loser) factor is the 

difference between the returns on the portfolio of stocks with higher past 2- to 12-month cumulative returns 

(winners) and the returns on the portfolio of stocks with lower past 2- to 12-month cumulative returns (losers). 
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significant predictive power for one day ahead returns on Dow stocks. In other words, the level and 

innovations in the size and momentum factors are not priced in the ICAPM framework. Consistent with 

recent empirical evidence provided by Campbell and Vuolteenaho (2004), Brennan, Wang, and Xia 

(2004), Petkova and Zhang (2005), and Petkova (2006) as well as recent theoretical models of Gomes, 

Kogan, and Zhang (2003) and Zhang (2005), our results suggest that the HML (or value premium) is a 

priced risk factor and can be viewed as a proxy for investment opportunities. 

 Campbell (1993, 1996) provides a two-factor ICAPM in which unexpected increase in market 

volatility represents deterioration in the investment opportunity set or decrease in optimal consumption. In 

this setting, a positive covariance of returns with volatility shocks (or innovations in market volatility) 

predicts a lower return on the stock. In the context of Campbell’s ICAPM, an increase in market volatility 

predicts a decrease in optimal consumption and hence an unfavorable shift in the investment opportunity 

set. Risk-averse investors will demand more of an asset, the more positively correlated the asset’s return 

is with changes in market volatility because they will be compensated by a higher level of wealth through 

positive correlation of the returns. That asset can be viewed as a hedging instrument. In other words, an 

increase in the covariance of returns with volatility risk leads to an increase in the hedging demand, which 

in equilibrium reduces expected return on the asset.  

Following Campbell (1993, 1996), we assume that investors want to hedge against the changes in 

the forecasts of future market volatilities. In this paper, we use three alternative measures of market 

volatility to test whether stocks that have higher correlation with the changes in market volatility yield 

lower expected return: (1) the conditional volatility of S&P 500 index returns based on the generalized 

autoregressive conditional heteroskedasticity (GARCH) model, (2) the options implied volatility of S&P 

500 index returns obtained from the Chicago Board Options Exchange (CBOE), and (3) the range 

volatility of S&P 500 index returns based on the maximum and minimum values of the S&P 500 index 

over a sampling interval of one day. The panel regression results indicate that daily risk premium induced 

by the conditional covariation of Dow stocks with the market portfolio remains economically and 

statistically significant after controlling for risk premiums induced by conditional covariation with 

changes in GARCH, implied, and range based volatility estimators. The results also provide strong 

evidence for a significantly negative relation between expected return and volatility risk. For all measures 

of market volatility, we find that stocks with higher association with the changes in expected future 

market volatility give lower expected return. 

The paper is organized as follows. Section 2 briefly discusses earlier studies on the intertemporal 

relation between expected return and risk. Section 3 describes the data and estimation methodology. 

Section 4 presents the empirical results. Section 5 concludes. 
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2.  Literature review 

Dynamic asset pricing models starting with Merton’s (1973) ICAPM provide a theoretical 

framework that gives a positive equilibrium relation between the conditional first and second moments of 

excess returns on the aggregate market portfolio. However, Abel (1988), Backus and Gregory (1993), and 

Gennotte and Marsh (1993) develop models in which a negative relation between expected return and 

volatility is consistent with equilibrium. Similarly, empirical studies are still not in agreement on the 

direction of a time-series relation between expected return and risk.
3
 

Many studies fail to identify a statistically significant intertemporal relation between risk and 

return of the market portfolio. French, Schwert, and Stambaugh (1987) find that the coefficient estimate is 

not significantly different from zero when they use past daily returns to estimate the monthly conditional 

variance. Goyal and Santa-Clara (2003) obtain similar insignificant results using the same conditional 

variance estimator but over a longer sample period. Chan, Karolyi, and Stulz (1992) employ a bivariate 

GARCH-in-mean model to estimate the conditional variance, and they also fail to obtain a significant 

coefficient estimate for the United States. Baillie and DeGennaro (1990) replace the normal distribution 

assumption in the GARCH-in-mean specification with a fat-tailed t-distribution. Their estimates remain 

insignificant. Campbell and Hentchel (1992) use the quadratic GARCH (QGARCH) model of Sentana 

(1995) to determine the existence of a risk-return tradeoff within an asymmetric GARCH-in-mean 

framework. Their estimate is positive for one sample period and negative for another sample period, but 

neither is statistically significant. Glosten, Jagannathan, and Runkle (1993) use monthly data and find a 

negative but statistically insignificant relation from two asymmetric GARCH-in-mean models. Based on 

semi-nonparametric density estimation and Monte Carlo integration, Harrison and Zhang (1999) find a 

significantly positive risk and return relation at one-year horizon, but they do not find a significant 

relation at shorter holding periods such as one month. Using a sample of monthly returns and implied and 

realized volatilities for the S&P 500 index, Bollerslev and Zhou (2006) find an insignificant intertemporal 

relation between expected return and realized volatility, whereas the relation between return and implied 

volatility turns out to be significantly positive. 

Several studies even find that the intertemporal relation between risk and return is negative. 

Examples include Campbell (1987), Breen, Glosten, and Jagannathan (1989), Turner, Startz, and Nelson 

(1989), Nelson (1991), Glosten, Jagannathan, and Runkle (1993), Whitelaw (1994), and Harvey (2001). 

Using a regime switching model, Whitelaw (2000) finds a negative unconditional relation between the 

mean and variance of excess returns on the market portfolio. Using a latent vector autoregression 

approach, Brandt and Kang (2004) show that although the conditional correlation between the mean and 

                                                 
3
 See, e.g., Ghysels, Santa-Clara, and Valkanov (2005) and Christoffersen and Diebold (2006). 
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volatility of market portfolio returns is negative, the unconditional correlation is positive due to the lead-

lag correlations. 

Some studies do provide evidence supporting a positive risk-return relation. Chou (1988) finds a 

significantly positive relation with weekly data based on the symmetric GARCH model of Bollerslev 

(1986). Bollerslev, Engle, and Wooldridge (1988) use a multivariate GARCH-in-mean process to model 

the conditional mean and the conditional covariance of returns on stocks, bonds, and bills with the excess 

market return. They find a small but significant risk-return tradeoff. Scruggs (1998) includes the long-

term government bond returns as a second factor of the bivariate GARCH-in-mean model and find the 

partial relation between the conditional mean and variance to be positive and significant.
4
  

Ghysels, Santa-Clara, and Valkanov (2005) introduce a new variance estimator that uses past 

daily squared returns, and they conclude that the monthly data are consistent with a positive relation 

between conditional expected excess return and conditional variance. Bali and Peng (2006) examine the 

intertemporal relation between risk and return using high-frequency data. Based on realized, GARCH, 

implied, and range-based volatility estimators, they find a positive and significant link between the 

conditional mean and conditional volatility of market returns at daily frequency. Guo and Whitelaw 

(2006) develop an asset pricing model based on Merton’s (1973) ICAPM and Campbell and Shiller’s 

(1988) log-linearization method, and find a positive relation between stock market risk and return within 

their newly proposed ICAPM framework. Using a long history of monthly data from 1836 to 2003, 

Lundblad (2007) estimates alternative specifications of the GARCH-in-mean model, and finds a positive 

and significant risk-return tradeoff for the aggregate market portfolio. Using a long history of monthly 

data from 1926 to 2002, Bali (2008) identifies a positive and significant relation between expected return 

and risk on the size/book-to-market and industry portfolios of Fama and French (1993, 1997). 

 

3.  The intertemporal relation between expected return and risk 

Merton’s (1973) ICAPM implies the following equilibrium relation between risk and return: 

            xm COVBCOVA ⋅+⋅=µ ,             (1) 

where µ  denotes the expected excess return on a vector of n risky assets, A reflects the average relative 

risk aversion of market investors, mCOV  denotes the covariance between excess returns on the n risky 

assets and the market portfolio m, B  measures the market’s aggregate reaction to shifts in a k-

dimensional state vector that governs the stochastic investment opportunity, and xCOV  measures the 

covariance between excess returns on the n risky assets and the k state variables x.  

                                                 
4
 Scruggs (1998) assumes that the conditional correlation between stock returns and bond returns is constant. Once 

they relax this assumption, Scruggs and Glabadanidis (2003) fail to identify a positive risk-return tradeoff. 
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For any risky asset i, the relation becomes 

     iximi BAr σσµ ⋅+⋅=− ,             (2) 

where imσ  denotes the covariance between the excess returns on the risky asset i and the market portfolio 

m, and ixσ  denotes a ( k×1 ) row of covariances between the excess returns on risky asset i and the k state 

variables x. Equation (2) states that in equilibrium, investors are compensated in terms of expected return, 

for bearing market (systematic) risk and for bearing the risk of unfavorable shifts in the investment 

opportunity set. 

Many empirical studies focus on the time-series implication of the equilibrium relation in eq. (2) 

and apply it narrowly to the market portfolio. Without the hedging demand component ( 0=ixσ ), this 

focus leads to the following risk-return relation: 

        2
mm Ar σµ ⋅=− .             (3) 

When considering stochastic investment opportunity, the literature often implicitly or explicitly projects 

the covariance vector ixσ  linearly to the state variables x to obtain the following relation: 

    xBAr mm ⋅+⋅=− 2σµ .            (4) 

Our work in this article differs from the above literature in two major ways. First, we estimate the 

intertemporal relation eq. (2) not on the single series of the market portfolio, but simultaneously on Dow 

30 stocks, and constrain all these stocks to have the same cross-sectionally consistent proportionality 

coefficients A and B. Second, we directly estimate the conditional covariances imσ  and ixσ  using the 

dynamic conditional correlation model of Engle (2002). We do not make any linear projection 

assumptions on the state variables. 

In the Merton (1973) original setup, the two conditional covariances ( imσ , ixσ ) are assumed to 

be constant. Nevertheless, the empirical literature has estimated the relation assuming time-varying 

covariances. We do the same in this paper. In principle, if the covariances are stochastic, they would 

represent additional sources of variation in the investment opportunity and induce extra intertemporal 

hedging demand terms. 

The second term in eq. (2) reflects the investors’ demand for the asset as a vehicle to hedge 

against unfavorable shifts in the investment opportunity set. An “unfavorable” shift in the investment 

opportunity set variable x is defined as a change in x such that future consumption c will fall for a given 

level of future wealth. That is, an unfavorable shift is an increase in x if ∂c/∂x < 0 and a decrease in x if 

∂c/∂x > 0. 

Merton (1973) shows that all risk-averse utility maximizers will attempt to hedge against such 

shifts in the sense that if ∂c/∂x < 0 (∂c/∂x > 0), then, ceteris paribus, they will demand more of an asset, 
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the more positively (negatively) correlated the asset’s return is with changes in x. Thus, if the ex post 

opportunity set is less favorable than was anticipated, the investor will expect to be compensated by a 

higher level of wealth through the positive correlation of the returns. Similarly, if the ex post returns are 

lower, he will expect a more favorable investment environment. 

In this paper, we focus on the sign and statistical significance of the common slope coefficient (A) 

on imσ  in the following risk-return relation: 

iximii BACr σσµ ⋅+⋅+=− .             (5) 

According to the original ICAPM of Merton (1973), the relative risk aversion coefficient A is restricted to 

be the same across all risky assets and it should be positive and statistically significant, implying a 

positive risk-return tradeoff.  

Another implication of the ICAPM is that the intercepts ( iC ) in eq. (5) should not be jointly 

different from zero assuming that the covariances of risky assets with the market portfolio and with the 

innovations in states variables have enough predictive power for the time-series variation in expected 

returns. To determine whether imσ  and ixσ  have significant explanatory power, we test the joint 

hypothesis that  H0: 0...21 ==== nCCC  assuming that we have n risky assets in the portfolio. 

We think that macroeconomic variables such as the fed funds rate, default spread, and term 

spread, financial factors such as the size, book-to-market, and momentum factors of Fama and French, 

and the well-known volatility measures such as the options implied, GARCH, and range volatility can be 

viewed as potential state variables that may affect the stochastic investment opportunity set. Hence, we 

investigate whether the positive coefficient on imσ  remains intact after controlling for the conditional 

covariances of risky assets with the aforementioned state variables. First, we test the statistical 

significance of the common slope coefficient (B) on ixσ  in eq. (5) and then examine whether the common 

slope (A) on imσ  remains positive and significant after including ixσ  to the risk-return relation.  

 

3.1. Data 

Our study is based on the latest stock composition of the Dow Jones Industrial Average. The 

ticker symbols and company names are presented in Appendix A. In our empirical analyses, we use daily 

excess returns on Dow 30 stocks for the longest common sample period from July 10, 1986 to September 

28, 2007, yielding a total of 5,354 daily observations.  

For the market portfolio, we use five different stock market indices: (1) the value-weighted 

NYSE/AMEX/NASDAQ index, also known as the value-weighted index of the Center for Research in 

Security Prices (CRSP), can be viewed as the broadest possible stock market index used in earlier studies, 

(2) New York Stock Exchange (NYSE) index, (3) Standard and Poor’s 500 (S&P 500) index, (4) 
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Standard and Poor’s 100 (S&P 100) index, and (5) Dow Jones Industrial Average (DJIA) can be viewed 

as the smallest possible stock market index used in earlier studies. 

Appendix B reports the mean, median, maximum, minimum, and standard deviation of the daily 

excess returns on Dow 30 Stocks.
5
 As shown in Panel A, in terms of the sample mean, General Motors 

(GM) has the lowest average daily excess return of –0.0059%, whereas Intel Corp. (INTC) has the highest 

average daily excess return of 0.0408%. In terms of the sample standard deviation, Exxon Mobil (XOM) 

has the lowest unconditional volatility of 1.89% per day, whereas Intel Corp. (INTC) has the highest 

unconditional volatility of 3.12% per day. In terms of the daily maximum excess return, E.I. DuPont de 

Nemours (DD) has the lowest daily maximum of 9.86%, whereas Honeywell (HON) has the highest daily 

maximum of 31.22%. In terms of the daily minimum excess return, Altria (MO, was Philip Morris) has 

the lowest daily minimum of –75.03%, whereas Home Depot (HD) has the highest daily minimum of      

–46.23%. 

