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Equilibrium Portfolio Strategies in the

Presence of Sentiment Risk and Excess Volatility

Abstract

Our objective is to identify the trading strategy that would allow an investor to take advantage of
“excessive” stock price volatility and “sentiment” fluctuations. We construct a general-equilibrium
model of sentiment. In it, there are two classes of agents and stock prices are excessively volatile
because one class is overconfident about a public signal. As a result, this class of overconfident
agents changes its expectations too often, sometimes being excessively optimistic, sometimes being
excessively pessimistic. We determine and analyze the trading strategy of the rational investors who
are not overconfident about the signal. We find that, because overconfident traders introduce an
additional source of risk, rational investors are deterred by their presence and reduce the proportion
of wealth invested into equity except when they are extremely optimistic about future growth.
Moreover, their optimal portfolio strategy is based not just on a current price divergence but
also on their expectation of future sentiment behavior and a prediction concerning the speed of
convergence of prices. Thus, the portfolio strategy includes a protection in case there is a deviation
from that prediction. We find that long maturity bonds are an essential accompaniment of equity
investment, as they serve to hedge this “sentiment risk.”

JEL Codes: C11, D58, D84, D91
Keywords: Bayesian behavior, financial-market equilibrium, excess volatility, risk premia.



1 Introduction

The excess-volatility puzzle – identified by Shiller (1981) and LeRoy and Porter (1981) – points to

a form of market inefficiency. But, so far, the investment strategy that would serve to exploit that

form of inefficiency and would cause those responsible for excess volatility to part with their wealth

has not been identified. Suppose that a financial market is deemed to be affected by fluctuations

in market “sentiment” so that sentiment volatility causes prices to be more volatile than what

would be justified by dividend volatility alone.1 Suppose further that a Bayesian, intertemporally

optimizing investor trades in that market. We would like to know what investment policy this

person will undertake in equilibrium.

To address this question, we build a general-equilibrium model of a financial market in which a

subpopulation of investors trades on “sentiment” and generates excess volatility. In our model, some

investors are overconfident in the sense that they give too much credence to a public information

signal. One way to capture that behavioral feature has recently been proposed by Scheinkman and

Xiong (2003). In their model of a “tree” economy, a stream of dividends is paid. Some aspect

of the stochastic process of dividends is not observable by anyone. All investors are risk neutral,

are constrained from short selling, and receive information in the form of the current dividend

and some public signals. Agents have different beliefs about the correlation between innovations

in the signal and innovations in the unobserved variables: “overconfident”agents are people who

steadfastly believe that this correlation is a positive number when, in fact, it is equal to zero. This

causes them to give too much weight to the signals.

Here, we consider a similar setting except that all investors are risk averse and are allowed to

sell short. One class of agents knows the true correlation. They form “proper” beliefs by using

Bayes’ formula. A second class of investors are overconfident about the public signal. As a result,

they change their beliefs too often about economic prospects: when they receive a signal, they

overreact to it, which then generates excessive stock price movements. We say that volatility is

“excessive” when, for the given utility functions of agents, the level of volatility is larger than it

would be if all agents knew the correlation to be equal to zero, and we refer to the fluctuations in the
1Whether financial-market volatility is actually excessive has been debated. The literature on the equity-premium

puzzle has developed a number of models, such as habit-formation models (see Constantinides (1990); Abel (1990);
Campbell and Cochrane (1999)), in which the effective discount rate is strongly time varying even though the
consumption stream remains very smooth. Using models of that kind, Menzly, Santos, and Veronesi (2004) have
recently calibrated a model of the U.S. stock market in which the volatility of stock returns is larger than the one
observed in the data. In another line of investigation, Bansal and Yaron (2004) and Hansen, Heaton, and Li (2005)
find that allowing for a small long-run predictable component in dividend growth rates and for very high elasticity of
intertemporal substitution can generate several observed asset-pricing phenomenon, including volatility of the market
return. Spiegel (1998) shows that excess volatility can be explained also in an overlapping-generations model with
small shocks to the supply of the multiple risky assets. Bhamra and Uppal (2007) show that differences in risk
aversions can also lead to large volatility.
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probability beliefs of overconfident agents relative to agents with the proper beliefs as fluctuations

in “sentiment.” The non-zero correlation number to which overconfident investors adhere, is the

single parameter in our model that causes it to differ from a traditional rational-expectations general

equilibrium model.

In their contest with investors who process information rationally under the proper beliefs, we

want the traders who are overconfident to be full-fledged intertemporal optimizers nonetheless. It

is well-known that complete irrationality in the manner of positive “feedback traders” à la De Long,

Shleifer, Summers, and Waldmann (1990b) can amplify the volatility of stock prices and that the

additional volatility creates “noise-trader risk” for rational arbitrageurs, thereby creating a limit to

arbitrage. However, feedback traders or traders acting randomly may not be the best representation

of irrational behavior because they are “sitting ducks” for rational investors. Furthermore, it is not

clear where the consumption units they are losing are coming from. For this reason, we prefer to

model a general equilibrium economy where the overconfident traders are intertemporal optimizers

with fully specified budget constraints, even if they have overconfident beliefs. In this way, welfare

analysis and the analysis of gains and losses of the two groups of traders remain meaningful.2

We identify three distinct aspects of the portfolio strategy of the investors who process infor-

mation properly.3 First, these investors may not agree today with the market about its current

estimate of the growth rate of dividends: there is a difference of opinion. When the investors with

the proper beliefs are more optimistic than the market, they increase their investment in equity,

while decreasing their investment in bonds (because equity and bonds are positively correlated).

Second, all investors, whether they agree today or not, know that they will revise their forecasts

of growth, with consequent future changes in the rate of interest. Third, if there is a difference

of opinion today, investors with the proper beliefs are aware that the overconfident investors will

revise their probability beliefs differently from the way their own will be revised: the difference

of opinion drives sentiment, which is stochastic, and sentiment risk carries a risk premium. The

second and third effects cause investors with the proper beliefs to hedge; they hold fewer shares of

equity than would be optimal in a market without excess volatility. Thus, our analysis illustrates

how “risk arbitrage” must be based not just on a current price divergence but also on a model of

overconfident behavior, so that a protection can be put in place.
2Models of feedback trading do not discuss the budget constraint of the feedback traders and, therefore, leave

unclear the origin of the gains that the rational arbitrageurs would make. And, even when noise traders pursue an
explicit objective, as is done in De Long, Shleifer, Summers, and Waldmann (1990a), one must be careful not to
confuse “noise risk” with some output risk induced by the noise risk, as has been pointed out recently by Loewenstein
and Willard (2006). Restricting our analysis to a pure exchange general equilibrium economy allows us to maintain
a clean distinction between output risk and noise risk.

3The question being answered in our paper is the same as the one that was raised by Williams (1977) and Ziegler
(2000) in a simpler setting in which the expected growth rate of dividends is constant (although unobserved) and in
which there are fewer securities. In these two papers, the investor whose strategy one is studying is assumed to be of
negligible weight in the market, in contrast to our setting.
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The model we develop can be viewed as an equilibrium model of investor sentiment, in the

sense of Barberis, Shleifer, and Vishny (1998). Several studies have supported the hypothesis that

agents active in the financial markets exhibit aspects of behavior that deviate from rationality.4

This was done typically on the basis of some natural experiments, for instance, spin offs, share

repurchases, initial public offerings, reactions to news, etc. In order to sort out which behavioral

aspects actually exist in the marketplace, it would be important to conduct tests using data on asset

prices. One must, therefore, deduce theoretically the behavior of asset prices and portfolio choices

that will prevail in the financial markets as a result of a particular deviation from rationality.

That was the intent of three classic papers in this strand of the literature, which can be called

“behavioral equilibrium theory”: Barberis, Shleifer, and Vishny (1998), Daniel, Hirshleifer, and

Subrahmanyam (1998), and Hong and Stein (1999). The first two of these papers feature a single

group of agents who are non-Bayesian.5 The model of Hong and Stein (1999), like ours, features

two groups of agents with heterogeneous beliefs who, in contrast to the agents in our model, are

not intertemporal optimizers.

The heterogeneity of beliefs between agents needs to be regenerated; otherwise Bayes’ law causes

it to die out.6 There exist basically two ways of doing that: either agents receive different informa-

tion or they receive the same information but process it differently. The first, more sophisticated

approach is to let agents receive private signals, as in the vast “Noisy-Rational Expectations” liter-

ature originating from the work of Grossman and Stiglitz (1980), Hellwig (1980) and Wang (1993),

in which agents learn also from price, a channel that is not present in our model. In most renditions

of noisy-rational expectations equilibria, the market includes noise traders who behave randomly,

a feature we would like to avoid. The second approach is the one utilized in “difference-of-opinion”

models such as Harris and Raviv (1993), Kandel and Pearson (1995), and Cecchetti, Lam, and Mark

(2000); see Morris (1995) for a discussion of this approach. Agents disagree about the basic model

they believe in, or about some fixed model parameter, and they do not learn from each others’ be-

havior: they “agree to disagree”. Under this approach, agents are viewed as being non-Bayesian,7

4For a survey of the behavioral view of asset pricing, see Shefrin (2005).
5The agents in Barberis, Shleifer, and Vishny (1998) update their beliefs using Bayes’ formula but they do so on

the basis of the wrong prior category of models, which they refuse to update.
6For a comprehensive study of the influence of heterogeneous beliefs on asset prices, see Basak (2005) and Jouini

and Napp (2006).
7One class of models shows that, with sufficiently deviant priors, Bayesian, rational learning alone can serve to

develop theoretical models with volatility that matches the data, by assuming that investors do not know the true
stochastic process of dividends (Barsky and De Long (1993)). As investors do not know the expected growth rate of
dividends, prices are revised when they receive information about it. These price revisions go beyond the change in
the current dividend because the current dividend contains information about future dividends. A similar argument
has been made by Bullard and Duffy (2001), Buraschi and Jiltsov (2005), David and Veronesi (2002), Detemple and
Murthy (1994), Duffie, Garleanu, and Pedersen (2002), Gallmeyer (2000), Timmermann (1993, 1996), and Veronesi
(1999). Brennan and Xia (2001) calibrate a model in which a single type of investors populate the financial market and
learn about the expected growth rate of dividends and, separately, about the expected growth rate of consumption.
In that model, as in ours, the expected growth rate of dividends is unobservable and needs to be filtered out, which
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but, one can say equally well, as do Biais and Bossaerts (1998), that agents remain Bayesian and

place infinite trust on some aspect of their prior. The second approach is more easily tractable

while capturing some of the same phenomena as the first one. It is the approach we adopt here,

as it has been in the recent, related work of David (2007). In our model, the non-zero correlation

number to which overconfident investors adhere is the mechanism by which heterogeneity of beliefs

is regenerated.

