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A Simple Method for Estimating Betas When Factors Are 
Measured with Error 

 
 

Abstract 
 

We propose a simple method for estimating betas (factor loadings) when factors are 
measured with error: Ordinary Least-squares Instrumental Variable Estimator (OLIVE).  OLIVE 
is intuitive and easy to implement.  OLIVE performs well when the number of instruments 
becomes large (can be larger than the sample size), while the performance of conventional 
instrumental variable methods and two-step GMM becomes poor or even infeasible.  OLIVE is 
especially suitable for estimating asset return betas, since this is often a large N and small T 
setting.  Intuitively, since all asset returns vary together with a common set of factors, one can use 
information contained in other asset returns to improve the beta estimate for a given asset.  We 
apply the method to reexamine Lettau and Ludvigson’s (2001b) test of the (C)CAPM.  We find 
that in regressions where macroeconomic factors are included, using OLIVE instead of OLS beta 
estimates improves the R-squared significantly (e.g., from 31% to 80%).  More importantly, our 
results based on OLIVE beta estimates help to resolve two puzzling findings by Lettau and 
Ludvigson (2001b) and Jagannathan and Wang (1996): first, the sign of the average risk premium 
on the beta for the market return changes from negative to positive, consistent with the theory; 
second, the estimated value of average zero-beta rate is no longer too high (e.g., from 5.19% to 
1.91% per quarter). 

 
 

JEL Classifications: C13, C30, G12. 
Keywords: factor model, beta estimation, measurement error, instrumental variable, many 
instruments, GMM. 
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A Simple Method for Estimating Betas When Factors Are 
Measured with Error 

 
1. Introduction 

In financial economics, we often need to estimate asset return betas (factor loadings).  

OLS is the simplest and most widely used method by both academic researchers and 

practitioners.  However, factors, especially those constructed using macroeconomic data, are 

known to contain large measurement error.  In addition, even when a factor is measured 

accurately, it may still be different from the true underlying factor.  For example, the return on the 

stock market index is perhaps measured reasonably accurately, but it may still contain large 

“measurement error” in the sense that it may be an imperfect proxy for the return on the true 

market portfolio (Roll’s (1977) critique).  Under these circumstances, the OLS beta estimator will 

be inconsistent.  Furthermore, in the Fama and MacBeth (1973) two-pass framework, if the first-

pass beta estimates are inconsistent due to measurement error in factors, then the second-pass risk 

premia and zero-beta rate estimates will be inconsistent as well.   

Instrumental variable estimation is the usual solution to the measurement error problem.  

Intuitively, since all asset returns vary together with a common set of factors, one can use 

information contained in other asset returns to improve the beta estimate for a given asset.  This is 

often a large N and small T setting, because there are typically more assets or stocks than time 

periods.  Ideally, we would want to use all available information, that is, all valid instruments (the 

other (N-1) asset returns), but conventional instrumental variable estimators such as 2SLS (Two-

Stage Least Squares) perform poorly when the number of instruments is large.  This is similar to 

the “weak instruments” problem (Hahn and Hausman (2002)).  Further, these methods cannot 

accommodate more instruments than the sample size. 

In this paper, we propose a simple method for estimating betas when factors are 

measured with error: Ordinary Least-squares Instrumental Variable Estimator (OLIVE).  OLIVE 

easily allows for large numbers of instruments (can be larger than the sample size).  It is intuitive, 
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easy to implement, and achieves better performance in simulations than other instrumental 

variable estimators such as 2SLS, B2SLS (Bias-corrected Two-Stage Least Squares), LIML 

(Limited Information Maximum Likelihood), and FULLER (Fuller (1977)), especially when the 

number of potential instruments (N-1) is large and the sample size (T) is small. 

We show that OLIVE is a consistent estimator, under the assumption that idiosyncratic 

errors are cross-sectionally independent (Proposition 1).  Consistency is obtained when the 

number of assets (N) is fixed or goes to infinity.  When idiosyncratic errors are cross-sectionally 

correlated, returns of other assets as instruments are invalid in the conventional sense because 

they are correlated with the regression errors.  We show that even in this case, OLIVE beta 

estimates remain consistent, provided that N is large (Proposition 2).  In a sense, we exploit the 

large N of panel data to arrive at a consistent estimator.  Since conventional GMM breaks down 

for N T> , and consistency in the absence of valid instruments requires large N, OLIVE’s ability 

to handle large N is appealing. 

OLIVE can be viewed as a one-step GMM estimator using the identity weighting matrix.  

When N is larger than T, the optimal weighting matrix in the GMM estimation cannot be 

consistently estimated in the usual unconstrained way.  However, in our particular setting, we are 

able to derive the two-step equation-by-equation GMM estimator, as well as the joint GMM 

estimator, based on the restrictions implied by the model.  Even though the two-step GMM 

estimator is asymptotically optimal, it performs worse than OLIVE in simulations.  This is 

because the two-step GMM estimator has poor finite sample properties due to imprecise 

estimation of the optimal weighting matrix. 

Previous studies also have shown that the two-step GMM estimator which is optimal in 

the asymptotic sense can be severely biased in finite samples of reasonable size (e.g., Ferson and 

Foerster (1994), Hansen, Heaton, and Yaron (1996), Newey and Smith (2004), and Doran and 

Schmidt (2006)).  One-step GMM estimators use weighting matrices that are independent of 

estimated parameters, whereas the efficient two-step GMM estimator weighs the moment 
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conditions by a consistent estimate of their covariance matrix. This weighting matrix is 

constructed using an initial consistent estimate of the parameters in the model.  Wyhowski (1998) 

performs simulations for the dynamic panel data model that show the GMM estimator performs 

quite well if the true optimal weighting matrix is used.  Methods to correct the bias problem 

include, for example, using a subset of the moment conditions and normal quasi-MLE.  Other 

solutions to this problem use higher order expansions to construct weighting matrix estimators, or 

use generalized empirical likelihood (G.E.L.) estimators as in Newey and Smith (2004).  In 

another recent paper, Doran and Schmidt (2006) suggest using principal components of the 

weighting matrix.  Given the difficulty in estimating the optimal weighting matrix, especially 

when N is large, using identity weighing matrix becomes an intuitive option.  OLIVE can be 

viewed as a GMM estimator using the identity weighting matrix. 

Fama and MacBeth’s (1973) two-pass method can be modified by using OLIVE instead 

of OLS to estimate betas in the first-pass.  As an empirical application, we reexamine Lettau and 

Ludvigson’s (2001b) test of the (C)CAPM using this modified Fama-MacBeth method.  Lettau 

and Ludvigson’s factor cay has been found to have strong forecasting power for excess returns on 

aggregate stock market indices.  The factor cay is the cointegrating residual between log 

consumption c, log asset wealth a, and log labor income y.  Macroeconomic variables usually 

contain large measurement error.  We find that in regressions where macroeconomic factors are 

included, using OLIVE instead of OLS improves the R2 significantly (e.g., from 31% to 80%). 

More importantly, our results based on OLIVE beta estimates help to resolve two 

puzzling findings by Lettau and Ludvigson (2001b).  As mentioned earlier, if we use OLS when 

factors are measured with error, both the first-pass beta estimates and the second-pass risk premia 

and zero-beta rate estimates will be inconsistent.  On the other hand, since OLIVE beta estimates 

are consistent even when factors contain measurement error, the risk premia and zero-beta rate 

can be consistently estimated in the second-pass if OLIVE is used in the first-pass to estimate 

betas. 
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First, Lettau and Ludvigson (2001b) state that “[a] problem with this model, however, is 

that there is a negative average risk price on the beta for the value-weighted return.”  They also 

note that “Jagannathan and Wang (1996) report a similar finding for the signs of the risk prices on 

the market and human capital betas” (page 1259).  When we use OLIVE beta estimates, this 

problem goes away.  Using OLIVE instead of OLS estimation in the first-pass changes the sign of 

the average risk premium on the beta for the value-weighted market index from negative to 

positive, which is in accordance with the theory. 

Second, in Lettau and Ludvigson (2001b), “the estimated value of the average zero-beta 

rate is large.”  As the authors observed, this finding is not uncommon in studies that use 

macroeconomic factors.  They note that Jagannathan and Wang (1996) also find the estimated 

zero-beta rates to be large.  Lettau and Ludvigson (2001b) note that sampling error could be one 

of the potential explanations for this puzzling finding.  However, they conclude that 

“[p]rocedures for discriminating the sampling error explanation for these large estimates of the 

zero-beta rate from others are not obvious, and its development is left to future research” (page 

1260).  We find that, when OLIVE beta estimates from the first-pass are used, the estimated value 

of the average zero-beta rate in the second-pass is no longer too high (e.g., from 5.19% to 1.91% 

per quarter).  Our results suggest that measurement error in factors is the cause of this problem.  

Sampling error is a second-order issue; it becomes negligible as the sample size T becomes large.  

Unlike sampling error, the measurement error problem does not diminish as the sample size T 

becomes large, because OLS produces inconsistent beta estimates.  When macroeconomic factors 

with measurement error are included in the model, OLIVE can provide more precise beta 

estimates in the first-pass, which lead to more precise estimates of the zero-beta rate in the 

second-pass. 

In contrast, it makes almost no difference whether we use OLIVE or OLS to estimate 

betas for the Fama-French three-factor model, where the factors may contain little measurement 

error as they are constructed from stock returns.  Overall, our results from this empirical 
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application validate the use of OLIVE to help improve beta estimation when factors are measured 

with error.  Our empirical results support and strengthen Lettau and Ludvigson (2001b) and 

Jagannathan and Wang (1996) by resolving some of their puzzling findings.  Our findings are 

also consistent with the theme in Ferson, Sarkissian, and Simin (2007) that the (C)CAPMs might 

work better than previously recognized in the literature. 

