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1. Introduction

Merton (1973) introduces an intertemporal capital asset pricing model (ICAPM) in which an
asset’s expected return depends on its covariance with the market portfolio and with state variables that
proxy for changes in investment opportunity set. A large number of studies test the significance of an
intertemporal relation between expected return and risk in the aggregate stock market. However, the
existing literature has not yet reached an agreement on the existence of a positive risk-return tradeoff for
stock market indices. Due to the fact that the conditional mean and volatility of stock market returns are
not observable, different approaches and specifications used by previous studies in estimating the two
conditional moments are largely responsible for the conflicting empirical evidence.

Our study extends time-series tests of the ICAPM to many risky assets. The prediction of Merton
(1980) that expected returns should be related to conditional risk applies not only to the market portfolio
but also to individual stocks. Expected returns for any stock should vary through time with the stock’s
conditional covariance with the market portfolio (assuming that hedging demands are not too large). To
be internally consistent, the relation should be the same for all stocks, i.e., the predictive slope on the
conditional covariance represents the average relative risk aversion of market investors. We exploit this
cross-sectional consistency condition and estimate the common time-series relation across 30 stocks in
the Dow Jones Industrial Average.'

Using daily data from July 1986 to September 2007, we estimate the mean-reverting dynamic
conditional correlation (DCC) model of Engle (2002) and generate the time-varying conditional
covariances between daily excess returns on each stock and the market portfolio. Then, we estimate a
system of time-series regressions of the stocks’ excess returns on their conditional covariances with the
market, while constraining all regressions to have the same slope coefficient. Our estimation based on
Dow 30 stocks and alternative measures of the market portfolio generates positive and highly significant
risk aversion coefficients, with magnitudes between two and four. The identified positive risk-return
tradeoff at daily frequency is robust to different market portfolios, different sample periods, alternative
specifications of the conditional mean and covariance processes, and including a wide variety of state

variables that proxy for the intertemporal hedging demand component of the ICAPM.

' There are two reasons why we focus on the 30 stocks in the Dow Jones Industrial Average. First, we have to
reduce the dimension of the estimation problem. An obvious requirement with the maximum likelihood and panel
regression estimation is that the parameter convergence occurs reasonably quickly. Unfortunately, it has been our
experience while running the estimation procedures that parameter estimation can be very tedious and takes very
long time. In view of these difficulties, we restricted our sample to 30 stocks. Second, Dow stocks have large market
capitalization, they are liquid and they have relatively low idiosyncratic risk. Hence, they represent a significant and
systematic portion of the aggregate market portfolio.



When the investment opportunity is stochastic, investors adjust their investment to hedge against
unfavorable shifts in the investment opportunity set and achieve intertemporal consumption smoothing.
Hence, covariations with state of the investment opportunity induce additional risk premiums on an asset.
We identify a series of macroeconomic, financial, and volatility factors and examine whether their
conditional covariances with individual stocks induce additional risk premiums.

To explore how macroeconomic variables vary with the investment opportunity and test whether
covariations of Dow 30 stocks with them induce additional risk premiums, we first estimate the
conditional covariances of these variables with daily excess returns on each stock and then analyze how
the stocks’ excess returns respond to their conditional covariances with macroeconomic factors. Because
of data availability at daily frequency, we use the level and changes in federal funds rates, default, and
term spreads as potential factors that may affect the investment opportunity set. The parameter estimates
show that incorporating the covariances of stock returns with the aforementioned macroeconomic
variables does not alter the magnitude and statistical significance of the relative risk aversion coefficients.
The common slope on the market covariance remains positive and highly significant. The results also
indicate that the slope coefficients on the conditional covariances with macroeconomic variables are
statistically insignificant, implying that the level and innovations in macro variables do not contain any
systematic risks rewarded in the stock market at daily frequency.

In a series of papers, Fama and French (1992, 1993, 1995, 1996, 1997) provide evidence on the
significance of size and book-to-market variables in predicting the cross-sectional and time-series
variation in stock and portfolio returns. Jegadeesh and Titman (1993, 2001) and Carhart (1997) present
evidence on the significance of past returns (or momentum) in predicting the cross-sectional and time-
series variation in future returns on individual stocks and portfolios. We examine whether the size (SMB),
book-to-market (HML), and momentum (MOM) factors of Fama and French move closely with
investment opportunities and whether covariations of individual stocks with these three factors induce
additional risk premiums on Dow 30 stocks.” Estimation shows that the covariances of daily excess
returns on Dow stocks and the HML factor (or value premium) generate significantly positive slope
coefficients. Hence, an increase in a stock’s covariance with HML predicts a higher excess return on the

stock. The results also indicate that the covariances of stocks with the SMB and MOM factors do not have

2 The SMB (small minus big) factor is the difference between the returns on the portfolio of small size stocks and the
returns on the portfolio of large size stocks. The average return on the SMB factor is positive because small stocks
generate higher average returns than big stocks. The HML (high minus low) factor is the difference between the
returns on the portfolio of high book-to-market stocks and the returns on the portfolio of low book-to-market stocks.
The average return on the HML factor is positive because value stocks with high book-to-market ratio generate
higher average returns than growth stocks with low book-to-market ratio. The positive return difference on the
portfolios of value and growth stocks is referred to as value premium. The MOM (winner minus loser) factor is the
difference between the returns on the portfolio of stocks with higher past 2- to 12-month cumulative returns
(winners) and the returns on the portfolio of stocks with lower past 2- to 12-month cumulative returns (losers).



significant predictive power for one day ahead returns on Dow stocks. In other words, the level and
innovations in the size and momentum factors are not priced in the ICAPM framework. Consistent with
recent empirical evidence provided by Campbell and Vuolteenaho (2004), Brennan, Wang, and Xia
(2004), Petkova and Zhang (2005), and Petkova (2006) as well as recent theoretical models of Gomes,
Kogan, and Zhang (2003) and Zhang (2005), our results suggest that the HML (or value premium) is a
priced risk factor and can be viewed as a proxy for investment opportunities.

Campbell (1993, 1996) provides a two-factor ICAPM in which unexpected increase in market
volatility represents deterioration in the investment opportunity set or decrease in optimal consumption. In
this setting, a positive covariance of returns with volatility shocks (or innovations in market volatility)
predicts a lower return on the stock. In the context of Campbell’s ICAPM, an increase in market volatility
predicts a decrease in optimal consumption and hence an unfavorable shift in the investment opportunity
set. Risk-averse investors will demand more of an asset, the more positively correlated the asset’s return
is with changes in market volatility because they will be compensated by a higher level of wealth through
positive correlation of the returns. That asset can be viewed as a hedging instrument. In other words, an
increase in the covariance of returns with volatility risk leads to an increase in the hedging demand, which
in equilibrium reduces expected return on the asset.

Following Campbell (1993, 1996), we assume that investors want to hedge against the changes in
the forecasts of future market volatilities. In this paper, we use three alternative measures of market
volatility to test whether stocks that have higher correlation with the changes in market volatility yield
lower expected return: (1) the conditional volatility of S&P 500 index returns based on the generalized
autoregressive conditional heteroskedasticity (GARCH) model, (2) the options implied volatility of S&P
500 index returns obtained from the Chicago Board Options Exchange (CBOE), and (3) the range
volatility of S&P 500 index returns based on the maximum and minimum values of the S&P 500 index
over a sampling interval of one day. The panel regression results indicate that daily risk premium induced
by the conditional covariation of Dow stocks with the market portfolio remains economically and
statistically significant after controlling for risk premiums induced by conditional covariation with
changes in GARCH, implied, and range based volatility estimators. The results also provide strong
evidence for a significantly negative relation between expected return and volatility risk. For all measures
of market volatility, we find that stocks with higher association with the changes in expected future
market volatility give lower expected return.

The paper is organized as follows. Section 2 briefly discusses earlier studies on the intertemporal
relation between expected return and risk. Section 3 describes the data and estimation methodology.

Section 4 presents the empirical results. Section 5 concludes.



2. Literature review

Dynamic asset pricing models starting with Merton’s (1973) ICAPM provide a theoretical
framework that gives a positive equilibrium relation between the conditional first and second moments of
excess returns on the aggregate market portfolio. However, Abel (1988), Backus and Gregory (1993), and
Gennotte and Marsh (1993) develop models in which a negative relation between expected return and
volatility is consistent with equilibrium. Similarly, empirical studies are still not in agreement on the
direction of a time-series relation between expected return and risk.’

Many studies fail to identify a statistically significant intertemporal relation between risk and
return of the market portfolio. French, Schwert, and Stambaugh (1987) find that the coefficient estimate is
not significantly different from zero when they use past daily returns to estimate the monthly conditional
variance. Goyal and Santa-Clara (2003) obtain similar insignificant results using the same conditional
variance estimator but over a longer sample period. Chan, Karolyi, and Stulz (1992) employ a bivariate
GARCH-in-mean model to estimate the conditional variance, and they also fail to obtain a significant
coefficient estimate for the United States. Baillie and DeGennaro (1990) replace the normal distribution
assumption in the GARCH-in-mean specification with a fat-tailed t-distribution. Their estimates remain
insignificant. Campbell and Hentchel (1992) use the quadratic GARCH (QGARCH) model of Sentana
(1995) to determine the existence of a risk-return tradeoff within an asymmetric GARCH-in-mean
framework. Their estimate is positive for one sample period and negative for another sample period, but
neither is statistically significant. Glosten, Jagannathan, and Runkle (1993) use monthly data and find a
negative but statistically insignificant relation from two asymmetric GARCH-in-mean models. Based on
semi-nonparametric density estimation and Monte Carlo integration, Harrison and Zhang (1999) find a
significantly positive risk and return relation at one-year horizon, but they do not find a significant
relation at shorter holding periods such as one month. Using a sample of monthly returns and implied and
realized volatilities for the S&P 500 index, Bollerslev and Zhou (2006) find an insignificant intertemporal
relation between expected return and realized volatility, whereas the relation between return and implied
volatility turns out to be significantly positive.

Several studies even find that the intertemporal relation between risk and return is negative.
Examples include Campbell (1987), Breen, Glosten, and Jagannathan (1989), Turner, Startz, and Nelson
(1989), Nelson (1991), Glosten, Jagannathan, and Runkle (1993), Whitelaw (1994), and Harvey (2001).
Using a regime switching model, Whitelaw (2000) finds a negative unconditional relation between the
mean and variance of excess returns on the market portfolio. Using a latent vector autoregression

approach, Brandt and Kang (2004) show that although the conditional correlation between the mean and

? See, e.g., Ghysels, Santa-Clara, and Valkanov (2005) and Christoffersen and Diebold (2006).



volatility of market portfolio returns is negative, the unconditional correlation is positive due to the lead-
lag correlations.

Some studies do provide evidence supporting a positive risk-return relation. Chou (1988) finds a
significantly positive relation with weekly data based on the symmetric GARCH model of Bollerslev
(1986). Bollerslev, Engle, and Wooldridge (1988) use a multivariate GARCH-in-mean process to model
the conditional mean and the conditional covariance of returns on stocks, bonds, and bills with the excess
market return. They find a small but significant risk-return tradeoff. Scruggs (1998) includes the long-
term government bond returns as a second factor of the bivariate GARCH-in-mean model and find the
partial relation between the conditional mean and variance to be positive and significant.’

Ghysels, Santa-Clara, and Valkanov (2005) introduce a new variance estimator that uses past
daily squared returns, and they conclude that the monthly data are consistent with a positive relation
between conditional expected excess return and conditional variance. Bali and Peng (2006) examine the
intertemporal relation between risk and return using high-frequency data. Based on realized, GARCH,
implied, and range-based volatility estimators, they find a positive and significant link between the
conditional mean and conditional volatility of market returns at daily frequency. Guo and Whitelaw
(2006) develop an asset pricing model based on Merton’s (1973) ICAPM and Campbell and Shiller’s
(1988) log-linearization method, and find a positive relation between stock market risk and return within
their newly proposed ICAPM framework. Using a long history of monthly data from 1836 to 2003,
Lundblad (2007) estimates alternative specifications of the GARCH-in-mean model, and finds a positive
and significant risk-return tradeoff for the aggregate market portfolio. Using a long history of monthly
data from 1926 to 2002, Bali (2008) identifies a positive and significant relation between expected return

and risk on the size/book-to-market and industry portfolios of Fama and French (1993, 1997).

3. The intertemporal relation between expected return and risk
Merton’s (1973) ICAPM implies the following equilibrium relation between risk and return:
u=A4-Cov,+B-COV_, (1)
where x denotes the expected excess return on a vector of # risky assets, 4 reflects the average relative
risk aversion of market investors, COV, denotes the covariance between excess returns on the n risky

assets and the market portfolio m, B measures the market’s aggregate reaction to shifts in a k-

dimensional state vector that governs the stochastic investment opportunity, and COV_ measures the

covariance between excess returns on the #z risky assets and the £ state variables x.

* Scruggs (1998) assumes that the conditional correlation between stock returns and bond returns is constant. Once
they relax this assumption, Scruggs and Glabadanidis (2003) fail to identify a positive risk-return tradeoft.



For any risky asset i, the relation becomes
H—r=4-0,+B-o,, (2)
where o, denotes the covariance between the excess returns on the risky asset i and the market portfolio
m, and o, denotes a (1x k) row of covariances between the excess returns on risky asset i and the & state
variables x. Equation (2) states that in equilibrium, investors are compensated in terms of expected return,
for bearing market (systematic) risk and for bearing the risk of unfavorable shifts in the investment
opportunity set.