On the technical side, we adopt the exponential linear-quadratic framework, introduced in the

work of Constantinides (1992) on the term structure, in the work of Kim and Omberg (1996) on

dynamic portfolio choice, and now extensively used in term-structure and volatility modeling (see

Cheng and Scaillet (2006)). It is a very flexible functional setting in that it can handle any finite

number of state variables. In our model, asset prices are weighted averages of exponential linear-

quadratic functions of state variables, with time varying weights. Ours is, to our knowledge, the

first general-equilibrium application of that mathematical framework.

The balance of this paper covers the following material. In Section 2, we describe agents’ beliefs

and the way beliefs evolve over time. In Section 3, we determine the equilibrium allocation of

consumption and the equilibrium pricing kernel. In Section 4, we produce the explicit solution for

all securities prices. In Section 5, we derive and study the diffusion matrix and all moments of

securities prices; we verify, of course, that overconfident investors bring about excessive volatility.

In Section 6, we identify the main factors driving the portfolio strategy of the rational trader and we

show how it can be implemented via trading in stocks and bonds, as functions of the values of the

fundamental state variables of the economy. In Section 7, we explain the link that exists between

the portfolio strategy and the trader’s ability to predict returns in the long run. In Section 8,

we derive the speed of impoverishment of the overconfident traders and demonstrate that excess

volatility may be a long-lived phenomenon. Section 9 contains the conclusion. Throughout, we

highlight our main results in propositions while technical results are presented in lemmas, with

their mathematical derivations provided in the appendix.

2 Beliefs and information structure

We wish to develop a dynamic general-equilibrium model where investors have heterogeneous expec-

tations about some aspect of the economy. In the first subsection below, we specify an endowment

economy populated by two groups of investors, Group A and Group B, who harbor different expec-

tations about the process driving aggregate dividends. In the second subsection, we show that the

then contributes positively to the volatility of the stock price. They find that they can match several moments of
stock returns.
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dynamics of expectations that we have specified can be viewed as the result of a learning process

of the kind proposed by Scheinkman and Xiong (2003).

2.1 Beliefs and their dynamics

We consider an economy with an aggregate dividend-flow diffusion process {δt}, which we regard

as the “fundamental” variable.

Assumption 1 Under the beliefs of Group B, the process for aggregate dividends is driven by the

following pair of stochastic differential equations, which defines a Markovian system in two state

variables, {δt, f̂Bt }:
dδt
δt

= f̂Bt dt+ σδdW
B
δ,t, (1)

df̂Bt = −ζ
(
f̂Bt − f

)
dt+

γB

σδ
dWB

δ,t, (2)

where WB
δ is a one-dimensional process that is Brownian under the probability measure that reflects

the expectations of Group B.

From Equation (1), we see that f̂Bt is the growth rate of δ conditionally expected by Group B

and Equation (2) postulates that this expected growth rate follows a mean reverting Ornstein-

Uhlenbeck process, with the mean-reverting parameter given by ζ > 0. The coefficients γB and σδ

are assumed to be positive and constant. An interpretation of γB is given in the next subsection.

We refer to the pair of equations (1)–(2) as the “fundamental system”.

Our economy is a heterogeneous-expectations economy, where the belief of Group A about the

expected growth rate of aggregate dividends differs from that of Group B.

Assumption 2 Group A believes that the expected growth rate of aggregate dividends is equal to:

f̂At = f̂Bt − ĝt. (3)

Hence ĝt is the “ difference of opinion”. The dynamics of the difference of opinion are specified to

follow an Ornstein-Uhlenbeck process that mean reverts (ψ > 0) to zero:

dĝt = −ψĝtdt+ σbg,δdWB
δ,t + σbg,sdWB

s,t, (4)

σbg,δ ≥ 0; σbg,s ≤ 0.

where WB
s is a second one-dimensional process, independent of Wδ, that is Brownian under the

probability measure that reflects the expectations of Group B.
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In the equation above, the volatilities σbg,δ and σbg,s are constant with the signs postulated. An

interpretation for them and a justification for the sign assumptions are given in the next subsection.

Because of the difference of opinion about the conditionally expected growth rate of aggregate

dividends, the two groups have different probability beliefs:

Assumption 3 Group A differs from Group B in its beliefs about the aggregate dividends process.

Group A’s probability beliefs at time t are represented by a change of measure η, where {ηt} is a

strictly positive martingale process. For any event eu belonging to the σ-algebra of time u, we have:

EAt [1eu ] = EBt
[
ηu
ηt

1eu

]
. (5)

In the eyes of Group B, η captures the way in which Group A’s probability beliefs differ from

theirs. We call η the “sentiment” variable. Girsanov’s theorem tells us how the difference of

opinion gets encoded into η to generate different probability beliefs. When Group B is currently

comparatively pessimistic (ĝt < 0), Group A views positive innovations in δ (or s) as more probable

than Group B does. This, from Girsanov’s theorem, implies positive innovations in the change of

measure η for those states of nature in which δ (or s) has positive innovations:

Lemma 1 (Girsanov)
dηt
ηt

= −ĝt
1
σδ
dWB

δ,t. (6)

We refer to the pair of equations (4)–(6) as the “sentiment system”.

The joint dynamics of the four state variables, {δ, η, f̂B, ĝ}, in the eyes of Group B are com-

pletely characterized by the Markovian system (1), (2), (4), and (6). Three of the four state

variables, namely δ, η and f̂B, are always perfectly correlated, but δ and f̂B are always positively

correlated with each other, while the diffusion vector of η has the sign opposite to the sign of ĝ.

Of these four state variables, two will have a direct, immediate effect on the economy. They are

the fundamental, δ, and the sentiment, η. The fundamental moves independently of sentiment

but sentiment is correlated with the fundamental for reasons that will be made clear shortly. The

other two state variables, f̂B and ĝ, have only an indirect effect in that they solely act on the first

two: f̂B is the current estimate of the drift of δ by Population B, and the difference of opinion, ĝ,

determines the diffusion of sentiment, η. Functionally speaking, the “fundamental system” (1)–(2)

and the “sentiment system” (4)–(6) are unrelated to each other but they are correlated. Instanta-

neously, the four state variables, {δ, f̂B, η, ĝ}, which are driven by only two Brownians, WB
δ and

6



WB
s , have the following 4× 2 diffusion matrix:


δσδ > 0 0
γB

σδ
> 0 0

−η bg
σδ

0
σbg,δ ≥ 0 σbg,s ≤ 0

 . (7)

In summary, there are two distinct effects of heterogeneous beliefs and their dynamics.8 One

determines the volatility of sentiment, the other the volatility of volatility of sentiment so that, in

essence, our model is a model of stochastic volatility in a state variable. The difference of opinion ĝ

scales the diffusion of η, which implies that η has a diffusion that can take large positive or negative

values. Sentiment or heterogeneity of beliefs, η, is volatile. This first effect is cumulative over time,

or long term. Second, the difference of opinion, ĝ, itself is stochastic. Even when the two groups of

investors happen to agree today about the growth rate of aggregate dividends (ĝ = 0), all investors

still know that they will revise their future estimates of the growth rate, and that they will do so in

different ways, so that they will not agree tomorrow. This second effect (the effect of the dynamics

of heterogeneous beliefs) is instantaneous or short-term.

To understand the long-run effects of a random shock pair dWB
t = {dWB

δ,t, dW
B
s,t} occurring at

date t, we shall have occasion in Section 7 to use Malliavin calculus, which is a form of calculus

that tells how shocks occurring today affect the values of variables in the distant future.

2.2 An information-processing interpretation for the formation of beliefs

In the previous subsection, the dynamics for the beliefs of the two agents are specified exogenously.

In this subsection, we show that these dynamics can be viewed as being the result of a learning

process similar to that proposed by Scheinkman and Xiong (2003).

We start by re-specifying the process for aggregate dividends δ under the effective measure.

Assumption 1′ The stochastic process for δ is:

dδt
δt

= ftdt+ σδdZ
δ
t , (8)

where Zδ is a Brownian under the effective probability measure, which governs empirical realizations

of the process. The conditional expected growth rate of aggregate dividends, ft, behaves according
8We emphasize that two state variables, bg and η, are needed in our Markovian formulation to capture the dynamics

of heterogeneous beliefs and their effects, unlike what happens in, e.g., Barberis, Shleifer, and Vishny (1998). As is
noted below, one captures an instantaneous effect and the other a lasting effect.

7



to:

dft = −ζ
(
ft − f

)
dt+ σfdZ

f
t ; ζ > 0, (9)

where Zf is a Brownian under the effective probability measure.

We assume that the conditional expected growth rate of dividends, f , is not observed by any

agent, and thus, must be estimated by them.

Assumption 2′ All investors estimate, or filter out, the current value of f and its future behavior

using the observation of the current dividend, δ, and the observation of a public signal, s, which

has the following process:9

dst = σsdZ
s
t , (10)

where Zs is a third Brownian under the objective probability measure as well.

All three Brownians, {Zδ, Zf , Zs}, are uncorrelated with each other (under the objective prob-

ability measure and any measure equivalent to it) so that, instantaneously, innovations dZs in the

signal convey no information about innovations dZf in the unobserved variable. That is, the signal

is pure noise.