Many existing empirical asset pricing models implicitly assume that macroeconomic 

variables are measured without error, for example, Chen, Roll, and Ross (1986).  Previous studies 

have noted the measurement error problem in this context (see, e.g., Ferson and Harvey (1999)).  

Connor and Korajczyk (1991) develop and apply a procedure similar to 2SLS.  They first regress 

macroeconomic variables on statistical factors obtained from Asymptotic Principal Components 

(APC, developed in Connor and Korajczyk (1986)), and then use fitted values instead of original 

macroeconomic variables in asset pricing tests.  They find that most of the variation in 

macroeconomic variables is measurement error.  Their method can potentially overcome the 

measurement error problem in macroeconomic variables.  However, since the fitted values are 

linear combinations of statistical factors, they do not contain any more information beyond 

statistical factors, which lack clear economic interpretations.  Wei, Lee, and Chen (1991) also 

note the presence of errors-in-variables problem in factors.  They use the standard econometric 

treatment: instrumental variables approach (IV or 2SLS).  Both their factors and instruments are 

size-based portfolios.  Even if there is measurement error in size-based portfolio returns, the 

problem would not be solved by using other size-based portfolio returns as instruments.  As one 

would expect, they find extremely high first-stage R2’s.  This means their IV results will be very 

similar to OLS results, and indeed that is what they find. 

The rest of the paper is organized as follows.  In Section 2, we describe the model setup 

and introduce the simple estimator, OLIVE.  We also outline other conventional IV estimators.  

In Section 3, as a theoretical extension, we derive the two-step equation-by-equation GMM 

estimator and the joint GMM estimator.  We conduct a Monte Carlo simulation study to compare 
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the above estimators in Section 4.  In Section 5, we reexamine some results in Lettau and 

Ludvigson (2001b) as an empirical application of OLIVE.  Section 6 concludes. 

 

2. Estimation Framework 

2.1.  Model Setup 

To describe the model, we begin by assuming that asset returns are generated by a linear 

multi-factor model: 

* ' ,it t i ity x B e= +      (1) 

where i = 1, …, N, t = 1, …, T, yit is asset i’s return at time t, xt* is an 1M ×  vector of true 

factors at time t, and βi is an 1M ×  vector of factor loadings for asset i.  However, the true 

factors xt* are observed with error: 

* ,t t tx x v= +       (2) 

where vt is an 1M ×  vector of measurement error.  This is similar to the setup in Connor and 

Korajczyk (1991) and Wansbeek and Meijer (2000).  Using (2), we can rewrite (1) as:  

' ,it t i ity x B ε= +      (3) 

where ' .it it t ie v Bε = −  

We cannot use OLS to estimate βi equation-by-equation, even though xt is observable, 

because the error term εit is correlated with the observable factors xt due to the measurement error 

vt. 

For a fixed asset i, rewrite (3) as  

,i i iY XB ε= +  (4) 

where Yi is a T vector of asset returns, 1[ , ( ,... ) ']TX x xι≡  is a ( 1)T M× +  matrix of observable 

factors (ι is a T vector of 1’s), and Bi is an (M+1) vector of factor loadings.  As noted before, 

OLS produces inconsistent estimates of factor loadings:  
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1( ' ) ' .
OLS
i iB X X X Y−=      (5) 

Let 1 1 1[ ,... , ,..., ]i i i NY Y Y Y Y− − +≡  be a ( 1)T N× − matrix of all asset returns excluding the 

ith asset.  Then Y-i can serve as instrumental variables. Let [ , ],i iZ Yι −≡  multiply both sides of 

equation (4) by Zi to obtain: 

' ' ' .i i i i i iZ Y Z XB Z ε= +     (6) 

It can be shown that the usual IV or 2SLS is equivalent to running Feasible GLS on (6); 

that is,  

2 1 1 1( ' ( ' ) ' ) ' ( ' ) ' .
SLS

i i i i i i i i i iB X Z Z Z Z X X Z Z Z Z Y− − −=    (7) 

The idea of 2SLS is first to project the regressors (X) onto the space of instruments ( iZ ), 

and then to regress the dependent variables ( iY ) on fitted values of regressors instead of 

regressors themselves.  It is well known that two-staged least squares (2SLS) estimators may 

perform poorly when the instruments are weak or when number of instruments is large.  In this 

case 2SLS tends to suffer from substantial small sample biases. 

 

2.2. OLIVE 

The motivation behind our approach begins with the fact that 2SLS only works when N 

(number of instruments) is much smaller than T (sample size), which is not the case for most 

finance applications.  To illustrate the problem, imagine the case where N = T.  Then the fitted 

values are the same as original regressors, and 2SLS becomes the same as OLS.  This problem of 

2SLS is related to the “weak instruments” literature in econometrics, which has grown rapidly in 

recent years; see for example Hahn and Hausman (2002). 

We propose to estimate factor loadings Bi by simply running OLS on equation (6).  We 

call it Ordinary Least-squares Instrumental Variable Estimator (OLIVE): 
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1( ' ' ) ' ' .
OLIVE
i i i i i iB X Z Z X X Z Z Y−=      (8) 

Proposition 1.  Under the assumption that idiosyncratic errors ite  are cross-sectionally 

independent, then for either fixed N or N going to infinity, the OLIVE estimator is T  consistent 

and asymptotically normal. 

See Appendix A for a proof of Proposition 1.  Proposition 1 relies on the assumption of 

valid instruments.  That is, jte  is uncorrelated with ite  ( j i≠ ).  However, if the idiosyncratic 

errors are also cross-sectionally correlated, none of the instruments will be valid in the 

conventional sense.  For example, if the objective is to estimate 1B , by equation (3), 

1 1 1 't t te B vε = − .  When 1te  is correlated with jte , jty  will be correlated with 1tε .  Thus jty  will 

not be a valid instrument.  However, we can still establish the consistency of the OLIVE, 

provided that the cross-sectional correlation is not too strong and N is large.  To this end, let 

( )ij it jtE e eγ = .  We assume  

1

N

ij
j

Cγ
=

≤ < ∞∑       (9) 

for each i.  This condition is analogous to the sum of autocovariances being bounded in the time 

series context, a requirement for a time series being weakly correlated.  Bai (2003) shows that the 

condition implies (3) being an approximate factor model of Chamberlain and Rothschild (1983). 

 Proposition 2.  Under the assumption of weak cross-sectional correlation for the 

idiosyncratic errors as stated in (9), if / 0T N → , then the OLIVE estimator is T  consistent 

and asymptotically normal. 

 A proof of Proposition 2 is provided in Appendix B.  Mere consistency would only 

require 1/ 0N → .  It is the T  consistency and asymptotic normality that require 

/ 0T N → .  Note that under fixed N, all IV estimators discussed in the next section including 
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OLIVE (using jty  as instruments) will be inconsistent due to the lack of valid instruments.  In a 

sense, we exploit the large N of panel data to arrive at a consistent estimator.  Far from being a 

nuisance, large N is clearly beneficial.  In view that conventional GMM breaks down for N T>  

and consistency in the absence of valid instruments requires large N, OLIVE’s ability to handle 

large N is appealing. 

Let 
OLIVE
ii iY X Bε = −  and 

2 1 ' ,
1

i i i
T M

σ ε ε=
− −

 the variance-covariance matrix of 

OLIVE
iB  is a ( 1) ( 1)M M+ × +  matrix: 

2 1 1( ' ' ) ( ' ' ' )( ' ' ) .i i i i i i i i i iX Z Z X X Z Z Z Z X X Z Z Xσ − −Ω =   (10) 

The above estimation is done for each i = 1, …, N.  With the Bi obtained for each i, we 

can estimate xt* using a cross-section regression based on equation (1).  This is done for each t = 

1, …, T.  Given xt*, the estimated risk premia can be recovered as in Black, Jensen, and Scholes 

(1972) (see also Campbell, Lo, and MacKinlay (1997, Chapter 6)). 

The above setup also allows us to test the validity of the multi-factor models.  When the 

instrumental variables are [ , ],i iZ Yι −≡  the constant regressor ι  itself is an instrumental variable.  

The test for the constant coefficient’s being zero is 
11

iat =
Ω

, where 
11

Ω is the first diagonal 

element of the inverse matrix 
1

i
−

Ω . 

There is an alternative method for estimating the true factors, i.e., the method of Connor 

and Korajczyk (1991).  They first regress the observed factors on APC estimated statistical 

factors and use the fitted values as estimates of the true factors (rotate observed factors onto 

statistical factors).  They find the R-squared to be quite small, and they interpret this as evidence 

for much measurement error in the observed factors.  APC should have good performance 

theoretically and empirically.  However, the statistical factors using the principle-components 
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method lack clear economic interpretations.  In contrast, note that estimated factors xt* using 

OLIVE has the same interpretations as xt, the observable factors.  Thus the estimated risk premia 

also have economic interpretations. 

 

2.3. Other IV Estimators 

We compare the performance of OLIVE with OLS and several well known IV 

estimators: 2SLS, LIML, B2SLS, as well as FULLER.  OLS is to be considered as a benchmark.  

2SLS is the most widely used IV estimator.  It has finite sample bias that depends on the number 

of instruments used (K) and inversely on the R2 of the first-stage regression (Hahn and Hausman 

(2002)).  The higher-order mean bias of 2SLS is proportional to the number of instruments K. 

However 2SLS can have smaller higher-order mean squared error (MSE) than LIML using the 

second-order approximations when the number of instruments is not too large.  LIML is known 

not to have finite sample moments of any order.  LIML is also known to be median unbiased to 

second order and to be admissible for median unbiased estimators (Rothenberg (1983)). The 

higher-order mean bias for LIML does not depend on K.  B2SLS denotes a bias adjusted version 

of 2SLS. 