Many empirical studies focus on the time-series implication of the equilibrium relation in eq. (2)
and apply it narrowly to the market portfolio. Without the hedging demand component (o, =0), this
focus leads to the following risk-return relation:

u,—r=A4-0.. 3)
When considering stochastic investment opportunity, the literature often implicitly or explicitly projects

the covariance vector o, linearly to the state variables x to obtain the following relation:
u, —r=A-0c>+B-x. (4)
Our work in this article differs from the above literature in two major ways. First, we estimate the
intertemporal relation eq. (2) not on the single series of the market portfolio, but simultaneously on Dow
30 stocks, and constrain all these stocks to have the same cross-sectionally consistent proportionality
coefficients 4 and B. Second, we directly estimate the conditional covariances o,, and o, using the
dynamic conditional correlation model of Engle (2002). We do not make any linear projection

assumptions on the state variables.

In the Merton (1973) original setup, the two conditional covariances (o,, , o, ) are assumed to

in >
be constant. Nevertheless, the empirical literature has estimated the relation assuming time-varying
covariances. We do the same in this paper. In principle, if the covariances are stochastic, they would
represent additional sources of variation in the investment opportunity and induce extra intertemporal
hedging demand terms.

The second term in eq. (2) reflects the investors’ demand for the asset as a vehicle to hedge
against unfavorable shifts in the investment opportunity set. An “unfavorable” shift in the investment
opportunity set variable x is defined as a change in x such that future consumption ¢ will fall for a given
level of future wealth. That is, an unfavorable shift is an increase in x if dc/0x < 0 and a decrease in x if
Oc/ox > 0.

Merton (1973) shows that all risk-averse utility maximizers will attempt to hedge against such

shifts in the sense that if dc/0x < 0 (Oc/0x > 0), then, ceteris paribus, they will demand more of an asset,



the more positively (negatively) correlated the asset’s return is with changes in x. Thus, if the ex post
opportunity set is less favorable than was anticipated, the investor will expect to be compensated by a
higher level of wealth through the positive correlation of the returns. Similarly, if the ex post returns are
lower, he will expect a more favorable investment environment.

In this paper, we focus on the sign and statistical significance of the common slope coefficient (4)

on o,, in the following risk-return relation:

u—-r=C+4-0,, +B-0,. (5)
According to the original ICAPM of Merton (1973), the relative risk aversion coefficient 4 is restricted to
be the same across all risky assets and it should be positive and statistically significant, implying a
positive risk-return tradeoff.

Another implication of the ICAPM is that the intercepts (C;) in eq. (5) should not be jointly

different from zero assuming that the covariances of risky assets with the market portfolio and with the
innovations in states variables have enough predictive power for the time-series variation in expected
returns. To determine whether o,, and o, have significant explanatory power, we test the joint
hypothesis that Hy: C, =C, =...=C, =0 assuming that we have n risky assets in the portfolio.

We think that macroeconomic variables such as the fed funds rate, default spread, and term
spread, financial factors such as the size, book-to-market, and momentum factors of Fama and French,
and the well-known volatility measures such as the options implied, GARCH, and range volatility can be
viewed as potential state variables that may affect the stochastic investment opportunity set. Hence, we

investigate whether the positive coefficient on o, remains intact after controlling for the conditional

covariances of risky assets with the aforementioned state variables. First, we test the statistical

significance of the common slope coefficient (B) on o, in eq. (5) and then examine whether the common

slope (4) on o, remains positive and significant after including o, to the risk-return relation.

3.1. Data

Our study is based on the latest stock composition of the Dow Jones Industrial Average. The
ticker symbols and company names are presented in Appendix A. In our empirical analyses, we use daily
excess returns on Dow 30 stocks for the longest common sample period from July 10, 1986 to September
28, 2007, yielding a total of 5,354 daily observations.

For the market portfolio, we use five different stock market indices: (1) the value-weighted
NYSE/AMEX/NASDAQ index, also known as the value-weighted index of the Center for Research in
Security Prices (CRSP), can be viewed as the broadest possible stock market index used in earlier studies,

(2) New York Stock Exchange (NYSE) index, (3) Standard and Poor’s 500 (S&P 500) index, (4)



Standard and Poor’s 100 (S&P 100) index, and (5) Dow Jones Industrial Average (DJIA) can be viewed
as the smallest possible stock market index used in earlier studies.

Appendix B reports the mean, median, maximum, minimum, and standard deviation of the daily
excess returns on Dow 30 Stocks.” As shown in Panel A, in terms of the sample mean, General Motors
(GM) has the lowest average daily excess return of —0.0059%, whereas Intel Corp. (INTC) has the highest
average daily excess return of 0.0408%. In terms of the sample standard deviation, Exxon Mobil (XOM)
has the lowest unconditional volatility of 1.89% per day, whereas Intel Corp. (INTC) has the highest
unconditional volatility of 3.12% per day. In terms of the daily maximum excess return, E.I. DuPont de
Nemours (DD) has the lowest daily maximum of 9.86%, whereas Honeywell (HON) has the highest daily
maximum of 31.22%. In terms of the daily minimum excess return, Altria (MO, was Philip Morris) has
the lowest daily minimum of —75.03%, whereas Home Depot (HD) has the highest daily minimum of
-46.23%.

Panel B of Appendix B reports the mean, median, maximum, minimum, and standard deviation of
the daily excess returns on the value-weighted NYSE/AMEX/NASDAQ, NYSE, S&P 500, S&P 100, and
DIJIA indices. To be consistent with the firm-level data, the descriptive statistics are computed for the
sample period from July 10, 1986 to September 28, 2007. In terms of the sample mean, the S&P 500
index has the lowest average daily excess return of 0.022%, whereas the NYSE/AMEX/NASDAQ index
has the highest average daily excess return of 0.030%. In terms of the sample standard deviation, the
NYSE index has the lowest unconditional volatility of 0.96% per day, whereas the S&P 100 index has the
highest unconditional volatility of 1.11% per day. In terms of the daily maximum excess return, the
NYSE/AMEX/NASDAQ index has the lowest daily maximum of 8.63%, whereas the DJIA index has the
highest daily maximum of 10.12%. In terms of the daily minimum excess return, the DJIA index has the
lowest daily minimum of —22.64%, whereas the NYSE/AMEX/NASDAQ index has the highest daily
minimum of —17.16%.

For state variables, we consider the commonly used macroeconomic variables (the federal funds
rate, default spread, and term spread), financial factors (size, book-to-market, and momentum), and

volatility measures (options implied, GARCH, and range).

3.1.1. Macroeconomic Variables

> Excess returns on Dow 30 stocks are obtained by subtracting the returns on 1-month Treasury bills from the raw
returns on Dow stocks. The daily returns on 1-month T-bill are obtained from Kenneth French’s online data library.



Several studies find that macroeconomic variables associated with business cycle fluctuations can
predict the stock market.® The commonly chosen variables include Treasury bill rates, federal funds rate,
default spread, term spread, and dividend-price ratios. We study how variations in the fed funds rate,
default spread, and term spread predict variations in the investment opportunity set and how incorporating
conditional covariances of individual stock returns with these variables affects the intertemporal risk-
return relation.”

We obtain daily data on the federal funds rate, 3-month Treasury bill, 10-year Treasury bond
yields, BAA-rated and AAA-rated corporate bond yields from the H.15 database of the Federal Reserve
Board. The federal funds rate is the interest rate at which a depository institution lends immediately
available funds (balances at the Federal Reserve) to another depository institution overnight. It is a closely
watched barometer of the tightness of credit market conditions in the banking system and the stance of
monetary policy. In addition to the fed funds rate, we use the term and default spreads as control
variables. The term spread (TERM) is calculated as the difference between the yields on the 10-year
Treasury bond and the 3-month Treasury bill. The default spread is computed as the difference between
the yields on the BAA-rated and AAA-rated corporate bonds. As a final set of variables, we include the
lagged excess return on the market portfolio as well as the lagged excess return on Dow 30 stocks to

control for the serial correlation in daily returns that might spuriously affect the risk-return tradeoff.

3.1.2. Size, book-to-market, and momentum factors

Fama and French (1993) introduce two financial factors related to firm size and the ratio of book
value of equity to market value of equity. In a series of papers, Fama and French (1992, 1993, 1995,
1996, 1997) show the importance of these two factors. To form these factors, Fama and French first
construct six portfolios according to the rankings on market equity (ME) and book-to-market (BM) ratios.
In June of each year, they rank all NYSE stocks in CRSP based on ME. Then they use the median NYSE
size to split NYSE, AMEX, and NASDAQ stocks into two groups, small and big (S and B). They also
break NYSE, AMEX, and NASDAQ stocks into three BM groups based on the breakpoints for bottom
30% (Low), middle 40% (Medium), and top 30% (High) of the ranked values of BM for NYSE stocks.
They construct the SMB (small minus big) factor as the difference between the returns on the portfolio of
small size stocks and the returns on the portfolio of large size stocks, and the HML (high minus low)

factor as the difference between the returns on the portfolio of high BM stocks and the returns on the

® See Fama and Schwert (1977), Keim and Stambaugh (1986), Chen, Roll, and Ross (1986), Campbell and Shiller
(1988), Fama and French (1988, 1989), Schwert (1989, 1990), Fama (1990), Campbell (1987, 1991), Ferson and
Harvey (1991, 1999), Ferson and Schadt (1996), Goyal and Santa-Clara (2003), Ghysels, Santa-Clara, and Valkanov
(2005), Bali, Cakici, Yan, and Zhang (2005), and Guo and Whitelaw (2006).

" We could not include the aggregate dividend yield (or the dividend-price ratio) because the data on dividends are
available only at the monthly frequency while our empirical analyses are based on the daily data.
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portfolio of low BM stocks. We use the SMB and HML portfolios of Fama and French that are
constructed daily.

The momentum (MOM) factor of Fama and French is constructed from six value-weighted
portfolios formed using independent sorts on size and prior return of NYSE, AMEX, and NASDAQ
stocks. MOM is the average of the returns on two (big and small) high prior return portfolios minus the
average of the returns on two low prior return portfolios. The portfolios are constructed daily. Big means
a firm is above the median market cap on the NYSE at the end of the previous day; small firms are below
the median NYSE market cap. Prior return is measured from day —250 to —21. Firms in the low prior
return portfolio are below the 30th NYSE percentile. Those in the high portfolio are above the 70th
NYSE percentile.

The daily, monthly, and annual returns on these three factors (SMB, HML, MOM) are available at
Kenneth French’s online data library, and the daily data cover the period from July 1, 1963 to September
28, 2007. In our empirical analyses, we use them for our longest common sample from July 10, 1986 to

September 28, 2007.

3.1.3. Alternative Measures of Market Volatility

We test whether the risk-aversion coefficient on the conditional covariance of individual stocks
with the market portfolio remains positive and significant after controlling for risk premiums induced by
conditional covariation of individual stocks with alternative measures of market volatility. We use options
implied, GARCH, and range based volatility estimators.

Implied volatilities are considered to be the market’s forecast of the volatility of the underlying
asset of an option. Specifically, the Chicago Board Options Exchange (CBOE)’s VXO implied volatility
index provides investors with up-to-the-minute market estimates of expected volatility by using real-time
S&P 100 index option bid/ask quotes. The VXO is a weighted index of American implied volatilities
calculated from eight near-the-money, near-to-expiry, S&P 100 call and put options based on the Black-
Scholes (1973) pricing formula.

As an alternative to the VXO index, we could have used the newer VIX index, which is
introduced by the CBOE on September 22, 2003. The VIX is obtained from the European style S&P 500
index option prices and incorporates information from the volatility skew by using a wider range of strike
prices rather than just at-the-money series. However, the daily data on VIX starts from January 2, 1990,
which does not cover our full sample period (7/10/1986-9/28/2007). Hence, we use the daily data on
VXO that starts from January 2, 1986 and spans the full sample period of Dow 30 stocks.

We estimate the conditional variance of daily excess returns on the S&P 500 index using a

GARCH(1,1) model and then generate the DCC-based conditional covariances between daily excess
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returns on Dow 30 stocks and the change in daily conditional volatility. Our objective is to test whether
unexpected news in market volatility is priced in the stock market and then to check robustness of risk-
aversion coefficient after controlling for risk premiums induced by the conditional covariation of
individual stocks with the GARCH volatility of the market portfolio.

The range volatility that utilizes information contained in the high frequency intraday data is
defined as:

Range,, , = Max(InF, ,)—Min(In P, ), (6)
where Max(InF, ;) and Min(InF, ,) are the highest and lowest log stock market index levels on day ¢ In

our empirical analysis, we use the maximum and minimum values of the S&P 500 index over a sampling
interval of one day. Equation (6) can be viewed as a measure of daily standard deviation of the market
portfolio. Alizadeh, Brandt, and Diebold (2002) and Brandt and Diebold (2006) point out several
advantages of using range volatility estimators: The range-based volatility is highly efficient,
approximately Gaussian and robust to certain types of microstructure noise such as bid-ask bounce. In
addition, range data are available for many assets including Dow 30 stocks and major stock market

indices over a long sample period.

3.1.4. Conditional Idiosyncratic/Total Volatility of Individual Stocks

Recent studies on idiosyncratic and total risk of individual stocks provide conflicting evidence on
the direction and significance of a cross-sectional relation between firm-level volatility and expected
returns. The existing literature is also not in agreement about the significance of a time-series relation
between aggregate idiosyncratic volatility and excess returns on the market portfolio. Hence, we examine
the significance of conditional idiosyncratic and total volatility of individual stocks in the ICAPM
framework and test if the intertemporal relation between expected returns and market risk remains
significantly positive after controlling for firm-level volatility measures.