Finally, we assume that agents in Group A are overconfident about the signal while agents in

Group B are not.

Assumption 3′ Agents in Group A perform their filtering under the overconfident belief that the

signal, s, has positive correlation φ ∈ [0, 1] with f when, in fact, it has zero correlation. The

“model” they have in mind is:

dst = σsφdZ
f
t + σs

√
1− φ2dZst . (11)

Group B, on the other hand, believes properly that the true correlation is zero.

Now, because of the assumed nonzero correlation φ in the eyes of Group A, the signal provides

the agents of that group with short-run, albeit false, information about the current shock to the

dividend growth rate.

This single number φ, which we call the “overconfidence coefficient”, parameterizes the degree

of excess confidence placed in the signal by Group A. It could be argued that overconfident agents
9Note that the process specified for the signal has only a diffusion term but no drift term. We choose this

specification because it makes it easier to interpret the results. For the case where the signal has also a drift term,
we refer the reader to earlier versions of this paper.
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should gradually detect from their empirically-realized consumption losses that their beliefs are

overconfident. We do not address this issue, but in Section 8 we show that the consumption losses

of the overconfident group are “so gradual” that detection may be difficult.

From filtering theory (see Lipster and Shiryaev (2001, Theorem 12.7, page 36)), the conditional

expected values, f̂A and f̂B, of f according to individuals of Group A (φ 6= 0) and Group B obey

the following stochastic differential equations:10

df̂At = −ζ
(
f̂At − f

)
dt+

γA

σ2
δ

(
dδ

δ
− f̂At dt

)
+
φσf
σs

ds, (12)

df̂Bt = −ζ
(
f̂Bt − f

)
dt+

γB

σ2
δ

(
dδ

δ
− f̂Bt dt

)
. (13)

The numbers γA and γB are the steady-state variances of f as estimated by Group A and B re-

spectively.11 These variances would normally be deterministic functions of time. But for simplicity

we assume, as did Scheinkman and Xiong (2003), that there has been a sufficiently long period of

learning for people of both groups to converge to their level of variance, irrespective of their prior.

In our model, no agent knows the true state of the economy. Hence, the objective measure

is not defined on either agent’s σ-algebra and we can ignore it for the purpose of calculating the

equilibrium. In the previous subsection, we wrote the above stochastic differential equations directly

in terms of processes that are Brownian motions under subjective probability measures. We have

used B’s probability measure as the reference measure. Under this measure, the process for the

signal is:

dst = σsdW
B
s,t. (14)

Based on Assumptions 1′–3′, the following lemma gives the relation between the specification

of the model in the previous subsection and this subsection.

10Observe once again that output δ serves as a signal, which causes an update of the growth rate of output, just
as the signal s does.

11The steady-state variances of f as estimated by Group A and Group B are, respectively:

γA , σ2
δ

0@sζ2 +
`
1− φ2

´ σ2
f

σ2
δ

− ζ

1A , γB , σ2
δ

 s
ζ2 + σ2

f

1

σ2
δ

− ζ

!
.

As has been pointed out by Scheinkman and Xiong (2003), γA decreases as φ rises, which is the reason for which
Group A is called “overconfident”. γA starts at the value γB when φ = 0 and would reach γA = 0 when φ→ 1. The
signal can lead Group A ultimately to complete (and foolish) unconditional certainty.
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Lemma 2 In Equation (4) the mean-reversion parameter for the difference-of-opinion process, ψ,

and the volatilities, σbg,δ and σbg,s, are given by:

ψ = ζ +
γA

σ2
δ

> 0, (15)

σbg,δ =
γB − γA

σδ
≥ 0, (16)

σbg,s = −φσf ≤ 0. (17)

From the above lemma, we see that the mean-reversion parameter, ψ, is positive. The diffusion

coefficients have the property that σbg,δ ≥ 0 and σbg,s ≤ 0. Moreover, both coefficients are equal

to zero when the overconfidence coefficient φ takes the value zero so that ĝ has zero diffusion and

the rank of the diffusion matrix drops from 2 to 1. This is because, in that case, signal shocks are

ignored by all.

3 Equilibrium allocation of consumption and pricing

We are interested in the interaction between two groups, who harbor different and evolving ex-

pectations. Differences in risk aversion and differences in the rate of impatience are not our main

focus. So, we restrict our analysis to the setting in which

Assumption 4 Both groups have power utility with the same risk aversion, 1 − α, and rate of

impatience, ρ.

3.1 The individual’s optimization problem

Assuming a complete financial market,12 we can use the martingale, “static” formulation (as done

in Cox and Huang (1989) and Karatzas, Lehoczky, and Shreve (1987)). Then, the problem of

Group B is to maximize the expected utility from lifetime consumption:

sup
c

EB
∫ ∞

0
e−ρt

1
α

(
cBt
)α
dt; α < 1, (18)

subject to the lifetime budget constraint:

EB
∫ ∞

0
ξBt c

B
t dt = θ

BEB
∫ ∞

0
ξBt δtdt, (19)

12David (2007) says that the fluctuating difference of measure η between the two groups makes the market “effec-
tively incomplete”. That is a matter of semantics. Analytically, the equilibrium can be obtained by complete-market
methods. It would probably be more descriptive of the analytical structure that is reflected in Equation (21) below,
to say that the fluctuating η causes the utility function of agents A to become “effectively state dependent” (i.e. non
von Neuman-Morgenstern) relative to the probability measure of Group B. See Riedel (2001).
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where ξB is the change of measure from Group B’s probability measure to the risk neutralized

measure (which we determine in the next subsection) and θ
B is the share of equity with which B

is initially endowed. The first-order condition for consumption equates marginal utility to λBξBt ,

where λB is the Lagrange multiplier of the budget constraint (19):

e−ρt
(
cBt
)α−1

= λBξBt . (20)

Group A holds an initial share θA = 1− θ
B of the equity and faces an analogous optimization

problem. The only difference is that Group A uses a probability measure that is different from that

of Group B. Under B’s probability measure, the problem of A can be stated as follows:13

sup
c

EB
∫ ∞

0
ηte

−ρt 1
α

(
cAt
)α
dt, (21)

subject to the lifetime budget constraint:

EB
∫ ∞

0
ξBt c

A
t dt = θ

AEB
∫ ∞

0
ξBt δtdt. (22)

The first-order condition for consumption in this case is

ηte
−ρt (cAt )α−1

= λAξBt , (23)

where λA is the Lagrange multiplier of the budget constraint (22).

3.2 Equilibrium pricing measure

An equilibrium is a price system and a pair of consumption-portfolio processes such that: (i) in-

vestors choose optimally their consumption-portfolio strategies, given their perceived price pro-

cesses; (ii) the perceived security price processes are consistent across investors; and (iii) commodity

and securities markets clear.

The aggregate resource constraint, from (20) and (23), is

(
λAξBt e

ρt

ηt

) 1
α−1

+
(
λBξBt e

ρt
) 1

α−1 = δt. (24)

Solving this equation:

ξBt (δt, ηt) = e−ρt

[(
ηt
λA

) 1
1−α

+
(

1
λB

) 1
1−α

]1−α

δt
α−1, (25)

13We could also have defined ξA, the density that makes prices martingales under A’s probability measure. For
any event e: EA

ˆ
ξA1e

˜
= EB

ˆ
ηξA1e

˜
= EB

ˆ
ξB1e

˜
, which implies that ξB = ηξA. The martingale pricing density

would then be defined relative to each agent’s probability measure. But the risk neutral measure is the same in the
end.
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and, therefore:

cAt = ω(ηt) δt, (26)

cBt = (1− ω(ηt)) δt, (27)

where:14

ω(ηt) ,

(
ηt

λA

) 1
1−α

(
ηt

λA

) 1
1−α +

(
1
λB

) 1
1−α

, (28)

is the share of consumption of Group A.15 The consumption-sharing rule is linear in δ because both

groups have the same risk aversion. But its slope is stochastic because the share of consumption

allocated to each group, ω(η), is driven by sentiment, η.

The equilibrium value of ξB – the martingale pricing density under B’s probability measure –

depends on η, the probability density of A relative to B, that is, sentiment. In addition to reflecting

the abundance or scarcity of goods, as is usual in the absence of state preference or heterogeneous

beliefs, the state prices also incorporate a power (or Hölder) average of the probability beliefs of

the two groups (given by the term that is in square brackets in Equation (25)). As η fluctuates,

average probability belief or “sentiment” fluctuates with it. In writing his/her budget constraint

based on ξB, Agent B anticipates A’s beliefs. This reflects “higher-order beliefs.”

Notice in Equation (25) that the functional forms of ξB with respect to δ and with respect to η

are very different from each other. This is because fundamental risk and sentiment risk have very

different economic effects on utility and marginal utility. From Equation (25), one can show that

the first derivative of ξB (δ, η) with respect to δ is negative while the second derivative is positive.

The second derivative of the function ξB (δ, η) with respect to η has the same sign as α. The cross

derivative of the function ξB (δ, η) is unambiguously negative. These derivatives have the following

economic interpretation.

The fundamental, δ, has the customary aggregate effect on both groups: when output increases,

marginal utility decreases. Thus, an increase in future expected output decreases the expected value

of discount factors. Furthermore, marginal utility is convex with respect to δ. Jensen’s inequality

implies that an increase in fundamental risk increases the expected value of discount factors, which

is the familiar precautionary-saving motive.16

14For arbitrary (but von Neuman Morgenstern) utility, ω would be defined as the ratio of Group A’s absolute risk
tolerance over the sum of absolute risk tolerances of Group A and Group B. See Lintner (1969) and Basak (2005).
In the isoelastic case, this ratio reduces to the share of consumption.

15Along any sample path of the economy, ω(η) is monotonically increasing with η. Thus, we can use ω as a
representation of η. As state variable, η is equivalent to the consumption shares of the two subpopulations.