The formulae for these estimators are as follows: 

Let 1( ' ) 'P Z Z Z Z−=  be the idempotent projection matrix, M I P= − , 

[ , ]W Y X≡ , 1 2 1 1( , , , , , , )i i NZ y y y y y− += , then: 

1

1
2

1

1
2

1

1

( ' ) '

( ' ) '

( '( ) ) '( )

( '( ) ) '( )

( '( ) ) '( )

( ' ' ) ' '

OLS

SLS

LIML

B SLS

FULLER

OLIVE

X X X Y

X PX X PY

X P M X X P M Y

X P M X X P M Y

X P M X X P M Y

X ZZ X X ZZ Y

β

β

β λ λ

β λ λ

β λ λ

β

−

−

−

−

−

−

=

=

= − −

= − −

= − −

=

.  (11) 
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For the above equations, 2SLS, LIML, B2SLS, and FULLER can all be regarded as κ-

class estimators given by
' '
' '

X PY X MY
X PX X MX

κ
κ

−
−

.  For 0κ = , we get 2SLS.  Forκ λ=  , which is the 

smallest eigenvalue of the matrix 1' ( ' )W PW W MW − , we obtain LIML.  Forκ λ= , which 

equals 
2K

T
−

, we obtain B2SLS.  Forκ λ= , which equals
T K
αλ −
−

, we obtain FULLER.  

Following Hahn, Hausman, and Kuersteiner (2004), we consider the choice of α to be either 1 or 

4 in our simulation studies later (Section 4).  The choice of 1α = is advocated by Davidson and 

McKinnon (1993), which has the smallest bias, while 4α = has a nonzero higher mean bias, but 

a smaller MSE according to calculation based on Rothenberg’s (1983) analysis. 

 

3. Efficient Two-Step GMM 

What makes OLIVE appealing is its ease of use.  Since OLIVE is a GMM estimator 

when setting the weighting matrix to an identity matrix, it is natural to try to improve the 

efficiency of the estimator by using the optimal weighting matrix.  Traditional unconstrained 

GMM will break down when N>T (the estimated weighting matrix is not invertible).  We will 

derive the theoretical weighting matrix, which depends on far fewer number of parameters.  

Replacing the unknown parameters by their estimated counterparts will result in an estimated 

theoretical weighting matrix, which is invertible even for N>T.  In Section 3.1., we describe the 

equation-by-equation GMM estimation, and in Section 3.2., we describe the joint GMM 

estimation. 

 

3.1. Equation-by-Equation GMM 

Consider estimating Bi for equation i.  By definition, ' 'it it t i it t iy x B e v Bε = − = − .  For 

every j )( ij ≠ , jty  can serve as an instrument.  Let ( * ' )( ' )ijt jt it t j jt it t iu y x B e e v Bε= = + − .  
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Under the assumption that ite , jte , tv , and *tx  are mutually independent, the moment 

conditions, or orthogonality conditions, will be satisfied at the true value of iB : 

( )( ) ' 0ijt jt it t iE u E y y x B = − =  .    (12) 

Each of the (N-1) moment equations corresponds to a sample moment, and we write these (N-1) 

sample moments as: 

1

1( ) ( )
T

ij i ijt i
t

u B u B
T =

= ∑ .     (13) 

Let ( )i iu B  be defined by stacking ( )ij iu B  over j.  For a given weighting matrix iW , the 

equation-by-equation GMM is estimated by minimizing: 1min ( ) ' ( )
i

i ii i i
B

u B W u B− .  For each i, t, 

let itu  be the (N-1) vector by stacking ijtu  over j.  The optimal weighting matrix is 

( ')i it itW E u u= .  Given the above functional form for ijtu , iW  can be parameterized in terms of 

var( )ite  and Bi for each i, var( )tv , and var( *) var( ) var( )t t tx x v= − . 

We now derive the expression of Wi.  The (j, k)th element of Wi ( ,j i k i≠ ≠ ) is given by: 

( )
( ) ( ) ( )

( )( )

* *

*

*

( ) ( ' )( ' )

var( ) ' var( )

' ' var( ) 'var( )

' var( ) var( ) var( ) 'var( )

' var( ) var(

ijt ikt jt it t i it i t kt

jt it i t i kt

j t jt t k kt it i t i

j t k jk jt it i t i

j t k jk

E u u E y e v B e B v y

E y e B v B y

E B x e x B e e B v B

E B x B e e B v B

B x B e

δ

δ

 = − − 
 = + 
 = + + + 
 = + + 

= +( )( )) var( ) ' var( )jt it i t ie B v B+

 ,  (14) 

where 1jkδ =  if j k= , and zero otherwise.  In the last equality, Bjs are assumed non random 

coefficients. 

For example, suppose 1i = , then the above covariance matrix is simply the following.  

Let  
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2

3
1

N

B
B

B

−

 
 
 Λ =
 
 
 

,       (15) 

then the (N-1) by (N-1) covariance matrix W1 is given by: 

( )( )1 1 1 1 1 1 1var( ) ' var( ) var( *) 't t tW e B v B x− − −= + Λ Λ +Ω ,   (16) 

where 1−Ω  is a diagonal matrix of dimension (N-1), that is  

1 2(var( ), , var( ))t Ntdiag e e−Ω = .   (17) 

Note that ( )1 1 1var( ) 'var( )t te B v B+  is a scalar, which is the variance of the OLS residual 

1tε , thus can be estimated by 
2

1

1 T

it
tT
ε

=
∑ . 

For a general i, the formula for Wi becomes: 

( )( )var( ) 'var( ) var( *) 'i it i t i i t i iW e B v B x− − −= + Λ Λ +Ω . (18) 

The analytical expression for the inverse of Wi is: 

( )

( )( )

1* 1
1

11 1 * 1 1 1

var( )
var( ) 'var( )

var( ) ' '

var( )

i t i i
i

it i t i

i i i t i i i i i

it

x
W

e B v B

x

ε

−−
− − −−

−− − − − −
− − − − − − − −

Λ Λ +Ω
=

+

Ω −Ω Λ +Λ Ω Λ Λ Ω
=

  (19) 

The estimation procedure is then as follows. 

First we use OLIVE  to obtain, for each asset i, iB  and 'it it t iy x Bε = − , which equals 

an estimate of 'it t ie v B− .  The denominator of 1
iW −  is computed by the sample variance of itε . 

Second, given iB , we run cross-sectional regression to obtain *tx  for each t, and then 

estimate var( *)tx .  Also, given *tx , we can estimate *it it t ie y x B= − , so that var( )ite  are 

computed for each i. 
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Third, we use the above estimates to construct a consistent estimate of ( ')t tE u u , and use 

that to do two-step GMM.  For each asset i, there is an (N-1)×( N-1) weighing matrix Wi. 

The estimate of beta is: 

1 11( ' ' ) ' 'i i ii i i i iB X Z W Z X X Z W Z Y
− −−= .     (20) 

The choice of Wi is optimal in the sense that it leads to the smallest asymptotic variance 

matrix for the GMM estimate.  However, a number of papers have found that GMM estimators 

using all of the available moment conditions may have poor finite sample properties in highly 

identified models.  With many moment conditions, the optimal weighting matrix is poorly 

estimated.  The problem becomes more severe when many of the moment conditions (implicit 

instruments) are “weak.”  The poor finite sample performance of the estimates has two aspects, as 

noted by Doran and Schmidt (2006).  First, the estimates may be seriously biased.  This is 

generally believed to be a result of correlation between the estimated weighting matrix iW  and 

the sample moment conditions in equation (13).  Second, the asymptotic variance expression may 

seriously understate the finite sample variance of the estimates, so that the estimates are 

spuriously precise. 

 

3.2. Joint GMM 

In this subsection, we discuss joint GMM estimation of ( )1 2', ', , ' 'NB B B B= .  Let tu  

be the vector with elements ijtu  for all i, j pairs ( )j i≠ .  The optimal GMM weighting matrix, 

( ')t tE u u , is difficult  to estimate in the usual unconstrained way because the number of moment 

conditions, N(N-1), can be much larger than T.  Under our model specification, however, 

( ')t tE u u  can also be parameterized in terms of var( )ite , Bi , var( )tv , and var( *)tx . 
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The N(N-1) by N(N-1) weighting matrix W can be partitioned into N2 block matrices, 

each being (N-1) by (N-1).  We denote these block matrices ( ')ih it htW E u u= , for all i, h = 1, …, 

N.  The block diagonal matrix iiW  corresponds to the equation-by-equation weighting matrix iW , 

as derived in equation (14) in the previous subsection.  In short, the ( ),j k th element of the block 

diagonal matrix iiW  (denoted as ii
jkw ) is: 

( )( )*

( ) ( ' )( ' )

' var( ) var( ) var( ) ' var( )

ii
jk ijt ikt jt it t i it i t kt

j t k jk jt it i t i

w E u u E y e v B e B v y

B x B e e B v Bδ

 = = − − 

= + +
. 

The block off-diagonal matrix ihW  ( i h≠ ) represents the variance-covariance matrix 

between the orthogonality conditions for assets i and h.  This matrix is nonzero because an 

instrument used for asset i may also be used for asset h.  In addition, asset i is also an instrument 

for asset h and vice versa.  Thus the orthogonality conditions associated with different equations 

are correlated.  The ( ),j k th element of this matrix, ih
jkw , equals 

( ) ( ' )( ' )ijt hkt jt it t i ht h t ktE u u E y e v B e B v y = − −  , where j i≠  and k h≠  by definition of IV.  

We derive the formulae for ih
jkw , the ( ),j k th element of the block off-diagonal matrix ihW , in 

each of the four possible cases in Appendix C. 