Conditional idiosyncratic volatility of Dow 30 stocks is estimated based on the following AR(1)-
GARCH(1,1) model:

i

R = a(l) + alRi,t +& 0 (7)

i,t+1

2 2 j i 2 | 2
Ez [gi,t+l]= Oirs1= ﬂ(; + ﬂllgi,z + ﬂéo-i,t > )

where R, , denotes total excess return on stock i that can be decomposed into expected and idiosyncratic

it+1

components. E,[R,.,+1]=d(’)+0?fR” is the expected excess return on stock i conditional on time ¢

information and ¢, ,,, is the idiosyncratic (or firm-specific) excess return on stock i. & ,,, in eq. (8) is the

time-¢ expected conditional variance of ¢, .., that can be viewed as conditional idiosyncratic volatility.

it+1
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To measure total risk of individual stocks, we use the following range volatility:
Range; , = Max(InF,,)— Min(In F, ), 9)
where Max(InF,,) and Min(InF,) are the highest and lowest log prices of stock i on day ¢ The

maximum and minimum prices of Dow 30 stocks are used over a sampling interval of one day to compute

range volatility estimators.

3.2. Estimating Time-Varying Conditional Covariances
We estimate the conditional covariance between excess returns on asset 7 and the market portfolio

m based on the following bivariate GARCH(1,1) specification:

Ri,t+1 = 0(6 + aliRi,t + gi,Hl H (10)

R, a=ay +a'R,, +&,,.,, (11)

Elei ]zt =pir pict + ot (12)
E, [53:,”1]5 O-ri,t-%—l =5 +ﬁlm82,t +ﬁ2mo-ri,t , (13)
E, lgi,t+1‘9m,t+1JE Oimil = Pimy1 Ol " Oppat s (14)

where R;,,, and R denote the time (#+1) excess return on asset i and the market portfolio m over a

m,t+1

risk-free rate, respectively, and E,[.] denotes the expectation operator conditional on time ¢ information.

af, .1 1s the time-f expected conditional variance of R a,i’t .1 1s the time-t expected conditional

i+l >

variance of R and o,,,,, is the time-¢ expected conditional covariance between R,,,, and R

mt+1 > mt+l

8
m,t+1 *

Pim.+1 18 the conditional correlation between R;,,, and R

The GARCH specifications in equations (10)-(14) do not arise directly from the ICAPM model,
but they provide a parsimonious approximation of the form of conditional heteroskedasticity typically
encountered with financial time-series data (e.g., Bollerslev, Chou, and Kroner (1992) and Bollerslev,
Engle, and Nelson (1994)). As an alternative to bivariate GARCH specifications, earlier studies define the
conditional covariances (or betas) as a function of some macroeconomic variables and then use a two-
stage ordinary least squares (OLS) or generalized method of moments (GMM) estimation methodology to
generate conditional risk measures (e.g., Harvey (1989), Ferson and Harvey (1991), and Jagannathan and

Wang (1996)).

¥ Similar conditional covariance specifications are used by Baillie and Bollerslev (1992), Bollerslev (1990),
Bollerslev, Engle, and Wooldridge (1988), Bollerslev and Wooldridge (1992), Ding and Engle (2001), Engle and
Kroner (1995), Engle and Mezrich (1996), Engle, Ng, and Rothschild (1990), and Kroner and Ng (1998). These
specifications can be viewed as multivariate generalizations of the univariate GARCH models developed by Engle
(1982) and Bollerslev (1986).
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When considering stochastic investment opportunities governed by a set of state variables, we

estimate the conditional covariance between each stock i and each state variable x, o, using an
analogous bivariate GARCH specification:
i i
Riyn=og+aqR, +&,,, (15)
X, =0y +a,x, +¢& (16)
t+1 0 1% X,t+12

2 _ 2 _ Nl in2 i 2
Et [gi,H—l]: O-i,H—l - ﬂo + ﬁl gi,t + ﬂzo-i,t s (17)

2 _ 2 _ px x 2 x __2
Et[gx,t+1]=o-x,t+l _ﬂO +ﬂ1 gx,t +ﬂ20x,t H (18)
Ez |f9i,t+1gx,t+1JE Oix,t+1 = Pix,t+1 " Oig41 " O r41 - (19)

We assume that the excess returns on individual stocks and the market portfolio as well as the
states variables follow an autoregressive of order one AR(1) process given in equations (10), (11), and
(16). At an earlier stage of the study, we consider alternative specifications of the conditional mean. More
specifically, the excess returns are assumed to follow a moving average of order one MA(1) process
(R, a=ay+ajg, +&,,,), ARMA(1,1) process (R, =ay+aR, +a5¢,+¢,,,), and a constant

i i+l = i
(R, =0y +¢&;,,,). As will be discussed in the paper, our main findings are not sensitive to the choice of
conditional mean specification.

We estimate the conditional covariances of each stock with the market portfolio and state

variables (o ) based on the mean-reverting dynamic conditional correlation (DCC) model of

im,t+1 > Gix,tJrl
Engle (2002). Engle defines the conditional correlation between two random variables # and 7, that each

has zero mean as
Et—l(rl,t 'rz,z)

P = \/Et_l(,ft)-E,_1(”22,t) ’

where the returns are defined as the conditional standard deviation times the standardized disturbance:

(20)

Gz%t = Et—l(ﬁ'i)» i =0, U i=12 (21)

1,
where u,, is a standardized disturbance that has zero mean and variance one for each series. Equations

(20) and (21) indicate that the conditional correlation is also the conditional covariance between the

standardized disturbances:

_ Et—l(ul,t ‘“2,:) —-E )
P, \/Etil(ulz,t)-Etil(uzz’t) t—1(u1,t uz,t).

The conditional covariance matrix of returns is defined as

(22)
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H, =D, p,-D,, where D, =diag}/o?, } (23)
where p, is the time-varying conditional correlation matrix
Et—l(ut 'u;):D;I -H, 'D;1 =p,, where y, :D;I T (24)

Engle (2002) introduces a mean-reverting DCC model:

9ij
Py, =TF——, (25)
’ i 4 jje
9ij = /51/ +a - (ui,t—l U 154‘/)"' a, - (qij,t—l - /51/) (26)

where p; is the unconditional correlation between u;, and u;,. Equation (26) indicates that the
conditional correlation is mean reverting towards p; as longas a, +a, <1.
Engle (2002) assumes that each asset follows a univariate GARCH process and writes the log

likelihood function as:

L=- i(nln(Zﬁ)+ln|H,|+r,'H;1r,)

=

N | —

(27)
T
Z(n In27)+2 ln|Dt| + r,'D;ID[lr, - u;ut + 1n|pt| + u;pflut)

t=

N | —

As shown in Engle (2002), letting the parameters in D, be denoted by 8 and the additional parameters in

p, be denoted by ¢, equation (27) can be written as the sum of a volatility part and a correlation part:

L(6,9)=L,(0)+Lc(0,9) . (28)
The volatility term is
1 a 2 [
L,(0)= _EZ ninQ27)+W|D,[" +7,D;’r, ), (29)
t=1
and the correlation component is
1 < — :
Le(0.0) == Yl |+ 07" u, ~u,). (30)

t=1
The volatility part of the likelihood is the sum of individual GARCH likelihoods:
1 c 2 ”izt
L,(6)=—— In(27)+In(o;,)+—- |, 31
v (0) ZZZ[ (27)+In(o7,) GfJ (31)
which is jointly maximized by separately maximizing each term. The second part of the likelihood is used

to estimate the correlation parameters. The two-step approach to maximizing the likelihood is to find
6 = arg max{L, (6)} (32)

and then take this value as given in the second stage:
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mgx{Lc(é, )} (33)

We estimate the conditional covariances of each stock with the market portfolio and with each state
variable using the maximum likelihood method described above.

Table 1 reports parameter estimates of the mean-reverting DCC model.” For all stocks in the Dow
Jones Industrial Average, both parameters (0 < a;, a, < 1) are estimated to be positive, less than one, and
highly significant. Similar to the findings of Engle (2002), the magnitude of @, is small, in the range of
0.0075 to 0.0581, whereas a, is found to be large, ranging from 0.9326 to 0.9904. The persistence of the
conditional correlations of each stock with the market portfolio is measured by the sum of a; and a,. For
all stocks, the estimated value of (a;+ay) is less than one, in the range of 0.9880 to 0.9982, implying mean
reversion in the conditional correlation estimates.

Figure 1 displays the conditional correlations between the daily excess returns on Dow 30 stocks
and the market portfolio over the sample period of July 10, 1986 to September 28, 2007."° A notable point
in Figure 1 is that the conditional correlations exhibit significant time variation for all stocks and the
correlations are pulled back to some long-run average level over time, indicating strong mean reversion.
A common observation in Figure 1 is that when the level of conditional correlation is high, mean
reversion tends to cause it to have a negative drift, and when it is low, mean reversion tends to cause it to
have a positive drift.

To test whether the mean-reverting DCC model generates reasonable conditional covariance
estimates, we compute the equal-weighted and price-weighted averages of the conditional covariances of
Dow 30 stocks with the market portfolio. Then, we compare the weighted average conditional
covariances with the benchmark of the conditional market variance. In Panel A (Panel B) of Figure 2, the
dashed line denotes the equal-weighted (price-weighted) average of the conditional covariances of daily
excess returns on Dow 30 stocks with daily excess returns on the market portfolio. The solid line in both
panels denotes the conditional variance of daily excess returns on the market portfolio. The weighted-
average covariances are in the same range as the conditional variance of the market portfolio. The two
series in both panels move very closely together. In fact, it is almost impossible to visually distinguish the
two series in Figure 2. Specifically, in Panel A the sample correlation between the equal-weighted
average covariance and the market variance is 0.9931 and in Panel B the sample correlation between the
price-weighted average covariance and the market variance is 0.9932. The affinity in magnitudes and

time-series fluctuations between the weighted average covariances and market portfolio variance provides

’ The parameter estimates in Table 1 are based on the market portfolio measured by the DJIA. The results from
alternative measures of the market portfolio are very similar and they are available upon request.

' The conditional correlation estimates in Figure 1 are based on the market portfolio measured by the DJIA. The
results from alternative measures of the market portfolio are very similar and they are available upon request.
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evidence for reasonable conditional variance and covariance estimates from the mean-reverting DCC

model.

3.3. Estimating the intertemporal relation between risk and return
Given the conditional covariances, we estimate the intertemporal relation from the following
system of equations,

R,,=C+4-04,,+B-0y,te

AR i=12,.,n, (34)
where n denotes the number of individual stocks and also the number of equations in the estimation. In
this paper, we simultaneously estimate » = 30 equations as our focus is on the daily risk-return tradeoff
for Dow 30 stocks. We constrain the slope coefficients (4, B) to be the same across all stocks for cross-
sectional consistency. We allow the intercepts C; to differ across different stocks. Under the null
hypothesis of ICAPM, the intercepts should be jointly zero. We use deviations of the intercept estimates
from zero as a test against the validity and sufficiency of the ICAPM specification."'

We estimate the system of equations using a weighted least square method that allows us to place
constraints on coefficients across equations. We compute the z-statistics of the parameter estimates
accounting for heteroskedasticity and autocorrelation as well as contemporaneous cross-correlations in
the errors from different equations. The estimation methodology can be regarded as an extension of the
seemingly unrelated regression (SUR) method, the details of which are in Appendix C."

In addition to the SUR method, we use Rogers’ (1983, 1993) contemporaneous cross-sectional

correlation adjusted standard errors. To compute Rogers’ standard errors, we first acquire regression

errors (e,) from the panel data. Then, the variance-covariance matrix of the coefficient estimates is
' —1 T [ ' 1 . . . . —_ .
computed as (X X ) Zt:l(X eeX, XX X T , where X is the matrix of independent variables, e, is the

estimated error terms, and subscript ¢ denotes a part of the data in a certain time period ¢. The standard

errors obtained from Rogers’ methodology are also known as “clustered” standard errors."

4. Empirical Results

" In somewhat different contexts of conditional asset pricing models, similar tests on the intercepts are used by
Ferson, Kandel, and Stambaugh (1987), Gibbons, Ross, and Shanken (1989), Harvey (1989), Shanken (1990), and
Ferson and Harvey (1999).

12 At an earlier stage of the study, we also use the ordinary least squares (OLS) and weighted least squares (WLS)
methodology in estimating the system of equations. The z-statistics from OLS are not adjusted for heteroskedasticity,
autocorrelation, or contemporaneous cross-correlations in the errors. The f-statistics from WLS are adjusted only for
heteroskedasticity. We should note that the #-statistics from OLS and WLS turn out to be significantly larger than
those reported in our tables.

13 OLS, WLS, and SUR estimates are obtained from the commonly used econometrics softwares called STATA,
EVIEWS, and WINRATS. The clustered standard errors are obtained from STATA.
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First, we present the estimation results on the intertemporal risk-return tradeoff assuming zero
intertemporal hedging demand. Second, we check the robustness of our main findings across different
sample periods, and after controlling for the October 1987 crash, macroeconomic variables, the lagged
returns on individual stocks and the market portfolio, the conditional volatility of individual stocks and
the market portfolio, and alternative specifications of the conditional mean and covariance processes.
Finally, we estimate the intertemporal relation by including additional risk premiums induced by the

conditional covariation of Dow 30 stocks with various macroeconomic, financial, and volatility factors.

4.1. Risk-return tradeoff without intertemporal hedging demand
Table 2 reports the common slope estimates and average firm-specific intercepts along with the #-
statistics from the following system of equations:

R =Ci +A'O—im,t+1 +ei,t+1’ i=1, 2""’”:30' (35)

i,t+1
Estimation is based on daily excess returns on Dow 30 stocks (#=30) and five alternative measures of the
market portfolio over the sample period of July 10, 1986 to September 28, 2007. Each row of Table 2
presents estimates based on a market portfolio measured by the value-weighted NYSE/AMEX/NASDAQ,
NYSE, S&P 500, S&P 100, and DJIA indices.