16For arbitrary (but von Neuman Morgenstern) utility, the curvature of ξB with respect to the fundamental δ is
equal to total absolute risk aversion multiplied by total absolute prudence. See Basak (2005).
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In contrast to the fundamental, which is an aggregate shock, sentiment acts as a wedge between

the two groups.17 Because the second derivative of ξB (δ, η) with respect to η has the same sign as

α, if α < 0 (risk aversion greater than 1), discount factors are concave with respect to η so that an

increase in sentiment risk (the variance of η), by Jensen’s inequality, reduces the expected values

of all the future stochastic discount factors written with respect to B’s measure.

3.3 Securities-market implementation of the complete-market equilibrium

Because there are two Brownians that agents care about, WB
δ and WB

s , three securities that are

linearly independent are required to complete financial markets and implement the equilibrium.

The choice of securities is arbitrary. We assume that there is a riskless, instantaneous bank deposit

with a rate of interest r. The second security, equity or total wealth, pays the aggregate dividend

δ perpetually. The third security we introduce is a perpetual bond paying continuously and indef-

initely a coupon equal to one unit of consumption per unit of time. We shall denote the price at

date t of the bond as Pt and the price of equity as Ft.

The equilibrium price of a fixed-income bond, which we denote by P , can be obtained directly

from the pricing measure (25):18

P
(
f̂B, η, ĝ, t

)
=
∫ ∞

t
EB
δ,η, bfB ,bg

[
ξBu
ξBt

]
du. (29)

Similarly, the equilibrium price of long-lived equity is the discounted sum of all future dividends.

This is also the total wealth of the economy, which we denote by F :

F
(
δ, f̂B, η, ĝ, t

)
=
∫ ∞

t
EB
δ,η, bfB ,bg

[
ξBu
ξBt
δu

]
du = δ

∫ ∞

t
EB
η, bfB ,bg

[
ξBu
ξBt

δu
δt

]
du. (30)

We shall also have occasion to refer to the single-payoff versions of these securities, in which case

we shall add a superscript T for the maturity date of the payoff. So, for instance, the price today

of a claim paying a single dividend δT is:

F T
(
δ, f̂B, η, ĝ, t

)
= EB

δ,η, bfB ,bg
[
ξBT
ξBt
δT

]
. (31)

17For arbitrary (but von Neuman Morgenstern) utility, Basak (2005) shows that the curvature of the ξB with
respect to η is given by a combination of the risk aversions and the prudences of the two groups. One can verify on
his formula that the knife-edge case of zero curvature is the case in which both groups have log utility. A special case
of his result is obtained here for isoelastic utility.

18The “growth conditions” sufficient to guarantee that the time integrals in the case of perpetual securities converge
(and that the interchange of the integration and expectation operators in (29) and (30) is allowed) are provided in
Lemma 6. Similar to the way it has been done in Brennan and Xia (2001), one can show that the condition for the
equity price to converge requires that the long-run growth rate of aggregate dividends be less than the long-run risk
free rate. It is worth noting that this condition depends only on the anticipated behavior of dividends, EBbfB [( δu

δ
)ε],

and not on the anticipated behavior of sentiment, EBbg [( ηu
η

)χ], which implies that it is independent of the heterogeneity

of agents in the economy.
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4 Transform analysis and other technical issues

From Equation (25) for the martingale pricing density under B’s probability measure and Equa-

tions (29) and (30) for the prices of the bond and equity, we see that the joint conditional

distribution of ηu and δu, given δt, ηt, f̂
B
t , ĝt at t will be needed to characterize the prices of

distant-maturity claims, and hence, portfolio policies. That joint distribution is not easy to

obtain but, remarkably, its characteristic or moment generating function or Fourier transform

EBbfB ,bg
[(

δu
δ

)ε (ηu
η

)χ]
;u ≥ t; ε, χ ∈ R (or C) can be obtained in closed form.

Proposition 1 1. The moment-generating-function for the joint distribution of δ and η at ma-

turity u under the measure of Group B is given by

EBbfB ,bg
[(

δu
δ

)ε(ηu
η

)χ]
= Hf

(
f̂B, t, u; ε

)
×Hg (ĝ, t, u; ε, χ) , (32)

where

Hf

(
f̂B, u, t; ε

)
= exp

{
ε

[
f (u− t) +

1
ζ

(
f̂B − f

) [
1− e−ζ(u−t)

]]
+

1
2
ε (ε− 1)σ2

δ (u− t)

+
ε2γB

2ζ2

[
1− e−ζ(u−t)

]2
+
ε2σ2

f

4ζ3

[
2ζ (u− t)− 3 + 4e−ζ(u−t) − e−2ζ(u−t)

]}
, (33)

Hg (ĝ, u, t; ε, χ) = exp
{
A1 (χ;u− t) + ε2A2 (χ;u− t) + εĝB (χ;u− t) + ĝ2C (χ;u− t)

}
.

(34)

and where the functions A1, A2, B and C are given in the proof. Moreover, the moment-

generating-function is finite and real for 0 ≤ χ ≤ 1 and ε ∈ R.

2. ∂

∂ bfB
Hf

(
f̂B, u, t; ε

)
= Hf

(
f̂B, u, t; ε

)
ε
ζ

[
1− e−ζ(u−t)

]
and has the sign of ε.

3. For 0 ≤ χ ≤ 1, in a neighborhood of ĝ = 0, the derivative ∂Hg

∂bg is nonnegative if ε < 0

(εB (χ;u− t) ≥ 0) and nonincreasing (C (χ;u− t) ≤ 0).

Observe, from Equations (32), (33) and (34), that the moment-generating-function for the joint

distribution of δ and η takes the form of a product of a function Hf , which is linear exponential in

f̂B, with a function Hg, which is quadratic exponential in ĝ with all coefficients being functions only

of time and being available in closed form. The formula is a generalization of Heston (1993) and Kim

and Omberg (1996) (recently extended by Liu (2006)) and perhaps others. Our economy’s dynamic

system belongs to the category of exponential affine-quadratic models. Cheng and Scaillet (2006) in
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a term-structure context, have recently clarified the manner in which exponential affine-quadratic

models can be reformulated as exponential affine models,19 for which solutions are well-known.

The inverse transformation to obtain securities prices can be performed in general by means

of the Fast Fourier Transform (see the appendix). For the sake of speed, precision and simplicity,

we conduct the calculation of these prices for the special case in which risk aversion is an integer,

(1 − α) ∈ N, which excludes the cases of risk aversion smaller than 1 (that is, α > 0). While in

general the measure (25) is a weighted power mean of the two terms corresponding to the two

groups, in the special case of risk aversion being an integer, the pricing measure can be written

in an alternative way by expanding the bracket into an exact finite sum by virtue of the binomial

formula:20

[(
ηu
λA

) 1
1−α

+
(

1
λB

) 1
1−α

]1−α

=
1
λB

1−α∑
j=0

Cj1−α

(
ηuλ

B

λA

) j
1−α

=
1
λB

1−α∑
j=0

Cj1−α

[
ω(ηu)

1− ω(ηu)

]j
, (35)

where Cj1−α denotes the binomial coefficient
(
1−α
j

)
. Therefore, using the moment generating func-

tion obtained in (32), the price of the bond in (29) is obtained by integrating the following over

future times u:21

EB
η, bfB ,bg

[
ξBu (δu, ηu)
ξBt (δ, η)

]
= e−ρ(u−t)Hf

(
f̂B, t, u;α− 1

)
× [1− ω(η)]1−α (36)

×
1−α∑
j=0

Cj1−α

[
ω(η)

1− ω(η)

]j
Hg

(
ĝ, t, u;α− 1,

j

1− α

)
,

and the price of equity in (30) is obtained from:22

EB
η, bfB ,bg

[
ξBu (δu, ηu)
ξBt (δ, η)

δu
δ

]
= e−ρ(u−t)Hf

(
f̂B, t, u;α

)
× [1− ω(η)]1−α (37)

×
1−α∑
j=0

Cj1−α

[
ω(η)

1− ω(η)

]j
Hg

(
ĝ, t, u;α,

j

1− α

)
.

19That would be done in our context simply by introducing an additional state variable: Z , bg2.
20Yan (2006) uses a similar approach. Recall that 1 − α > 0. The parameter χ in the function Hg takes values

ranging from 0 to 1.
21To obtain the bond price, the parameter ε in the Hg function is set at α− 1, which is negative unambiguously.
22To obtain the stock price, the parameter ε in the Hg function is set at α, which is negative when risk aversion is

greater than 1.
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Asset prices in our framework are weighted sums of exponential-quadratic functions. The time vary-

ing weights, ω(η), capture the role of the fluctuating distribution of consumption in the population,

itself arising from sentiment fluctuations, η.

5 Excess volatility

In this section, we verify that overconfident beliefs induce higher volatility of asset returns than

would be the case if all investors had proper beliefs. To do so, we study the diffusion matrix of

stocks and bonds, which will also be needed when making up portfolios.

The diffusion vector of the stock, F , and the bond, P , is its sensitivity or “exposure” to the

shocks in the fundamental and in the signal, dWB
δ and dWB

s , respectively. It can be obtained

from the gradient of the price function postmultiplied by the diffusion matrix of state variables

(Equation (7)). Each security’s price exposure, therefore, has four components corresponding to

the four elements of the gradient vector:
(
∂F
∂δ ,

∂F

∂ bfB
, ∂F∂η ,

∂F
∂bg
)

for the stock, and
(
∂P
∂δ ,

∂P

∂ bfB
, ∂P∂η ,

∂P
∂bg
)

for the bond, all these derivatives being known in closed form. The diffusion vectors are:

[
diffF
diffP

]
=

[
∂F
∂δ

∂F

∂ bfB

∂F
∂η

∂F
∂bg

∂P
∂δ

∂P

∂ bfB

∂P
∂η

∂P
∂bg
]

δσδ 0
γB

σδ
0

−η bg
σδ

0
γB−γA

σδ
−φσf

 . (38)

Given the emphasis of this article, however, it will be useful to separate the diffusion components

that arise from the movements of the difference of opinion, ĝ. We define the diffusion arising from

the first three state variables as:

[
diff3F
diff3P

]
,

[
∂F
∂δ

∂F

∂ bfB

∂F
∂η

∂P
∂δ

∂P

∂ bfB

∂P
∂η

] δσδ 0
γB

σδ
0

−η bg
σδ

0

 . (39)

Clearly, the total exposures are:[
diffF
diffP

]
=
[

diff3F
diff3P

]
+

[
∂F
∂bg
∂P
∂bg
] [

γB−γA

σδ
−φσf

]
. (40)

The derivatives ∂F
∂bg and ∂P

∂bg capture the exposures to changes in the difference of opinion. By

definition, the exposures to Ws shocks arises only from these derivatives. Item 3 of Lemma 1 above

implies that, in a neighborhood of ĝ = 0,

∂F

∂ĝ

∣∣∣∣bg=0

≥ 0, and
∂P

∂ĝ

∣∣∣∣bg=0

≥ 0, (41)
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Table 1: Choice of parameter values and benchmark values of the state variables
This table lists the parameter values used for all the figures in the paper. These values are similar to
the estimation results reported in Brennan and Xia (2001). The table also indicates the benchmark
values of state variables, which are the reference values taken by all state variables except for the
particular one being varied in a given graph.