Panel B of Appendix B reports the mean, median, maximum, minimum, and standard deviation of 

the daily excess returns on the value-weighted NYSE/AMEX/NASDAQ, NYSE, S&P 500, S&P 100, and 

DJIA indices. To be consistent with the firm-level data, the descriptive statistics are computed for the 

sample period from July 10, 1986 to September 28, 2007. In terms of the sample mean, the S&P 500 

index has the lowest average daily excess return of 0.022%, whereas the NYSE/AMEX/NASDAQ index 

has the highest average daily excess return of 0.030%. In terms of the sample standard deviation, the 

NYSE index has the lowest unconditional volatility of 0.96% per day, whereas the S&P 100 index has the 

highest unconditional volatility of 1.11% per day. In terms of the daily maximum excess return, the 

NYSE/AMEX/NASDAQ index has the lowest daily maximum of 8.63%, whereas the DJIA index has the 

highest daily maximum of 10.12%. In terms of the daily minimum excess return, the DJIA index has the 

lowest daily minimum of –22.64%, whereas the NYSE/AMEX/NASDAQ index has the highest daily 

minimum of –17.16%. 

For state variables, we consider the commonly used macroeconomic variables (the federal funds 

rate, default spread, and term spread), financial factors (size, book-to-market, and momentum), and 

volatility measures (options implied, GARCH, and range). 

 

3.1.1.  Macroeconomic Variables 

                                                 
5
 Excess returns on Dow 30 stocks are obtained by subtracting the returns on 1-month Treasury bills from the raw 

returns on Dow stocks. The daily returns on 1-month T-bill are obtained from Kenneth French’s online data library. 
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Several studies find that macroeconomic variables associated with business cycle fluctuations can 

predict the stock market.
6
 The commonly chosen variables include Treasury bill rates, federal funds rate, 

default spread, term spread, and dividend-price ratios. We study how variations in the fed funds rate, 

default spread, and term spread predict variations in the investment opportunity set and how incorporating 

conditional covariances of individual stock returns with these variables affects the intertemporal risk-

return relation.
7
 

We obtain daily data on the federal funds rate, 3-month Treasury bill, 10-year Treasury bond 

yields, BAA-rated and AAA-rated corporate bond yields from the H.15 database of the Federal Reserve 

Board. The federal funds rate is the interest rate at which a depository institution lends immediately 

available funds (balances at the Federal Reserve) to another depository institution overnight. It is a closely 

watched barometer of the tightness of credit market conditions in the banking system and the stance of 

monetary policy. In addition to the fed funds rate, we use the term and default spreads as control 

variables. The term spread (TERM) is calculated as the difference between the yields on the 10-year 

Treasury bond and the 3-month Treasury bill. The default spread is computed as the difference between 

the yields on the BAA-rated and AAA-rated corporate bonds. As a final set of variables, we include the 

lagged excess return on the market portfolio as well as the lagged excess return on Dow 30 stocks to 

control for the serial correlation in daily returns that might spuriously affect the risk-return tradeoff. 

 

3.1.2.  Size, book-to-market, and momentum factors 

Fama and French (1993) introduce two financial factors related to firm size and the ratio of book 

value of equity to market value of equity. In a series of papers, Fama and French (1992, 1993, 1995, 

1996, 1997) show the importance of these two factors. To form these factors, Fama and French first 

construct six portfolios according to the rankings on market equity (ME) and book-to-market (BM) ratios. 

In June of each year, they rank all NYSE stocks in CRSP based on ME. Then they use the median NYSE 

size to split NYSE, AMEX, and NASDAQ stocks into two groups, small and big (S and B). They also 

break NYSE, AMEX, and NASDAQ stocks into three BM groups based on the breakpoints for bottom 

30% (Low), middle 40% (Medium), and top 30% (High) of the ranked values of BM for NYSE stocks. 

They construct the SMB (small minus big) factor as the difference between the returns on the portfolio of 

small size stocks and the returns on the portfolio of large size stocks, and the HML (high minus low) 

factor as the difference between the returns on the portfolio of high BM stocks and the returns on the 

                                                 
6
 See Fama and Schwert (1977), Keim and Stambaugh (1986), Chen, Roll, and Ross (1986), Campbell and Shiller 

(1988), Fama and French (1988, 1989), Schwert (1989, 1990), Fama (1990), Campbell (1987, 1991), Ferson and 

Harvey (1991, 1999), Ferson and Schadt (1996), Goyal and Santa-Clara (2003), Ghysels, Santa-Clara, and Valkanov 

(2005), Bali, Cakici, Yan, and Zhang (2005), and Guo and Whitelaw (2006). 
7
 We could not include the aggregate dividend yield (or the dividend-price ratio) because the data on dividends are 

available only at the monthly frequency while our empirical analyses are based on the daily data. 
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portfolio of low BM stocks. We use the SMB and HML portfolios of Fama and French that are 

constructed daily. 

The momentum (MOM) factor of Fama and French is constructed from six value-weighted 

portfolios formed using independent sorts on size and prior return of NYSE, AMEX, and NASDAQ 

stocks. MOM is the average of the returns on two (big and small) high prior return portfolios minus the 

average of the returns on two low prior return portfolios.  The portfolios are constructed daily.  Big means 

a firm is above the median market cap on the NYSE at the end of the previous day; small firms are below 

the median NYSE market cap. Prior return is measured from day –250 to –21.  Firms in the low prior 

return portfolio are below the 30th NYSE percentile.  Those in the high portfolio are above the 70th 

NYSE percentile. 

The daily, monthly, and annual returns on these three factors (SMB, HML, MOM) are available at 

Kenneth French’s online data library, and the daily data cover the period from July 1, 1963 to September 

28, 2007. In our empirical analyses, we use them for our longest common sample from July 10, 1986 to 

September 28, 2007. 

 

3.1.3.  Alternative Measures of Market Volatility  

We test whether the risk-aversion coefficient on the conditional covariance of individual stocks 

with the market portfolio remains positive and significant after controlling for risk premiums induced by 

conditional covariation of individual stocks with alternative measures of market volatility. We use options 

implied, GARCH, and range based volatility estimators. 

Implied volatilities are considered to be the market’s forecast of the volatility of the underlying 

asset of an option.  Specifically, the Chicago Board Options Exchange (CBOE)’s VXO implied volatility 

index provides investors with up-to-the-minute market estimates of expected volatility by using real-time 

S&P 100 index option bid/ask quotes.  The VXO is a weighted index of American implied volatilities 

calculated from eight near-the-money, near-to-expiry, S&P 100 call and put options based on the Black-

Scholes (1973) pricing formula. 

 As an alternative to the VXO index, we could have used the newer VIX index, which is 

introduced by the CBOE on September 22, 2003. The VIX is obtained from the European style S&P 500 

index option prices and incorporates information from the volatility skew by using a wider range of strike 

prices rather than just at-the-money series. However, the daily data on VIX starts from January 2, 1990, 

which does not cover our full sample period (7/10/1986–9/28/2007). Hence, we use the daily data on 

VXO that starts from January 2, 1986 and spans the full sample period of Dow 30 stocks. 

 We estimate the conditional variance of daily excess returns on the S&P 500 index using a 

GARCH(1,1) model and then generate the DCC-based conditional covariances between daily excess 
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returns on Dow 30 stocks and the change in daily conditional volatility. Our objective is to test whether 

unexpected news in market volatility is priced in the stock market and then to check robustness of risk-

aversion coefficient after controlling for risk premiums induced by the conditional covariation of 

individual stocks with the GARCH volatility of the market portfolio. 

The range volatility that utilizes information contained in the high frequency intraday data is 

defined as:  

           )(ln)(ln ,,, tmtmtm PMinPMaxRange −= ,                                         (6) 

where )(ln ,tmPMax  and )(ln ,tmPMin  are the highest and lowest log stock market index levels on day t. In 

our empirical analysis, we use the maximum and minimum values of the S&P 500 index over a sampling 

interval of one day. Equation (6) can be viewed as a measure of daily standard deviation of the market 

portfolio. Alizadeh, Brandt, and Diebold (2002) and Brandt and Diebold (2006) point out several 

advantages of using range volatility estimators: The range-based volatility is highly efficient, 

approximately Gaussian and robust to certain types of microstructure noise such as bid-ask bounce. In 

addition, range data are available for many assets including Dow 30 stocks and major stock market 

indices over a long sample period. 

 

3.1.4.  Conditional Idiosyncratic/Total Volatility of Individual Stocks 

Recent studies on idiosyncratic and total risk of individual stocks provide conflicting evidence on 

the direction and significance of a cross-sectional relation between firm-level volatility and expected 

returns. The existing literature is also not in agreement about the significance of a time-series relation 

between aggregate idiosyncratic volatility and excess returns on the market portfolio. Hence, we examine 

the significance of conditional idiosyncratic and total volatility of individual stocks in the ICAPM 

framework and test if the intertemporal relation between expected returns and market risk remains 

significantly positive after controlling for firm-level volatility measures. 

Conditional idiosyncratic volatility of Dow 30 stocks is estimated based on the following AR(1)-

GARCH(1,1) model:  

       1,,101, ++ ++= titi
ii

ti RR εαα ,                         (7) 

           [ ] 2
,2

2
,10

2
1,

2
1, ti

i
ti

ii
tititE σβεββσε ++=≡ ++ ,            (8) 

where 1, +tiR  denotes total excess return on stock i that can be decomposed into expected and idiosyncratic 

components. [ ] ti
ii

tit RRE ,101,
ˆˆ αα +=+  is the expected excess return on stock i conditional on time t 

information and 1, +tiε  is the idiosyncratic (or firm-specific) excess return on stock i. 2
1, +tiσ  in eq. (8) is the 

time-t expected conditional variance of 1, +tiε  that can be viewed as conditional idiosyncratic volatility. 
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To measure total risk of individual stocks, we use the following range volatility:  

           )(ln)(ln ,,, tititi PMinPMaxRange −= ,                                         (9) 

where )(ln ,tiPMax  and )(ln ,tiPMin  are the highest and lowest log prices of stock i on day t. The 

maximum and minimum prices of Dow 30 stocks are used over a sampling interval of one day to compute 

range volatility estimators.  

 

3.2.  Estimating Time-Varying Conditional Covariances  

We estimate the conditional covariance between excess returns on asset i and the market portfolio 

m based on the following bivariate GARCH(1,1) specification: 

          1,,101, ++ ++= titi
ii

ti RR εαα ,          (10) 

                  1,,101, ++ ++= tmtm
mm

tm RR εαα ,          (11) 

           [ ] 2
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2
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2
1, ti

i
ti

ii
tititE σβεββσε ++=≡ ++ ,          (12) 

        [ ] 2
,2

2
,10

2
1,

2
1, tm

m
tm

mm
tmtmtE σβεββσε ++=≡ ++ ,          (13) 

                 [ ] 1,1,1,1,1,1, ++++++ ⋅⋅=≡ tmtitimtimtmtitE σσρσεε ,         (14) 

where 1, +tiR  and 1, +tmR  denote the time (t+1) excess return on asset i and the market portfolio m over a 

risk-free rate, respectively, and [.]tE  denotes the expectation operator conditional on time t information. 

2
1, +tiσ  is the time-t expected conditional variance of 1, +tiR , 2

1, +tmσ  is the time-t expected conditional 

variance of 1, +tmR , and 1, +timσ  is the time-t expected conditional covariance between 1, +tiR  and 1, +tmR . 

1, +timρ  is the conditional correlation between 1, +tiR  and 1, +tmR .
8 

 The GARCH specifications in equations (10)-(14) do not arise directly from the ICAPM model, 

but they provide a parsimonious approximation of the form of conditional heteroskedasticity typically 

encountered with financial time-series data (e.g., Bollerslev, Chou, and Kroner (1992) and Bollerslev, 

Engle, and Nelson (1994)). As an alternative to bivariate GARCH specifications, earlier studies define the 

conditional covariances (or betas) as a function of some macroeconomic variables and then use a two-

stage ordinary least squares (OLS) or generalized method of moments (GMM) estimation methodology to 

generate conditional risk measures (e.g., Harvey (1989), Ferson and Harvey (1991), and Jagannathan and 

Wang (1996)). 

                                                 
8
 Similar conditional covariance specifications are used by Baillie and Bollerslev (1992), Bollerslev (1990), 

Bollerslev, Engle, and Wooldridge (1988), Bollerslev and Wooldridge (1992), Ding and Engle (2001), Engle and 

Kroner (1995), Engle and Mezrich (1996), Engle, Ng, and Rothschild (1990), and Kroner and Ng (1998). These 

specifications can be viewed as multivariate generalizations of the univariate GARCH models developed by Engle 

(1982) and Bollerslev (1986). 
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When considering stochastic investment opportunities governed by a set of state variables, we 

estimate the conditional covariance between each stock i and each state variable x, ixσ , using an 

analogous bivariate GARCH specification: 

       1,,101, ++ ++= titi
ii

ti RR εαα ,           (15) 

                    1,101 ++ ++= txt
xx

t xx εαα ,           (16) 

           [ ] 2
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i
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ii
tititE σβεββσε ++=≡ ++ ,          (17) 

         [ ] 2
,2

2
,10

2
1,

2
1, tx

x
tx

xx
txtxtE σβεββσε ++=≡ ++ ,           (18) 

                   [ ] 1,1,1,1,1,1, ++++++ ⋅⋅=≡ txtitixtixtxtitE σσρσεε .          (19) 

 We assume that the excess returns on individual stocks and the market portfolio as well as the 

states variables follow an autoregressive of order one AR(1) process given in equations (10), (11), and 

(16). At an earlier stage of the study, we consider alternative specifications of the conditional mean. More 

specifically, the excess returns are assumed to follow a moving average of order one MA(1) process 

( 1,,101, ++ ++= titi
ii

tiR εεαα ), ARMA(1,1) process ( 1,,2,101, ++ +++= titi
i

ti
ii

ti RR εεααα ), and a constant 

( 1,01, ++ += ti
i

tiR εα ). As will be discussed in the paper, our main findings are not sensitive to the choice of 

conditional mean specification.  