As shown in the last column of Table 2, the risk-return coefficient on o,

ms1 18 estimated to be
positive and highly significant with the #-statistics ranging from 5.44 to 7.03. The common slope
estimates are stable across different market portfolios, between 2.25 and 3.26. Based on the relative risk
aversion interpretation, the magnitudes of these estimates are economically sensible as well."*

In estimating the system of time-series relations, we allow the intercepts to be different for
different stocks. These intercepts capture the daily abnormal returns on each stock that cannot be
explained by the conditional covariances with the market portfolio. The first column of Table 2 reports
the Wald statistics and the p-values in square brackets from testing the joint hypothesis of all intercepts

equal zero; Hy: C,=C, =...=C;, =0. The Wald statistics turn out to be very small, between 5.86 and

7.87, indicating that the conditional covariances of Dow 30 stocks with the market portfolio have
significant predictive power for the time-series variation in expected returns so that we fail to reject the

null hypothesis. The second column of Table 2 shows that the cross-sectional averages of C; (denoted by

C ) are small ranging from —1.53x10™* to —2.34x10~*. The average t-statistics of C; are also very small,

between —0.51 and —0.73, implying statistically insignificant daily abnormal returns.

'* Appendix D provides further robustness checks for the significance of positive risk-return tradeoff. The results
from the clustered standard errors and the panel estimation with the standardized residuals indicate a positive and
significant intertemporal relation between expected returns and risk for Dow 30 stocks.
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Figure 3 presents the magnitude and statistical significance of daily abnormal returns (intercepts)
that differ across stocks. The intercepts and their #-statistics are plotted for Dow 30 stocks as a scattered
diagram for each market portfolio measured by the value-weighted CRSP, NYSE, S&P 500, S&P 100,
and DJIA indices. In all cases, the daily abnormal returns turn out to be insignificant, both economically
and statistically. These results indicate that it is not only the average intercepts and average ¢-statistics
reported in Table 2, but the magnitude and #-statistics of the intercepts are estimated to be very small for

each individual stock as well.

4.1.1. Controlling for the October 1987 crash

Table 3 presents results from testing the significance of an intertemporal risk-return tradeoff after
controlling for the October 1987 crash. The following system of equations is estimated for Dow 30
stocks:

R, =Ci+4-0

im,t+

1+B'Xt+ei,t+1’ (36)
where X, denotes a day, week, and month dummy for October 1987. Dum_day equals one for the day of
October 19, 1987 and zero otherwise; Dum_week equals one for the week of October 19, 1987 — October
23, 1987 and zero otherwise; and Dum_month equals one for the month of October 1, 1987 — October 30,
1987 and zero otherwise. As expected, for all measures of the market portfolio, the common slope (B) on

X, is estimated to be negative and highly significant for the day, week, and month dummy. Each panel of

Table 3 presents positive and highly significant common slope coefficients (4) on o

im,t+1*
Table 4 checks the robustness of our main findings for the sample period of January 4, 1988 to
September 28, 2007 that excludes October 1987. As shown in the last column of Table 4, the risk-return

coefficient on o, ., is estimated to be positive and highly significant for all measures of the market

portfolio. The first column of Table 4 reports very small Wald statistics from testing the joint hypothesis
of all intercepts equal zero. The second column of Table 4 presents economically and statistically
insignificant average abnormal returns. Overall, the panel regression results in Tables 3 and 4 indicate
that the economically and statistically significant relation between risk and return remains intact after

controlling for the October 1987 crash.

4.1.2. Controlling for the lagged returns on individual stocks and the market portfolio
Table 5 examines the significance of common slope on the conditional covariance of Dow 30
stocks with the market portfolio after controlling for the lagged daily excess returns on individual stocks

(R;,), the lagged daily excess return on the market portfolio (R, ), and the crash dummy. The first

column of each panel in Table 5 provides strong evidence for a significantly positive relation between
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expected return and market risk after controlling for the lagged returns and the October 1987 crash. The
risk-return coefficient (4) is stable across different market portfolios and highly significant with the ¢-
statistics ranging from 5.20 to 7.94. Another notable point in Table 5 is that the common slope (B) on the
lagged returns is found to be negative and statistically significant, indicating negative first-order

autocorrelation in daily stock returns."

4.1.3. Subsample analysis

Table 6 investigates whether the positive relation between expected return and risk remains
economically and statistically significant for different subsample periods.'® For the sample period of
January 4, 1988 — September 28, 2007 (excluding the October 1987 crash), the common slope (4) is
estimated to be 2.95 with the #-statistic of 3.63. For the full sample period of July 10, 1986 — September
28, 2007, A4 is estimated to be 3.26 with the t-statistic of 6.56. We break the entire sample into two and re-
estimate the intertemporal relation for two subsamples. For the first subsample of July 10, 1986 —
February 6, 1997, the risk-return coefficient is about 2.75 with z-stat. = 4.86. For the second subsample of
February 7, 1997 — September 28, 2007, the risk aversion coefficient turns out to be somewhat higher at
3.12 with z-stat. = 3.17.

These estimates are relatively stable across different sample periods. The z-statistics show that all
estimates are highly significant. The consistent estimates and high ¢-statistics across different market
portfolios, sample periods, and after controlling for the lagged returns and the crash dummy suggest that

the identified positive risk-return tradeoff is not only significant, but also robust.

4.1.4. Alternative specifications of the conditional mean

As shown in equations (10) and (11), the conditional mean of daily excess returns on individual
stocks and the market portfolio is assumed to follow an AR(1) process. In this section, we consider
alternative specifications of the conditional mean and re-estimate the system of equations given in
equation (34). As presented in Table 7, when the daily excess returns on Dow 30 stocks and the market

portfolio are assumed to be constant, the risk aversion parameter is estimated to be 3.06 with z-stat. =

5.97. When the conditional mean is parameterized as an MA(1) process (R, ,,, =} +a| &1t &

), the

i,t+1

common slope (4) on o, ,,, is found to be 3.32 with the z-statistic of 6.64. When the conditional mean of

"% Jegadeesh (1990), Lehman (1990), Lo and MacKinlay (1990), and Boudoukh, Richardson, and Whitelaw (1994)
provide evidence for the significance of short-term reversal (or negative autocorrelation in short-term returns).

' To save space, starting with Table 6 we only present results based on the market portfolio measured by the value-
weighted NYSE/AMEX/NASDAQ index. At an earlier stage of the study, we replicate our findings reported in
Table 6 and follow-up tables using the NYSE, S&P 500, S&P 100, and DJIA indices. The results from these
alternative measures of the market portfolio turn out to be very similar and they are available upon request.
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daily excess returns is modeled with ARMA(1,1) process (R, ,,; =y + R, + 3¢, + &, ,,, ), the risk-
return coefficient is about 3.58 with #-stat. = 7.16. The common slope estimates are stable across different
specifications of the conditional mean, between 3.06 and 3.58, with the #-statistics ranging from 5.97 to
7.16. The first column of Table 7 presents very small Wald statistics from testing the joint hypothesis of
all intercepts equal zero. The second column of Table 7 reports insignificant average abnormal returns.
Overall, the parameter estimates in Table 7 indicate that the economically and statistically significant

relation between risk and return is not sensitive to the choice of conditional mean specification.

4.1.5. Alternative specification of the conditional covariance process

As discussed earlier, the conditional covariances are estimated based on the mean-reverting
dynamic conditional correlation (DCC) model of Engle (2002). As a robustness check, we now estimate
the conditional covariance between excess returns on stock i and the market portfolio m based on the

following bivariate GARCH(1,1) specification:

R .= ay+ Eit1 (37)
Rm,t+1 = a(;” + gm,t+l H (38)
2 _ 2 ] [ 2 | 2
Et [g[,t+l]= Oiri1 = :8(; + ﬂllg[,l + ﬂéo-i,t > (39)
E [ 2 ]= 2 _pm w2 m_2 40
t gm,t+1 - O-m,t+1 _ﬂO ﬂl gm,t +ﬂ2 O-m,t s ( )
Et I:gi,ngm,tJrl:IE Gim,Hl = (;m +ﬂllmgi,t8m,t +ﬂ£m0im,t b (41)

where o, ,,, 1s the time-# expected conditional covariance between R;,,, and R, ., at time (#1). As

im,t+ i1+ m,t+

shown in equation (41), the conditional covariance at time (#+1) is a function of the product of the time-¢

residuals (¢, ,&,,,) and the time-¢ conditional covariance (o, , ).

As shown in the last column of Appendix E, the risk-return coefficient on o,,,,, is estimated to

im,t+
be positive and highly significant with the #-statistics ranging from 5.58 to 6.19."” The common slope
estimates are stable across different market portfolios, between 2.99 and 3.70. The first column of
Appendix E shows that the Wald statistics (with 30 degrees of freedom) are very small, failing to reject

the null hypothesis of all intercepts equal zero. The second column of Appendix E shows that the cross-

'7 As shown in equations (37)-(38), the conditional mean of daily excess returns on individual stocks and the market
portfolio is assumed to be constant. We should note that at an earlier stage of the study, we consider alternative
specifications of the conditional mean and estimate the conditional covariances with the AR(1), MA(1), ARMA(1,1)
specifications. Overall, the economic and statistical significance of the common slope coefficients turn out to be
insensitive to the choice of conditional mean. Similar to our findings in Table 7, the statistical significance of the
risk-aversion coefficient is found to be somewhat lower with constant mean as compared to AR(1), MA(1), and
ARMAC(1,1) specifications. Thus, Appendix E presents conservative results.
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sectional averages of the intercepts are very small ranging from 5.03x107> to 1.34x10™*. The average -
statistics of the intercepts are also very small, between 0.17 and 0.48, implying statistically insignificant

daily abnormal returns.

4.1.6. Controlling for macroeconomic variables
To determine whether the level or changes in macroeconomic variables can influence time-series
variation in stocks returns and hence may affect the risk-return tradeoff, we directly incorporate the
lagged macroeconomic variables to the system of equations:
Rin=CHA-0y, 0, +B-X +e .,
where X, denotes a vector of control variables including the default spread (DEF,), term spread

(TERM,), federal funds rate (FED,), and the crash dummy (Dum_month) that equals one for the month
of October 1, 1987 — October 30, 1987 and zero otherwise.

Table 8 tests the significance of common slope (4) on the conditional covariance of Dow 30

stocks with the market portfolio after controlling for DEF,, TERM,, and FED, as well as their first
differences denoted by ADEF,, ATERM,, and AFED,. The first column of Table 8 provides strong

evidence for a significantly positive relation between expected return and market risk after controlling for
macroeconomic variables and the October 1987 crash. The risk-return coefficient (4) is stable across
different controls, in the range of 3.25 to 3.90, and it is highly significant with the #-statistics ranging from
6.54 to 7.69. An interesting observation in Table 8 is that the common slope (B) on the lagged
macroeconomic variables is found to statistically insignificant, except for some marginal significance for
the change in federal funds rate.'® The slope on AFED, is found to be between —0.08 and —0.09 with the
t-statistics ranging from —1.64 to —1.74. This result suggests that an unexpected increase (decrease) in the
fed funds rate will reduce (raise) stock prices over the next trading day, implying a negative relation
between stock returns and interest rates in the short run. In fact, this is what we commonly observe in the

U.S. stock market after the Federal Reserve’s unexpected increase or decrease in interest rates.

4.1.7. Controlling for the conditional idiosyncratic and total volatility of individual stocks

'8 Although one would think that unexpected news in macroeconomic variables could be viewed as risks that would
be rewarded in the stock market, we find that the level and changes in term and default spreads do not affect time-
series variation in daily stock returns. Our interpretation is that it would be very difficult for macroeconomic
variables (except for the overnight fed funds rate) to explain daily variations in stock returns. If we examined the
risk-return tradeoff at lower frequency (such as monthly or quarterly frequency), we might observe significant
impact of macroeconomics variables on monthly or quarterly variations in stock returns.
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Several asset pricing models, e.g., Levy (1978) and Merton (1987), show that limited
diversification results in an equilibrium where expected returns compensate not only for market risk but
also for idiosyncratic risk. Motivated by these theoretical models and investors’ preferences for holding
less than perfectly diversified portfolios, recent empirical studies investigate the cross-sectional relation
between expected stock returns and idiosyncratic and total volatility. Ang, Hodrick, Xing and Zhang
(2006) find a strong negative relation between idiosyncratic volatility and the cross-section of expected
stock returns. Spiegel and Wang (2005) use conditional measures of idiosyncratic volatility and find a
positive and significant relation between idiosyncratic risk and expected returns. Bali and Cakici (2006)
focus on the methodological differences that led the previous studies to develop conflicting evidence.
Goyal and Santa-Clara (2003) and Bali, Cakici, Yan, and Zhang (2005) investigate the significance of a
time-series relation between aggregate idiosyncratic volatility and excess market returns. After testing if
the equal-weighted and value-weighted average idiosyncratic volatility of individual stocks can predict
the one month ahead returns on the market portfolio, these studies provide conflicting evidence as well.
Overall, the existence and direction of both time-series and cross-sectional relations between idiosyncratic
volatility and expected returns is still a subject of an intense debate.

Within the ICAPM framework, we examine if the conditional idiosyncratic (and total) volatility
of individual stocks can predict time-series variation in one day ahead returns on Dow 30 stocks. We also
check whether the conditional idiosyncratic (or total) volatility has any influence on the risk-return
tradeoff. The significance of firm-level volatility is tested by estimating the following system of
equations:

R,,=C+4-0,,,+B-VOL

im,t+ i,t+1 + e[,t+l H (42)

where VOL, ., is the time-f expected conditional volatility of R We consider two alternative

it+1 *

measures of firm-level volatility: (1) VOL,,,, is the conditional variance of the daily excess returns on

it+

stock 7 at time #+1 (o?,,) estimated using the AR(1)-GARCH(1,1) model and can be interpreted as the

it+1

conditional idiosyncratic volatility of individual stock; (2) VOL, ., is the range daily standard deviation
of individual stocks defined as Max(InF,,) — Min(InF, ), and can be interpreted as the conditional total

volatility of individual stock.