Name Symbol Value
Parameters for aggregate endowment and the signal
Long-term average growth rate of aggregate endowment f̄ 0.015
Volatility of expected growth rate of endowment σf 0.03
Volatility of aggregate endowment σδ 0.13
Mean reversion parameter ζ 0.2

Parameters for the agents
Agent A’s correlation between signal and mean growth rate φ 0.95
Agent B’s correlation between signal and mean growth rate — 0
Agent A’s initial share of aggregate endowment λB/λA 1
Time-preference parameter for both agents ρ 0.10
Relative risk aversion for both agents 1− α 3

Benchmark values of the state variables
The level of aggregate dividends δ 1
The change from B’s measure to A’s measure η 1
The population average belief about expected rate of growth f̂B f

The difference in opinions: f̂B − f̂A ĝ −0.03

when risk aversion is greater than 1, because ε is set at α and at α− 1 respectively. It also implies

that these derivatives are nonincreasing in ĝ.

5.1 Illustration

In order to illustrate the effect of expectations and their dynamics on securities prices, we specify

numerical values for the parameters of the model. Even though our objective is not to match the

magnitude of particular moments in the data, we would like to work with parameter values that

are reasonable.23 The parameter values that we specify are based on the estimation undertaken in

Brennan and Xia (2001) for a model similar to ours.24 We limit ourselves to the case in which risk

aversion is greater than one (α < 0). The particular values chosen for all the parameters are listed

in Table 1.
23The range of parameter values that can be considered is restricted by the need to satisfy the growth conditions in

Lemma 6, so that the prices of perpetual assets (equity and consol bond) are well defined. This limits, in particular,
the range of values for the discount rate, or for risk aversion, that can be considered. Because of this constraint,
the risk aversion we consider is somewhat too low to account for the equity premium by itself. The presence of
overconfident traders, however, suffices to bring the equity premium up to realistic levels.

24We have not set the volatility of the signal, σs, at any particular number because that is immaterial and what
matters is only the level of the correlation with the expected rate of growth of the fundamental.
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As we analyze securities’ returns and portfolio strategies, we display results for the following

four cases:

Case 1. Where all agents have the proper beliefs (φ = 0) and are in agreement about the growth

rate of aggregate dividends (ĝ = 0, or zero difference of opinion). This corresponds to the

setting in a standard model where all agents have homogeneous beliefs and identical priors.

Case 2. Where all agents have the proper beliefs (φ = 0) but disagree about the growth rate

(ĝ 6= 0). This corresponds to the setting where agents have the same beliefs but different

priors.

Case 3. Where one group of agents is overconfident (φ = 0.95)25 but currently in agreement with

the other group about the growth rate (ĝ = 0). Because Group A is overconfident in the

signal, even though they currently agree with Group B, they will disagree in the future.

Case 4. Where one group of agents is overconfident (φ = 0.95) and disagrees today about the

growth rate (ĝ 6= 0). In this case, agents of the two groups have different beliefs and these

beliefs fluctuate randomly over time.

Our results are displayed in figures. Each plot in the figures has on the x-axis either current dif-

ference of opinion, ĝ, or the relative share of aggregate consumption of the overconfident Groups A,

ω. Each plot has typically three curves on it, with the dotted line representing the case where all

agents have the proper beliefs (φ = 0), the dashed line representing the case where Group A is

overconfident (φ = 0.95) and the continuous line representing the construct “diff3” containing three

terms only, agents A being, however, overconfident.

Note that when φ = 0, everyone has proper beliefs and so they ignore the signal. This implies

that effectively there is only one shock in the economy Consequently, one risky security is sufficient

to complete the financial market; that is, the equity and the bond are redundant relative to each

other.

Figure 1 portrays the relative diffusion vectors for stocks and bonds with respect to the Wδ

shock. We draw three inferences from this figure. First, we see that the dotted curves for the case

of proper beliefs and the solid line for the case of overconfident beliefs but ignoring the derivative

with respect to ĝ are very close to each other in all the plots:[
diffF
F

diffP
P

]
φ=0

≈
[

diff3F
F

diff3P
P

]
φ6=0

. (42)

25When we vary the parameter φ, we adjust the ratio λBη
λA in such a way that the time-0 lifetime budget constraints

of the two groups still hold, with unchanged time-0 endowments of securities.
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Figure 1: Diffusion of equity and bond
The figure has four plots. The top two show the diffusion of equity and bond rates of return
with respect to the output shock as functions of the current difference of opinion, ĝ, for a value of
sentiment such that ω = 0.5. The bottom two plots show the same as functions of ω for a value of the
difference of opinion ĝ = −0.03. Each plot in the figure has three curves on it, with the dotted line
representing the case where all agents have the proper beliefs (φ = 0), the dashed line representing
the case where Group A is overconfident (φ = 0.95) and the solid line representing the construct
“diff3” containing three terms only, Group A being, however, overconfident. All other parameter
values used in this figure are given in Table 1.
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Analyzing this small difference, one would find that the derivatives
(

1
F
∂F
∂δ ,

1
F

∂F

∂ bfB

)
for the stock

and
(

1
P
∂P
∂δ ,

1
P

∂P

∂ bfB

)
for the bond hardly change with φ and that the difference arises mostly from

a slight dependence on φ of the derivatives with respect to sentiment 1
F
∂F
∂η and 1

P
∂P
∂η .26 Second,

comparing the dashed line for the case of overconfidence to the other two in any plot, we conclude

that the changes in the diffusion vector of assets arising from overconfidence are almost entirely the

result of the ĝ component. To understand the effect of ĝ, recall from Lemma 1, that the intercept

and slope of the two partial derivatives ∂F
∂bg and ∂P

∂bg have respectively the signs of the εB (≥ 0) and

C (≤ 0) terms of the moment generating function. Furthermore, as we have indicated earlier in

Lemma 2, overconfidence has a marked effect on the diffusion of the difference of opinion ĝ, with

the signs indicated in Equation (7). Because (γB − γA)/σδ ≥ 0, the traders know that a positive
26Prior to integrating the present values of payoffs over future times, these logarithmic derivatives would be exactly

independent of φ. The value of φ affects only the relative weighting of the future payoffs.
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dWB
δ shock will increase the difference of opinion (see also Equation (4)) and because −φσf ≤ 0,

a positive dWB
s shock will decrease it.

Thirdly, we see from Figure 1 that equity is mostly positively exposed to the realized innovation

in the fundamental, dWB
δ , whereas the bond is negatively exposed. The reason for this difference

between the equity and the bond is that a positive shock to the fundamental affects equity in

two ways: it changes the immediate payoff upward but also the valuation operator downward; the

positive effect dominates, at least in a neighborhood of ĝ = 0.27 For bonds, an innovation in the

fundamental has only a valuation effect, which is negative (diffP < 0). The signal innovation,

dWB
s , is similar in its effects but it has no immediate payoff implication, so that both the equity

and the bond have a negative exposure to it, which, however, is not displayed in the figure.

5.2 Volatilities and correlation

The volatilities of assets are obtained from the diffusion vectors described in the previous subsection.

The effect of the overconfidence of Group A is generally to increase the volatility of asset prices.

This occurs because of the greatly increased volatility of the state variable ĝ representing the

difference of opinion, which also increases the volatility of sentiment, η.

Figure 2 plots the volatilities of the rate of return on equity and the bond, and the correlation

between them. In the first column of the figure, these three quantities are plotted against difference

of opinion, ĝ, for the two cases of overconfident beliefs (φ = 0.95, dashed line) and proper beliefs

(φ = 0, dotted line). In the second column of the figure, these three quantities are plotted for the

same two cases but now against the relative weight of Group A, ω.

From the first two plots in the left column of Figure 2, we see that overconfident investors

create “noise” that increases the volatility of both risky assets—the stock and the bond. 28 The

last row of the plots in Figure 2 shows that the correlation between stock and bond returns increases

or decreases with the presence of overconfident investors, as well as with the difference of opinion

between the two investor groups, depending on whether it is equal to plus or minus 1 in the absence

of overconfidence. In a neighborhood of ĝ = 0, when risk aversion is greater than 1, it increases

as the prices of the equity and the bond move in the same direction when expectations of future

growth fluctuate.

27This is in part the result of the unambiguous negative effect of an increase in bfB on the price of equity for the
case where α < 0. However, a fundamental shock dW B

δ has an effect also on the other state variables.
28The values produced by the model for the volatility of bond returns (and interest rates) are regrettably too high

to fit real-world data. With a risk aversion smaller than 1, David (2007) was able to match the volatility of interest
rates much better. Alternatively, if one wanted to match interest-rate volatility, one could introduce habit formation.
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Figure 2: Volatilities of equity and bond returns and their correlation
The first column of this figure plots against dispersion in beliefs, ĝ, the volatilities of equity and
bond returns and their correlation, assuming that the two groups of investors have equal weight,
ω = 0.5. In the second column of this figure, the same quantities are plotted but now against the
relative weight of Group A in the population, ω, assuming that ĝ = −0.03. There are two curves
in each plot: the dotted curve is for the case of proper beliefs (φ = 0) and the dashed curve is for
overconfident beliefs (φ = 0.95). All other parameter values used in this figure are given in Table 1.
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An exception to the increase in volatility arising from overconfidence is to be seen in the right-

hand column, middle row. When the consumption share of overconfident investors, ω, is sufficiently

low, it is possible for the volatility of bonds to be reduced by overconfidence, because of the opposite

effects of η and ĝ on the volatility of the bond price.