We now have the whole weighting matrix W.  GMM is estimated by minimizing 

1min ( ) ' ( )
B

u B W u B− .  The estimate of beta is: 

1 11(( ) ' '( )) ( ) ' 'B I X ZW Z I X I X ZW Z Y
− −−= ⊗ ⊗ ⊗ ,   (21) 

where ( )1 ', , ' 'NY Y Y= .  Z is a block diagonal matrix, with 1 2( , ,..., )NZ diag Z Z Z= , where 

[ , ]i iZ Yι −≡ . 

Joint GMM will not be used in this paper because the number of moment conditions, 

N(N-1), is too large.  But if N is small, joint GMM will be useful.  In the next simulation section, 
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when comparing OLIVE with other estimators, we only consider the two-step equation-by-

equation GMM estimator (2GMM), in addition to the IV estimators discussed in Section 2.3. 

 

4. Simulation Study 

4.1. Monte Carlo Design 

We conduct a Monte Carlo simulation study to compare the performance of our simple 

OLIVE estimator with other estimators.  The data generating process (DGP) for our simulation 

study is as follows.  We assume no intercept, i.e., arbitrage pricing theory (APT) or capital asset 

pricing model (CAPM) holds, as in Connor and Korajczyk (1993) and Jones (2001).  Although 

the estimation framework is general for any factor model, we implement our simulation with a 

stock market application in mind.  The DGP below is very similar to the one in Connor and 

Korajczyk (1993). 

We first generate a security with a true beta of one, which is to be estimated.  Then we 

generate K = N-1 instruments using the following: 

2

2

2

2

, 1 2 1, 1,

* , 1,...,
' * ' ( ' ) ' , 1,...,

* ( , )

(0 , )

( , )

(0 , )
( , ,..., , ,..., )

t t t

it i t it i t i t it i t it
J

t x
J J

t v
J J

i

N N
t e

i t t t i t i t Nt

x x v t T
y x e x v e x i N
x MVN I
v MVN I

MVN I

e MVN I
y y y y y y

β

β β β β ε
π σ
σ

β ι σ

σ

− − +

= + =
= + = + − + = + =

=

∼
∼
∼

∼

 

We use K = (1, 2, 3, 5, 10, 30, 45, 55, 90, 150, 300, 600), T = 60, π = 0.1, σx = 0.1, σβ = 1 

and 1000 replications. Without loss of generality, we assume J, the number of explanatory 

variables to be 1, which makes the model specification equivalent to the CAPM for the excess 

return.  We allow x and β to be normally generated.  One advantage of OLIVE is that when K is 

larger than T, it still works while most other IV estimators do not. 
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Two important parameters for the performance of the estimators are the standard 

deviation of the error in returns, eσ , and the standard deviation of the measurement error, vσ .  

We allow these two parameters to change from low (0.01), medium (0.1), to high (1), i.e., eσ  ∈ 

(0.01, 0.1, 1) and vσ  ∈ (0.01, 0.1, 1).  When eσ increases from 0.01 to 1, the instruments 

becomes weaker.  When vσ increases, the magnitude of measurement error increases.  Table 1 

presents simulation results when both vσ  and vσ  are set equal to 0.1, which is the medium 

measurement error and medium instruments case.1 

 

4.2. Monte Carlo Results 

In Tables 1, a variety of summary statistics is computed for each estimator.  When K is 

set from 1 to 55 (K<T), all estimators are computed.  When K>T, only OLS, OLIVE, and the 

two-step equation-by-equation GMM estimator (2GMM) are computed because other IV 

estimators become infeasible.  Following Donald and Newey (2001), we compute the median and 

mean bias and the median and mean absolute deviation (AD), for each estimator from the true 

value of β generated.  We examine dispersion of each estimator using both the inter-quartile range 

(IQR) and the difference between the 0.1 and 0.9 deciles (Dec. Rge) in the distribution of each 

estimator.  Throughout, OLS offers the smallest dispersion in terms of both IQR and Dec. Rge.  

This finding is consistent with Hahn, Hausman, and Kuersteiner (2004).  We also report the 

coverage rate of a nominal 95% confidence interval (Cov. Rate). 

When there is only one instrument, 2SLS, LIML, OLIVE, and 2GMM are all equivalent.  

Throughout, both OLS and 2GMM seem to be biased downwards.  As Newey and Smith (2004) 

point out, the asymptotic bias of GMM often grows with the number of moment restrictions.  Our 

simulation results show that the performance of the two-step GMM estimator becomes worse as 

                                                 
1 Simulation results under other parameter values are generally similar to those in Table 1.  These 
supplemental tables are not included to save space and are readily available upon request. 
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the number of instruments grows.  As the number of instruments becomes very large (e.g., when 

K = 150, 300, and 600), 2GMM has even worse performance than OLS. 

As expected, LIML performs well in terms of median Bias when it is feasible (when K = 

3, 10, 30, and 55).  In terms of mean Bias, FULLER1 usually performs well (when K = 2, 5, 10, 

and 30).  In general, OLIVE does quite well in terms of bias.  It is comparable to these “unbiased” 

estimators and sometimes the bias of OLIVE is even smaller (for example, when K = 2, 5, 45, and 

55 for median bias, and when K = 3, 45, and 55 for mean bias). 

As the number of instruments increase, the advantage of OLIVE in terms of absolute 

deviation becomes more significant.  When K equals 10 and larger, OLIVE has the smallest 

median and mean absolute deviations.  Moreover, when K is larger than 10, OLIVE also has the 

smallest mean squared error. 

When the number of instruments is larger than the number of time periods (K>T), 

instrumental variable estimators such as 2SLS, LIML, B2SLS, and FULLER all become 

infeasible.  Among the three estimators that are still feasible, OLIVE performs significantly better 

than both OLS and 2GMM in terms of median and mean bias, median and mean absolute 

deviation, and mean squared error. 

Overall, when the number of instruments increases, the advantage of OLIVE becomes 

more and more significant (this is also true in the supplemental tables).  The performance of 

OLIVE improves almost monotonically as the number of instruments increases (levels off when 

K becomes very large).  On the other hand, other IV estimators usually peak at a certain number 

of instruments then deteriorate as the number of instruments further increase.  This demonstrates 

another advantage of OLIVE: one can simply use all valid instruments at hand without having to 

select instruments or determine the optimal number of instruments. 
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5. Empirical Application: Lettau and Ludvigson (2001b) 

5.1. Background 

One of the most successful multifactor models for explaining the cross-section of stock 

returns is the Fama-French three-factor model.  Fama and French (1993) argue that the new 

factors they identify, “small-minus-big” (SMB) and “high-minus-low” (HML), proxy for 

unobserved common risk factors.  However, both SMB and HML are based on returns on stock 

portfolios sorted by firm characteristics, and it is not clear what underlying economic risk factors 

they proxy for.  On the other hand, even though macroeconomic factors are theoretically easy to 

motivate and intuitively appealing, they have had little success in explaining the cross-section of 

stock returns. 2 

Lettau and Ludvigson (2001b) specify a macroeconomic model that does almost as well 

as the Fama-French three-factor model in explaining the 25 Fama-French portfolio returns.  They 

explore the ability of conditional versions of the CAPM and the Consumption CAPM (CCAPM) 

to explain the cross-section of average stock returns.  They express a conditional linear factor 

model as an unconditional multifactor model in which additional factors are constructed by 

scaling the original factors.  This methodology builds on the work in Cochrane (1996), Campbell 

and Cochrane (1999), and Ferson and Harvey (1999).  The choice of the conditioning (scaling) 

variable in Lettau and Ludvigson (2001b) is unique: cay - a cointegrating residual between log 

consumption c, log asset wealth a, and log labor income y.  Lettau and Ludvigson (2001a) finds 

that cay has strong forecasting power for excess returns on aggregate stock market indices.  

Lettau and Ludvigson (2001b) argue that cay may have important advantages as a scaling 

variable in cross-sectional asset pricing tests because it summarizes investor expectations about 

the entire market portfolio. 

We conjecture that, as with most factors constructed using macroeconomic data, cay may 

contain measurement error.  If so, our OLIVE method should improve the findings in Lettau and 
                                                 
2 See Ludvigson and Ng (2007) for a discussion of current empirical literature on the risk-return relation. 
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Ludvigson (2001b).  Indeed, our empirical results suggest the presence of large measurement 

error in cay and other macroeconomic factors, but not in return-based factors, such as the Fama-

French factors. 

 

5.2. Data and Methodology 

Our sample is formed using data from the third quarter of 1963 to the third quarter of 

1998.  We choose the same time period as Lettau and Ludvigson (2001b), so that our results are 

directly comparable.  As in Lettau and Ludvigson (2001b), the returns data are for the 25 Fama-

French (1992, 1993) portfolios.  These data are value-weighted returns for the intersections of 

five size portfolios and five book-to-market equity (BE/ME) portfolios on NYSE, AMEX and 

NASDAQ stocks in CRSP and COMPUSTAT.  We convert the monthly portfolio returns to 

quarterly data.  The Fama-French factors, SMB and HML, are constructed the same way as in 

Fama and French (1993).  Rvw is the value-weighted CRSP index return.  The conditioning 

variable, cay, is constructed as in Lettau and Ludvigson (2001a,b).  We use the measure of labor 

income growth, ∆y, advocated by Jagannathan and Wang (1996).  Labor income growth is 

measured as the growth in total personal, per capita income less dividend payments from the 

National Income and Product Accounts published by the Bureau of Economic Analysis.  Labor 

income is lagged one month to capture lags in the official reports of aggregate income. 