Table 9 tests the significance of common slope (4) on the conditional covariance of Dow 30
stocks with the market portfolio after controlling for the conditional GARCH-based idiosyncratic
volatility of individual stocks as well as the conditional range-based total volatility of individual stocks.
The first column of Table 9 provides strong evidence for a significantly positive relation between
expected return and market risk after controlling for firm-level volatility and the October 1987 crash. The

risk-return coefficient estimates (4) are found to be in the range of 2.97 to 3.60, and highly significant
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with the #-statistics ranging from 5.82 to 7.13. Another notable point in Table 9 is that the common slope
(B) on the GARCH-based idiosyncratic volatility is estimated to be positive but marginally significant,
whereas the slope on the range-based total volatility is positive and statistically significant. These results
suggest that an increase in daily firm-specific volatility of a Dow stock leads to an increase in the stock’s

one day ahead expected returns.

4.1.8. Controlling for the conditional volatility of the market portfolio

Earlier studies examine the significance of an intertemporal relation between the conditional
mean and conditional volatility of excess returns on the market portfolio. The results from testing whether
the conditional volatility of the market portfolio predicts time-series variation in future returns on the
market portfolio have so far been inconclusive. In this section, we investigate if the conditional volatility
of the market portfolio can predict time-series variation in individual stock returns. We also check
whether the conditional volatility of the market portfolio has any impact on the daily risk-return tradeoft.
The significance of market volatility is determined by estimating the following system of equations:

Ri,Hl = Ci + A ' Gim,Hl +B- VOLm,Hl te;

i+l

(43)
where VOL,, ,,, 1s the time-¢ expected conditional volatility of R, ,, obtained from the GARCH, Range,

and Option Implied Volatility models: (1) VOL,, ,,, is the conditional variance of daily excess returns on

the market portfolio at time #+1 (U,i,m) estimated using the AR(1)-GARCH(1,1) model; (2) VOL, ,,, is
the range daily standard deviation of the market portfolio defined as Max(In P, ,)— Min(InF, ,) ; and (3)
VOL,, ., s the implied market volatility (VXO,) obtained from the S&P 100 index options.

Table 10 provides strong evidence for a significant link between expected returns on individual
stocks and their conditional covariances with the market even after controlling for the conditional
volatility of the market portfolio. For all measures of market volatility, the risk-return coefficients (4) are
estimated to be positive, in the range of 2.84 to 3.41, and highly significant with the #-statistics ranging
from 5.39 to 6.49. Another notable point in Table 10 is that the common slope (B) on the GARCH, range,
and implied volatility estimators of the market portfolio is found to be positive and statistically significant
with and without the October 1987 crash dummy. These results indicate that an increase in daily market

volatility brings about an increase in expected returns on Dow 30 stocks over the next trading day.

4.2, Risk-return tradeoff with intertemporal hedging demand
This section tests the significance of risk premium induced by the conditional variation with the

market portfolio after controlling for risk premiums induced by the conditional covariation of individual
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stocks with macroeconomic variables (fed funds rate, default spread, and term spread), financial factors

(size, book-to-market, and momentum), and volatility measures (implied, GARCH, and range volatility).

4.2.1. Risk premiums induced by conditional covariation with macroeconomic variables

Financial economists often choose certain macroeconomic variables to control for stochastic
shifts in the investment opportunity set. The widely used variables include the short-term interest rates,
default spreads on corporate bond yields, and term spreads on Treasury yields. To investigate how these
macroeconomic variables vary with the investment opportunity and whether covariations of individual
stocks with them induce additional risk premiums, we first estimate the conditional covariance of these
variables with excess returns on each stock and then analyze how the stocks’ excess returns respond to
their conditional covariance with these economic factors. In estimating the conditional covariances, we
use the level and changes in daily federal funds rates, the level and changes in daily default spreads, and
the level and changes in term spreads, as described in Section 3.1.1.

Table 11 reports the common slope estimates (4, By, B,, B;) and the average firm-specific
intercepts (C;) along with their ¢-statistics from the following system of equations:

Ri,t+1 =C; +4- Oimin T B "O; pEF 1 T B, O, tERM 11 T B, "0 rEpt+1 T €ira1s (44)
where o, ppr . 18 the conditional covariance between daily excess returns on stock i and the level or
change in daily default spreads, o, ;zzy, ., 18 the conditional covariance between daily excess returns on
stock i and the level or change in daily term spreads, and o, .., is the conditional covariance between
daily excess returns on stock i and the level or change in daily fed funds rate.

The parameter estimates in Table 11 reveal several important results. First, incorporating the
covariance of stock returns with any of these macroeconomic variables does not alter the magnitude and

statistical significance of the risk aversion estimates. In all cases, the common slope coefficient (4) on

(o}

im,t+

| 1s positive, in the range of 3.00 and 3.28, and highly significant with the #-statistics between 5.25
and 6.60. Second, the slope coefficient (B,) on o; pgr-,,, 18 positive, but statistically insignificant. If B,
were statistically significant, the positive slope would indicate that the upward movements in default
spread predict favorable shifts in the investment opportunity set. Third, the common slopes (B, B;) on
Cireras1 and O ppp ., are negative, but their z-statistics are extremely low. If B, and B; were
statistically significant, the negative coefficients would imply that an increase in term spread and fed
funds rate predicts a downward shift in optimal consumption or unfavorable shifts in the investment

opportunity set. However, we cannot draw any of these conclusions because the conditional covariances

of individual stocks with macro variables turn out to be very poor predictors of future stock returns.
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4.2.2. Risk premiums induced by conditional covariation with SMB, HML, and MOM

When the investment opportunity is stochastic, investors adjust their investment to hedge against
future shifts in the investment opportunity and achieve intertemporal consumption smoothing. Hence,
covariations with state of the investment opportunity induce additional risk premiums on an asset. In this
subsection, we take the size (SMB), book-to-market (HML), and momentum (MOM) factors of Fama and
French to describe the state of the investment opportunity, and we investigate whether covariations of
individual stocks with these three factors induce additional risk premiums on Dow 30 stocks. We measure
the conditional covariance of each stock with these three factors and estimate the following system of
equations:

R =Ci+A4-04 1 +B 0 sup i1+ B2 Oy g i1 + By O yionr 1 €011 (45)

where 6, gp 01> Oipvris1» 304 O 4oy 4 Measure the time-f expected conditional covariance between

the time-(#+1) excess return on stock i and the level and change in SMB, HML, and MOM, respectively.
From the estimates of B;, B,, and Bz, we can learn how investors react to the covariations of stock returns
with financial factors.

Table 12 provides strong evidence for a significant link between expected returns on Dow 30
stocks and their conditional covariances with the market after controlling for risk premiums induced by
the conditional covariation with SMB, HML, and MOM. The risk-return coefficients (4) are estimated to
be in the range of 3.25 to 4.84 and highly significant with the #-statistics ranging from 4.66 to 6.88. The
conditional covariances of stock returns with the size and momentum factors do not have significant
predictive power for one day ahead returns on Dow 30 stocks. In other words, the level and innovations in
the SMB and MOM factors are not priced in the stock market. Another notable point in Table 12 is that

the common slope (B,) on o, ;. is found to be positive and statistically significant for all risk-return

specifications considered in the paper. Thus, an increase in the covariance of a stock return with the HML
factor predicts an increase in the stock’s expected excess return over the next trading day.

The positive slope estimates on o, ., suggest that upward movements in the HML factor

predict favorable shifts in the investment opportunity set, implying that the HML (or value premium) is a
priced risk factor that is correlated with innovations in investment opportunities. These results are also
consistent with the recent empirical evidence provided by Campbell and Vuolteenaho (2004), Brennan,
Wang, and Xia (2004), Petkova and Zhang (2005), and Petkova (2006) as well as with the recent
theoretical models of Gomes, Kogan, and Zhang (2003) and Zhang (2005)."

' We should note that the explanation of value premium within the conditional CAPM framework is still a subject
of an intense debate. Lettau and Ludvigson (2001) and Ang and Chen (2007) find that the conditional CAPM helps
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4.2.3. Risk premiums induced by conditional covariation with unexpected market volatility
Following Campbell (1993, 1996), we assume that investors want to hedge against unexpected
change in future market volatility defined here as the first-difference of the GARCH conditional volatility

of S&P 500 index return (AGARCH,, ,.,), the first-difference of the options implied volatility of S&P

m,t+1

500 index return (AVXO,,,,;), and the first-difference of the range volatility of S&P 500 index return
(ARange,, ,.,) . In this section, we test whether stocks that have higher correlation with the change in

market volatility yield lower expected return.
When considering stochastic investment opportunities governed by innovations in future market
volatility, we estimate the intertemporal relation from the following system of equations,

Ri,t+1 =C, +4- Oimin T B- Oiavor, 411 € 1> (46)

where o, ,,, ,.; measures the time-# expected conditional covariance between R,,,, and the change in

it+

the conditional volatility of the market portfolio denoted by AVOL We use three alternative

myt+1

measures of AVOL,, ,,: (1) AVOL,, ., is the change in the GARCH conditional volatility of S&P 500

myt+1 *

index return (AGARCH , ,,,); (2) AVOL,,,,, is the change in the option implied volatility of S&P 500

mt+

index return (AVXO,, ,.,); and (3) AVOL,, ., is the change in the range volatility of S&P 500 index
return (ARange,,,.,) .

Under the null hypothesis of Campbell’s (1993, 1996) ICAPM, the common slope (4) on o

im,t+1

should be positive and significant, and the common slope (B) on o, o, ,,; should be negative and

significant. As shown in Table 13, the risk-return coefficient (4) on o, ,,, is estimated to be in the range
of 1.41 to 3.02 with the #-statistics ranging from 2.02 to 5.53, implying a positive intertemporal relation
between expected return and market risk. For the GARCH and range-based volatility of the market

portfolio, the common slope (B) on o, oy, .4 18 estimated to be between —0.26 and —0.29 and highly

significant. For the options implied volatility of the market portfolio, the common slope (B) on

O avor, ++1 18 estimated to be between —0.41 and —0.51 and highly significant. These results imply a

1

explain the return difference of value and growth stocks. However, Lewellen and Nagel (2006) provide evidence
that is not in agreement with the findings of Ang and Chen (2007). Fama and French (2006) are also skeptical about
the empirical performance of the conditional CAPM to explain value premium. Chen (2003) tests whether superior
returns to value stocks can be explained by exposures to time-variations in the forecasts of future market returns and
future market volatilities and his results indicate that value premium cannot be explained using these changes in the
ICAPM framework.
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negative intertemporal relation between expected return and volatility risk.”” In other words, stocks that

have higher correlation with the changes in expected future market volatility yield lower expected return.

5. Conclusion

We estimate the daily intertemporal relation between expected return and risk using a cross
section of 30 stocks in the Dow Jones Industrial Average. By so doing, we not only guarantee the cross-
sectional consistency of the estimated intertemporal relation, but also gain statistical power by pooling
multiple time series together for a joint estimation with common slope coefficients. The average relative
risk aversion is estimated to be positive, highly significant, and robust to variations in the market
portfolios, sample periods, and the conditional mean/covariance specifications. The positive risk-return
tradeoff at daily frequency remains intact after controlling for (i) the level and changes in macroeconomic
variables, (ii) the October 1987 crash, (iii) the lagged returns on individual stocks and the market
portfolio, (iv) the conditional idiosyncratic and total volatility of individual stocks, and (v) the conditional
volatility of the market portfolio. The magnitude of the risk-return coefficient is also economically
sensible, ranging from two to four.

When investigating the intertemporal hedging demands and the associated risk premiums induced
by the conditional covariation of Dow 30 stocks with a set of macroeconomic variables, we find that the
common slope coefficients on the conditional covariances with the fed funds rate, default and term
spreads are statistically insignificant, implying that the level and innovations in macro variables do not
contain any systematic risks rewarded in the stock market at daily frequency. We investigate whether the
SMB, HML, and MOM factors of Fama and French move closely with investment opportunities and
whether covariations with these three factors induce additional risk premiums on Dow 30 stocks. The
results indicate that although the SMB and MOM factors are not priced in the ICAPM framework, the
HML is a priced risk factor and can be viewed as a proxy for investment opportunities. Finally, we
assume that investors want to hedge against the changes in future market volatility and we use three
different measures (GARCH, implied, range) to test whether stocks that have higher correlation with the
innovations in market volatility yield lower expected return. The parameter estimates provide strong
evidence for a significantly negative relation between expected return and volatility risk. However,
incorporating the conditional covariation with any of these state variables does not change the positive

risk premium induced by the conditional covariation with the market portfolio.

%% Bakshi and Kapadia (2003) find the volatility risk premium to be negative in index options markets. We examine
whether the volatility risk premium is negative within the ICAPM framework of Campbell (1993, 1996) using
individual stocks.
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By pooling the time series and cross section together, we find that the mean-reverting DCC-based
conditional covariance estimates predict the time-series variation in stock returns and they generate
significant and reasonable risk premiums. We also find that the intertemporal risk-return tradeoff is
significantly positive at daily frequency and the relative risk aversion estimates are within a reasonable
range. The robust, significant and sensible estimates highlight the added benefits of using the conditional
measures of covariance risk and simultaneously maintaining the cross-sectional consistency in estimating

the ICAPM.
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Appendix A. Stocks in the Dow Jones Industrial Average

According to Dow Jones, the industrial average started out with 12 stocks in 1896: American
Cotton Oil (traces remain in CPC International), American Sugar (eventually became Amstar
Holdings), American Tobacco (killed by antitrust action in 1911), Chicago Gas (absorbed by
Peoples Gas), Distilling and Cattle Feeding (evolved into Quantum Chemical), General Electric
(the only survivor), Laclede Gas (now Laclede Group but not in the index), National Lead (now
NL Industries but not in the index), North American (group of utilities broken up in 1940s),
Tennesee Coal and Iron (gobbled up by U.S. Steel), U.S. Leather preferred (vanished around
1952), and U.S. Rubber (became Uniroyal, in turn bought by Michelin).