In summary, overconfident investors create “noise”, which tends to increase the volatility of

both stock and bond returns and also the correlation between them. The volatilities and correlation

mostly increase with an increase in the relative weight of Group A in the population. We are going

to see now that overconfident investors also chase away from the bond and equity markets the

investors with proper beliefs.
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6 Equity-and-bond portfolio strategy of Group B analyzed ac-
cording to motive

We now study the fluctuations of the wealth of Group B and deduce from it the main features of

the portfolio strategy of the investors with the proper beliefs.

The wealth of agents of Group B can be determined by applying the same approach that we

used to find the equity and bond prices (see the appendix). To do so, we interpret the wealth of

agents of Group B as the price of a “security” whose flow payoff at future times u is the consumption

(27) of these investors:29

FB
(
δ, f̂B, η, ĝ, t

)
=

∫ ∞

t
EB
δ,η, bfB ,bg

[
ξBu
ξBt
cBu

]
du

= δ

∫ ∞

t
e−ρ(u−t)Hf

(
f̂B, t, u;α

)
× [1− ω(η)]1−α (43)

×
−α∑
j=0

Cj−α

[
ω(η)

1− ω(η)

]j
Hg

(
ĝ, t, u;α,

j

1− α

)
du.

Following Cox and Huang (1989), the portfolio choice of Group B in terms of equities and bonds

can be calculated from Group B’s demand for exposure to
(
WB
δ ,W

B
s

)
shocks, which are themselves

obtained by multiplying the gradient vector of B’s wealth with respect to the four state variables by

the diffusion matrix of the four state variables given in Equation (7). If the investors had available

elementary securities on the shocks, the exposures would indicate the desired amounts of holdings.

If, however, they have access to an equity share and a bond, the investor needs to use these to

synthesize the desired exposures, to solve for θᵀ, a 1 × 2 vector, in the following system of two

equations:

[
FB ∂FB

∂ bfB

∂FB

∂η
∂FB

∂bg
]

σδ 0
γB

σδ
0

−η bg
σδ

0
γB−γA

σδ
−φσf



= θᵀ

[
F ∂F

∂ bfB

∂F
∂η

∂F
∂bg

0 ∂P

∂ bfB

∂P
∂η

∂P
∂bg
]

σδ 0
γB

σδ
0

−η bg
σδ

0
γB−γA

σδ
−φσf

 , (44)

29Again, Formula (43) applies only when risk aversion is an integer greater than zero, therefore, at least equal to
1. Hence it applies only for α < 0. The parameter ε of the characteristic function is set at α and the parameter χ
takes values ranging from 0 to − α

1−α
> 0. The latter is a positive rational number smaller than 1.
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Figure 3: Diffusion of wealth
The figure has two plots. The one on the left shows the diffusion of the wealth of Group B with
respect to output shocks as a function of the current difference of opinion, ĝ, for a value of sentiment
such that ω = 0.5. The right-hand plot shows the same as a function of ω, for a value of the
difference of opinion ĝ = −0.03. Each plot in the figure has three curves on it, with the dotted line
representing the case where all agents have the proper beliefs (φ = 0), the dashed line representing
the case where Group A is overconfident (φ = 0.95), and the continuous line representing the
construct “diff3” containing three terms only, Group A being, however, overconfident. All other
parameter values used in this figure are given in Table 1.
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where the left hand-side contains the investor’s target exposures and the right-hand side the expo-

sures of the available securities, which we have analyzed in Section 5. We now study the terms of

the left-hand side of the equation.

6.1 Target exposures

Defining:

diff3F
B ,

[
FB ∂FB

∂ bfB

∂FB

∂η η
] σδ 0

γB

σδ
0

−η bg
σδ

0

 , (45)

we can write:

diffFB = diff3F
B +

∂FB

∂ĝ

[
γB−γA

σδ
−φσf

]
. (46)

In Figure 3, the components of the exposure strategy as fractions of B’s wealth are drawn

against the current difference of opinion, ĝ, and against the current weight of the overconfident

group A, ω, the exact same format being used as in Figure 1 for the exposures of equity and the

bond.

Three conclusions emerge from the comparison of the three curves in both plots of Figure 3.

First, the dotted and the solid line are close to each other:

diffFB

FB

∣∣∣∣
φ=0

≈ diff3F
B

FB

∣∣∣∣
φ6=0

. (47)
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Second, the dashed line is vastly different from the other two. As was the case for equity and

for the same reasons, the only components of exposure demands that are markedly affected by the

presence of overconfidence are the ĝ components. As has been well explained by Merton (1973),

a state variable has an impact on Group B’s wealth for two possible economic reasons: (i) it can

change the prospect for the immediate return on a given portfolio held by Group B, and (ii) it

can affect the investment opportunities in the future that Group B will face when rebalancing

their portfolio. The effects of Type (ii) can be explained by means of the concept of “favorable

or unfavorable shift in the investment opportunity set” introduced by Merton (1973), where “a

favorable shift” is defined as a change in a state variable such that, for given immediately anticipated

returns, consumption rises for a given level of wealth.30 Lemma 1 implies that, in a neighborhood

of ĝ = 0, when risk aversion is greater than 1, the derivative ∂FB

∂bg is nonnegative: an increase in the

difference of opinion is an unfavorable shift for Group B (as it is for everyone). Because γB−γA

σδ
≥ 0,

the traders with the proper beliefs know that a positive dWB
δ shock will increase the difference of

opinion (see also Equation (4)). To offset this, they construct their portfolio to have a positive

exposure to dWB
δ .31

Finally, a comparison of the gap between the dotted and the dashed curves in Figure 3 and

in the equity plot of Figure 1 reveals that this gap is smaller in Figure 3. This is the effect of a

general result, which is strongly supported by the numerical experiments we have conducted: To

each maturity T, Group B desires to have an exposure to difference-of-opinion risk per unit of

wealth that is smaller than that contained in one consumption-unit worth of equity:

1
FB,T

∂FB,T

∂ĝ

∣∣∣∣bg=0

<
1
F T

∂F T

∂ĝ

∣∣∣∣bg=0

. (48)

6.2 Portfolio choice

We discuss the cases φ = 0 and φ 6= 0 separately because, as mentioned above, if everyone has

proper beliefs (φ = 0) then of the two risky securities one is redundant. That is, the portfolio

30For instance, because ε, in the calculation of F B,T (for a single-maturity claim) is set at α < 0, Lemma 1 implies
that:

1

F B,T

∂F B,T

∂ bfB
=

1

F T

∂F T

∂ bfB
< 0,

and therefore:
1

F B

∂F B

∂ bfB
< 0;

1

F

∂F

∂ bfB
< 0.

An increase in their estimate of growth is a favorable shift for Group B (as it is for everyone): their wealth decreases,
their consumption increases.

31Because −φσf ≤ 0, the opposite is true for the signal shock.
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equation (44) reduces to:

[
FB ∂FB

∂ bfB

∂FB

∂η
∂FB

∂bg
]

σδ 0
γB

σδ
0

−η bg
σδ

0
0 0

 = θᵀ
φ=0

[
F ∂F

∂ bfB

∂F
∂η

∂F
∂bg

0 ∂P

∂ bfB

∂P
∂η

∂P
∂bg
]

σδ 0
γB

σδ
0

−η bg
σδ

0
0 0

 , (49)

so that the portfolio is indeterminate. In this case, one of the optimal portfolio choices is where

Group B invests nothing in bonds and uses the equity to take a position on the risk of all state

variables:

θᵀ|φ=0 =
[

diffFB

diffF

∣∣∣
φ=0

0
]
. (50)

A more “natural”portfolio choice may be for B to hold equity in proportion to its wealth and

to use the bond to take a position on sentiment risk, η, and the risk of growth of the economy, f̂B,

which are perfectly correlated with each other in this case. In this way, they would use equity to

manage the fundamental or output system and would use the bond to manage the sentiment risk

η:32,33

θᵀ|φ=0,alt =

[
FB

FT

∣∣∣
φ=0

−ηĝFB

P

1

FB
∂FB

∂η
− 1

FT
∂F
∂η

1
P

∂P

∂ bfB γB− 1
P

∂P
∂η
ηbg
∣∣∣∣∣
φ=0

]
. (51)

That last portfolio composition is represented in Figure 4 by the dotted lines. When there is zero

difference of opinion (and φ = 0), then both agents are identical, and therefore, they hold the same

portfolio. That is, both (50) and (51) reduce to:
[

FB

FT

∣∣∣
φ=0

0
]
.

Turning now to the case φ 6= 0, a few algebraic manipulations indicate that the system of

equations (44) is equivalent to:

[
FB ∂FB

∂ bfB

∂FB

∂η
∂FB

∂bg
]

σδ 0
γB

σδ
0

−η bg
σδ

0
0 1

 = θᵀ

[
F ∂F

∂ bfB

∂F
∂η

∂F
∂bg

0 ∂P

∂ bfB

∂P
∂η

∂P
∂bg
]

σδ 0
γB

σδ
0

−η bg
σδ

0
0 1

 , (52)

which can be written: [
diff3F

B ∂FB

∂bg
]

= θᵀ

[
diff3F

∂F
∂bg

diff3P
∂P
∂bg
]
. (53)

Our principal result follows from this equation:
32When deriving (51) from (49), we used the results in Footnote 30.
33A third possibility would be the limit as φ→ 0 of the portfolio applicable when φ 6= 0 (see below Equation (54)).