We estimate the conditional covariances of each stock with the market portfolio and state 

variables ( 1, +timσ , 1, +tixσ ) based on the mean-reverting dynamic conditional correlation (DCC) model of 

Engle (2002). Engle defines the conditional correlation between two random variables 1r  and 2r  that each 

has zero mean as  

          
( )

( ) ( )2,21
2
,11

,2,11
,12

tttt

ttt
t

rErE

rrE

−−

−

⋅

⋅
=ρ ,           (20) 

where the returns are defined as the conditional standard deviation times the standardized disturbance: 

                ( )2,1
2
, titti rE −=σ ,     tititi ur ,,, ⋅=σ ,     i = 1,2         (21) 

where  tiu ,  is a standardized disturbance that has zero mean and variance one for each series. Equations 

(20) and (21) indicate that the conditional correlation is also the conditional covariance between the 

standardized disturbances: 

( )
( ) ( )

( )ttt

tttt

ttt
t uuE

uEuE

uuE
,2,11

2
,21

2
,11

,2,11
,12 ⋅=

⋅

⋅
= −

−−

−ρ .         (22) 

The conditional covariance matrix of returns is defined as  
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    tttt DDH ⋅⋅= ρ ,   where { }2,tit diagD σ=  ,         (23) 

where tρ  is the time-varying conditional correlation matrix  

         ( ) ttttttt DHDuuE ρ=⋅⋅=⋅ −−
−

11'
1 ,    where ttt rDu ⋅= −1          (24) 

 Engle (2002) introduces a mean-reverting DCC model: 

tjjtii

tij

tij
qq

q

,,

,

,
⋅

=ρ ,           (25) 

      ( ) ( )ijtijijtjtiijtij qauuaq ρρρ −⋅+−⋅⋅+= −−− 1,21,1,1,          (26)  

where ijρ  is the unconditional correlation between tiu ,  and tju , . Equation (26) indicates that the 

conditional correlation is mean reverting towards ijρ  as long as 121 <+ aa . 

 Engle (2002) assumes that each asset follows a univariate GARCH process and writes the log 

likelihood function as: 
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π

        (27) 

As shown in Engle (2002), letting the parameters in tD  be denoted by θ and the additional parameters in 

tρ  be denoted by φ, equation (27) can be written as the sum of a volatility part and a correlation part: 

          ),()(),( ϕθθϕθ CV LLL += .          (28) 

The volatility term is  

            ( )∑
=

−++−=
T

t

ttttV rDrDnL
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2'2
ln)2ln(
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1
)( πθ ,         (29) 

and the correlation component is 
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The volatility part of the likelihood is the sum of individual GARCH likelihoods: 
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which is jointly maximized by separately maximizing each term.  The second part of the likelihood is used 

to estimate the correlation parameters. The two-step approach to maximizing the likelihood is to find  

        )}(max{ argˆ θθ VL=            (32) 

and then take this value as given in the second stage: 
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            )},ˆ({max ϕθ
ϕ

CL .           (33) 

We estimate the conditional covariances of each stock with the market portfolio and with each state 

variable using the maximum likelihood method described above.  

Table 1 reports parameter estimates of the mean-reverting DCC model.
9
 For all stocks in the Dow 

Jones Industrial Average, both parameters (0 < a1, a2 < 1) are estimated to be positive, less than one, and 

highly significant. Similar to the findings of Engle (2002), the magnitude of a1 is small, in the range of 

0.0075 to 0.0581, whereas a2 is found to be large, ranging from 0.9326 to 0.9904. The persistence of the 

conditional correlations of each stock with the market portfolio is measured by the sum of a1 and a2. For 

all stocks, the estimated value of (a1+a2) is less than one, in the range of 0.9880 to 0.9982, implying mean 

reversion in the conditional correlation estimates. 

Figure 1 displays the conditional correlations between the daily excess returns on Dow 30 stocks 

and the market portfolio over the sample period of July 10, 1986 to September 28, 2007.
10
 A notable point 

in Figure 1 is that the conditional correlations exhibit significant time variation for all stocks and the 

correlations are pulled back to some long-run average level over time, indicating strong mean reversion. 

A common observation in Figure 1 is that when the level of conditional correlation is high, mean 

reversion tends to cause it to have a negative drift, and when it is low, mean reversion tends to cause it to 

have a positive drift. 

To test whether the mean-reverting DCC model generates reasonable conditional covariance 

estimates, we compute the equal-weighted and price-weighted averages of the conditional covariances of 

Dow 30 stocks with the market portfolio. Then, we compare the weighted average conditional 

covariances with the benchmark of the conditional market variance. In Panel A (Panel B) of Figure 2, the 

dashed line denotes the equal-weighted (price-weighted) average of the conditional covariances of daily 

excess returns on Dow 30 stocks with daily excess returns on the market portfolio. The solid line in both 

panels denotes the conditional variance of daily excess returns on the market portfolio. The weighted-

average covariances are in the same range as the conditional variance of the market portfolio. The two 

series in both panels move very closely together. In fact, it is almost impossible to visually distinguish the 

two series in Figure 2. Specifically, in Panel A the sample correlation between the equal-weighted 

average covariance and the market variance is 0.9931 and in Panel B the sample correlation between the 

price-weighted average covariance and the market variance is 0.9932. The affinity in magnitudes and 

time-series fluctuations between the weighted average covariances and market portfolio variance provides 

                                                 
9
 The parameter estimates in Table 1 are based on the market portfolio measured by the DJIA. The results from 

alternative measures of the market portfolio are very similar and they are available upon request. 
10
 The conditional correlation estimates in Figure 1 are based on the market portfolio measured by the DJIA. The 

results from alternative measures of the market portfolio are very similar and they are available upon request. 
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evidence for reasonable conditional variance and covariance estimates from the mean-reverting DCC 

model. 

 

3.3. Estimating the intertemporal relation between risk and return 

Given the conditional covariances, we estimate the intertemporal relation from the following 

system of equations, 

, ,...,2 ,1        ,1,1,1,1, nieBACR titixtimiti =+⋅+⋅+= ++++ σσ          (34) 

where n denotes the number of individual stocks and also the number of equations in the estimation. In 

this paper, we simultaneously estimate n = 30 equations as our focus is on the daily risk-return tradeoff 

for Dow 30 stocks. We constrain the slope coefficients (A, B) to be the same across all stocks for cross-

sectional consistency. We allow the intercepts Ci to differ across different stocks. Under the null 

hypothesis of ICAPM, the intercepts should be jointly zero. We use deviations of the intercept estimates 

from zero as a test against the validity and sufficiency of the ICAPM specification.
11
 

We estimate the system of equations using a weighted least square method that allows us to place 

constraints on coefficients across equations. We compute the t-statistics of the parameter estimates 

accounting for heteroskedasticity and autocorrelation as well as contemporaneous cross-correlations in 

the errors from different equations. The estimation methodology can be regarded as an extension of the 

seemingly unrelated regression (SUR) method, the details of which are in Appendix C.
12
 

In addition to the SUR method, we use Rogers’ (1983, 1993) contemporaneous cross-sectional 

correlation adjusted standard errors. To compute Rogers’ standard errors, we first acquire regression 

errors ( te ) from the panel data. Then, the variance-covariance matrix of the coefficient estimates is 

computed as ( ) ( )( ) 1'

1

''1' −

=

−

∑ XXXeeXXX
T

t tttt

))
, where X is the matrix of independent variables, te

)
 is the 

estimated error terms, and subscript t denotes a part of the data in a certain time period t. The standard 

errors obtained from Rogers’ methodology are also known as “clustered” standard errors.
13
  

 

4.  Empirical Results 

                                                 
11
 In somewhat different contexts of conditional asset pricing models, similar tests on the intercepts are used by 

Ferson, Kandel, and Stambaugh (1987), Gibbons, Ross, and Shanken (1989), Harvey (1989), Shanken (1990), and 

Ferson and Harvey (1999). 
12
 At an earlier stage of the study, we also use the ordinary least squares (OLS) and weighted least squares (WLS) 

methodology in estimating the system of equations. The t-statistics from OLS are not adjusted for heteroskedasticity, 

autocorrelation, or contemporaneous cross-correlations in the errors. The t-statistics from WLS are adjusted only for 

heteroskedasticity. We should note that the t-statistics from OLS and WLS turn out to be significantly larger than 

those reported in our tables. 
13
 OLS, WLS, and SUR estimates are obtained from the commonly used econometrics softwares called STATA, 

EVIEWS, and WINRATS. The clustered standard errors are obtained from STATA. 
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First, we present the estimation results on the intertemporal risk-return tradeoff assuming zero 

intertemporal hedging demand. Second, we check the robustness of our main findings across different 

sample periods, and after controlling for the October 1987 crash, macroeconomic variables, the lagged 

returns on individual stocks and the market portfolio, the conditional volatility of individual stocks and 

the market portfolio, and alternative specifications of the conditional mean and covariance processes. 

Finally, we estimate the intertemporal relation by including additional risk premiums induced by the 

conditional covariation of Dow 30 stocks with various macroeconomic, financial, and volatility factors. 

 

4.1. Risk-return tradeoff without intertemporal hedging demand 

Table 2 reports the common slope estimates and average firm-specific intercepts along with the t-

statistics from the following system of equations: 

  .03 ,...,2 ,1        ,1,1,1, ==+⋅+= +++ nieACR titimiti σ          (35) 

Estimation is based on daily excess returns on Dow 30 stocks (n=30) and five alternative measures of the 

market portfolio over the sample period of July 10, 1986 to September 28, 2007. Each row of Table 2 

presents estimates based on a market portfolio measured by the value-weighted NYSE/AMEX/NASDAQ, 

NYSE, S&P 500, S&P 100, and DJIA indices.  

 As shown in the last column of Table 2, the risk-return coefficient on 1, +timσ  is estimated to be 

positive and highly significant with the t-statistics ranging from 5.44 to 7.03. The common slope 

estimates are stable across different market portfolios, between 2.25 and 3.26. Based on the relative risk 

aversion interpretation, the magnitudes of these estimates are economically sensible as well.
14
  

In estimating the system of time-series relations, we allow the intercepts to be different for 

different stocks. These intercepts capture the daily abnormal returns on each stock that cannot be 

explained by the conditional covariances with the market portfolio. The first column of Table 2 reports 

the Wald statistics and the p-values in square brackets from testing the joint hypothesis of all intercepts 

equal zero;  H0: 0... 3021 ==== CCC . The Wald statistics turn out to be very small, between 5.86 and 

7.87, indicating that the conditional covariances of Dow 30 stocks with the market portfolio have 

significant predictive power for the time-series variation in expected returns so that we fail to reject the 

null hypothesis. The second column of Table 2 shows that the cross-sectional averages of Ci (denoted by 

C ) are small ranging from –1.53 410−×  to –2.34 410−× . The average t-statistics of Ci are also very small, 

between –0.51 and –0.73, implying statistically insignificant daily abnormal returns. 

                                                 
14
 Appendix D provides further robustness checks for the significance of positive risk-return tradeoff. The results 

from the clustered standard errors and the panel estimation with the standardized residuals indicate a positive and 

significant intertemporal relation between expected returns and risk for Dow 30 stocks. 
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Figure 3 presents the magnitude and statistical significance of daily abnormal returns (intercepts) 

that differ across stocks. The intercepts and their t-statistics are plotted for Dow 30 stocks as a scattered 

diagram for each market portfolio measured by the value-weighted CRSP, NYSE, S&P 500, S&P 100, 

and DJIA indices. In all cases, the daily abnormal returns turn out to be insignificant, both economically 

and statistically. These results indicate that it is not only the average intercepts and average t-statistics 

reported in Table 2, but the magnitude and t-statistics of the intercepts are estimated to be very small for 

each individual stock as well. 

 

4.1.1. Controlling for the October 1987 crash 

Table 3 presents results from testing the significance of an intertemporal risk-return tradeoff after 

controlling for the October 1987 crash. The following system of equations is estimated for Dow 30 

stocks: 

,1,1,1, +++ +⋅+⋅+= tittimiti eXBACR σ           (36) 

where tX   denotes a day, week, and month dummy for October 1987. Dum_day equals one for the day of 

October 19, 1987 and zero otherwise; Dum_week equals one for the week of October 19, 1987 – October 

23, 1987 and zero otherwise; and Dum_month equals one for the month of October 1, 1987 – October 30, 

1987 and zero otherwise. As expected, for all measures of the market portfolio, the common slope (B) on 

tX  is estimated to be negative and highly significant for the day, week, and month dummy. Each panel of 

Table 3 presents positive and highly significant common slope coefficients (A) on 1, +timσ .  

Table 4 checks the robustness of our main findings for the sample period of January 4, 1988 to 

September 28, 2007 that excludes October 1987. As shown in the last column of Table 4, the risk-return 

coefficient on 1, +timσ  is estimated to be positive and highly significant for all measures of the market 

portfolio. The first column of Table 4 reports very small Wald statistics from testing the joint hypothesis 

of all intercepts equal zero. The second column of Table 4 presents economically and statistically 

insignificant average abnormal returns. Overall, the panel regression results in Tables 3 and 4 indicate 

that the economically and statistically significant relation between risk and return remains intact after 

controlling for the October 1987 crash.  

 

4.1.2. Controlling for the lagged returns on individual stocks and the market portfolio 

 Table 5 examines the significance of common slope on the conditional covariance of Dow 30 

stocks with the market portfolio after controlling for the lagged daily excess returns on individual stocks 

)( ,tiR , the lagged daily excess return on the market portfolio )( ,tmR , and the crash dummy. The first 

column of each panel in Table 5 provides strong evidence for a significantly positive relation between 
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expected return and market risk after controlling for the lagged returns and the October 1987 crash. The 

risk-return coefficient (A) is stable across different market portfolios and highly significant with the t-

statistics ranging from 5.20 to 7.94. Another notable point in Table 5 is that the common slope (B) on the 

lagged returns is found to be negative and statistically significant, indicating negative first-order 

autocorrelation in daily stock returns.
15
  

 

4.1.3. Subsample analysis 

 Table 6 investigates whether the positive relation between expected return and risk remains 

economically and statistically significant for different subsample periods.
16
 For the sample period of 

January 4, 1988 – September 28, 2007 (excluding the October 1987 crash), the common slope (A) is 

estimated to be 2.95 with the t-statistic of 3.63. For the full sample period of July 10, 1986 – September 

28, 2007, A is estimated to be 3.26 with the t-statistic of 6.56. We break the entire sample into two and re-

estimate the intertemporal relation for two subsamples. For the first subsample of July 10, 1986 – 

February 6, 1997, the risk-return coefficient is about 2.75 with t-stat. = 4.86. For the second subsample of 

February 7, 1997 – September 28, 2007, the risk aversion coefficient turns out to be somewhat higher at 

3.12 with t-stat. = 3.17. 