The number of stocks was increased to 20 in 1916. The 30-stock average made its debut in 1928,

and the number has remained constant ever since.

Here are some of the recent changes.

e On March 17, 1997, Hewlett-Packard, Johnson & Johnson, Travelers Group, and Wal-Mart
joined the average, replacing Bethlehem Steel, Texaco, Westinghouse Electric and
Woolworth.

e In 1998, Travelers Group merged with CitiBank, and the new entity, CitiGroup, replaced
the Travelers Group.

e On November 1, 1999, Home Depot, Intel, Microsoft, and SBC Communications joined
the average, replacing Union Carbide, Goodyear Tire & Rubber, Sears, and Chevron.

e Between 1999 and 2004, several stocks in the index merged and/or changed names: Exxon
became Exxon-Mobil after their merger; Allied-Signal merged with Honeywell and kept
the Honeywell name; JP Morgan became JP Morgan Chase after their merger; Minnesota
Mining and Manufacturing officially became 3M Corp; and Philip Morris renamed itself to
Altria.

e On April 8, 2004, American International Group, Pfizer, and Verizon joined the average,
replacing AT&T, Eastman Kodak, and International Paper.

e In 2007 SBC renamed itself to AT&T after completing the acquisition of that company.

This study is based on the latest stock composition of the Dow Jones Industrial Average. The ticker

symbols and company names are reported in the following table.
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Appendix A (continued)

Ticker Company Name
MMM 3M Corporation

AA
MO
AXP
AIG

BA
CAT

KO
DD
XOM
GE
GM
HPQ
HD
HON
INTC
IBM
INJ
JPM
MCD
MRK
MSFT
PFE
PG
UTX
\'//
WMT
DIS

Alcoa

Altria (was Philip Morris)
American Express
American Int'l Group
AT&T Inc. (was SBC)
Boeing

Caterpillar

CitiGroup

Coca Cola

E.I. DuPont de Nemours
Exxon Mobil

General Electric

General Motors
Hewlett-Packard

Home Depot

Honeywell

Intel Corp.

International Business Machines
Johnson & Johnson

JP Morgan Chase
McDonalds

Merck

Microsoft

Pfizer

Procter and Gamble
United Technologies
Verizon Communications
Wal-Mart Stores

Walt Disney Co.



Appendix B. Descriptive Statistics

Panel A. Daily Excess Returns on Dow 30 Stocks
This table presents summary statistics for the daily excess returns on Dow 30 Stocks. Mean,
median, maximum, minimum, and standard deviation are reported for each stock. The
descriptive statistics are computed for the longest common sample period from July 10, 1986
to September 28, 2007 (5,354 daily observations). The sample ends in September 28, 2007
for all series, but the start date is different and shown in the second column.
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Stock Start Date Mean Median Maximum Minimum Std. Dev.
MMM 1/2/1970 0.000012 -0.000180 0.1104 -0.5086 0.0190
AA 1/2/1962 0.000155 -0.000210 0.1403 -0.5126 0.0236
MO 1/2/1970 0.000186 0.000136 0.1598 -0.7503 0.0232
AXP 4/1/1977 0.000159 -0.000210 0.1853 -0.6550 0.0238
AIG 9/7/1984 -0.000037 -0.000200 0.1102 -0.5169 0.0213
T 7/19/1984 -0.000057 -0.000190 0.1124 -0.6490 0.0212
BA 1/2/1962 0.000153 -0.000190 0.1525 -0.4905 0.0207
CAT 1/2/1962 0.000207 -0.000200 0.1453 -0.5116 0.0230
C 1/3/1977 0.000065 -0.000210 0.1831 -0.4896 0.0248
KO 1/2/1962 0.000124 -0.000160 0.1965 -0.4979 0.0202
DD 1/2/1962 0.000002 -0.000220 0.0986 -0.6786 0.0205
XOM 1/2/1970 0.000120 -0.000120 0.1788 -0.5029 0.0189
GE 1/2/1962 0.000027 -0.000180 0.1244 -0.6683 0.0221
GM 1/2/1962 -0.000059 -0.000300 0.1810 -0.5017 0.0219
HPQ 1/2/1962 0.000268 -0.000175 0.1728 -0.4901 0.0275
HD 8/20/1984 0.000289 -0.000150 0.1288 -0.4623 0.0258
HON 1/2/1970 0.000179 -0.000200 0.3122 -0.4976 0.0230
INTC 7/9/1986 0.000408 -0.000180 0.2010 -0.5319 0.0312
IBM 1/2/1962 0.000034 -0.000180 0.1314 -0.5092 0.0210
JNJ 1/2/1970 0.000088 -0.000140 0.1101 -0.5126 0.0207
JPM 12/30/1983  0.000100 -0.000200 0.1603 -0.5092 0.0234
MCD 1/2/1970 0.000044 -0.000195 0.1083 -0.5204 0.0213
MRK 1/2/1970 0.000052 -0.000140 0.1302 -0.6750 0.0227
MSFT 3/13/1986 0.000370 -0.000120 0.1955 -0.5350 0.0299
PFE 1/4/1982 -0.000019 -0.000200 0.1022 -0.6572 0.0235
PG 1/2/1970 0.000087 -0.000110 0.2216 -0.5039 0.0212
UTX 1/2/1970 0.000193 -0.000185 0.1004 -0.5184 0.0210
VZ 11/21/1983  -0.000052 -0.000200 0.1402 -0.5005 0.0192
WMT 8/25/1972 0.000110 -0.000200 0.1244 -0.4899 0.0230
DIS 1/2/1962 0.000143 -0.000180 0.1907 -0.7409 0.0241

Panel B. Daily Excess Returns on the Market Portfolio
This table presents summary statistics for the daily excess returns on the value-weighted
NYSE/AMEX/NASDAQ, NYSE, S&P 500, S&P 100, and Dow Jones Industrial Average
(DJIA). Mean, median, maximum, minimum, and standard deviation are reported for each
index. To be consistent with the stock data, the descriptive statistics are computed for the
sample period from July 10, 1986 to September 28, 2007 (5,354 daily observations).

Market Portfolio Mean Median Maximum  Minimum Std. Dev.
NYSE/AMEX/NASDAQ 0.00030 0.00070 0.0863 -0.1716 0.0099
NYSE 0.00023 0.00046 0.0898 -0.1920 0.0096
S&P 500 0.00022 0.00041 0.0907 -0.2049 0.0106
S&P 100 0.00023 0.00036 0.0888 -0.2119 0.0111
DIJIA 0.00026 0.00039 0.1012 -0.2264 0.0107
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Appendix C. Estimation of a System of Regression Equations

Consider a system of n equations, of which the typical ith equation is

v =X B +u, (D

where y; is a Nx 1 vector of time-series observations on the ith dependent variable, X; is a Nxk; matrix of
observations of k; independent variables, [ is a k;x 1 vector of unknown coefficients to be estimated, and
u;is a Nx1 vector of random disturbance terms with mean zero. Parks (1967) proposes an estimation

procedure that allows the error term to be both serially and cross-sectionally correlated. In particular, he
assumes that the elements of the disturbance vector u follow an AR(1) process:

Uy = Pty &5 pi <1, ()

where ¢, is serially independently but contemporaneously correlated:

Cov(e,e,)=0y, Vi,j, and Cov(e,¢,)=0, for s#t¢ (3)
Equation (1) can then be written as
Vi =X.p;+Fe;, (4)
with
(1-p2)" 0 0.0

pli=p2)"* 1 0 .0
pf(l—pf)_l/z p; 0 ..0

e
Il

)

Under this setup, Parks presents a consistent and asymptotically efficient three-step estimation
technique for the regression coefficients. The first step uses single equation regressions to estimate the
parameters of autoregressive model. The second step uses single equation regressions on transformed
equations to estimate the contemporaneous covariances. Finally, the Aitken estimator is formed using the
estimated covariance,

p=(x"a'x)" x"ay, 6)

where Q= E[uu’] denotes the general covariance matrix of the innovation. In our application, we use the
aforementioned methodology with the slope coefficients restricted to be the same for all stocks. In particular,
we use the same three-step procedure and the same covariance assumptions as in equations (2) to (5) to
estimate the covariances and to generate the z-statistics for the parameter estimates.
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Appendix D. Alternative Panel Estimation Methodology

Assuming that the errors in panel regression are cross-sectionally uncorrelated can yield standard errors
that are biased downwards. This bias is due to the fact that error correlations are often systematically related to
the explanatory variables. To resolve this problem, we use an extended SUR methodology that accounts for
heteroscedasticity, first-order serial correlation, and contemporaneous cross-correlations in the error terms. As a
robustness check, we use Rogers’ (1983, 1993) robust standard errors that yield asymptotically correct standard
errors for the OLS and WLS estimators under a general cross-correlation structure.

Assuming that the errors are independent across cross-sections, Rogers (1983, 1993) write the variance-
covariance matrix of the coefficient estimates as

(xS ox Jxx)",

where X denotes the panel of explanatory variables, € is the covariance matrix of the panel of errors, and X,
and Q, denote a single cross-section of explanatory variables and the corresponding error covariance matrix,

respectively. Since X,Q X, =E [X ee X ,], Rogers substitutes estimated errors for true errors to get a variance
. . . C VY INT e . 1 .
estimator of regression coefficients: (X X ) Zt:l(X eeX, XX X T , where e, denotes the regression errors and

e, is the estimated errors. Rogers indicates that the standard errors are consistent in 7" under plausible

assumptions. That is, they converge as the time dimension of the panel grows. This is not a concern for our
study since we have long time-series with 5,354 daily observations.

We replicate our findings reported in Table 2 using Rogers (1983, 1993) or clustered standard errors. As
shown in the first column of the table below, the common slope coefficients are estimated to positive, in the
range of 2.82 to 3.64, and highly significant with the #-statistics ranging from 4.03 to 4.60.

As a further robustness check, we use standardized residuals as the dependent variable in the panel
regression instead of raw data on daily excess returns. Dividing both sides of equation (35) by the conditional
standard deviation of individual stocks, o, ,,,, we obtain the following system of equations:

R

*

it+1 :Ci* +A'(p'm,t+1 'Gm,t+l)+ei*,t+1’ i=L2,..,n=30. (35%)

where the new dependent variable is the standardized residual for stock i, RZm :(Rl.,,+1 —-E, [Ri,t+1])/o-i,t+1 ,

obtained from equations (10) and (12), and the new explanatory variable is the conditional correlation times the

conditional volatility of the market portfolio, o, / O = (,Oim,Hl “Cpis1)-

Although estimating (35°) with standardized residuals is not exactly the same as estimating (35) with
raw data, the results provide further robustness check for the significance of positive risk-return tradeoff. The
last column of the table below shows that the common slope coefficients from the standardized residuals are
estimated to be in the range of 2.00 and 2.84 with the ¢-statistics between 2.57 and 3.17.

Market Portfolio Common slope (A) with Common §lope (A) from
clustered standard error standardized residuals
3.6433 2.6968
NYSE/AMEX/NASDAQ “51) (3.09)
3.4065 2.8429
NYSE (4.44) (3.17)
3.2599 2.0715
S&P 500 (4.38) (2.63)
2.8191 2.0061
S&P 100 (4.60) (2.59)
2.8717 2.0040
DITA

(4.03) (2.57)
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Appendix E. Alternative Specification of the Conditional Covariance Process

Entries report the common slope estimates (A4), average intercepts, and their ¢-statistics (in
parentheses) from the following system of equations,
R

i =G+ A0y, 0 e, i=12,.,n,

where R.

i..11 denotes the daily excess return on stock 7 at time #+1, R

denotes the daily excess

m,t+1

return on the market portfolio at time #+1, and o, ,,, is the time-7 expected conditional covariance
between R, and R, ,,, obtained from equations (37)-(41). C; is the intercept for stock i and 4

is the common slope coefficient. Estimation is based on daily data on Dow 30 stocks (#=30) and
five alternative measures of the market portfolio over the sample period of July 10, 1986 —
September 28, 2007. Each row reports the estimates based on a market portfolio proxied by the
value-weighted NYSE/AMEX/NASDAQ, NYSE, S&P 500, S&P 100, and DJIA indices. The first
column reports the Wald statistics and the p-values in square brackets from testing the joint
hypothesis of all intercepts equal zero. The second column presents the cross-sectional averages of
C; (denoted by C ) and the average t-statistics of C; in parentheses. The last column displays the
common slope coefficients and the t-statistics of 4 in parentheses. The #-statistics are adjusted for
heteroskedasticity and autocorrelation for each series and contemporaneous cross-correlations
among the error terms in panel regression.

Market Portfolio Wald Test C A

19.63 -5 3.6996
NYSE/AMEX/NASDAQ 7.94x10

[0-93] (0.29) (6.18)

20.95 - 3.1953
NYSE 1.34x10

[0.89] (0.48) (5.82)

18.97 - 3.5384
S&P 500 5.03x10

[0-94] (0.17) (6.19)

19.54 -5 2.9933
S&P 100 9.48x10

[0.93] (0.34) (5.58)

19.97 -5 3.3290
DJIA 6.80x10

[0.92] (0.23) (6.05)
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Table 1
Maximum Likelihood Estimates of the Mean-Reverting DCC Parameters

Entries report the maximum likelihood parameter estimates (a;, a,) of the mean-reverting DCC
model:

i
R, =ay+toR, +0,, .,

_ . m m
Rm,t+1 - aO + al Rm,t to
2 | 2 i i 2 2 i 2
E, [gi,t-H ]: Oi 1= Po+ Bioju, + phoi,
2 _ 2 _ pm m__2 2 m__2
Et [gm,tﬂ]: O-m,t+1 - ﬂo +ﬂ1 O-m,tum,t + ﬂz Gm,t >

Et lgi,t+18m,t+l JE Oimirl = Pimi+l " Oipsl " Oyl

m,t+lum,t+1

qim N3

pim,t = s qim,t = pim + al ' (ui,t—l : um,t—l - pim )+ a2 ' (qim,t—l - pim)
\[ qii,t : qmm,t

where p,, is the unconditional correlation between u,;, and u,,,. The conditional correlations

between the excess returns on the market portfolio and on each of the Dow 30 stocks are
estimated based on daily returns from July 10, 1986 to September 28, 2007. The ¢-statistics of
the parameter estimates are presented in parentheses.