Our methodology can be viewed as a modified version of Fama and MacBeth’s (1973) 

two-pass method.  Lettau and Ludvigson (2001b) discuss different methods available, and argue 

that the Fama-MacBeth procedure has important advantages for their application.  In the first-

pass, the time-series betas are computed in one multiple regression of the portfolio returns on the 

factors.  In addition to estimating betas by running time-series OLS regressions like in Lettau and 

Ludvigson (2001b), we also use OLIVE to estimate betas.  For a given portfolio (Ri), returns on 

the other portfolios serve as “instruments” (R-i).  As shown by our simulation results, if factors 
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contain measurement error, betas estimated using OLIVE are much more precise than betas 

estimated using OLS (and more precise than other IV methods). 

In the second-pass, cross-sectional OLS regressions using 25 Fama-French portfolio 

returns are run on betas estimated using either OLS or OLIVE in the first-pass to draw 

comparisons: 

, 1 0,( ) ( ) 'i t t iE R E R β λ+ = + .     (22) 

 

5.3. Empirical Results 

Tables 2 and 3 report the Fama-MacBeth cross-sectional regression (second-pass) 

coefficients, λ, with two t-statistics in parentheses for each coefficient estimate.  The top t-statistic 

uses uncorrected Fama-MacBeth standard errors, and the bottom t-statistic uses the Shanken 

(1992) correction.  The cross-sectional R2 is also reported.  Table 2 (Table 3) corresponds to 

Table 1 (Table 3) in Lettau and Ludvigson (2001b), with the same row numbers representing the 

same models.  For each row, the OLS results are replications of Lettau and Ludvigson (2001b).  

After numerous correspondences with the authors (we are grateful for their timely responses), we 

are able to obtain very similar results, though not completely identical.  The OLIVE results are 

based on our OLIVE beta estimates in the first-pass.  Sections 5.3.1 and 5.3.2 discuss results in 

Table 2, while section 5.3.3 discusses results in Table 3. 

 

5.3.1. Unconditional Models 

Following Lettau and Ludvigson (2001b), we begin by presenting results from three 

unconditional models. 

Row 1 of Table 2 presents results from the static CAPM, with the CRSP value-weighted 

return, Rvw, used as a proxy for the unobservable market return.  This model implies the following 

cross-sectional specification: 
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, 1 0,( ) ( )i t t vwi vwE R E R β λ+ = + .     (23) 

The OLS results in Row 1 highlight the failure of the static CAPM, as documented by previous 

studies (see, e.g., Fama and French (1992)).  Only 1% of the cross-sectional variation in average 

returns can be explained by the beta for the market return.  The estimated value of λvw is 

statistically insignificant and has the wrong sign (negative instead of positive) according the 

CAPM theory.  The constant term, which is an estimate of the zero-beta rate, is too high (4.18% 

per quarter).  Estimating betas using OLIVE instead of OLS provides little improvement in terms 

of cross-sectional explanatory power: the R2 is still 1%.  However, the sign of the estimated value 

of λvw changes from negative to positive, though still statistically insignificant, and the estimated 

zero-beta rate decreases from 4.18% to 3.48% per quarter.  We expect the advantage of OLIVE 

estimation to be small here, since Rvw is a return-based factor likely with little measurement error. 

Row 2 of Table 2 presents results for the human capital CAPM, which adds the beta for 

labor income growth, ∆y, into the static CAPM (Jagannathan and Wang (1996)): 

, 1 0,( ) ( )i t t vwi vw yi yE R E R β λ β λ+ ∆ ∆= + + .    (24) 

The human capital CAPM performs much better than the static CAPM, explaining 58% of the 

cross-sectional variation in returns.  Labor income growth is a macroeconomic factor, which 

probably contains measurement error.  When OLIVE is used to estimate betas, the R2 jumps from 

58% to 78%.  However, for both OLS and OLIVE results, the estimated value of λvw has the 

wrong sign and the estimated zero-beta rate is too high. 

Row 3 of Table 2 presents results for the Fama-French three-factor model: 

, 1 0,( ) ( )i t t vwi vw SMBi SMB HMLi HMLE R E R β λ β λ β λ+ = + + + .   (25) 

This specification performs extremely well with OLS estimated betas: the R2 becomes 81%; the 

estimated value of λvw has the correct positive sign; and the estimated zero-beta rate is reasonable 

(1.76% per quarter).  The Fama-French factors should contain little measurement error, since they 
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are constructed from stock returns.  As one would expect, using OLIVE estimated betas yields 

almost identical coefficient estimates.  The R2 only marginally improves to 83%. 

 

5.3.2. Conditional/Scaled Factor Models 

Row 4 of Table 2 reports results from the scaled, conditional CAPM with one 

fundamental factor, the market return, and a single scaling variable, cay : 

, 1 0,( ) ( )i t t cayi cay vwi vw vwcayi vwcayE R E R β λ β λ β λ+ = + + + .   (26) 

Under this specification, using OLIVE instead of OLS to estimate betas dramatically improves 

the cross-sectional explanatory power from 31% to 80%, which is similar to the performance of 

the Fama-French three-factor model.  This is consistent with our conjecture that since cay  is 

constructed using macroeconomic data, it contains large measurement error.  Using OLIVE also 

changes the sign of the estimated value of λvw from negative to positive, though the estimated 

coefficients are close to zero for both OLS and OLIVE.  Using OLIVE also reduces the estimated 

zero-beta rate from 3.69% to 3.09% per quarter, though they are still too high. 

Rows 5 and 5’ are variations of Row 4.  Given the finding that the estimated value of λcay 

is not statistically different from zero in Row 4, Row 5 omits βcayi as an explanatory variable in 

the second-pass cross-sectional regressions, but still includes cay  in the first-pass time-series 

regressions.  Row 5’ further excludes cay  in the first-pass time-series regressions (results from 

this specification are not reported in Lettau and Ludvigson (2001b)).  Results in Rows 5 and 5’ 

are very similar to those in Row 4, suggesting that the time-varying component of the intercept is 

not an important determinant of cross-sectional returns.  The impact of using OLIVE to estimate 

betas is also very similar: the cross-sectional R2 jumps from about 30% to about 80%. 

Row 6 of Table 2 reports results from the scaled, conditional version of the human capital 

CAPM: 
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, 1 0,( ) ( )i t t cayi cay vwi vw yi y vwcayi vwcay ycayi ycayE R E R β λ β λ β λ β λ β λ+ ∆ ∆ ∆ ∆= + + + + + . (27) 

We focus our discussions on this “complete” specification.  Using OLIVE instead of OLS in the 

first-pass to estimate betas improves the second-pass cross-sectional R2 from 77% to 83% (similar 

to the performance of the Fama-French three-factor model). 

More importantly, our results here help to resolve two puzzling findings by Lettau and 

Ludvigson (2001b) and Jagannathan and Wang (1996).  The second-pass risk premia and zero-

beta rate estimates will be inconsistent if factors are measured with error and OLS is used to 

estimate betas in the first-pass.  On the other hand, the risk premia and zero-beta rate can be 

consistently estimated in the second-pass if OLIVE is used in the first-pass to estimate betas, 

because OLIVE beta estimates are consistent even when factors contain measurement error. 

Lettau and Ludvigson (2001b) use OLS to estimate betas and find that two features of 

their cross-sectional results in their Table 1 bear noting.3  First, they state that “[a] problem with 

this model, however, is that there is a negative average risk price on the beta for the value-

weighted return.”  They also note that “Jagannathan and Wang (1996) report a similar finding for 

the signs of the risk prices on the market and human capital betas.”  Indeed, in our OLS results in 

Row 6 of Table 2, the estimated value of λvw (coefficient on the market return beta) is -2.00, and 

the estimated value of ycayλ∆  (coefficient on the scaled human capital beta) is -0.17, both negative 

which is inconsistent with the theory.  However, when we use OLIVE to estimate betas in the 

first-pass, the estimated value of λvw becomes positive (1.33), and the estimated value of ycayλ∆  

becomes close to zero (-0.0005), more consistent with the theory. 

Second, Lettau and Ludvigson (2001b) state that “the estimated value of the average 

zero-beta rate is large.”  “The average zero-beta rate should be between the average ‘riskless’ 

borrowing and lending rates, and the estimated value is implausibly high for the average investor.  

Although the (C)CAPM can explain a substantial fraction of the cross-sectional variation in these 

                                                 
3  See pages 1259-1260 of Lettau and Ludvigson (2001b). 
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25 portfolio returns, this result suggests that the scaled models do a poor job of simultaneously 

pricing the hypothetical zero-beta portfolio.  This finding is not uncommon in studies that use 

macro variables as factors.  For example, the estimated values for the zero-beta rate we find here 

have the same order of magnitude as that found in Jagannathan and Wang (1996).”  The authors 

note that “[i]t is possible that the greater sampling error we find in the estimated betas of the 

scaled models with macro factors is contributing to an upward bias in the zero-beta estimates of 

those models relative to the estimates for models with only financial factors.”  They also note that 

“[s]uch arguments for large zero-beta estimates have a long tradition in the cross-sectional asset 

pricing literature (e.g., Black et al. 1972; Miller and Scholes 1972).”  However, the authors 

conclude that “[p]rocedures for discriminating the sampling error explanation for these large 

estimates of the zero-beta rate from others are not obvious, and its development is left to future 

research.”  Our results suggest that measurement error in factors is the cause of this problem.  

Sampling error is a second-order issue; it becomes negligible as the sample size T becomes large.  

Unlike sampling error, the measurement error problem does not diminish as the sample size T 

becomes large.  When macroeconomic factors with measurement error are included in the model, 

OLIVE can provide more precise beta estimates in the first-pass, which lead to more precise 

estimates of the zero-beta rate in the second-pass.  In Row 6 of Table 2, the estimated zero-beta 

rate based on OLS estimated betas is too high at 5.19% per quarter.  However, when we use 

OLIVE to estimate betas, the estimated zero-beta rate drops dramatically to a reasonable 1.91% 

per quarter. 