These estimates are relatively stable across different sample periods. The t-statistics show that all 

estimates are highly significant. The consistent estimates and high t-statistics across different market 

portfolios, sample periods, and after controlling for the lagged returns and the crash dummy suggest that 

the identified positive risk-return tradeoff is not only significant, but also robust.  

 

4.1.4. Alternative specifications of the conditional mean 

As shown in equations (10) and (11), the conditional mean of daily excess returns on individual 

stocks and the market portfolio is assumed to follow an AR(1) process. In this section, we consider 

alternative specifications of the conditional mean and re-estimate the system of equations given in 

equation (34). As presented in Table 7, when the daily excess returns on Dow 30 stocks and the market 

portfolio are assumed to be constant, the risk aversion parameter is estimated to be 3.06 with t-stat. = 

5.97. When the conditional mean is parameterized as an MA(1) process ( 1,,101, ++ ++= titi
ii

tiR εεαα ),  the 

common slope (A) on 1, +timσ  is found to be 3.32 with the t-statistic of 6.64. When the conditional mean of 

                                                 
15
 Jegadeesh (1990), Lehman (1990), Lo and MacKinlay (1990), and Boudoukh, Richardson, and Whitelaw (1994) 

provide evidence for the significance of short-term reversal (or negative autocorrelation in short-term returns). 
16
 To save space, starting with Table 6 we only present results based on the market portfolio measured by the value-

weighted NYSE/AMEX/NASDAQ index. At an earlier stage of the study, we replicate our findings reported in 

Table 6 and follow-up tables using the NYSE, S&P 500, S&P 100, and DJIA indices. The results from these 

alternative measures of the market portfolio turn out to be very similar and they are available upon request. 
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daily excess returns is modeled with ARMA(1,1) process ( 1,,2,101, ++ +++= titi
i

ti
ii

ti RR εεααα ), the risk-

return coefficient is about 3.58 with t-stat. = 7.16. The common slope estimates are stable across different 

specifications of the conditional mean, between 3.06 and 3.58, with the t-statistics ranging from 5.97 to 

7.16.  The first column of Table 7 presents very small Wald statistics from testing the joint hypothesis of 

all intercepts equal zero. The second column of Table 7 reports insignificant average abnormal returns. 

Overall, the parameter estimates in Table 7 indicate that the economically and statistically significant 

relation between risk and return is not sensitive to the choice of conditional mean specification. 

 

4.1.5. Alternative specification of the conditional covariance process 

As discussed earlier, the conditional covariances are estimated based on the mean-reverting 

dynamic conditional correlation (DCC) model of Engle (2002). As a robustness check, we now estimate 

the conditional covariance between excess returns on stock i and the market portfolio m based on the 

following bivariate GARCH(1,1) specification: 
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where 1, +timσ  is the time-t expected conditional covariance between 1, +tiR  and 1, +tmR  at time (t+1). As 

shown in equation (41), the conditional covariance at time (t+1) is a function of the product of the time-t 

residuals ( tmti ,, εε ) and the time-t conditional covariance ( tim,σ ). 

As shown in the last column of Appendix E, the risk-return coefficient on 1, +timσ  is estimated to 

be positive and highly significant with the t-statistics ranging from 5.58 to 6.19.
17
 The common slope 

estimates are stable across different market portfolios, between 2.99 and 3.70. The first column of 

Appendix E shows that the Wald statistics (with 30 degrees of freedom) are very small, failing to reject 

the null hypothesis of all intercepts equal zero. The second column of Appendix E shows that the cross-

                                                 
17
 As shown in equations (37)-(38), the conditional mean of daily excess returns on individual stocks and the market 

portfolio is assumed to be constant. We should note that at an earlier stage of the study, we consider alternative 

specifications of the conditional mean and estimate the conditional covariances with the AR(1), MA(1), ARMA(1,1) 

specifications. Overall, the economic and statistical significance of the common slope coefficients turn out to be 

insensitive to the choice of conditional mean. Similar to our findings in Table 7, the statistical significance of the 

risk-aversion coefficient is found to be somewhat lower with constant mean as compared to AR(1), MA(1), and 

ARMA(1,1) specifications. Thus, Appendix E presents conservative results. 
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sectional averages of the intercepts are very small ranging from 5.03 510−×  to 1.34 410−× . The average t-

statistics of the intercepts are also very small, between 0.17 and 0.48, implying statistically insignificant 

daily abnormal returns. 

 

4.1.6. Controlling for macroeconomic variables 

 To determine whether the level or changes in macroeconomic variables can influence time-series 

variation in stocks returns and hence may affect the risk-return tradeoff, we directly incorporate the 

lagged macroeconomic variables to the system of equations: 

,1,1,1, +++ +⋅+⋅+= tittimiti eXBACR σ            

where tX   denotes a vector of control variables including the default spread )( tDEF , term spread 

)( tTERM , federal funds rate )( tFED , and the crash dummy (Dum_month) that equals one for the month 

of October 1, 1987 – October 30, 1987 and zero otherwise.  

Table 8 tests the significance of common slope (A) on the conditional covariance of Dow 30 

stocks with the market portfolio after controlling for tDEF , tTERM , and tFED  as well as their first 

differences denoted by tDEF∆ , tTERM∆ , and tFED∆ . The first column of Table 8 provides strong 

evidence for a significantly positive relation between expected return and market risk after controlling for 

macroeconomic variables and the October 1987 crash. The risk-return coefficient (A) is stable across 

different controls, in the range of 3.25 to 3.90, and it is highly significant with the t-statistics ranging from 

6.54 to 7.69. An interesting observation in Table 8 is that the common slope (B) on the lagged 

macroeconomic variables is found to statistically insignificant, except for some marginal significance for 

the change in federal funds rate.
18
 The slope on tFED∆  is found to be between –0.08 and –0.09 with the 

t-statistics ranging from –1.64 to –1.74. This result suggests that an unexpected increase (decrease) in the 

fed funds rate will reduce (raise) stock prices over the next trading day, implying a negative relation 

between stock returns and interest rates in the short run. In fact, this is what we commonly observe in the 

U.S. stock market after the Federal Reserve’s unexpected increase or decrease in interest rates.  

 

4.1.7. Controlling for the conditional idiosyncratic and total volatility of individual stocks 

                                                 
18
 Although one would think that unexpected news in macroeconomic variables could be viewed as risks that would 

be rewarded in the stock market, we find that the level and changes in term and default spreads do not affect time-

series variation in daily stock returns. Our interpretation is that it would be very difficult for macroeconomic 

variables (except for the overnight fed funds rate) to explain daily variations in stock returns. If we examined the 

risk-return tradeoff at lower frequency (such as monthly or quarterly frequency), we might observe significant 

impact of macroeconomics variables on monthly or quarterly variations in stock returns. 
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 Several asset pricing models, e.g., Levy (1978) and Merton (1987), show that limited 

diversification results in an equilibrium where expected returns compensate not only for market risk but 

also for idiosyncratic risk. Motivated by these theoretical models and investors’ preferences for holding 

less than perfectly diversified portfolios, recent empirical studies investigate the cross-sectional relation 

between expected stock returns and idiosyncratic and total volatility. Ang, Hodrick, Xing and Zhang 

(2006) find a strong negative relation between idiosyncratic volatility and the cross-section of expected 

stock returns. Spiegel and Wang (2005) use conditional measures of idiosyncratic volatility and find a 

positive and significant relation between idiosyncratic risk and expected returns. Bali and Cakici (2006) 

focus on the methodological differences that led the previous studies to develop conflicting evidence. 

Goyal and Santa-Clara (2003) and Bali, Cakici, Yan, and Zhang (2005) investigate the significance of a 

time-series relation between aggregate idiosyncratic volatility and excess market returns. After testing if 

the equal-weighted and value-weighted average idiosyncratic volatility of individual stocks can predict 

the one month ahead returns on the market portfolio, these studies provide conflicting evidence as well. 

Overall, the existence and direction of both time-series and cross-sectional relations between idiosyncratic 

volatility and expected returns is still a subject of an intense debate. 

Within the ICAPM framework, we examine if the conditional idiosyncratic (and total) volatility 

of individual stocks can predict time-series variation in one day ahead returns on Dow 30 stocks. We also 

check whether the conditional idiosyncratic (or total) volatility has any influence on the risk-return 

tradeoff. The significance of firm-level volatility is tested by estimating the following system of 

equations: 

   ,1,1,1,1, ++++ +⋅+⋅+= tititimiti eVOLBACR σ           (42) 

where 1, +tiVOL  is the time-t expected conditional volatility of 1, +tiR . We consider two alternative 

measures of firm-level volatility: (1) 1, +tiVOL  is the conditional variance of the daily excess returns on 

stock i at time t+1 ( 2
1, +tiσ ) estimated using the AR(1)-GARCH(1,1) model and can be interpreted as the 

conditional idiosyncratic volatility of individual stock; (2) 1, +tiVOL  is the range daily standard deviation 

of individual stocks defined as )(ln)(ln ,, titi PMinPMax − , and can be interpreted as the conditional total 

volatility of individual stock. 

Table 9 tests the significance of common slope (A) on the conditional covariance of Dow 30 

stocks with the market portfolio after controlling for the conditional GARCH-based idiosyncratic 

volatility of individual stocks as well as the conditional range-based total volatility of individual stocks. 

The first column of Table 9 provides strong evidence for a significantly positive relation between 

expected return and market risk after controlling for firm-level volatility and the October 1987 crash. The 

risk-return coefficient estimates (A) are found to be in the range of 2.97 to 3.60, and highly significant 



 23 

with the t-statistics ranging from 5.82 to 7.13. Another notable point in Table 9 is that the common slope 

(B) on the GARCH-based idiosyncratic volatility is estimated to be positive but marginally significant, 

whereas the slope on the range-based total volatility is positive and statistically significant. These results 

suggest that an increase in daily firm-specific volatility of a Dow stock leads to an increase in the stock’s 

one day ahead expected returns. 

 

4.1.8. Controlling for the conditional volatility of the market portfolio 

Earlier studies examine the significance of an intertemporal relation between the conditional 

mean and conditional volatility of excess returns on the market portfolio. The results from testing whether 

the conditional volatility of the market portfolio predicts time-series variation in future returns on the 

market portfolio have so far been inconclusive. In this section, we investigate if the conditional volatility 

of the market portfolio can predict time-series variation in individual stock returns. We also check 

whether the conditional volatility of the market portfolio has any impact on the daily risk-return tradeoff. 

The significance of market volatility is determined by estimating the following system of equations: 

,1,1,1,1, ++++ +⋅+⋅+= titmtimiti eVOLBACR σ           (43) 

where 1, +tmVOL  is the time-t expected conditional volatility of 1, +tmR  obtained from the GARCH, Range, 

and Option Implied Volatility models: (1) 1, +tmVOL  is the conditional variance of daily excess returns on 

the market portfolio at time t+1 ( 2
1, +tmσ ) estimated using the AR(1)-GARCH(1,1) model; (2) 1, +tmVOL  is 

the range daily standard deviation of the market portfolio defined as )(ln)(ln ,, tmtm PMinPMax − ; and (3) 

1, +tmVOL  is the implied market volatility )( tVXO  obtained from the S&P 100 index options. 

Table 10 provides strong evidence for a significant link between expected returns on individual 

stocks and their conditional covariances with the market even after controlling for the conditional 

volatility of the market portfolio. For all measures of market volatility, the risk-return coefficients (A) are 

estimated to be positive, in the range of 2.84 to 3.41, and highly significant with the t-statistics ranging 

from 5.39 to 6.49. Another notable point in Table 10 is that the common slope (B) on the GARCH, range, 

and implied volatility estimators of the market portfolio is found to be positive and statistically significant 

with and without the October 1987 crash dummy. These results indicate that an increase in daily market 

volatility brings about an increase in expected returns on Dow 30 stocks over the next trading day. 

 

4.2. Risk-return tradeoff with intertemporal hedging demand 

This section tests the significance of risk premium induced by the conditional variation with the 

market portfolio after controlling for risk premiums induced by the conditional covariation of individual 
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stocks with macroeconomic variables (fed funds rate, default spread, and term spread), financial factors 

(size, book-to-market, and momentum), and volatility measures (implied, GARCH, and range volatility). 

 

4.2.1. Risk premiums induced by conditional covariation with macroeconomic variables 

Financial economists often choose certain macroeconomic variables to control for stochastic 

shifts in the investment opportunity set. The widely used variables include the short-term interest rates, 

default spreads on corporate bond yields, and term spreads on Treasury yields. To investigate how these 

macroeconomic variables vary with the investment opportunity and whether covariations of individual 

stocks with them induce additional risk premiums, we first estimate the conditional covariance of these 

variables with excess returns on each stock and then analyze how the stocks’ excess returns respond to 

their conditional covariance with these economic factors. In estimating the conditional covariances, we 

use the level and changes in daily federal funds rates, the level and changes in daily default spreads, and 

the level and changes in term spreads, as described in Section 3.1.1.  

Table 11 reports the common slope estimates (A, B1, B2, B3) and the average firm-specific 

intercepts (Ci) along with their t-statistics from the following system of equations: 

         1,1,,31,,21,,11,1, ++++++ +⋅+⋅+⋅+⋅+= titFEDitTERMitDEFitimiti eBBBACR σσσσ ,        (44) 

where 1,, +tDEFiσ  is the conditional covariance between daily excess returns on stock i and the level or 

change in daily default spreads, 1,, +tTERMiσ  is the conditional covariance between daily excess returns on 

stock i and the level or change in daily term spreads, and 1,, +tFEDiσ  is the conditional covariance between 

daily excess returns on stock i and the level or change in daily fed funds rate. 