Dow 30 Stocks a a a+a
— 0.0170 0.9779 0.9949
(11.93) (521.90)

AA 0.0148 0.9791 0.9939
(7.83) (339.71)

MO 0.0118 0.9865 0,998
(9.69) (636.12)

AXP 0.0201 0.9752 0.9953
(8.78) (308.45)

AIG 0.0155 0.9790 0.9945
(7.96) (344.85)

T 0.0102 0.9871 0.9973
(6.13) (438.40)

- 0.0157 0.9784 0.9942
(7.07) (280.78)

CAT 0.0238 0.9669 0.9907
(15.11) (468.67)

c 0.0581 0.9326 0.9907
(32.14) (327.32)

Ko 0.0183 0.9783 0.9965
(10.14) (425.03)

DD 0.0175 0.9786 0.9960
(8.35) (342.16)

XOM 0.0215 0.9730 0.9945

(10.37)

(342.71)
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Dow 30 Stocks a a a+ a
GE 0.0207 0.9686 0.9893
(9.48) (248.85)

GM 0.0172 0.9778 0.9951
(7.03) (282.74)

HPQ 0.0112 0.9816 0.9928
(8.42) (374.89)

HD 0.0174 0.9740 0.9914
(6.69) (202.64)

HON 0.0090 0.9858 0.9948
(5.69) (353.95)

INTC 0.0197 0.9704 0.9901
(9.94) (246.95)

IBM 0.0357 0.9561 0.9918
(12.67) (257.63)

INJ 0.0149 0.9823 0.9972
(7.79) (415.98)

IPM 0.0278 0.9639 0.9917
(11.12) (311.53)

MCD 0.0166 0.9788 0.9955
(6.44) (281.89)

MRK 0.0156 0.9814 0.9970
(12.23) (614.52)

MSFT 0.0299 0.9592 0.9891
(10.77) (233.43)

PFE 0.0276 0.9604 0.9880
(10.77) (248.02)

PG 0.0144 0.9828 0.9972
(10.67) (556.31)

UTX 0.0091 0.9884 0.9974
(8.69) (591.79)

vz 0.0136 0.9846 0.9982
(7.70) (462.85)

WMT 0.0075 0.9904 0.9979
(11.47) (769.31)

DIS 0.0298 0.9633 0.9931
(11.31) (257.96)
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Table 2
Risk-Return Tradeoff without Intertemporal Hedging Demand

Entries report the common slope estimates (4), average intercepts, and their f-statistics (in
parentheses) from the following system of equations,

R = Ci + Aaim,t+l te,

iiel s i=12,..,n,

i+l

where R; ., denotes the daily excess return on stock 7 at time #+1, R denotes the daily excess

m,t+1

| 1s the time-¢ expected conditional covariance

im,t+

return on the market portfolio at time #+1, and o
between R,,,, and R

Estimation is based on daily data on Dow 30 stocks (n=30) and five alternative measures of the
market portfolio over the sample period of July 10, 1986 — September 28, 2007. Each row reports
the estimates based on a market portfolio proxied by the value-weighted NYSE/AMEX/NASDAQ,
NYSE, S&P 500, S&P 100, and DJIA indices. The first column reports the Wald statistics and the
p-values in square brackets from testing the joint hypothesis of all intercepts equal zero. The
second column presents the cross-sectional averages of C; (denoted by C ) and the average t-
statistics of C; in parentheses. The last column displays the common slope coefficients and the t-
statistics of 4 in parentheses. The 7-statistics are adjusted for heteroskedasticity and autocorrelation
for each series and contemporaneous cross-correlations among the error terms in panel regression.

mas1 - C; s the intercept for stock i and 4 is the common slope coefficient.

Market Portfolio Wald Test C 4
6.92 -~ - 3.2590

NYSE/AMEX/NASDAQ 2.34x10
[1.00] (—0.76) (6.56)
NYSE >.94 ~1.58x107* 2.5868
[1.00] (—0.53) (5.45)
727 - . 2.9480

S&P 500 2.31x10
[1.00] (—0.76) (6.57)
7.87 -~ - 2.6339

S&P 100 2.32%10
[1.00] (—0.76) (7.03)
5.86 - . 22516

DJIA 1.53x10

[1.00] (~0.51) (5.44)
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Table 3
Risk-Return Tradeoff after Controlling for the October 1987 Crash

Entries report the common slope estimates and the t-statistics (in parentheses) from the
following system of equations,

Ri,t+1 = Ci + AO—im,Hl + BXt +€ 415

where R, denotes the daily excess return on stock 7 at time #+1, R denotes the daily

i,t+1 m,t+1

excess return on the market portfolio at time #+1, and o, ,,, is the time-f expected conditional

C, is the intercept for stock i , and 4 and B are the

mt+1 * i

covariance between R,,,, and R

common slope coefficients. X, denotes a crash dummy for October 1987: Dum_day equals

one for the day of October 19, 1987 and zero otherwise; Dum_week equals one for the week of
October 19, 1987 — October 23, 1987 and zero otherwise; and Dum_ month equals one for the
month of October 1, 1987 — October 30, 1987 and zero otherwise. Each panel reports the
common slope coefficient estimates based on a market portfolio proxied by the value-weighted
NYSE/AMEX/NASDAQ, NYSE, S&P 500, S&P 100, and DJIA indices. The t-statistics are
adjusted for heteroskedasticity and autocorrelation for each series and contemporaneous cross-
correlations among the error terms in panel regression.

Panel A. NYSE/AMEX/NASDAQ

Cimisl Dum_day Dum_week Dum_month

3.5912 —-0.1917

(7.32) (~19.06)

4.0027 —0.0214

(7.76) (—4.44)

3.8947 —0.0115

(7.67) (=5.07)
Panel B. NYSE

O imisl Dum_day Dum_week Dum_month

2.9301 —0.1915

(6.23) (~19.04)

3.3187 —-0.0203

(6.69) (—4.21)

3.1962 —-0.0110

(6.57) (—4.85)




Panel C. S&P 500
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O imisl Dum_day Dum_week Dum_month

3.2482 —0.1917

(7.33) (~19.05)

3.6268 —-0.0215

(7.78) (—4.46)

3.5193 —0.0114

(7.67) (=5.06)
Panel D. S&P 100

O imisl Dum_day Dum_week Dum_month

2.8849 —0.1919

(7.79) (~19.07)

3.1713 —0.0213

(8.17) (—4.45)

3.0728 -0.0113

(8.05) (-5.03)
Panel E. Dow Jones Industrial Average (DJIA)

O imisl Dum_day Dum_week Dum_month

2.5261 —0.1913

(6.17) (~19.01)

2.8533 —-0.0199

(6.63) (—4.13)

2.7634 —0.0109

(6.53) (—4.81)
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Table 4
Risk-Return Tradeoff after Eliminating the October 1987 Crash: 1/4/1988 — 9/28/2007

Entries report the common slope estimates (A4), average intercepts, and their z-statistics (in
parentheses) from the following system of equations,

R = Ci + AGim,H—l te

it+1 it+1>

where R, .., denotes the daily excess return on stock i at time #+1, R denotes the daily excess

m,t+1

return on the market portfolio at time #+1, and o, ,,, is the time-/ expected conditional covariance

between R,,,, and R C, is the intercept for stock i , and A is the common slope coefficient.

m,t+1 *
The results are presented for the sample period of January 4, 1988 — September 28, 2007 (that
excludes October 1987). The z-statistics are adjusted for heteroskedasticity and autocorrelation for
each series and contemporaneous cross-correlations among the error terms in panel regression.

Market Portfolio Wald Test C y
4.35 - . 2.9540

NYSE/AMEX/NASDAQ 1.48x10
[1.00] (—0.46) (3.63)
NYSE 4.37 ~1.20x107* 2.7530
[1.00] (-0.38) (3.00)
4.23 - n 2.4397

S&P 500 1.17x10
[1.00] (—0.37) (3.25)
4.30 - - 1.9353

S&P 100 8.89x10
[1.00] (-0.29) (3.25)
>-86 . - 2.1794

DJIA 9.11x10

[1.00] (£0.30) (2.91)
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Table 5
Risk-Return Tradeoff after Controlling for Lagged Return and October 1987 Crash

Entries report the common slope estimates and the t-statistics (in parentheses) from the
following system of equations,

Ri,t+1 = Ci + AO—im,Hl + BXt +€ 415

where R,

i,t+1

excess return on the market portfolio at time #+1, and o

denotes the daily excess return on stock i at time +1, R denotes the daily

m,t+1

im+1 18 the time-7 expected conditional

C, is the intercept for stock i , and 4 and B are the

covariance between R;,,, and R, ., . C,
common slope coefficients. X, denotes a vector of control variables including the lagged daily
excess return on stock i (R, ,), the lagged daily excess return on the market portfolio (R, ),

and the crash dummy (Dum_month) equals one for the month of October 1, 1987 — October 30,
1987 and zero otherwise. Each panel reports the common slope estimates based on a market
portfolio proxied by the value-weighted NYSE/AMEX/NASDAQ, NYSE, S&P 500, S&P 100,
and DJIA indices. The ¢-statistics are adjusted for heteroskedasticity and autocorrelation for
each series and contemporaneous cross-correlations among the error terms in panel regression.

Panel A. NYSE/AMEX/NASDAQ

O im sl R;, R, Dum_month

3.1643 —0.0119

(6.37) (—4.76)

3.1869 —0.0412

(6.41) (~2.89)

3.8011 —0.0115 —0.0119

(7.48) (-5.07) (—4.77)

3.8390 —0.0466 —0.0120

(7.56) (-3.27) (~5.29)
Panel B. NYSE

O im sl R;, R, Dum_month

2.4751 —0.0119

(5.20) (—4.76)

2.5399 —0.0259

(5.33) (-1.74)

3.0846 —0.0119 —0.0110

(6.33) (—4.75) (—4.85)

3.1559 —0.0310 —0.0113

(6.48) (~2.09) (—4.99)




Panel C. S&P 500
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O imisl R;, R, Dum_month

2.8746 —0.0120

(6.41) (—4.80)

2.8991 —0.0323

(6.46) (-2.41)

3.4474 —0.0120 —0.0115

(7.52) (—4.82) (=5.08)

3.4807 —0.0364 —0.0118

(7.59) (-2.72) (-5.22)
Panel D. S&P 100

O imisl R;, R, Dum_month

2.5835 —0.0121

(6.89) (—4.83)

2.5913 —0.0246

(6.91) (-2.27)

3.0240 —0.0121 —0.0114

(7.92) (—4.86) (=5.05)

3.0343 —0.0268 —0.0116

(7.94) (—2.48) (-5.13)
Panel E. Dow Jones Industrial Average (DJIA)

O imisl R;, R, Dum_month

2.1818 —0.0121

(5.27) (—4.83)

2.2028 —0.0318

(5.31) (-2.39)

2.6948 —0.0121 —0.0109

(6.37) (—4.84) (—4.82)

2.7232 —0.0358 —0.0112

(6.43) (~2.69) (—4.96)
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Table 6
Risk-Return Tradeoff in Three Subsamples

Entries report the common slope estimates (4), average intercepts, and their f-statistics (in
parentheses) from the following system of equations,

R = Ci + AGim,H—l te

it+1 it+1>

where R,

i,t+1

denotes the daily excess return on stock i at time +1, R denotes the daily

m,t+1

excess return on the market portfolio at time #+1, and o, ., is the time-¢ expected conditional

covariance between R,,,, and R C, is the intercept for stock i , and 4 is the common

mt+1 *
slope coefficient. The results are presented for the sample period of January 4, 1988 —
September 28, 2007 (that excludes October 1987) as well as two subsample periods: July 10,
1986 — February 6, 1997 and February 7, 1997 — September 28, 2007. The ¢-statistics are
adjusted for heteroskedasticity and autocorrelation for each series and contemporaneous cross-
correlations among the error terms in panel regression.