That limit would just be equal to the value of (54) calculated at φ = 0.
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Figure 4: Portfolio choice
The figure has four plots. The top two show Group B’s demand for equity and bond as a fraction of
their wealth against the current difference of opinion ĝ for a value of sentiment such that ω = 0.5. The
bottom two plots show the same against ω for a value of the difference of opinion ĝ = −0.03. Each
plot in the figure has three curves on it, with the dotted line representing the case where all agents
have the proper beliefs (φ = 0), the dashed line representing the case where Group A is overconfident
(with φ = 0.95) and the solid line representing the limit of the latter when φrightarrow0. All other
parameter values used in this figure are given in Table 1.
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Proposition 2 For as long as φ 6= 0, the portfolio choice is independent of the specific value of φ

except through the value functions F, P and FB, and the solution is:

θF =

∣∣∣∣∣ diff3F
B ∂FB

∂bg
diff3P

∂PT

∂bg
∣∣∣∣∣∣∣∣∣∣ diff3F

∂F
∂bg

diff3P
∂P
∂bg
∣∣∣∣∣

; θP =

∣∣∣∣∣ diff3F
∂F
∂bg

diff3F
∂F
∂bg
∣∣∣∣∣∣∣∣∣∣ diff3F

∂F
∂bg

diff3P
∂P
∂bg
∣∣∣∣∣
, (54)

where θF is the number of units of equity demanded and θP the number of units of the bond.

Figure 4 contains a lot of information about the solution (54). The dashed lines represent

the portfolio demands relative to B’s wealth (portfolio shares), that is,
(
θFF
FB , θPP

FB

)
for the case

φ = 0.95. The solid line represents the limit of (54) when φ→ 0. Quite obviously these two lines in

all four plots are very close to each other. So, even though the proposition rigorously says that the
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portfolio demand does not depend on the specific value of φ “except through the value functions F ,

P and FB,” we can practically ignore the caveat when examining the fractional composition of the

portfolio. The demand for securities depends negligibly on the degree of overconfidence (although

equilibrium prices and consumption allocations do depend on it), for as long as it is not equal

to zero. The only thing that matters for B’s portfolio demand is whether there exist people in

the market who are somewhat overconfident. This conclusion is obviously in line with our earlier

remarks about Equations (42) and (47). The modicum of variation in portfolio demand in relation

to the value of φ is mostly due to the sensitivity 1
FB

∂FB

∂η to sentiment risk. In the bottom plots

of Figure 4, the demands are drawn against the consumption share ω of overconfident investors in

the population. Evidently, even a limitingly small presence of overconfident investors in the market

causes Group B to follow the portfolio strategy that takes overconfidence into account.

When ĝ = 0, the demands for equity and for bonds are:

θF =
FB

F

∣∣∣∣bg=0

∣∣∣∣∣∣
σδ + 1

FB
∂FB

∂ bfB

γB

σδ

1
FB

∂FB

∂bg
1
P

∂P

∂ bfB

γB

σδ

1
P
∂P
∂bg

∣∣∣∣∣∣bg=0∣∣∣∣∣∣
σδ + 1

F
∂F

∂ bfB

γB

σδ

1
FT

∂F
∂bg

1
PT

∂P

∂ bfB

γB

σδ

1
PT

∂P
∂bg
∣∣∣∣∣∣bg=0

; θP =
FB

P

∣∣∣∣bg=0

∣∣∣∣∣∣
σδ + 1

F
∂F

∂ bfB

γB

σδ

1
FT

∂F
∂bg

σδ + 1
FB

∂FB

∂ bfB

γB

σδ

1
FB

∂FB

∂bg
∣∣∣∣∣∣bg=0∣∣∣∣∣∣

σδ + 1
F

∂F

∂ bfB

γB

σδ

1
FT

∂F
∂bg

1
PT

∂P

∂ bfB

γB

σδ

1
PT

∂P
∂bg
∣∣∣∣∣∣bg=0

.

(55)

Because, for given maturity T , 1
FB,T

∂FB,T

∂ bfB
= 1

FT
∂FT

∂ bfB
= α

α−1
1
PT

∂PT

∂ bfB
< 0, (Lemma 1) and since

0 < 1
FB,T

∂FB,T

∂bg
∣∣∣bg=0

< 1
FT

∂FT

∂bg
∣∣∣bg=0

(Lemma 1 and Equation (48)), it follows that similar equalities

and inequalities hold also but approximately for the integrated prices and thus we have the following

result: When ĝ = 0, Group B holds fewer units of equity and bonds than the number corresponding

to their share of wealth:

θF <
FB

F T
and θP < 0. (56)

The reason Group B holds fewer units of equity and bonds than the number corresponding

to their share of wealth is that their share of wealth invested in equity and bonds would contain

too much difference-of-opinion risk. Risk averse investors with the proper beliefs of Group B are

deterred by the presence of the overconfident traders, whose difference of opinion is a source of risk

in their eyes. Hence, investors with the proper beliefs prefer to take refuge in the riskless short-term

asset, unless they are very optimistic about future growth. Thus, the short-term deposit is the only

safe haven from sentiment risk. These results imply that the presence of overconfident investors

not only distorts the stock and bond markets, but also scares away rational investors. In the words

of De Long, Shleifer, Summers, and Waldmann (1990a), “noise traders create their own space.”
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That property is, of course, illustrated in Figure 4 (top left plot) as are a number of additional

features of Group B’s demand. The demand schedule for equity is upward sloping as a function

of ĝ. The reason for this is that even though Group B are driven away by the presence of the

overconfident traders, they overcome their fear when they are very optimistic about future growth.

7 On long-run predictability

There exists a logical link between the phenomenon of excessive volatility and the long-run pre-

dictability of stock returns. Campbell and Shiller (1988a,b) and Cochrane (2001, page 394 ff ),

have pointed out that the dividend-price ratio would be constant over time if dividends were un-

predictable (specifically, if they followed a geometric Brownian walk) and expected returns were

constant. Because the dividend-price ratio is changing, its changes must be predicting either future

changes in dividends or future changes in expected returns. This statement is true in any economic

model, unless there are violations of the transversality conditions. Empirically, the dividend-price

ratio hardly predicts subsequent dividends. It must, therefore, predict returns. But, if it predicts

returns, it can serve as valuable information for a rational person trading in the market. We now

show how that aspect is embedded in our model and in the equilibrium portfolio strategy that

we have just described.34 As we saw, that strategy was crucially driven by the derivatives of the

price functions with respect to the difference of opinion: ∂FB

∂bg , ∂F∂bg , and ∂P
∂bg . In essence, we want to

produce an interpretation of these derivatives in terms of anticipated returns.

In performing that task, it will be convenient to use Malliavin derivatives. Just as the standard

derivative measures the local change of a function to a small change in an underlying variable, the

Malliavin derivative measures the change in a path-dependent function implied by a small change

in the initial value of the underlying Brownian motions. In the context of our model, Malliavin

calculus allows for a very clean and insightful interpretation of the results, and in particular, allows

us to distinguish between instantaneous effects and long-term effects.35

Denoting by DBδ,tXu the response at time u of a process X to a unit dWB
δ shock having occurred

at time t with u ≥ t, and by DBt Xu = {DBδ,tXu,DBs,tXu} the row vector of responses to the two

shocks, {dWB
δ,t, dW

B
s,t}, we compute below the Malliavin derivatives of the four state variables.

Observe that DBt Xt is another notation for the diffusion vector of the process X at time t.

34For recent work studying long run risk and return, see Alvarez and Jermann (2005) and Hansen and Scheinkman
(2005).

35An introduction to Malliavin calculus with applications to problems in finance can be found in Detemple and
Zapatero (1991, Appendix A) and Detemple, Garcia, and Rindisbacher (2003, Appendix D). For additional details
on Malliavin calculus, see Ocone and Karatzas (1991), Nualart (1995), and Øksendal (1997).
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Lemma 3 The Malliavin derivatives for the four state variables are:

DBt f̂Bu = e−ζ(u−t)
[

γB

σδ
0
]
, (57)

DBt ĝu = e−ψ(u−t)
[

γB−γA

σδ
−φσf

]
, (58)

DBt δT
δT

=
[
σδ 0

]
+

1
ζ

(
1− e−ζ(T−t)

) [
γB

σδ
0
]
, (59)

DBt ηT
ηT

=
[

−bgt

σδ
0
]
−
∫ T

t
e−ψ(u−t)

(
ĝu
σ2
δ

du+
dWB

δ,u

σδ

)[
γB−γA

σδ
−φσf

]
. (60)

Observe from Equations (57) and (58) that the responses in f̂Bu and ĝu follow deterministic

paths. From Equations (59) and (60) we see that the perturbations in the fundamental δ and the

sentiment η accumulate the perturbations in f̂B and ĝ; shocks occurring today have a declining

effect on future values of the fundamental and the sentiment.36 Given Equations (30), (25) and

(35), one can, for instance, calculate the Malliavin derivatives of the discounted price F T of a single

dividend to be paid at time T > t:37

DBt F T = EBt
[
ξBT
ξBt

(
(α− 1)

DtδT
δT

+ ω (ηT )
DtηT
ηT

− (α− 1)
Dtδt
δt

− ω (ηt)
Dtηt
ηt

+
DtδT
δT

)
δT

]

= F T
Dtδt
δt

+ EBt

[
ξBT
ξBt
δT

(
[ω (ηT )− ω (ηt)]

Dtηt
ηt

+ α

{∫ T

t

(
Dtf̂Bu

)
du

}
(61)

+ ω (ηT )

{
−
∫ T

t
(Dtĝu)

[
ĝu
σ2
δ

du+
dWB

δ,u

σδ

]})]
.