The parameter estimates in Table 11 reveal several important results. First, incorporating the 

covariance of stock returns with any of these macroeconomic variables does not alter the magnitude and 

statistical significance of the risk aversion estimates. In all cases, the common slope coefficient (A) on 

1, +timσ  is positive, in the range of 3.00 and 3.28, and highly significant with the t-statistics between 5.25 

and 6.60. Second, the slope coefficient (B1) on 1,, +tDEFiσ  is positive, but statistically insignificant. If B1 

were statistically significant, the positive slope would indicate that the upward movements in default 

spread predict favorable shifts in the investment opportunity set. Third, the common slopes (B2, B3) on 

1,, +tTERMiσ  and 1,, +tFEDiσ  are negative, but their t-statistics are extremely low. If B2 and B3 were 

statistically significant, the negative coefficients would imply that an increase in term spread and fed 

funds rate predicts a downward shift in optimal consumption or unfavorable shifts in the investment 

opportunity set. However, we cannot draw any of these conclusions because the conditional covariances 

of individual stocks with macro variables turn out to be very poor predictors of future stock returns.  
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4.2.2. Risk premiums induced by conditional covariation with SMB, HML, and MOM 

When the investment opportunity is stochastic, investors adjust their investment to hedge against 

future shifts in the investment opportunity and achieve intertemporal consumption smoothing. Hence, 

covariations with state of the investment opportunity induce additional risk premiums on an asset. In this 

subsection, we take the size (SMB), book-to-market (HML), and momentum (MOM) factors of Fama and 

French to describe the state of the investment opportunity, and we investigate whether covariations of 

individual stocks with these three factors induce additional risk premiums on Dow 30 stocks. We measure 

the conditional covariance of each stock with these three factors and estimate the following system of 

equations: 

      1,1,,31,,21,,11,1, ++++++ +⋅+⋅+⋅+⋅+= titMOMitHMLitSMBitimiti eBBBACR σσσσ ,        (45) 

where 1,, +tSMBiσ , 1,, +tHMLiσ , and 1,, +tMOMiσ  measure the time-t expected conditional covariance between 

the time-(t+1) excess return on stock i and the level and change in SMB, HML, and MOM, respectively. 

From the estimates of B1, B2, and B3, we can learn how investors react to the covariations of stock returns 

with financial factors.  

Table 12 provides strong evidence for a significant link between expected returns on Dow 30 

stocks and their conditional covariances with the market after controlling for risk premiums induced by 

the conditional covariation with SMB, HML, and MOM. The risk-return coefficients (A) are estimated to 

be in the range of 3.25 to 4.84 and highly significant with the t-statistics ranging from 4.66 to 6.88. The 

conditional covariances of stock returns with the size and momentum factors do not have significant 

predictive power for one day ahead returns on Dow 30 stocks. In other words, the level and innovations in 

the SMB and MOM factors are not priced in the stock market. Another notable point in Table 12 is that 

the common slope (B2) on 1,, +tHMLiσ  is found to be positive and statistically significant for all risk-return 

specifications considered in the paper. Thus, an increase in the covariance of a stock return with the HML 

factor predicts an increase in the stock’s expected excess return over the next trading day.  

The positive slope estimates on 1,, +tHMLiσ  suggest that upward movements in the HML factor 

predict favorable shifts in the investment opportunity set, implying that the HML (or value premium) is a 

priced risk factor that is correlated with innovations in investment opportunities. These results are also 

consistent with the recent empirical evidence provided by Campbell and Vuolteenaho (2004), Brennan, 

Wang, and Xia (2004), Petkova and Zhang (2005), and Petkova (2006) as well as with the recent 

theoretical models of Gomes, Kogan, and Zhang (2003) and Zhang (2005).
19
  

                                                 
19
 We should note that the explanation of value premium within the conditional CAPM framework is still a subject 

of an intense debate. Lettau and Ludvigson (2001) and Ang and Chen (2007) find that the conditional CAPM helps 
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4.2.3. Risk premiums induced by conditional covariation with unexpected market volatility 

Following Campbell (1993, 1996), we assume that investors want to hedge against unexpected 

change in future market volatility defined here as the first-difference of the GARCH conditional volatility 

of S&P 500 index return )( 1, +∆ tmGARCH , the first-difference of the options implied volatility of S&P 

500 index return )( 1, +∆ tmVXO , and the first-difference of the range volatility of S&P 500 index return 

)( 1, +∆ tmRange . In this section, we test whether stocks that have higher correlation with the change in 

market volatility yield lower expected return. 

When considering stochastic investment opportunities governed by innovations in future market 

volatility, we estimate the intertemporal relation from the following system of equations, 

1,1,,1,1, ++∆++ +⋅+⋅+= titVOLitimiti eBACR
m

σσ ,          (46) 

where 1,, +∆ tVOLi m
σ  measures the time-t expected conditional covariance between 1, +tiR  and the change in 

the conditional volatility of the market portfolio denoted by 1, +∆ tmVOL . We use three alternative 

measures of 1, +∆ tmVOL : (1) 1, +∆ tmVOL  is the change in the GARCH conditional volatility of S&P 500 

index return )( 1, +∆ tmGARCH ; (2) 1, +∆ tmVOL  is the change in the option implied volatility of S&P 500 

index return )( 1, +∆ tmVXO ; and (3) 1, +∆ tmVOL  is the change in the range volatility of S&P 500 index 

return )( 1, +∆ tmRange . 

Under the null hypothesis of Campbell’s (1993, 1996) ICAPM, the common slope (A) on 1, +timσ  

should be positive and significant, and the common slope (B) on 1,, +∆ tVOLi m
σ  should be negative and 

significant. As shown in Table 13, the risk-return coefficient (A) on 1, +timσ  is estimated to be in the range 

of 1.41 to 3.02 with the t-statistics ranging from 2.02 to 5.53, implying a positive intertemporal relation 

between expected return and market risk. For the GARCH and range-based volatility of the market 

portfolio, the common slope (B) on 1,, +∆ tVOLi m
σ  is estimated to be between –0.26 and –0.29 and highly 

significant. For the options implied volatility of the market portfolio, the common slope (B) on 

1,, +∆ tVOLi m
σ  is estimated to be between –0.41 and –0.51 and highly significant. These results imply a 

                                                                                                                                                             
explain the return difference of value and growth stocks. However, Lewellen and Nagel (2006) provide evidence 

that is not in agreement with the findings of Ang and Chen (2007). Fama and French (2006) are also skeptical about 

the empirical performance of the conditional CAPM to explain value premium. Chen (2003) tests whether superior 

returns to value stocks can be explained by exposures to time-variations in the forecasts of future market returns and 

future market volatilities and his results indicate that value premium cannot be explained using these changes in the 

ICAPM framework. 
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negative intertemporal relation between expected return and volatility risk.
20
 In other words, stocks that 

have higher correlation with the changes in expected future market volatility yield lower expected return. 

 

5.  Conclusion 

We estimate the daily intertemporal relation between expected return and risk using a cross 

section of 30 stocks in the Dow Jones Industrial Average. By so doing, we not only guarantee the cross-

sectional consistency of the estimated intertemporal relation, but also gain statistical power by pooling 

multiple time series together for a joint estimation with common slope coefficients. The average relative 

risk aversion is estimated to be positive, highly significant, and robust to variations in the market 

portfolios, sample periods, and the conditional mean/covariance specifications. The positive risk-return 

tradeoff at daily frequency remains intact after controlling for (i) the level and changes in macroeconomic 

variables, (ii) the October 1987 crash, (iii) the lagged returns on individual stocks and the market 

portfolio, (iv) the conditional idiosyncratic and total volatility of individual stocks, and (v) the conditional 

volatility of the market portfolio. The magnitude of the risk-return coefficient is also economically 

sensible, ranging from two to four. 

When investigating the intertemporal hedging demands and the associated risk premiums induced 

by the conditional covariation of Dow 30 stocks with a set of macroeconomic variables, we find that the 

common slope coefficients on the conditional covariances with the fed funds rate, default and term 

spreads are statistically insignificant, implying that the level and innovations in macro variables do not 

contain any systematic risks rewarded in the stock market at daily frequency.  We investigate whether the 

SMB, HML, and MOM factors of Fama and French move closely with investment opportunities and 

whether covariations with these three factors induce additional risk premiums on Dow 30 stocks. The 

results indicate that although the SMB and MOM factors are not priced in the ICAPM framework, the 

HML is a priced risk factor and can be viewed as a proxy for investment opportunities. Finally, we 

assume that investors want to hedge against the changes in future market volatility and we use three 

different measures (GARCH, implied, range) to test whether stocks that have higher correlation with the 

innovations in market volatility yield lower expected return. The parameter estimates provide strong 

evidence for a significantly negative relation between expected return and volatility risk. However, 

incorporating the conditional covariation with any of these state variables does not change the positive 

risk premium induced by the conditional covariation with the market portfolio. 

                                                 
20
 Bakshi and Kapadia (2003) find the volatility risk premium to be negative in index options markets. We examine 

whether the volatility risk premium is negative within the ICAPM framework of Campbell (1993, 1996) using 

individual stocks.  
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By pooling the time series and cross section together, we find that the mean-reverting DCC-based 

conditional covariance estimates predict the time-series variation in stock returns and they generate 

significant and reasonable risk premiums. We also find that the intertemporal risk-return tradeoff is 

significantly positive at daily frequency and the relative risk aversion estimates are within a reasonable 

range. The robust, significant and sensible estimates highlight the added benefits of using the conditional 

measures of covariance risk and simultaneously maintaining the cross-sectional consistency in estimating 

the ICAPM. 



 29 

Appendix A.  Stocks in the Dow Jones Industrial Average 
 

According to Dow Jones, the industrial average started out with 12 stocks in 1896: American 

Cotton Oil (traces remain in CPC International), American Sugar (eventually became Amstar 

Holdings), American Tobacco (killed by antitrust action in 1911), Chicago Gas (absorbed by 

Peoples Gas), Distilling and Cattle Feeding (evolved into Quantum Chemical), General Electric 

(the only survivor), Laclede Gas (now Laclede Group but not in the index), National Lead (now 

NL Industries but not in the index), North American (group of utilities broken up in 1940s), 

Tennesee Coal and Iron (gobbled up by U.S. Steel), U.S. Leather preferred (vanished around 

1952), and U.S. Rubber (became Uniroyal, in turn bought by Michelin).  

 

The number of stocks was increased to 20 in 1916. The 30-stock average made its debut in 1928, 

and the number has remained constant ever since.  

 

Here are some of the recent changes.  

• On March 17, 1997, Hewlett-Packard, Johnson & Johnson, Travelers Group, and Wal-Mart 

joined the average, replacing Bethlehem Steel, Texaco, Westinghouse Electric and 

Woolworth.  

• In 1998, Travelers Group merged with CitiBank, and the new entity, CitiGroup, replaced 

the Travelers Group.  

• On November 1, 1999, Home Depot, Intel, Microsoft, and SBC Communications joined 

the average, replacing Union Carbide, Goodyear Tire & Rubber, Sears, and Chevron.  

• Between 1999 and 2004, several stocks in the index merged and/or changed names: Exxon 

became Exxon-Mobil after their merger; Allied-Signal merged with Honeywell and kept 

the Honeywell name; JP Morgan became JP Morgan Chase after their merger; Minnesota 

Mining and Manufacturing officially became 3M Corp; and Philip Morris renamed itself to 

Altria.  

• On April 8, 2004, American International Group, Pfizer, and Verizon joined the average, 

replacing AT&T, Eastman Kodak, and International Paper.  

• In 2007 SBC renamed itself to AT&T after completing the acquisition of that company.  

This study is based on the latest stock composition of the Dow Jones Industrial Average. The ticker 

symbols and company names are reported in the following table.  

 



 30 

Appendix A (continued) 
 

 

 

Ticker Company Name 

MMM  3M Corporation 

AA  Alcoa 

MO  Altria (was Philip Morris) 

AXP  American Express 

AIG  American Int'l Group 

T  AT&T Inc. (was SBC) 

BA  Boeing 

CAT  Caterpillar 

C  CitiGroup 

KO  Coca Cola 

DD  E.I. DuPont de Nemours  

XOM  Exxon Mobil 

GE  General Electric 

GM  General Motors 

HPQ  Hewlett-Packard 

HD  Home Depot 

HON  Honeywell 

INTC Intel Corp. 

IBM  International Business Machines 

JNJ  Johnson & Johnson 

JPM  JP Morgan Chase 

MCD  McDonalds 

MRK  Merck 

MSFT Microsoft 

PFE  Pfizer 

PG  Procter and Gamble 

UTX  United Technologies 

VZ  Verizon Communications 

WMT  Wal-Mart Stores 

DIS  Walt Disney Co. 
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Appendix B.  Descriptive Statistics 
 

Panel A.  Daily Excess Returns on Dow 30 Stocks 
This table presents summary statistics for the daily excess returns on Dow 30 Stocks. Mean, 

median, maximum, minimum, and standard deviation are reported for each stock. The 

descriptive statistics are computed for the longest common sample period from July 10, 1986 

to September 28, 2007 (5,354 daily observations). The sample ends in September 28, 2007 

for all series, but the start date is different and shown in the second column. 
 

Stock Start Date  Mean  Median  Maximum  Minimum  Std. Dev. 

MMM 1/2/1970 0.000012 -0.000180 0.1104 -0.5086 0.0190 

AA 1/2/1962 0.000155 -0.000210 0.1403 -0.5126 0.0236 

MO 1/2/1970 0.000186 0.000136 0.1598 -0.7503 0.0232 

AXP 4/1/1977 0.000159 -0.000210 0.1853 -0.6550 0.0238 

AIG 9/7/1984 -0.000037 -0.000200 0.1102 -0.5169 0.0213 

T 7/19/1984 -0.000057 -0.000190 0.1124 -0.6490 0.0212 

BA 1/2/1962 0.000153 -0.000190 0.1525 -0.4905 0.0207 

CAT 1/2/1962 0.000207 -0.000200 0.1453 -0.5116 0.0230 

C 1/3/1977 0.000065 -0.000210 0.1831 -0.4896 0.0248 

KO 1/2/1962 0.000124 -0.000160 0.1965 -0.4979 0.0202 

DD 1/2/1962 0.000002 -0.000220 0.0986 -0.6786 0.0205 

XOM 1/2/1970 0.000120 -0.000120 0.1788 -0.5029 0.0189 

GE 1/2/1962 0.000027 -0.000180 0.1244 -0.6683 0.0221 

GM 1/2/1962 -0.000059 -0.000300 0.1810 -0.5017 0.0219 

HPQ 1/2/1962 0.000268 -0.000175 0.1728 -0.4901 0.0275 

HD 8/20/1984 0.000289 -0.000150 0.1288 -0.4623 0.0258 

HON 1/2/1970 0.000179 -0.000200 0.3122 -0.4976 0.0230 

INTC 7/9/1986 0.000408 -0.000180 0.2010 -0.5319 0.0312 

IBM 1/2/1962 0.000034 -0.000180 0.1314 -0.5092 0.0210 

JNJ 1/2/1970 0.000088 -0.000140 0.1101 -0.5126 0.0207 

JPM 12/30/1983 0.000100 -0.000200 0.1603 -0.5092 0.0234 

MCD 1/2/1970 0.000044 -0.000195 0.1083 -0.5204 0.0213 

MRK 1/2/1970 0.000052 -0.000140 0.1302 -0.6750 0.0227 

MSFT 3/13/1986 0.000370 -0.000120 0.1955 -0.5350 0.0299 

PFE 1/4/1982 -0.000019 -0.000200 0.1022 -0.6572 0.0235 

PG 1/2/1970 0.000087 -0.000110 0.2216 -0.5039 0.0212 

UTX 1/2/1970 0.000193 -0.000185 0.1004 -0.5184 0.0210 

VZ 11/21/1983 -0.000052 -0.000200 0.1402 -0.5005 0.0192 

WMT 8/25/1972 0.000110 -0.000200 0.1244 -0.4899 0.0230 

DIS 1/2/1962 0.000143 -0.000180 0.1907 -0.7409 0.0241 

 
 

Panel B.  Daily Excess Returns on the Market Portfolio 

This table presents summary statistics for the daily excess returns on the value-weighted 

NYSE/AMEX/NASDAQ, NYSE, S&P 500, S&P 100, and Dow Jones Industrial Average 

(DJIA). Mean, median, maximum, minimum, and standard deviation are reported for each 

index. To be consistent with the stock data, the descriptive statistics are computed for the 

sample period from July 10, 1986 to September 28, 2007 (5,354 daily observations). 
 