Rows 7 and 7’ are variations of Row 6.  Row 7 omits βcayi as an explanatory variable in 

the second-pass cross-sectional regressions, but still includes cay  in the first-pass time-series 

regressions.  Row 7’ further excludes cay  in the first-pass time-series regressions (results from 

this specification are not reported in Lettau and Ludvigson (2001b)).  Results in Rows 7 and 7’ 

are very similar to those in Row 6.  The impact of using OLIVE instead of OLS to estimate betas 
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is also very similar: the cross-sectional R2 increases; the sign of the estimated value of λvw 

changes from negative to positive; and the estimated zero-beta rate drops significantly to a 

reasonable magnitude. 

To summarize, our results in Table 2 confirm the existence of large measurement error in 

macroeconomic factors, such as cay  and labor income growth, and validate the use of OLIVE to 

help improve beta estimation under these circumstances.  In addition, to the extent that our 

empirical results help resolve some puzzling findings in Lettau and Ludvigson (2001b) and 

Jagannathan and Wang (1996), we also strengthen their results. 

 

5.3.3. Consumption CAPM 

Table 3 presents, for the consumption CAPM, the same results presented in Table 2 for 

the static CAPM and the human capital CAPM.  The scaled multifactor consumption CAPM, 

with cay  as the single conditioning variable takes the form: 

, 1 0,( ) ( )i t t cayi cay ci c ccayi ccayE R E R β λ β λ β λ+ ∆ ∆ ∆ ∆= + + + ,   (28) 

where ∆c denotes consumption growth (log difference in consumption), as measured in Lettau 

and Ludvigson (2001a). 

As a comparison, Row 1 of Table 3 reports results of the unconditional consumption 

CAPM.  The performance of this specification is poor, explaining only 16% of the cross-sectional 

variation in portfolio returns.  Using OLIVE beta estimates seems to have made the performance 

even worse. 

Row 2 of Table 3 presents the results of estimating the scaled specification in equation 

(28).  The R2 jumps to 70%, in sharp contrast to the unconditional results in Row 1.  When 

OLIVE is used to estimate betas, the R2 further increases to 82%.  For both OLS and OLIVE 

results, the estimated value of ccayλ∆  (scaled consumption growth) is positive and statistically 

significant. 
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Row 3 excludes βcayi as an explanatory variable in the second-pass cross-sectional 

regressions, but still includes cay  in the first-pass time-series regressions.  This seems to have 

made very little difference, as the results in Row 3 are very similar to those in Row 2.  Again, 

when OLIVE estimated betas are used, the R2 increases from 69% to 81%. 

Row 3’ further excludes cay  in the first-pass time-series regressions.  As noted by 

Lettau and Ludvigson (2001b), the results here are somewhat sensitive to this exclusion.4  The R2 

drops to 27% for OLS results and 34% for OLIVE results.  These results suggest that including 

the scaling variable cay as a factor in the pricing kernel can be important even when the beta for 

this factor is not priced in the cross-section. 

Our results in Table 3 suggest that using OLIVE instead of OLS to estimate betas in the 

conditional consumption CAPM generally increases the cross-sectional variation of portfolio 

returns explained by the model, as measured by the R2.  However, unlike in Table 2, the estimated 

zero-beta rates remain high. 

 

6. Conclusion 

In this paper, we put forth a simple method for estimating betas (factor loadings) when 

factors are measured with error, which we call OLIVE.  OLIVE uses all available instruments at 

hand, and is intuitive and easy to implement.  OLIVE achieves better performance in simulations 

than OLS and other instrumental variable estimators such as 2SLS, B2SLS, LIML, and FULLER, 

when the number of instruments is large.  OLIVE can be interpreted as a GMM estimator when 

setting the weighting matrix equal to the identity matrix and it has better finite sample properties 

than the efficient two-step GMM estimator.  OLIVE also has an important advantage over the 

Asymptotic Principle Components (APC) because the statistical factors of the principle 

                                                 
4 Results from this specification are not reported in Lettau and Ludvigson (2001b).  See footnote 25 on 
page 1261 of their paper. 
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components method lack clear economic interpretations, while OLIVE directly makes use of the 

observed economic factors. 

OLIVE has many potential applications.  For example, it can be used in cross-country 

studies, where data from other countries can be used as instruments for the country in question.  

OLIVE is especially suitable for estimating asset return betas when factors are measured with 

error, since this is often a large N and small T setting.  Intuitively, since all asset returns vary 

together with a common set of factors, one can use information contained in other asset returns to 

improve the beta estimate for a given asset. 

As an empirical application, we reexamine Lettau and Ludvigson’s (2001b) test of the 

(C)CAPM using OLIVE in addition to OLS to estimate betas.  Lettau and Ludvigson’s factor cay 

has been found to have strong forecasting power for excess returns on aggregate stock market 

indices, but may contain measurement error.  We find that in regressions where macroeconomic 

factors are included, using OLIVE instead of OLS improves the R2 significantly.  Perhaps more 

importantly, our results from OLIVE estimation help to resolve two puzzling findings by Lettau 

and Ludvigson (2001b) and Jagannathan and Wang (1996): first, the sign of the average risk 

premium on the beta for the market return changes from negative to positive, which is in 

accordance with the theory; second, the estimated value of average zero-beta rate is no longer too 

high.  These results suggest that when macroeconomic factors with measurement error are 

included in the model, OLIVE can provide more precise beta estimates in the first-pass, which 

lead to more precise estimates of the risk premia and zero-beta rate in the second-pass. 

Overall, our results from this empirical application validate the use of OLIVE to help 

improve beta estimation when factors are measured with error.  Our empirical results support and 

strengthen Lettau and Ludvigson (2001b) and Jagannathan and Wang (1996) by resolving some 

of their puzzling findings.  Our findings are also consistent with the theme in Ferson, Sarkissian, 

and Simin (2007) that the (C)CAPMs might work better than previously recognized in the 

literature. 
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Appendices 

Appendix A.  Proof of Proposition 1 (see Section 2.2). 

To simplify notation, we consider a more abstract setting.  Let  

' 't t t t ty x xβ ε β ε= + = + ,      (A1) 

where tx  and β  are 1M ×  vectors, ( ) 0t tE x ε ≠ , and *t t tx x v= + .  Let ' *it i t itz x eβ= +  be 

instruments (i = 1, …, N; t = 1, …, T).  Here we assume there are N instruments (i.e., N+1 assets).  

For example, to estimate 1B  in the notation of Section 2, we let 1Bβ = , and 1t ty y= , 1t teε = , 

and 1,it i tz y +=  for 1i ≥ .  Then 

1 1 1

1 1 1'
T T T

it t it t it t
t t t

z y z x z
T T T

β ε
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or it can be simplified as  

'i iiy x β ε= + ,      (A3) 

where 
1

1 '
T

i t it
t

x x z
T =
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y z y
T =

= ∑ .  The estimator OLIVE is 
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= .  Now 
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Therefore,  

1
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( )
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where 
1

1 '
N

i iN
i
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= ∑ .  Note that iTξ  and jTξ  are 

dependent through the common term 
1

*
T

t t
t

x ε
=
∑ , see (A8) below.  The instruments itz  are 

determined by true factor *tx : 
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 We have  
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 To see (A12) is 1/ 2( )pO N − , we write  

( )( ) ( )1/ 2
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∑ .  Adding and subtracting ( )iTE D , then 

equation (A12) can be rewritten as  
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Since ( ) ( )1/ 2
iT iT pD E D O T −− = , term I is dominated by II.  From 

( )
1 1

1 1
N T

i it t p
i t

e O
NT

β ε
= =

=∑∑ ,     (A14) 

we have ( )1/ 2
pII O N −= . 

 If N is fixed, (A12) is ( )1pO  and is not negligible.  This term will contribute to the 

limiting distribution; but the T  consistency and the asymptotic normality still hold. 

 

Appendix B.  Proof of Proposition 2 (see Section 2.2). 

 The proof of Proposition 1 remains valid up to (A11).  We show (A12) is still 

asymptotically negligible if / 0T N → .  It is sufficient to consider II in (A13).  Let 

( )i it tE eγ ε= , with 0iγ ≠ , equation (A14) will no longer hold.  But it can be rewritten as  

( )
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 The first term on the right hand side is ( )1pO .  Assuming i Mβ ≤  for all i, the second 

term is bounded by ( ) ( )
1

/ /
N

i
i

M T N O T Nγ
=

=∑  because 
1

(1)
N

i
i

Oγ
=

=∑  by assumption (9).  

Thus (A15) is (1) ( / )p pO O T N+ .  This implies that, noting the extra term 1/ 2N − , II in (A13) 

is equal to ( )1/ 2 ( / )p pO N O T N− + , which converges to zero if / 0T N → . 
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Appendix C.  Derivations for Joint GMM (see Section 3.2). 

We derive the formulae for ih
jkw , the ( ),j k th element of the block off-diagonal matrix 

ihW , in each of the following four possible cases. 

Case 1: j h and k i≠ ≠ . 
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where 1jkδ =  if j k= , and zero otherwise. 