Sample Period Wald Test C A
4.35 1.48%107* 2.9540
1/4/1988 — 9/28/2007
[1.00] (0.46) (3.63)
9.67 —642x107° 2.7480
7/10/1986 —2/6/1997
[0.99] (~0.20) (4.86)
6.58 —341%x107* 3.1244

2/7/1997 — 9/28/2007
[1.00] 0.72) (3.17)
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Table 7
The Intertemporal Risk-Return Relation with
Alternative Specifications of the Conditional Mean

Entries report the common slope estimates and the z-statistics (in parentheses) from the following
system of equations,
R ,,=C+4d0c,, ., +te i=12,..,n,

im,t+ it+1°

where R; ., denotes the daily excess return on stock 7 at time #+1, R denotes the daily excess

m,t+1

return on the market portfolio at time #+1, and &, ,,, is the time-f expected conditional covariance

im,t+

between R;,,, and R C, is the intercept for stock i and A is the common slope coefficient.

m,t+1 *
Estimation is based on daily data on Dow 30 stocks (#=30) over the sample period of July 10, 1986
to September 28, 2007. The market portfolio is proxied by the value-weighted
NYSE/AMEX/NASDAQ index. Each row reports the estimates based on a constant, AR(1),
MA(1), and ARMA(1,1) specification of the conditional mean of R,,,, and R The first

column reports the Wald statistics and the p-values in square brackets from testing the joint
hypothesis of all intercepts equal zero. The second column presents the cross-sectional averages of
C; (denoted by C ) and the average t-statistics of C; in parentheses. The last column displays the
common slope coefficients and the #-statistics of 4 in parentheses. The #-statistics are adjusted for
heteroskedasticity and autocorrelation for each series and contemporaneous cross-correlations
among the error terms in panel regression.

m,t+1 *

Conditional Mean Wald Test C A
Constant 6.42 211%x107* 3.0612
onstan
[1.00] (0.69) (5.97)
6.92 234%107* 3.2590
AR(1
0 [1.00] (0.76) (6.56)
7.40 —2.45%107* 3.3219
MA(1
M [1.00] (£0.80) (6.64)
8.96 _ - 3.5775
ARMA(1L,1) 2.63x10

[0.99] (~0.86) (7.16)
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Table 8
Risk-Return Tradeoff after Controlling for Macroeconomic Variables

Entries report the common slope estimates and the z-statistics (in parentheses) from the following system of
equations,

Ri,t+1 = Ci + AO—im,Hl + BXt te

it+1°

where R; .,

market portfolio at time #+1, and &, ,,, is the time-¢ expected conditional covariance between R, ., and R

denotes the daily excess return on stock i at time +1, R denotes the daily excess return on the

m,t+1
mt+l -
C. is the intercept for stock i , and 4 and B are the common slope coefficients. X, denotes a vector of control
variables including the default spread (DEF,) defined as the difference between the daily yields on BAA- and
AAA-rated corporate bonds, the term spread (TERM,) defined as the difference between the yields on 10-year
Treasury bond and 3-month Treasury bill, the daily federal funds rate (FED, ), and the crash dummy (Dum_month)
equals one for the month of October 1, 1987 — October 30, 1987 and zero otherwise. ADEF,, ATERM,, and
AFED, denote the first-difference in DEF,, TERM,, and FED, . The t-statistics are adjusted for heteroskedasticity

and autocorrelation for each series and contemporaneous cross-correlations among the error terms in panel
regression.

Cimsnt DEF, TERM, FED, ADEF, ATERM, AFED,  Dum_month
3.2613 —0.0059

(6.55) (~0.09)

3.8892 0.0078 —0.0115
(7.64) (0.13) (-5.07)
3.2497 0.6934

(6.54) (0.98)

3.8843 0.6499 —0.0114
(7.65) (0.92) (—5.06)
3.2884 —0.0202

(6.62) (—1.64)

3.9037 —0.0160 —0.0112
(7.69) (-1.32) (—4.93)
3.2707 ~0.2203

(6.59) (-1.01)

3.9018 —0.1847 —0.0114
(7.69) (~0.85) (=5.04)
3.2575 0.0026

(6.56) (0.39)

3.8984 0.0050 —0.0116
(7.68) (0.76) (-5.11)
3.2538 —0.0833

(6.55) (~1.64)

3.8915 —0.0858 —0.0115
(7.67) (-1.71) (—5.08)
3.8872 0.0289 —0.0176 —0.0003 —0.0112
(7.64) (0.44) (-1.16) (~0.03) (—4.89)
3.8887 0.6479 ~0.2031 —0.0875 —0.0114

(7.66) (0.92) (~0.93) (~1.74) (=5.04)
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Table 9
Risk-Return Tradeoff after Controlling for the Conditional Volatility of Individual Stock

Entries report the common slope estimates and the #-statistics (in parentheses) from the following
system of equations,

=C, +4- Oimist T B- VOL, m te

l t+1 T it+1>

where R, .., denotes the daily excess return on stock i at time #+1, R denotes the daily excess

i,t+1 m,t+1

return on the market portfolio at time #+1, o, ,,, is the time-f expected conditional covariance

between R,,,, and R and VOL,,,, is the time-f expected conditional volatility of R, .

m,t+1
VOL,,,, is the conditional variance of the daily excess returns on stock i at time r+1 (o7,,;)
estimated using the AR(1)-GARCH(1,1) model and can be interpreted as the conditional
idiosyncratic volatility of individual stocks. VOL,,,, is the range daily standard deviation of
individual stocks defined as Max(InF,,)—Min(InF,,) and can be interpreted as the conditional

total volatility of individual stocks. C, is the intercept for stock i , and 4 and B are the common
slope coefficients. Dum_month is the crash dummy that equals one for the month of October 1,
1987 — October 30, 1987 and zero otherwise. The market portfolio is measured by the Value-
weighted NYSE/AMEX/NASDAQ index. The #-statistics are adjusted for heteroskedasticity and
autocorrelation for each series and contemporaneous cross-correlations among the error terms in
panel regression.

Cov,(R; 1, R, 1) VOL, ., October 1987 crash
O imisl GARCH volatility Range volatility Dum_month
3.0611 0.0238
(6.02) (1.85)

3.7091 0.0215 -0.0113
(7.13) (1.67) (=5.01)
2.9717 0.0105
(5.82) (2.24)
3.5992 0.0111 —0.0116
(6.92) (2.36) (-5.12)
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Table 10
Risk-Return Tradeoff after Controlling for the Conditional Volatility of Market Portfolio

Entries report the common slope estimates and the z-statistics (in parentheses) from the following system of
equations,

Ri,t+1 = Ci +4- Oims1 T B- VOLm,t+l te

it+1

where R;,,, denotes the daily excess return on stock 7 at time #+1, R, ,,, denotes the daily excess return on
the market portfolio at time #+1, o, ,,, is the time-f expected conditional covariance between R,,,, and
R, ..,and VOL, , is the time-f expected conditional volatility of R, ,, obtained from the GARCH,
Range, and Option Implied Volatility models: (1) VOL,, ., is the conditional variance of the daily excess

returns on the market portfolio at time #+1 (O'iﬁl) estimated using the AR(1)-GARCH(1,1) model; (2)
VOL,,,., is the range daily standard deviation of the market portfolio defined as Max(In B, ,)—Min(In P, ) ;
and (3) VOL,,,,, is the implied market volatility (VXO,) obtained from the S&P 100 index options. C; is

the intercept for stock i , and A and B are the common slope coefficients. Dum month is the crash dummy
that equals one for the month of October 1, 1987 — October 30, 1987 and zero otherwise. The market
portfolio is measured by the value-weighted NYSE/AMEX/NASDAQ index. The #-statistics are adjusted for
heteroskedasticity and autocorrelation for each series and contemporaneous cross-correlations among the
error terms in panel regression.

Cov, (R 1R, ,41) VOL, ., October 1987 crash
O i is1 GARCH volatility Range volatility Implied volatility Dum_month
2.8868 1.9843
(5.39) (2.02)

3.0829 4.9089 —0.0162
(5.74) (4.55) (~6.50)
2.8831 0.0401

(5.55) (2.32)

3.4092 0.0602 —0.0131
(6.49) (3.42) (=5.66)
2.8432 0.0045

(5.46) (2.49)

3.3565 0.0069 —0.0134
(6.39) (3.73) (=5.78)
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Table 11
Risk Premiums Induced by Conditional Covariation with Macroeconomic Variables

Entries report the common slope estimates and the #-statistics (in parentheses) from the following system of
equations,

R,,=C+4-0

et B0 per 1 ¥ By O gppag i1 T B3 Oy ppp 1 €544

where o, ,,, measures the time-/ expected conditional covariance between the excess returns on each stock
(R; ) and the market portfolio (R, ,.,), 0; pgr,,; measures the time-z expected conditional covariance between
R, ., and the level and changes in the default spread (DEF,,ADEF,), O, rzpyr..+1 18 the time-¢ expected conditional
covariance between R, ., and the level and changes in the term spread (TERM ,,ATERM ), and O, jzp ., is the

time-¢ expected conditional covariance between R and the level and changes in the federal funds rate

i,t+1
(FED,,AFED,). C; is the intercept for stock i , and 4, B, B,, and B; are the common slope coefficients. The ¢-

statistics are adjusted for heteroskedasticity and autocorrelation for each series and contemporaneous cross-
correlations among the error terms in panel regression.

O imt1 O DEF 141 O TERM 111 O FED 111 O ADEF t+1 O ATERM 141 O AFED, 111

3.1687 0.1399
(6.23) (0.83)
3.1356 0.0788
(6.02) (0.78)
3.1454 —0.0219
(5.96) (~0.65)
3.0124 —0.0083
(5.30) (~0.89)
3.2838 —0.0053
(6.60) (~0.69)
3.1201 —0.0047
6.11) (-1.10)
3.0494 0.1474 —0.0286 —0.0074
(5.67) (0.88) (~0.82) (~0.93)
2.9956 0.0446 —0.0028 ~0.0036
(5.25) (0.40) (~0.25) (-0.77)
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Table 12
Risk Premiums Induced by Conditional Covariation with Financial Risk Factors

Entries report the common slope estimates and the z-statistics (in parentheses) from the following system of
equations,

R, =Ci+A4-04 1 +B 0 sup i1+ B2 O g i1 + By O yiomrs1 +€0v1

where o, ,,, measures the time-/ expected conditional covariance between the excess returns on each stock
(R; ) and the market portfolio (R, ,.;), 0; qp,,1 Mmeasures the time- expected conditional covariance between
R, ., and the level and change in the size factor (SMB,,ASMB,), 0, ;; ;. 18 the time-t expected conditional
covariance between R;,,, and the level and change in the book-to-market factor (HML,,AHML,), and &; 001 141
is the time-¢ expected conditional covariance between R, ,,, and the level and change in the momentum factor

(MOM,,AMOM,) . C, is the intercept for stock i , and A, B, B, and B; are the common slope coefficients. The -

statistics are adjusted for heteroskedasticity and autocorrelation for each series and contemporaneous cross-
correlations among the error terms in panel regression.

O im,r+1 O SMB.1+1 O HML,1+1 O, MoM 1+1 O ASMB.1+1 O AHML .1 +1 O AMOM 141

3.4870 0.7383
(4.85) (0.43)
3.2519 —0.0473
(4.66) (~0.03)
3.8854 4.4342
(6.39) (2.03)
3.9328 5.2897
(6.78) (2.17)
3.5711 ~1.0799
(6.83) (~1.54)
3.5932 ~1.1013
(6.88) (~1.60)
4.8407 1.7139 5.3628 ~1.1602
(5.23) (0.92) (1.97) (-1.63)
4.5013 0.5628 5.6825 ~1.1700
(5.30) (0.32) 2.21) (~1.64)
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Table 13
Risk Premiums Induced by Conditional Covariation with Unexpected News in Market Volatility

Entries report the common slope estimates and the z-statistics (in parentheses) from the following system of

equations,

R, =Ci+A4:04 01 B0y ppor, 111+ € 1015

where o, ,,, measures the time-7 expected conditional covariance between the excess returns on each stock
(R;,,;) and the market portfolio (R,,,), where R

NYSE/AMEX/NASDAQ index. o0 zyo; .1 Mmeasures the time-f expected conditional covariance between

mes1 18 proxied by the value-weighted

R;,., and the change in the conditional volatility of the market portfolio denoted by AVOL, . : (1)

mt+1 *

AVOL,, ., is the change in the GARCH conditional volatility of S&P 500 index return (AGARCH,, ,,,); (2)
AVOL,,,., is the change in the option implied volatility of S&P 500 index return (AVXO, ,.,); and (3)
AVOL,, ., 1s the change in the range volatility of S&P 500 index return (ARange,,,,,). C; is the intercept

for stock i , and A and B are the common slope coefficients. Dum_month is the crash dummy that equals one
for the month of October 1, 1987 — October 30, 1987 and zero otherwise. The ¢-statistics are adjusted for
heteroskedasticity and autocorrelation for each series and contemporaneous cross-correlations among the
error terms in panel regression.

Cov,(R; ;>R ,11) Cov,(R,,,,AVOL,,,.,) October 1987 crash
O sl AGARCH , ARange,, ., AVXO,, ., Dum_month
2.4589 —0.2559
(4.56) (-3.73)

3.0190 —0.2890 —0.0123
(5.53) (—4.20) (=5.41)
2.0336 —0.2583

(3.47) (—~4.23)

2.5894 —0.2812 —0.0118
(4.35) (—4.60) (-5.23)
1.4102 —0.4106

(2.02) (-3.80)

1.6675 —0.5145 —0.0128
(2.38) (—4.74) (-5.62)




Figure 1. Mean-Reverting Dynamic Conditional Correlations

This figure presents the time-varying conditional correlations of daily excess returns on Dow 30 stocks with daily excess returns on the market portfolio.
The market portfolio is measured by the Dow Jones Industrial Average (DJIA). The conditional correlations are obtained from the mean-reverting DCC
model over the sample period of July 10, 1986 to September 28, 2007 (5,354 daily observations).
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Figure 1 (continued)
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Figure 1 (continued)
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Figure 2. Weighted Average Conditional Covariance vs. Conditional Variance of the Market
In Panel A (Panel B), the dashed line denotes the equal-weighted (price-weighted) average of the conditional covariances of
daily excess returns on Dow 30 stocks with daily excess returns on the market portfolio. The solid line in both panels denotes

the conditional variance of daily excess returns on the market portfolio. The market portfolio is measured by the Dow Jones
Industrial Average (DJIA). The conditional variance-covariance estimates are obtained from the mean-reverting DCC model.
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Figure 3. Daily Abnormal Returns on Dow 30 Stocks

This figure presents the magnitude and statistical significance of daily abnormal returns on Dow 30 stocks.
Intercepts (denoted by C;) that differ across stocks are obtained from estimating the system of equations in (10)-(14)
over the sample period July 10, 1986—September 28, 2007. The market portfolio is measured by the value-weighted
NYSE/AMEX/NASDAQ (CRSP), NYSE, S&P 500, S&P 100, and Dow Jones Industrial Average (DJIA) indices.
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Figure 3 (continued)
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Figure 3 (continued)

Alphas from Panel Regressions: S&P 500
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Figure 3 (continued)

Alphas from Panel Regressions: S&P 100
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Figure 3 (continued)

Alphas from Panel Regressions: DJIA
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