Market Portfolio  Mean  Median  Maximum  Minimum  Std. Dev. 

NYSE/AMEX/NASDAQ 0.00030 0.00070 0.0863 -0.1716 0.0099 

NYSE 0.00023 0.00046 0.0898 -0.1920 0.0096 

S&P 500 0.00022 0.00041 0.0907 -0.2049 0.0106 

S&P 100 0.00023 0.00036 0.0888 -0.2119 0.0111 

DJIA 0.00026 0.00039 0.1012 -0.2264 0.0107 
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Appendix C.  Estimation of a System of Regression Equations 

 

Consider a system of n equations, of which the typical ith equation is 
 

iiii uXy += β ,                  (1) 

 

where iy  is a N×1 vector of time-series observations on the ith dependent variable, iX  is a N× ki matrix of 

observations of ki independent variables, iβ  is a ki×1 vector of unknown coefficients to be estimated, and 

iu is a N×1 vector of random disturbance terms with mean zero. Parks (1967) proposes an estimation 
procedure that allows the error term to be both serially and cross-sectionally correlated. In particular, he 

assumes that the elements of the disturbance vector u follow an AR(1) process: 
 

 ititiit uu ερ += −1 ;  1<iρ ,                   (2) 

 

where itε  is serially independently but contemporaneously correlated: 

 

,)( ijjtitCov σεε =  ji,∀ ,  and  ,0)( =jsitCov εε  for ts ≠                 (3) 

 

Equation (1) can then be written as 

         iiiii PXy εβ += ,                  (4) 

with  
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Under this setup, Parks presents a consistent and asymptotically efficient three-step estimation 

technique for the regression coefficients. The first step uses single equation regressions to estimate the 

parameters of autoregressive model. The second step uses single equation regressions on transformed 

equations to estimate the contemporaneous covariances. Finally, the Aitken estimator is formed using the 

estimated covariance, 
 

( ) yXXX TT 111ˆ −−− ΩΩ=β ,                 (6) 

 

where ][ TuuE≡Ω  denotes the general covariance matrix of the innovation. In our application, we use the 

aforementioned methodology with the slope coefficients restricted to be the same for all stocks. In particular, 

we use the same three-step procedure and the same covariance assumptions as in equations (2) to (5) to 

estimate the covariances and to generate the t-statistics for the parameter estimates. 
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Appendix D.  Alternative Panel Estimation Methodology 
 

Assuming that the errors in panel regression are cross-sectionally uncorrelated can yield standard errors 

that are biased downwards. This bias is due to the fact that error correlations are often systematically related to 

the explanatory variables. To resolve this problem, we use an extended SUR methodology that accounts for 

heteroscedasticity, first-order serial correlation, and contemporaneous cross-correlations in the error terms. As a 

robustness check, we use Rogers’ (1983, 1993) robust standard errors that yield asymptotically correct standard 

errors for the OLS and WLS estimators under a general cross-correlation structure.  

Assuming that the errors are independent across cross-sections, Rogers (1983, 1993) write the variance-

covariance matrix of the coefficient estimates as  

( ) [ ]( ) 1'

1

'1' −

=

−

∑ Ω XXXXXX
T

t ttt ,           

where X  denotes the panel of explanatory variables, Ω  is the covariance matrix of the panel of errors, and tX  

and tΩ  denote a single cross-section of explanatory variables and the corresponding error covariance matrix, 

respectively. Since [ ]ttttttt XeeXEXX ''' =Ω , Rogers substitutes estimated errors for true errors to get a variance 

estimator of regression coefficients: ( ) ( )( ) 1'

1

''1' −

=

−

∑ XXXeeXXX
T

t tttt

))
, where te  denotes the regression errors and 

te
)
 is the estimated errors. Rogers indicates that the standard errors are consistent in T under plausible 

assumptions. That is, they converge as the time dimension of the panel grows. This is not a concern for our 

study since we have long time-series with 5,354 daily observations. 

 We replicate our findings reported in Table 2 using Rogers (1983, 1993) or clustered standard errors. As 

shown in the first column of the table below, the common slope coefficients are estimated to positive, in the 

range of 2.82 to 3.64, and highly significant with the t-statistics ranging from 4.03 to 4.60.   

As a further robustness check, we use standardized residuals as the dependent variable in the panel 

regression instead of raw data on daily excess returns. Dividing both sides of equation (35) by the conditional 

standard deviation of individual stocks, 1, +tiσ , we obtain the following system of equations: 

    ( ) .03 ,...,2 ,1        ,*
1,1,1,

**
1, ==+⋅⋅+= ++++ nieACR titmtimiti σρ                  (35’) 

where the new dependent variable is the standardized residual for stock i, [ ]( ) 1,1,1,
*

1, ++++ −= titittiti RERR σ , 

obtained from equations (10) and (12), and the new explanatory variable is the conditional correlation times the 

conditional volatility of the market portfolio, ( )1,1,1,1, ++++ ⋅= tmtimtitim σρσσ . 

 Although estimating (35’) with standardized residuals is not exactly the same as estimating (35) with 

raw data, the results provide further robustness check for the significance of positive risk-return tradeoff. The 

last column of the table below shows that the common slope coefficients from the standardized residuals are 

estimated to be in the range of 2.00 and 2.84 with the t-statistics between 2.57 and 3.17.   

 

 

Market Portfolio 
Common slope (A) with 

clustered standard error 

Common slope (A) from 

standardized residuals 

NYSE/AMEX/NASDAQ 
3.6433 

(4.51) 

2.6968 

(3.09) 

NYSE 
3.4065 

(4.44) 

2.8429 

(3.17) 

S&P 500 
3.2599 

(4.38) 

2.0715 

(2.63) 

S&P 100 
2.8191 

(4.60) 

2.0061 

(2.59) 

DJIA 
2.8717 

(4.03) 

2.0040 

(2.57) 
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 Appendix E.  Alternative Specification of the Conditional Covariance Process 
 

Entries report the common slope estimates (A), average intercepts, and their t-statistics (in 

parentheses) from the following system of equations,  

 

, ,...,2 ,1        ,1,1,1, nieACR titimiti =++= +++ σ  

 

where 1, +tiR  denotes the daily excess return on stock i at time t+1, 1, +tmR  denotes the daily excess 

return on the market portfolio at time t+1, and 1, +timσ  is the time-t expected conditional covariance 

between 1, +tiR  and 1, +tmR  obtained from equations (37)-(41). iC  is the intercept for stock i  and A 

is the common slope coefficient. Estimation is based on daily data on Dow 30 stocks (n=30) and 

five alternative measures of the market portfolio over the sample period of July 10, 1986 – 

September 28, 2007. Each row reports the estimates based on a market portfolio proxied by the 

value-weighted NYSE/AMEX/NASDAQ, NYSE, S&P 500, S&P 100, and DJIA indices. The first 

column reports the Wald statistics and the p-values in square brackets from testing the joint 

hypothesis of all intercepts equal zero. The second column presents the cross-sectional averages of 

Ci (denoted by C ) and the average t-statistics of Ci in parentheses. The last column displays the 

common slope coefficients and the t-statistics of A in parentheses. The t-statistics are adjusted for 

heteroskedasticity and autocorrelation for each series and contemporaneous cross-correlations 

among the error terms in panel regression.   

 

 
 

Market Portfolio Wald Test C  A 

NYSE/AMEX/NASDAQ 
19.63 

[0.93] 

7.94
510−×  

(0.29) 

3.6996 

(6.18) 

NYSE 
20.95 

[0.89] 

1.34
410−×  

(0.48) 

3.1953 

(5.82) 

S&P 500 
18.97 

[0.94] 

5.03
510−×  

(0.17) 

3.5384 

(6.19) 

S&P 100 
19.54 

[0.93] 

9.48
510−×  

(0.34) 

2.9933 

(5.58) 

DJIA 
19.97 

[0.92] 

6.80
510−×  

(0.23) 

3.3290 

(6.05) 
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Table 1 

Maximum Likelihood Estimates of the Mean-Reverting DCC Parameters 
 

Entries report the maximum likelihood parameter estimates (a1, a2) of the mean-reverting DCC 

model: 
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where imρ  is the unconditional correlation between tiu ,  and tmu , . The conditional correlations 

between the excess returns on the market portfolio and on each of the Dow 30 stocks are 

estimated based on daily returns from July 10, 1986 to September 28, 2007. The t-statistics of 

the parameter estimates are presented in parentheses.  

 

 

Dow 30 Stocks
 a1  a2 a1 + a2 

MMM 
0.0170 

(11.93) 

0.9779 

(521.90) 
0.9949 

AA 
0.0148 

(7.83) 

0.9791 

(339.71) 
0.9939 

MO 
0.0118 

(9.69) 

0.9865 

(636.12) 
0.9982 

AXP 
0.0201 

(8.78) 

0.9752 

(308.45) 
0.9953 

AIG 
0.0155 

(7.96) 

0.9790 

(344.85) 
0.9945 

T 
0.0102 

(6.13) 

0.9871 

(438.40) 
0.9973 

BA 
0.0157 

(7.07) 

0.9784 

(280.78) 
0.9942 

CAT 
0.0238 

(15.11) 

0.9669 

(468.67) 
0.9907 

C 
0.0581 

(32.14) 

0.9326 

(327.32) 
0.9907 

KO 
0.0183 

(10.14) 

0.9783 

(425.03) 
0.9965 

DD 
0.0175 

(8.35) 

0.9786 

(342.16) 
0.9960 

XOM 
0.0215 

(10.37) 

0.9730 

(342.71) 
0.9945 
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Table 1 (continued) 

 

 

Dow 30 Stocks
 a1  a2 a1 + a2 

GE 
0.0207 

(9.48) 

0.9686 

(248.85) 
0.9893 

GM 
0.0172 

(7.03) 

0.9778 

(282.74) 
0.9951 

HPQ 
0.0112 

(8.42) 

0.9816 

(374.89) 
0.9928 

HD 
0.0174 

(6.69) 

0.9740 

(202.64) 
0.9914 

HON 
0.0090 

(5.69) 

0.9858 

(353.95) 
0.9948 

INTC 
0.0197 

(9.94) 

0.9704 

(246.95) 
0.9901 

IBM 
0.0357 

(12.67) 

0.9561 

(257.63) 
0.9918 

JNJ 
0.0149 

(7.79) 

0.9823 

(415.98) 
0.9972 

JPM 
0.0278 

(11.12) 

0.9639 

(311.53) 
0.9917 

MCD 
0.0166 

(6.44) 

0.9788 

(281.89) 
0.9955 

MRK 
0.0156 

(12.23) 

0.9814 

(614.52) 
0.9970 

MSFT 
0.0299 

(10.77) 

0.9592 

(233.43) 
0.9891 

PFE 
0.0276 

(10.77) 

0.9604 

(248.02) 
0.9880 

PG 
0.0144 

(10.67) 

0.9828 

(556.31) 
0.9972 

UTX 
0.0091 

(8.69) 

0.9884 

(591.79) 
0.9974 

VZ 
0.0136 

(7.70) 

0.9846 

(462.85) 
0.9982 

WMT 
0.0075 

(11.47) 

0.9904 

(769.31) 
0.9979 

DIS 
0.0298 

(11.31) 

0.9633 

(257.96) 
0.9931 
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Table 2 

Risk-Return Tradeoff without Intertemporal Hedging Demand  
 

Entries report the common slope estimates (A), average intercepts, and their t-statistics (in 

parentheses) from the following system of equations,  

 

, ,...,2 ,1        ,1,1,1, nieACR titimiti =++= +++ σ  

 

where 1, +tiR  denotes the daily excess return on stock i at time t+1, 1, +tmR  denotes the daily excess 

return on the market portfolio at time t+1, and 1, +timσ  is the time-t expected conditional covariance 

between 1, +tiR  and 1, +tmR . iC  is the intercept for stock i  and A is the common slope coefficient. 

Estimation is based on daily data on Dow 30 stocks (n=30) and five alternative measures of the 

market portfolio over the sample period of July 10, 1986 – September 28, 2007. Each row reports 

the estimates based on a market portfolio proxied by the value-weighted NYSE/AMEX/NASDAQ, 

NYSE, S&P 500, S&P 100, and DJIA indices. The first column reports the Wald statistics and the 

p-values in square brackets from testing the joint hypothesis of all intercepts equal zero. The 

second column presents the cross-sectional averages of Ci (denoted by C ) and the average t-

statistics of Ci in parentheses. The last column displays the common slope coefficients and the t-

statistics of A in parentheses. The t-statistics are adjusted for heteroskedasticity and autocorrelation 

for each series and contemporaneous cross-correlations among the error terms in panel regression.   