Case 2: j h and k i= ≠ . 
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Case 3, j h≠  and k i= .  This is the mirror case of Case 2.  In short, the formula is: 

*

( ) ( ' )( ' )

'var( ) 'var( )

ih
jk ijt hkt jt it t i ht h t it

i t j h t i

w E u u E y e v B e B v y

B x B B v B

 = = − − 
= i

.  (A18) 



 33

Case 4: j h and k i= = . 
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Table 1. Simulation Results 
 
This table presents the simulation results.  We compare OLIVE with other IV estimators including 2SLS, 
LIML, B2SLS, FULLER1 and FULLER4 (the choice of the α parameter is either 1 or 4), as well as the 
two-step equation-by-equation GMM estimator (2GMM).  The formulae of the above estimators are as 
follows: 
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We first generate a security with a true beta of one, which is to be estimated using the above estimators.  
Then we generate K = N-1 other securities which serve as instruments using the following data generating 
process (DGP): 
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We use K = (1, 2, 3, 5, 10, 30, 45, 55, 90, 150, 300, 600), T = 60, π = 0.1, σx = 0.1, σβ = 1, and 1,000 
replications.  Without loss of generality, we set J, the number of explanatory variables to be 1, which 
makes the model specification equivalent to the CAPM for the excess return.  We allow x and β to be 
normally generated.  One advantage of OLIVE is that when K is larger than T, it still works while most 
other IV estimators no longer do.  This is why we can only compare the performance of OLS, OLIVE, 
and 2GMM for K = (90, 150, 300, 600).  We set σv = 0.1 and σe = 0.1 (medium measurement error and 
medium instruments).  The statistics reported include median bias (Med. Bias), mean bias (Mean Bias), 
median absolute deviation (Med. AD), mean absolute deviation (Mean AD), squared-root of mean 
squared error (SQRT. MSE), inter-quartile range (IQR), the difference between the 0.1 and 0.9 deciles 
(Dec. Rge), and the coverage rate of a nominal 95% confidence interval (Cov. Rate). 
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Table 1 Continued 

K Estimator Med. Bias Mean Bias Med. AD Mean AD SQRT. MSE IQR Dec. Rge Cov. Rate
OLS -0.3306 -0.3328 0.3306 0.3328 0.3458 0.1207 0.2445 1.0000 
2SLS 0.0011 -0.1366 0.1259 0.3926 3.6599 0.2542 0.5502 0.9860 
LIML 0.0011 -0.1366 0.1259 0.3926 3.6599 0.2542 0.5502 0.9860 
B2SLS -0.0207 -0.0208 0.1209 0.1583 0.2179 0.2349 0.4850 1.0000 
FULLER1 -0.0226 -0.0216 0.1202 0.1578 0.2168 0.2356 0.4847 1.0000 
FULLER4 -0.0725 -0.0729 0.1178 0.1437 0.1852 0.2085 0.4178 1.0000 
OLIVE 0.0011 -0.1366 0.1259 0.3926 3.6599 0.2542 0.5502 0.9860 

1 

2GMM 0.0011 -0.1366 0.1259 0.3926 3.6599 0.2542 0.5502 0.9860 

OLS -0.3313 -0.3300 0.3313 0.3300 0.3440 0.1251 0.2499 1.0000 
2SLS -0.0068 0.0028 0.1007 0.1236 0.1625 0.1999 0.3831 1.0000 
LIML 0.0052 0.0104 0.1016 0.1378 0.2607 0.1997 0.3865 0.9980 
B2SLS -0.0068 0.0028 0.1007 0.1236 0.1625 0.1999 0.3831 1.0000 
FULLER1 -0.0078 0.0009 0.0979 0.1227 0.1620 0.1962 0.3769 1.0000 
FULLER4 -0.0398 -0.0336 0.0969 0.1159 0.1473 0.1823 0.3444 1.0000 
OLIVE 0.0010 0.0111 0.1019 0.1249 0.1641 0.2024 0.3854 1.0000 

2 

2GMM -0.0033 0.0025 0.1036 0.1239 0.1615 0.2038 0.3780 1.0000 

OLS -0.3324 -0.3362 0.3324 0.3362 0.3492 0.1298 0.2468 1.0000 
2SLS -0.0275 -0.0191 0.0979 0.1141 0.1431 0.1874 0.3467 1.0000 
LIML -0.0065 0.0041 0.0965 0.1179 0.1520 0.1925 0.3624 1.0000 
B2SLS -0.0174 -0.0090 0.0982 0.1159 0.1461 0.1898 0.3508 1.0000 
FULLER1 -0.0185 -0.0070 0.0967 0.1152 0.1469 0.1892 0.3551 1.0000 
FULLER4 -0.0429 -0.0376 0.0958 0.1120 0.1397 0.1771 0.3348 1.0000 
OLIVE -0.0131 -0.0012 0.0947 0.1155 0.1467 0.1850 0.3598 1.0000 

3 

2GMM -0.0290 -0.0207 0.1008 0.1206 0.1599 0.1868 0.3661 1.0000 

OLS -0.3351 -0.3342 0.3351 0.3342 0.3490 0.1380 0.2620 1.0000 
2SLS -0.0380 -0.0308 0.0982 0.1117 0.1377 0.1812 0.3549 1.0000 
LIML 0.0014 0.0070 0.0949 0.1146 0.1434 0.1900 0.3725 1.0000 
B2SLS -0.0132 -0.0040 0.0957 0.1151 0.1428 0.1887 0.3714 1.0000 
FULLER1 -0.0068 -0.0027 0.0961 0.1123 0.1400 0.1875 0.3687 1.0000 
FULLER4 -0.0326 -0.0304 0.0977 0.1089 0.1352 0.1785 0.3439 1.0000 
OLIVE 0.0001 0.0041 0.0949 0.1123 0.1403 0.1882 0.3657 1.0000 

5 

2GMM -0.0280 0.0513 0.1016 0.2474 2.9960 0.1932 0.3790 0.9930 

OLS -0.3315 -0.3305 0.3315 0.3305 0.3444 0.1306 0.2416 1.0000 
2SLS -0.0734 -0.0657 0.1060 0.1161 0.1425 0.1641 0.3097 1.0000 
LIML -0.0059 0.0092 0.0914 0.1117 0.1442 0.1820 0.3503 1.0000 
B2SLS -0.0134 -0.0008 0.0931 0.1137 0.1466 0.1836 0.3550 1.0000 
FULLER1 -0.0137 0.0000 0.0922 0.1100 0.1408 0.1773 0.3427 1.0000 
FULLER4 -0.0371 -0.0265 0.0938 0.1076 0.1354 0.1693 0.3175 1.0000 
OLIVE -0.0070 0.0055 0.0908 0.1073 0.1385 0.1818 0.3369 1.0000 

10 

2GMM -0.0510 -0.0050 0.1081 0.2826 2.1224 0.1822 0.3814 0.9900 
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Table 1 Continued 

K Estimator Med. Bias Mean Bias Med. AD Mean AD SQRT. MSE IQR Dec. Rge Cov. Rate
OLS -0.3321 -0.3309 0.3321 0.3310 0.3454 0.1300 0.2421 1.0000 
2SLS -0.1950 -0.1938 0.1950 0.1981 0.2227 0.1465 0.2782 1.0000 
LIML 0.0011 0.0119 0.1024 0.1228 0.1579 0.2037 0.3858 1.0000 
B2SLS -0.0247 -0.0056 0.1187 0.1383 0.1806 0.2231 0.4379 1.0000 
FULLER1 -0.0085 0.0026 0.0989 0.1204 0.1533 0.1988 0.3740 1.0000 
FULLER4 -0.0330 -0.0242 0.0974 0.1161 0.1448 0.1884 0.3587 1.0000 
OLIVE -0.0032 0.0063 0.0878 0.1053 0.1352 0.1753 0.3311 1.0000 

30 

2GMM -0.1264 -0.1534 0.1511 0.2372 0.6191 0.2030 0.4255 0.9930 

OLS -0.3304 -0.3300 0.3304 0.3300 0.3432 0.1271 0.2384 1.0000 
2SLS -0.2670 -0.2672 0.2670 0.2676 0.2851 0.1318 0.2497 1.0000 
LIML 0.0085 0.0297 0.1154 0.1530 0.2170 0.2414 0.4661 0.9990 
B2SLS -0.0562 -0.0114 0.1541 0.1829 0.2529 0.2657 0.5385 0.9990 
FULLER1 -0.0015 0.0186 0.1150 0.1479 0.2044 0.2337 0.4514 1.0000 
FULLER4 -0.0251 -0.0121 0.1095 0.1372 0.1804 0.2132 0.4182 1.0000 
OLIVE 0.0000 0.0061 0.0881 0.1036 0.1325 0.1760 0.3320 1.0000 

45 

2GMM -0.1875 -0.4270 0.2044 0.5082 3.9644 0.2098 0.4392 0.9880 

OLS -0.3284 -0.3293 0.3284 0.3293 0.3436 0.1306 0.2485 1.0000 
2SLS -0.3086 -0.3090 0.3086 0.3090 0.3245 0.1303 0.2477 1.0000 
LIML -0.0125 0.0966 0.1861 0.3765 1.9318 0.3709 0.7357 0.9840 
B2SLS -0.1312 -0.0579 0.2045 0.2451 0.3755 0.3168 0.6430 0.9970 
FULLER1 -0.0219 0.0191 0.1762 0.2757 0.4718 0.3566 0.7090 0.9910 
FULLER4 -0.0487 -0.0234 0.1666 0.2378 0.3628 0.3286 0.6486 0.9970 
OLIVE -0.0018 0.0093 0.0936 0.1077 0.1369 0.1903 0.3313 1.0000 

55 

2GMM -0.1972 -0.2130 0.2131 0.3508 1.0007 0.2210 0.4763 0.9800 

OLS -0.3358 -0.3323 0.3358 0.3325 0.3469 0.1341 0.2517 1.0000 
OLIVE 0.0042 0.0080 0.0878 0.1071 0.1359 0.1782 0.3358 1.0000 90 
2GMM -0.2839 -0.2151 0.3095 0.5725 2.6967 0.2594 0.6174 0.9710 