 

 
 

Market Portfolio Wald Test C  A 

NYSE/AMEX/NASDAQ 
6.92 

[1.00] 

–2.34 410−×  

(–0.76) 

3.2590 

(6.56) 

NYSE 
5.94 

[1.00] 

–1.58 410−×  

(–0.53) 

2.5868 

(5.45) 

S&P 500 
7.27 

[1.00] 

–2.31 410−×  

(–0.76) 

2.9480 

(6.57) 

S&P 100 
7.87 

[1.00] 

–2.32 410−×  

(–0.76) 

2.6339 

(7.03) 

DJIA 
5.86 

[1.00] 

–1.53 410−×  

(–0.51) 

2.2516 

(5.44) 
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Table 3 

Risk-Return Tradeoff after Controlling for the October 1987 Crash 
 

Entries report the common slope estimates and the t-statistics (in parentheses) from the 

following system of equations,  

 

,1,1,1, +++ +++= tittimiti eBXACR σ  

 

where 1, +tiR  denotes the daily excess return on stock i at time t+1, 1, +tmR  denotes the daily 

excess return on the market portfolio at time t+1, and 1, +timσ  is the time-t expected conditional 

covariance between 1, +tiR  and 1, +tmR . iC  is the intercept for stock i , and A and B are the 

common slope coefficients. tX   denotes a crash dummy for October 1987: Dum_day equals 

one for the day of October 19, 1987 and zero otherwise; Dum_week equals one for the week of 

October 19, 1987 – October 23, 1987 and zero otherwise; and Dum_month equals one for the 

month of October 1, 1987 – October 30, 1987 and zero otherwise. Each panel reports the 

common slope coefficient estimates based on a market portfolio proxied by the value-weighted 

NYSE/AMEX/NASDAQ, NYSE, S&P 500, S&P 100, and DJIA indices. The t-statistics are 

adjusted for heteroskedasticity and autocorrelation for each series and contemporaneous cross-

correlations among the error terms in panel regression.  

 
 

 

Panel A.  NYSE/AMEX/NASDAQ 
 

1, +timσ  Dum_day Dum_week Dum_month 

3.5912 

(7.32) 

–0.1917 

(–19.06) 
  

4.0027 

(7.76) 
 

–0.0214 

(–4.44) 
 

3.8947 

(7.67) 

  –0.0115 

(–5.07) 
 

 

 
 

 

 

Panel B.  NYSE 
 

1, +timσ  Dum_day Dum_week Dum_month 

2.9301 

(6.23) 

–0.1915 

(–19.04) 
  

3.3187 

(6.69) 
 

–0.0203 

(–4.21) 
 

3.1962 

(6.57) 

  –0.0110 

(–4.85) 
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Panel C.  S&P 500 
 

1, +timσ  Dum_day Dum_week Dum_month 

3.2482 

(7.33) 

–0.1917 

(–19.05) 
  

3.6268 

(7.78) 
 

–0.0215 

(–4.46) 
 

3.5193 

(7.67) 

  –0.0114 

(–5.06) 
 
 

 

 

Panel D.  S&P 100 
 

1, +timσ  Dum_day Dum_week Dum_month 

2.8849 

(7.79) 

–0.1919 

(–19.07) 
  

3.1713 

(8.17) 
 

–0.0213 

(–4.45) 
 

3.0728 

(8.05) 

  –0.0113 

(–5.03) 
 

 
 

 

Panel E.  Dow Jones Industrial Average (DJIA) 
 

1, +timσ  Dum_day Dum_week Dum_month 

2.5261 

(6.17) 

–0.1913 

(–19.01) 
  

2.8533 

(6.63) 
 

–0.0199 

(–4.13) 
 

2.7634 

(6.53) 

  –0.0109 

(–4.81) 
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Table 4 

Risk-Return Tradeoff after Eliminating the October 1987 Crash: 1/4/1988 – 9/28/2007 
 

Entries report the common slope estimates (A), average intercepts, and their t-statistics (in 

parentheses) from the following system of equations,  

 

,1,1,1, +++ ++= titimiti eACR σ  

 

where 1, +tiR  denotes the daily excess return on stock i at time t+1, 1, +tmR  denotes the daily excess 

return on the market portfolio at time t+1, and 1, +timσ  is the time-t expected conditional covariance 

between 1, +tiR  and 1, +tmR . iC  is the intercept for stock i , and A is the common slope coefficient. 

The results are presented for the sample period of January 4, 1988 – September 28, 2007 (that 

excludes October 1987). The t-statistics are adjusted for heteroskedasticity and autocorrelation for 

each series and contemporaneous cross-correlations among the error terms in panel regression.  
 

 

 
 

Market Portfolio Wald Test C  A 

NYSE/AMEX/NASDAQ 
4.35 

[1.00] 

–1.48 410−×  

(–0.46) 

2.9540 

(3.63) 

NYSE 
4.37 

[1.00] 

–1.20 410−×  

(–0.38) 

2.7530 

(3.00) 

S&P 500 
4.23 

[1.00] 

–1.17 410−×  

(–0.37) 

2.4397 

(3.25) 

S&P 100 
4.30 

[1.00] 

–8.89 510−×  

(–0.29) 

1.9353 

(3.25) 

DJIA 
5.86 

[1.00] 

–9.11 510−×  

(–0.30) 

2.1794 

(2.91) 
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Table 5 

Risk-Return Tradeoff after Controlling for Lagged Return and October 1987 Crash 
 

Entries report the common slope estimates and the t-statistics (in parentheses) from the 

following system of equations,  

 

,1,1,1, +++ +++= tittimiti eBXACR σ  

 

where 1, +tiR  denotes the daily excess return on stock i at time t+1, 1, +tmR  denotes the daily 

excess return on the market portfolio at time t+1, and 1, +timσ  is the time-t expected conditional 

covariance between 1, +tiR  and 1, +tmR . iC  is the intercept for stock i , and A and B are the 

common slope coefficients. tX   denotes a vector of control variables including the lagged daily 

excess return on stock i  )( ,tiR , the lagged daily excess return on the market portfolio )( ,tmR , 

and the crash dummy (Dum_month) equals one for the month of October 1, 1987 – October 30, 

1987 and zero otherwise. Each panel reports the common slope estimates based on a market 

portfolio proxied by the value-weighted NYSE/AMEX/NASDAQ, NYSE, S&P 500, S&P 100, 

and DJIA indices. The t-statistics are adjusted for heteroskedasticity and autocorrelation for 

each series and contemporaneous cross-correlations among the error terms in panel regression.  

 

 

 

Panel A.  NYSE/AMEX/NASDAQ 
 

1, +timσ  tiR ,  tmR ,  Dum_month 

3.1643 

(6.37) 

–0.0119 

(–4.76) 
  

3.1869 

(6.41) 
 

–0.0412 

(–2.89) 
 

3.8011 

(7.48) 

–0.0115 

(–5.07) 

 –0.0119 

(–4.77) 

3.8390 

(7.56) 

 –0.0466 

(–3.27) 

–0.0120 

(–5.29) 
 

 

 

 

 

Panel B.  NYSE 
 

1, +timσ  tiR ,  tmR ,  Dum_month 

2.4751 

(5.20) 

–0.0119 

(–4.76) 
  

2.5399 

(5.33) 
 

–0.0259 

(–1.74) 
 

3.0846 

(6.33) 

–0.0119 

(–4.75) 

 –0.0110 

(–4.85) 

3.1559 

(6.48) 

 –0.0310 

(–2.09) 

–0.0113 

(–4.99) 
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Panel C.  S&P 500 
 

1, +timσ  tiR ,  tmR ,  Dum_month 

2.8746 

(6.41) 

–0.0120 

(–4.80) 
  

2.8991 

(6.46) 
 

–0.0323 

(–2.41) 
 

3.4474 

(7.52) 

–0.0120 

(–4.82) 

 –0.0115 

(–5.08) 

3.4807 

(7.59) 

 –0.0364 

(–2.72) 

–0.0118 

(–5.22) 

 

 

 

 

Panel D.  S&P 100 
 

1, +timσ  tiR ,  tmR ,  Dum_month 

2.5835 

(6.89) 

–0.0121 

(–4.83) 
  

2.5913 

(6.91) 
 

–0.0246 

(–2.27) 
 

3.0240 

(7.92) 

–0.0121 

(–4.86) 

 –0.0114 

(–5.05) 

3.0343 

(7.94) 

 –0.0268 

(–2.48) 

–0.0116 

(–5.13) 

 

 

 

 

Panel E.  Dow Jones Industrial Average (DJIA) 
 

1, +timσ  tiR ,  tmR ,  Dum_month 

2.1818 

(5.27) 

–0.0121 

(–4.83) 
  

2.2028 

(5.31) 
 

–0.0318 

(–2.39) 
 

2.6948 

(6.37) 

–0.0121 

(–4.84) 

 –0.0109 

(–4.82) 

2.7232 

(6.43) 

 –0.0358 

(–2.69) 

–0.0112 

(–4.96) 
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Table 6 

Risk-Return Tradeoff in Three Subsamples 
 

Entries report the common slope estimates (A), average intercepts, and their t-statistics (in 

parentheses) from the following system of equations,  

 

,1,1,1, +++ ++= titimiti eACR σ  

 

where 1, +tiR  denotes the daily excess return on stock i at time t+1, 1, +tmR  denotes the daily 

excess return on the market portfolio at time t+1, and 1, +timσ  is the time-t expected conditional 

covariance between 1, +tiR  and 1, +tmR . iC  is the intercept for stock i , and A is the common 

slope coefficient. The results are presented for the sample period of January 4, 1988 – 

September 28, 2007 (that excludes October 1987) as well as two subsample periods: July 10, 

1986 – February 6, 1997 and February 7, 1997 – September 28, 2007. The t-statistics are 

adjusted for heteroskedasticity and autocorrelation for each series and contemporaneous cross-

correlations among the error terms in panel regression.  

 
 

 
 

Sample Period Wald Test C  A 

1/4/1988 – 9/28/2007 
4.35 

[1.00] 

–1.48 410−×  

(–0.46) 

2.9540 

(3.63) 

7/10/1986 – 2/6/1997 
9.67 

[0.99] 

–6.42 510−×  

(–0.20) 

2.7480 

(4.86) 

2/7/1997 – 9/28/2007 
6.58 

[1.00] 

–3.41 410−×  

(–0.72) 

3.1244 

(3.17) 
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Table 7 

The Intertemporal Risk-Return Relation with  
Alternative Specifications of the Conditional Mean 

 

Entries report the common slope estimates and the t-statistics (in parentheses) from the following 

system of equations,  

 

, ,...,2 ,1        ,1,1,1, nieACR titimiti =++= +++ σ  

 

where 1, +tiR  denotes the daily excess return on stock i at time t+1, 1, +tmR  denotes the daily excess 

return on the market portfolio at time t+1, and 1, +timσ  is the time-t expected conditional covariance 

between 1, +tiR  and 1, +tmR . iC  is the intercept for stock i  and A is the common slope coefficient. 

Estimation is based on daily data on Dow 30 stocks (n=30) over the sample period of July 10, 1986 

to September 28, 2007. The market portfolio is proxied by the value-weighted 

NYSE/AMEX/NASDAQ index. Each row reports the estimates based on a constant, AR(1), 

MA(1), and ARMA(1,1) specification of the conditional mean of 1, +tiR  and 1, +tmR . The first 

column reports the Wald statistics and the p-values in square brackets from testing the joint 

hypothesis of all intercepts equal zero. The second column presents the cross-sectional averages of 

Ci (denoted by C ) and the average t-statistics of Ci in parentheses. The last column displays the 

common slope coefficients and the t-statistics of A in parentheses. The t-statistics are adjusted for 

heteroskedasticity and autocorrelation for each series and contemporaneous cross-correlations 

among the error terms in panel regression.   

 

 
 

Conditional Mean Wald Test C  A 

Constant 
6.42 

[1.00] 

–2.11 410−×  

(–0.69) 

3.0612 

(5.97) 

AR(1) 
6.92 

[1.00] 

–2.34 410−×  

(–0.76) 

3.2590 

(6.56) 

MA(1) 
7.40 

[1.00] 

–2.45 410−×  

(–0.80) 

3.3219 

(6.64) 

ARMA(1,1) 
8.96 

[0.99] 

–2.63 410−×  

(–0.86) 

3.5775 

(7.16) 
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Table 8 

Risk-Return Tradeoff after Controlling for Macroeconomic Variables 
 

Entries report the common slope estimates and the t-statistics (in parentheses) from the following system of 

equations,  

 

,1,1,1, +++ +++= tittimiti eBXACR σ  

 

where 1, +tiR  denotes the daily excess return on stock i at time t+1, 1, +tmR  denotes the daily excess return on the 

market portfolio at time t+1, and 1, +timσ  is the time-t expected conditional covariance between 1, +tiR  and 1, +tmR . 

iC  is the intercept for stock i , and A and B are the common slope coefficients. tX   denotes a vector of control 

variables including the default spread )( tDEF  defined as the difference between the daily yields on BAA- and 

AAA-rated corporate bonds, the term spread )( tTERM  defined as the difference between the yields on 10-year 

Treasury bond and 3-month Treasury bill, the daily federal funds rate )( tFED , and the crash dummy (Dum_month) 

equals one for the month of October 1, 1987 – October 30, 1987 and zero otherwise. tDEF∆ , tTERM∆ , and 

tFED∆  denote the first-difference in tDEF , tTERM , and tFED . The t-statistics are adjusted for heteroskedasticity 

and autocorrelation for each series and contemporaneous cross-correlations among the error terms in panel 

regression.  
 

 

1, +timσ  tDEF  tTERM  tFED  tDEF∆  tTERM∆  tFED∆  Dum_month 

3.2613 

(6.55) 

–0.0059 

(–0.09) 

      

3.8892 

(7.64) 

0.0078 

(0.13) 

     –0.0115 

(–5.07) 

3.2497 

(6.54) 

   0.6934 

(0.98) 

   

3.8843 

(7.65) 

   0.6499 

(0.92) 

  –0.0114 

(–5.06) 

3.2884 

(6.62) 

 –0.0202 

(–1.64) 

     

3.9037 

(7.69) 

 –0.0160 

(–1.32) 

    –0.0112 

(–4.93) 

3.2707 

(6.59) 

    –0.2203 

(–1.01) 

  

3.9018 

(7.69) 

    –0.1847 

(–0.85) 

 –0.0114 

(–5.04) 

3.2575 

(6.56) 

  0.0026 

(0.39) 

    

3.8984 

(7.68) 

  0.0050 

(0.76) 

   –0.0116 

(–5.11) 

3.2538 

(6.55) 

     –0.0833 

(–1.64) 

 

3.8915 

(7.67) 

     –0.0858 

(–1.71) 

–0.0115 

(–5.08) 

3.8872 

(7.64) 

0.0289 

(0.44) 

–0.0176 

(–1.16) 

–0.0003 

(–0.03) 

   –0.0112 

(–4.89) 

3.8887 

(7.66) 

   0.6479 

(0.92) 

–0.2031 

(–0.93) 

–0.0875 

(–1.74) 

–0.0114 

(–5.04) 
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Table 9 

Risk-Return Tradeoff after Controlling for the Conditional Volatility of Individual Stock 
 

Entries report the common slope estimates and the t-statistics (in parentheses) from the following 

system of equations,  

 

,1,1,1,1, ++++ +⋅+⋅+= tititimiti eVOLBACR σ  

 

where 1, +tiR  denotes the daily excess return on stock i at time t+1, 1, +tmR  denotes the daily excess 

return on the market portfolio at time t+1, 1, +timσ  is the time-t expected conditional covariance 

between 1, +tiR  and 1, +tmR , and 1, +tiVOL  is the time-t expected conditional volatility of 1, +tiR . 

1, +tiVOL  is the conditional variance of the daily excess returns on stock i at time t+1 ( 2
1, +tiσ ) 

estimated using the AR(1)-GARCH(1,1) model and can be interpreted as the conditional 

idiosyncratic volatility of individual stocks. 1, +tiVOL  is the range daily standard deviation of 

individual stocks defined as )(ln)(ln ,, titi PMinPMax −  and can be interpreted as the conditional 

total volatility of individual stocks. iC  is the intercept for stock i , and A and B are the common 

slope coefficients. Dum_month is the crash dummy that equals one for the month of October 1, 

1987 – October 30, 1987 and zero otherwise. The market portfolio is measured by the value-

weighted NYSE/AMEX/NASDAQ index. The t-statistics are adjusted for heteroskedasticity and 

autocorrelation for each series and contemporaneous cross-correlations among the error terms in 

panel regression. 

 
 

 

),( 1,1, ++ tmtit RRCov  1, +tiVOL  October 1987 crash 

1, +timσ  GARCH volatility Range volatility Dum_month 

3.0611 

(6.02) 

0.0238 

(1.85) 

  

3.7091 

(7.13) 

0.0215 

(1.67) 

 –0.0113 

(–5.01) 

2.9717 

(5.82) 

 0.0105 

(2.24) 

 

3.5992 

(6.92) 

 0.0111 

(2.36) 

–0.0116 

(–5.12) 
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Table 10 

Risk-Return Tradeoff after Controlling for the Conditional Volatility of Market Portfolio 
 

Entries report the common slope estimates and the t-statistics (in parentheses) from the following system of 

equations,  

 

,1,1,1,1, ++++ +⋅+⋅+= titmtimiti eVOLBACR σ  

 

where 1, +tiR  denotes the daily excess return on stock i at time t+1, 1, +tmR  denotes the daily excess return on 

the market portfolio at time t+1, 1, +timσ  is the time-t expected conditional covariance between 1, +tiR  and 

1, +tmR , and 1, +tmVOL  is the time-t expected conditional volatility of 1, +tmR  obtained from the GARCH, 

Range, and Option Implied Volatility models: (1) 1, +tmVOL  is the conditional variance of the daily excess 

returns on the market portfolio at time t+1 ( 2
1, +tmσ ) estimated using the AR(1)-GARCH(1,1) model; (2) 

1, +tmVOL  is the range daily standard deviation of the market portfolio defined as )(ln)(ln ,, tmtm PMinPMax − ; 

and (3) 1, +tmVOL  is the implied market volatility )( tVXO  obtained from the S&P 100 index options. iC  is 

the intercept for stock i , and A and B are the common slope coefficients. Dum_month is the crash dummy 
that equals one for the month of October 1, 1987 – October 30, 1987 and zero otherwise. The market 

portfolio is measured by the value-weighted NYSE/AMEX/NASDAQ index. The t-statistics are adjusted for 

heteroskedasticity and autocorrelation for each series and contemporaneous cross-correlations among the 

error terms in panel regression. 

 
 

),( 1,1, ++ tmtit RRCov  1, +tmVOL  October 1987 crash 

1, +timσ  GARCH volatility Range volatility Implied volatility Dum_month 

2.8868 

(5.39) 

1.9843 

(2.02) 

   

3.0829 

(5.74) 

4.9089 

(4.55) 

  –0.0162 

(–6.50) 

2.8831 

(5.55) 

 0.0401 

(2.32) 

  

3.4092 

(6.49) 

 0.0602 

(3.42) 

 –0.0131 

(–5.66) 

2.8432 

(5.46) 

  0.0045 

(2.49) 

 

3.3565 

(6.39) 

  0.0069 

(3.73) 

–0.0134 

(–5.78) 
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Table 11 

Risk Premiums Induced by Conditional Covariation with Macroeconomic Variables 
 

Entries report the common slope estimates and the t-statistics (in parentheses) from the following system of 

equations,  

 

1,1,,31,,21,,11,1, ++++++ +⋅+⋅+⋅+⋅+= titFEDitTERMitDEFitimiti eBBBACR σσσσ , 

 

where 1, +timσ  measures the time-t expected conditional covariance between the excess returns on each stock 

)( 1, +tiR  and the market portfolio )( 1, +tmR , 1,, +tDEFiσ  measures the time-t expected conditional covariance between 

1, +tiR  and the level and changes in the default spread ),( tt DEFDEF ∆ , 1,, +tTERMiσ  is the time-t expected conditional 

covariance between 1, +tiR  and the level and changes in the term spread ),( tt TERMTERM ∆ , and 1,, +tFEDiσ  is the 

time-t expected conditional covariance between 1, +tiR  and the level and changes in the federal funds rate 

),( tt FEDFED ∆ . iC  is the intercept for stock i , and A, B1, B2, and B3 are the common slope coefficients. The t-

statistics are adjusted for heteroskedasticity and autocorrelation for each series and contemporaneous cross-

correlations among the error terms in panel regression.  

 

 

1, +timσ  1,, +tDEFiσ  1,, +tTERMiσ  1,, +tFEDiσ  1,, +∆ tDEFiσ  1,, +∆ tTERMiσ  1,, +∆ tFEDiσ  

3.1687 

(6.23) 

0.1399 

(0.83) 

     

3.1356 

(6.02) 

   0.0788 

(0.78) 

  

3.1454 

(5.96) 

 –0.0219 

(–0.65) 

    

3.0124 

(5.30) 

    –0.0083 

(–0.89) 

 

3.2838 

(6.60) 

  –0.0053 

(–0.69) 

   

3.1201 

(6.11) 

     –0.0047 

(–1.10) 

3.0494 

(5.67) 

0.1474 

(0.88) 

–0.0286 

(–0.82) 

–0.0074 

(–0.93) 

   

2.9956 

(5.25) 

   0.0446 

(0.40) 

–0.0028 

(–0.25) 

–0.0036 

(–0.77) 
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Table 12 

Risk Premiums Induced by Conditional Covariation with Financial Risk Factors 
 

Entries report the common slope estimates and the t-statistics (in parentheses) from the following system of 

equations,  

 

1,1,,31,,21,,11,1, ++++++ +⋅+⋅+⋅+⋅+= titMOMitHMLitSMBitimiti eBBBACR σσσσ ,         

where 1, +timσ  measures the time-t expected conditional covariance between the excess returns on each stock 

)( 1, +tiR  and the market portfolio )( 1, +tmR , 1,, +tSMBiσ  measures the time-t expected conditional covariance between 

1, +tiR  and the level and change in the size factor ),( tt SMBSMB ∆ , 1,, +tHMLiσ  is the time-t expected conditional 

covariance between 1, +tiR  and the level and change in the book-to-market factor ),( tt HMLHML ∆ , and 1,, +tMOMiσ  

is the time-t expected conditional covariance between 1, +tiR  and the level and change in the momentum factor 

),( tt MOMMOM ∆ . iC  is the intercept for stock i , and A, B1, B2, and B3 are the common slope coefficients. The t-

statistics are adjusted for heteroskedasticity and autocorrelation for each series and contemporaneous cross-

correlations among the error terms in panel regression.  

 
 

1, +timσ  1,, +tSMBiσ  1,, +tHMLiσ  1,, +tMOMiσ  1,, +∆ tSMBiσ  1,, +∆ tHMLiσ  1,, +∆ tMOMiσ  

3.4870 

(4.85) 

0.7383 

(0.43) 

     

3.2519 

(4.66) 

   –0.0473 

(–0.03) 

  

3.8854 

(6.39) 

 4.4342 

(2.03) 

    

3.9328 

(6.78) 

    5.2897 

(2.17) 

 

3.5711 

(6.83) 

  –1.0799 

(–1.54) 

   

3.5932 

(6.88) 

     –1.1013 

(–1.60) 

4.8407 

(5.23) 

1.7139 

(0.92) 

5.3628 

(1.97) 

–1.1602 

(–1.63) 

   

4.5013 

(5.30) 

   0.5628 

(0.32) 

5.6825 

(2.21) 

–1.1700 

(–1.64) 
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Table 13 

Risk Premiums Induced by Conditional Covariation with Unexpected News in Market Volatility 
 

Entries report the common slope estimates and the t-statistics (in parentheses) from the following system of 

equations,  

 

1,1,,1,1, ++∆++ +⋅+⋅+= titVOLitimiti eBACR
m

σσ , 

 

where 1, +timσ  measures the time-t expected conditional covariance between the excess returns on each stock 

)( 1, +tiR  and the market portfolio )( 1, +tmR , where 1, +tmR  is proxied by the value-weighted 

NYSE/AMEX/NASDAQ index. 1,, +∆ tVOLi m
σ  measures the time-t expected conditional covariance between 

1, +tiR  and the change in the conditional volatility of the market portfolio denoted by 1, +∆ tmVOL : (1) 

1, +∆ tmVOL  is the change in the GARCH conditional volatility of S&P 500 index return )( 1, +∆ tmGARCH ; (2) 

1, +∆ tmVOL  is the change in the option implied volatility of S&P 500 index return )( 1, +∆ tmVXO ; and (3) 

1, +∆ tmVOL  is the change in the range volatility of S&P 500 index return )( 1, +∆ tmRange . iC  is the intercept 

for stock i , and A and B are the common slope coefficients. Dum_month is the crash dummy that equals one 
for the month of October 1, 1987 – October 30, 1987 and zero otherwise. The t-statistics are adjusted for 

heteroskedasticity and autocorrelation for each series and contemporaneous cross-correlations among the 

error terms in panel regression.  
 

 

 

),( 1,1, ++ tmtit RRCov  ),( 1,1, ++ ∆ tmtit VOLRCov  October 1987 crash 

1, +timσ  1, +∆ tmGARCH  1, +∆ tmRange  1, +∆ tmVXO  Dum_month 

2.4589 

(4.56) 

–0.2559 

(–3.73) 

   

3.0190 

(5.53) 

–0.2890 

(–4.20) 

  –0.0123 

(–5.41) 

2.0336 

(3.47) 

 –0.2583 

(–4.23) 

  

2.5894 

(4.35) 

 –0.2812 

(–4.60) 

 –0.0118 

(–5.23) 

1.4102 

(2.02) 

  –0.4106 

(–3.80) 

 

1.6675 

(2.38) 

  –0.5145 

(–4.74) 

–0.0128 

(–5.62) 
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Figure 1. Mean-Reverting Dynamic Conditional Correlations 
 

This figure presents the time-varying conditional correlations of daily excess returns on Dow 30 stocks with daily excess returns on the market portfolio. 

The market portfolio is measured by the Dow Jones Industrial Average (DJIA). The conditional correlations are obtained from the mean-reverting DCC 

model over the sample period of July 10, 1986 to September 28, 2007 (5,354 daily observations). 
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Figure 1 (continued) 
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Figure 1 (continued) 
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Figure 2. Weighted Average Conditional Covariance vs. Conditional Variance of the Market 
 

In Panel A (Panel B), the dashed line denotes the equal-weighted (price-weighted) average of the conditional covariances of 

daily excess returns on Dow 30 stocks with daily excess returns on the market portfolio. The solid line in both panels denotes 

the conditional variance of daily excess returns on the market portfolio. The market portfolio is measured by the Dow Jones 

Industrial Average (DJIA). The conditional variance-covariance estimates are obtained from the mean-reverting DCC model. 
 

 

Panel A. Equal-Weighted Average Conditional Covariance vs. Conditional Variance of the Market

0

0.001

0.002

0.003

0.004

0.005

0.006

7
/1
0
/8
6

7
/1
0
/8
7

7
/1
0
/8
8

7
/1
0
/8
9

7
/1
0
/9
0

7
/1
0
/9
1

7
/1
0
/9
2

7
/1
0
/9
3

7
/1
0
/9
4

7
/1
0
/9
5

7
/1
0
/9
6

7
/1
0
/9
7

7
/1
0
/9
8

7
/1
0
/9
9

7
/1
0
/0
0

7
/1
0
/0
1

7
/1
0
/0
2

7
/1
0
/0
3

7
/1
0
/0
4

7
/1
0
/0
5

7
/1
0
/0
6

7
/1
0
/0
7

date

a
v
e
ra
g
e
 c
o
v
a
ri
a
n
c
e

Variance of Market Equal-Weighted Average Covariance  
 

 

 

Panel B. Price-Weighted Average Conditional Covariance vs. Conditional Variance of the Market
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Figure 3. Daily Abnormal Returns on Dow 30 Stocks 
 

This figure presents the magnitude and statistical significance of daily abnormal returns on Dow 30 stocks. 

Intercepts (denoted by Ci) that differ across stocks are obtained from estimating the system of equations in (10)-(14) 

over the sample period July 10, 1986–September 28, 2007. The market portfolio is measured by the value-weighted 

NYSE/AMEX/NASDAQ (CRSP), NYSE, S&P 500, S&P 100, and Dow Jones Industrial Average (DJIA) indices.  
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Figure 3 (continued) 
 

 

 

Alphas from Panel Regressions: NYSE 
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Figure 3 (continued) 
 

 

 

 

Alphas from Panel Regressions: S&P 500 
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Figure 3 (continued) 
 

 

 

 

Alphas from Panel Regressions: S&P 100 
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Figure 3 (continued) 
 

 

 

 

Alphas from Panel Regressions: DJIA 
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