OLS -0.3341 -0.3317 0.3341 0.3317 0.3453 0.1330 0.2443 1.0000 
OLIVE -0.0075 0.0040 0.0888 0.1032 0.1315 0.1773 0.3239 1.0000 150 
2GMM -0.3895 -0.3492 0.4080 0.5876 1.3594 0.2679 0.6326 0.9760 

OLS -0.3342 -0.3364 0.3342 0.3364 0.3486 0.1213 0.2345 1.0000 
OLIVE 0.0021 0.0091 0.0937 0.1099 0.1374 0.1884 0.3475 1.0000 300 
2GMM -0.5885 -0.5772 0.5995 0.7787 1.7457 0.2931 0.7556 0.9590 

OLS -0.3344 -0.3336 0.3344 0.3336 0.3469 0.1268 0.2483 1.0000 
OLIVE 0.0013 0.0099 0.0888 0.1055 0.1318 0.1806 0.3353 1.0000 600 
2GMM -0.7352 -0.9429 0.7509 1.1228 5.4738 0.3163 0.8479 0.9570 
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Table 2. Fama-MacBeth Regressions Using 25 Fama-French Portfolios: 

λj Coefficient Estimates on Betas in Cross-Sectional Regression 
 
 

This table corresponds to Table 1 in Lettau and Ludvigson (2001b).  The table presents λ estimates from 
cross-sectional Fama-MacBeth regressions using returns of 25 Fama-French portfolios: 

, 1 0,( ) ( ) 'i t t iE R E R β λ+ = + . 
The individual λj estimates (from the second-pass cross-sectional regression) for the beta of the factor 
listed in the column heading are reported.  In the first-pass, the time-series betas βi are computed in one 
multiple regression of the portfolio returns on the factors, using either OLS or OLIVE as noted in each 
row.  Rvw is the CRSP value-weighted index return, ∆y is labor income growth, and SMB and HML are 
the Fama-French mimicking portfolios related to size and book-to-market equity ratios.  The scaling 
variable is cay .  The table reports the Fama-MacBeth cross-sectional regression coefficients, with two t-
statistics in parentheses for each coefficient estimate.  The top t-statistic uses uncorrected Fama-MacBeth 
standard errors, and the bottom t-statistic uses the Shanken (1992) correction.  The cross-sectional R2 is 
reported.  The model is estimated using data from 1963:Q3 to 1998:Q3.  The coefficient estimates of the 
factors are multiplied by 100, and the estimates of the scaled terms are multiplied by 1,000. 

 
 

   1Factorst+   
1Factorsttcay +⋅   

Row Constant tcay  Rvw ∆y SMB HML  Rvw ∆y R2 

1-OLS 
4.18 

(4.47) 
(4.47) 

 
-0.32 

(-0.27) 
(-0.27) 

      0.01 

1-OLIVE 
3.48 

(4.71) 
(4.70) 

 
0.25 

(0.30) 
(0.30) 

      0.01 

2-OLS 
4.47 

(4.78) 
(2.66) 

 
-1.10 

(-0.95) 
(-0.53) 

1.26 
(3.40) 
(1.89) 

     0.58 

2-OLIVE 
4.42 

(5.76) 
(5.69) 

 
-1.22 

(-1.32) 
(-1.29) 

0.06 
(3.55) 
(4.49) 

     0.78 

3-OLS 
1.76 

(1.22) 
(1.12) 

 
1.44 

(0.89) 
(0.82) 

 
0.49 

(0.97) 
(0.89) 

1.49 
(3.31) 
(3.03) 

   0.81 

3-OLIVE 
1.79 

(1.63) 
(1.49) 

 
1.41 

(1.11) 
(1.01) 

 
0.48 

(0.96) 
(0.88) 

1.53 
(3.39) 
(3.10) 

   0.83 

 
Table 2 to be continued … 
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Table 2 Continued 

 

   1Factorst+   
1Factorsttcay +⋅   

Row Constant tcay  Rvw ∆y SMB HML  Rvw ∆y R2 

4-OLS 
3.69 

(3.90) 
(2.62) 

-0.04 
(-0.19) 
(-0.13) 

-0.07 
(-0.06) 
(-0.04) 

    
1.14 

(3.60) 
(2.41) 

 0.31 

4-OLIVE 
3.09 

(4.20) 
(4.18) 

-0.02 
(-0.60) 
(-0.58) 

0.13 
(0.15) 
(0.15) 

    
0.10 

(3.54) 
(3.51) 

 0.80 

5-OLS 
3.70 

(3.86) 
(2.61) 

 
-0.09 

(-0.07) 
(-0.05) 

    
1.17 

(3.59) 
(2.41) 

 0.31 

5-OLIVE 
3.54 

(2.84) 
(2.82) 

 
-0.43 

(-0.26) 
(-0.25) 

    
0.11 

(2.93) 
(2.90) 

 0.78 

5’-OLS 
3.83 

(4.06) 
(2.62) 

 
-0.23 

(-0.19) 
(-0.12) 

    
1.27 

(3.60) 
(2.31) 

 0.30 

5’-OLIVE 
3.15 

(4.20) 
(4.18) 

 
0.06 

(0.07) 
(0.07) 

    
0.10 

(3.65) 
(3.62) 

 0.80 

6-OLS 
5.19 

(5.60) 
(3.33) 

-0.44 
(-1.59) 
(-0.94) 

-2.00 
(-1.74) 
(-1.03) 

0.56 
(2.11) 
(1.25) 

   
0.35 

(1.69) 
(1.00) 

-0.17 
(-2.39) 
(-1.42) 

0.77 

6-OLIVE 
1.91 

(1.80) 
(1.76) 

0.01 
(0.16) 
(0.15) 

1.33 
(1.07) 
(1.04) 

0.02 
(0.67) 
(0.66) 

   
0.10 

(2.00) 
(1.95) 

-0.0005 
(-0.05) 
(-0.05) 

0.83 

7-OLS 
5.14 

(5.59) 
(3.85) 

 
-1.98 

(-1.73) 
(-1.19) 

0.59 
(2.20) 
(1.51) 

   
0.60 

(2.71) 
(1.86) 

-0.08 
(-2.52) 
(-1.73) 

0.75 

7-OLIVE 
2.00 

(2.30) 
(2.26) 

 
1.26 

(1.25) 
(1.22) 

0.02 
(0.66) 
(0.64) 

   
0.10 

(1.89) 
(1.85) 

-0.002 
(-1.00) 
(-0.98) 

0.83 

7’-OLS 
4.26 

(4.58) 
(3.40) 

 
-0.97 

(-0.84) 
(-0.51) 

0.91 
(2.96) 
(1.80) 

   
0.43 

(2.10) 
(1.28) 

-0.10 
(-1.65) 
(-1.00) 

0.71 

7’-OLIVE 
2.14 

(2.17) 
(2.13) 

 
1.06 

(0.91) 
(0.89) 

0.01 
(0.24) 
(0.23) 

   
0.15 

(2.60) 
(2.54) 

0.002 
(0.20) 
(0.20) 

0.83 
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Table 3. Consumption CAPM 
Fama-MacBeth Regressions Using 25 Fama-French Portfolios: 
λj Coefficient Estimates on Betas in Cross-Sectional Regression 

 
This table corresponds to Table 3 in Lettau and Ludvigson (2001b).  The table presents λ estimates from 
cross-sectional Fama-MacBeth regressions using returns of 25 Fama-French portfolios: 

, 1 0,( ) ( ) 'i t t iE R E R β λ+ = + . 
The individual λj estimates (from the second-pass cross-sectional regression) for the beta of the factor 
listed in the column heading are reported.  In the first-pass, the time-series betas βi are computed in one 
multiple regression of the portfolio returns on the factors, using either OLS or OLIVE as noted in each 
row.  ∆c denotes consumption growth (log difference in consumption).  The scaling variable is cay .  The 
table reports the Fama-MacBeth cross-sectional regression coefficients, with two t-statistics in 
parentheses for each coefficient estimate.  The top t-statistic uses uncorrected Fama-MacBeth standard 
errors, and the bottom t-statistic uses the Shanken (1992) correction.  The cross-sectional R2 is reported.  
The model is estimated using data from 1963:Q3 to 1998:Q3.  The coefficient estimates of the factors are 
multiplied by 100, and the estimates of the scaled terms are multiplied by 1,000. 

 

Row Constant tcay  ∆ct+1 1ttcay c +⋅∆  R2 

1-OLS 
3.25 

(4.94) 
(4.50) 

 
0.22 

(1.26) 
(1.14) 

 0.16 

1-OLIVE 
3.34 

(4.74) 
(0.88) 

 
0.003 
(0.46) 
(0.45) 

 0.03 

2-OLS 
4.27 

(6.10) 
(4.24) 

-0.12 
(-0.42) 
(-0.29) 

0.03 
(0.22) 
(0.15) 

0.06 
(3.14) 
(2.18) 

0.70 

2-OLIVE 
4.72 

(3.70) 
(3.67) 

0.04 
(0.90) 
(0.88) 

-0.004 
(-0.27) 
(-0.27) 

0.009 
(3.44) 
(3.40) 

0.82 

3-OLS 
4.09 

(6.81) 
(5.13) 

 
-0.02 

(-0.12) 
(-0.09) 

0.07 
(3.22) 
(2.41) 

0.69 

3-OLIVE 
3.49 

(5.85) 
(5.83) 

 
0.006 
(0.42) 
(0.41) 

0.007 
(3.36) 
(3.34) 

0.81 

3’-OLS 
2.77 

(4.37) 
(3.77) 

 
0.01 

(0.09) 
(0.07) 

0.04 
(2.36) 
(2.03) 

0.27 

3’-OLIVE 
5.40 

(6.07) 
(6.05) 

 
0.04 

(2.95) 
(2.92) 

-0.005 
(-2.29) 
(-2.27) 

0.34 

 