Because DBt F T is the diffusion vector of equity, there is a direct association between the four

partial derivatives and the four terms of the Malliavin derivative:

∂F T

∂δ
=

F T

δt
, (62)

∂F T

∂f̂B
= αF T

1
ζ

[
1− e−ζ(T−t)

]
, (63)

∂F T

∂η
=

EBt
[
δT ξ

B
T ω (ηT )

]
− ξBt F

Tω (ηt)

ξBt ηt
, (64)

∂F T

∂ĝ
= −EBt

{
ω (ηT ) δT

ξBT
ξBt

∫ T

t
e−ψ(u−t)

[
ĝu
σ2
δ

du+
dWB

δ,u

σδ

]}
. (65)

36The time-integral in the right-hand side of (60) contains terms that interact the effect of current shocks (Dtbgu)

with future shocks
dW B

δ,u

σδ
, because the current shocks have an impact on the diffusion bgu that is applied to future

shocks to get the diffusion of ηu.
37Here we follow closely Detemple, Garcia, and Rindisbacher (2003).
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Equation (65) in particular, and similar ones written for the bond and the wealth of B, provide

us with the promised interpretation of the derivative ∂F
∂bg with respect to the difference of opinion:

it captures the covariation over the entire investment horizon between future output and future

changes in the difference of opinion weighted by the future weight of the overconfident population.

We have thus identified the relevant statistics that the asset manager of Group B needs to have in

mind over the entire future. The explicit solutions for F , P and FB that we have exhibited allow

one to forecast the terms in the curly brackets on the right-hand side of (65).

We would like to show now how sentiment risk contributes to anticipated returns in general,

irrespective of the specific menu of securities available in the market.

7.1 Instantaneous pricing of risk

By construction (see Cox and Huang (1989)), the instantaneous market price of risk (or Sharpe

ratio) is equal to minus the diffusion of the pricing measure. It is the instantaneous response of

the stochastic discount factor to shocks occurring today. Knowing the pricing measure (25), Itô’s

lemma gives directly the following result (which we state without proof):

Lemma 4 In equilibrium, the market prices of risk in the eyes of Group B are:38

DBt ξBt
ξBt

= −
(
κBt
)ᵀ

= (α− 1)
DBt δt
δt

+ ω (ηt)
DBt ηt
ηt

(66)

= −
[

(1− α)σδ 0
]
− ĝω (η)

[
1
σδ

0
]
. (67)

From Equation (67), we see that the prices of risk κB contain an instantaneous premium for the

output shock Wδ but no instantaneous premium for the signal shock Ws. If there is no difference

of opinion (ĝ = 0), the prices of risk κB include only the traditional reward for fundamental risk

(1− α)σδ. As soon as there is a difference of opinion, investors realize that “sentiment” will

fluctuate randomly in response to output shocks. Hence, they start charging a premium also for

the risk arising from the vagaries of others. The premium is proportional to the product of the

difference of opinion ĝ with the relative weight ω of the overconfident population.

It is noteworthy that, once the current values of the state variables η, f̂B, ĝ (describing the

current population and its expectations) are given, the instantaneous return and risk reward on
38The risk-neutral measures for Groups A and B differ only in the market prices of risk:“

κA
”ᵀ

=
ˆ

(1− α) σδ 0
˜
− bg [1− ω (η)]

h
1

σδ
0
i
.
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immediate-maturity instruments do not depend on the degree of overconfidence, φ, of Group A.

The overconfidence coefficient, φ, affects only the future dynamics of the state variables. For that

reason, it has an impact on returns but only for assets maturing beyond the immediate date, a

topic to which we turn now.

7.2 Long-run pricing of risk

The multiperiod rate of return of an asset that delivers a unit payoff at time T in a given state and

that was bought at time t (t < T ) in a given state is ξt/ξT . However, that would be the relevant

long-run return if one were to buy that asset at t and hold it until T . If there exists a financial

market that allows repricing and retrading tomorrow of assets bought today, we show now that this

is the not the concept of long-run return that is relevant for portfolio choice. As will be apparent

in Equation (71) below, the long-run excess return that is relevant is the long-run response DBt ξBT
of the stochastic discount factor to shocks occurring today. From Equation (25), we have:

DBt ξBT
ξBT

= (α− 1)
DBt δT
δT

+ ω (ηT )
DBt ηT
ηT

. (68)

Notice again the crucial role of the relative weight of the overconfident group in the perturbation

of the pricing kernel.

The long-run return has two components: the first arising from the fluctuations in output and

the second arising from the vagaries of the overconfident population. The term, ω (ηT ) D
B
t ηT
ηT

, which

would not be present in a market without overconfident investors (ω = 0), is a predictable com-

ponent and it modifies the long-run behavior of returns. Long-run returns are very much affected

by the current values of state variables, a situation commonly referred to in the Finance literature

as “return predictability”. In this model, however, return predictability is not as simple as has

been commonly envisaged in the empirical Finance literature. For instance, there exists sometimes

a positive relation between expected return on equity and the dividend yield and sometimes a

negative one. This matter is analyzed by Berrada (2006).

Using (60) to expand DB
t ηT
ηT

in (68), one can write:

DBt ξBT
ξBT

=
DBt ξBt
ξBt

+ (α− 1)
{∫ T

t

(
DBt f̂Bu

)
du

}
+ [ω (ηT )− ω (ηt)]

DBt ηt
ηt

+ ω (ηT )

{
−
∫ T

t

(
DBt ĝu

) [ ĝu
σ2
δ

du+
dWB

δ,u

σδ

]}
. (69)
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Thus, the long-run price of risk is equal to the short-run price of risk, plus the impact DBt f̂Bu of

future changes in beliefs of Group B, plus the short-run impact of the sentiment weighted by the

future change in the weight of the overconfident population, and the impact DBt ĝu of future changes

in the difference of opinion. Because future consumption is a function of the state price for the

future maturity, these four components drive Group B’s portfolio strategy.

7.3 Portfolio strategy in terms of short-run and long-run returns

Let FB,T denote the price at date t today of a single-maturity unit of consumption to be consumed

at date T > t:

FB,T , EBt
[
ξBT
ξBt
cBT

]
=
(
λBeρT

) 1
α−1 EBt

(ξBT ) 1
α−1

+1

ξBt

 . (70)

The Malliavin derivatives of the price can be written:

DBt FB,T = − 1
1− α

FB,T
DBt ξBt
ξBt

+
α

α− 1
EBt
[
cBT
ξBT
ξBt

(
DBt ξBT
ξBT

− DBt ξBt
ξBt

)]
, (71)

DBt FB,T

FB,T
=

κBt
1− α

+
α

α− 1
1

FB,T
EBt
[
cBT
ξBT
ξBt

(
DBt ξBT
ξBT

− DBt ξBt
ξBt

)]
. (72)

Proposition 3 Group B’s portfolio reflects two motivations:

1. The first term of the equation is a myopic portfolio seeking to reap immediate excess return

per unit of risk ,

2. The second term is an intertemporal hedge which incorporates the prospect of longer-run

returns. For each future consumption date T, the second term can be further split into:

(a) A hedge against future shocks to f̂Bu , u ∈ [t, T ]:

α
1

FB,T
EBt
[
cBT
ξBT
ξBt

{∫ T

t

(
DBt f̂Bu

)
du

}]
;

(b) A myopic exposure to the immediate movement in the sentiment η, which is also a hedge

against future movements in the equilibrium distribution of consumption:

α

α− 1
1

FB,T
EBt
[
cBT
ξBT
ξBt

[ω (ηT )− ω (ηt)]
DBt ηt
ηt

]
;
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(c) A hedge against the product of A’s future consumption share ω (ηT ) with the future shocks

to ĝu, u ∈ [t, T ]:

α

α− 1
1

FB,T
EBt

[
cBT
ξBT
ξBt
ω (ηT )

{
−
∫ T

t

(
DBt ĝu

) [ ĝu
σ2
δ

du+
dWB

δ,u

σδ

]}]
.

As Equations (69) and (71) reveal, the more “strategic” exploitation of the long-run predictabil-

ity created by overconfident investors is imbedded in the intertemporal hedge. Group B knows that

its share of consumption will fluctuate, that it will revise its expectations of growth, that the other

group also will and that it will do so in a manner different from theirs. So, these are the three

considerations that are incorporated in when they choose the hedging component of their portfolio.

In contrast to the intertemporal hedging portfolio in Merton (1971), which is expressed in terms

of the partial derivatives of the investor’s value function, the three expressions given in Item 2

of Proposition 3 show explicitly how Group B’s expectations of future growth, sentiment, and

difference of opinion influence the hedging component of the portfolio.

8 Epilogue: Survival

We now return to the question we asked originally concerning the potential for gains that the

excessive volatility creates for the investors with the proper beliefs who follow the portfolio strategy

that we described in the previous section. By asking whether rational risk arbitrageurs can take

advantage of overconfident investors, we simultaneously ask whether investors with the proper

beliefs eliminate overconfident investors from the economy very quickly, or whether overconfident

investors can survive for some time. The main goal of this exercise is to demonstrate that the

phenomena we have analyzed in this article do not go away quickly, contra Alchian (1950) and

Friedman (1953).

The survival of irrational traders is an issue that was raised by De Long, Shleifer, Summers,

and Waldmann (1990a, 1991) in a partial-equilibrium setting, in which traders did not affect prices.

The survival of excessively optimistic or pessimistic agents, in an economy in which one category of

agents knows the true probability distribution, is the focus of recent papers by Kogan, Ross, Wang,

and Westerfield (2006) and Yan (2006). Here, however, we consider a different kind of overconfident

agents, who change their mind too frequently, being sometimes too optimistic and at other times

too pessimistic about the growth rate of aggregate dividends, as compared to investors with the

proper beliefs, not as compared to the truth. Kogan, Ross, Wang, and Westerfield (2006) considers

agents who consume only at some terminal horizon date so that their saving rate is not optimized

and the growth of the economy is not an important factor in the analysis. Yan (2006), in contrast,
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Figure 5: Survival of the overconfident Group A
The plot on the left gives the probability density function (pdf) of Group A’s share of consumption,
ωu, after the passage of u years. The plot on the right shows the expected value under the objective
measure of Group A’s consumption share, EP

0 ωu, as a function of time measured in years, with
current time assumed to be 0 and future time denoted by u on the x-axis. In the second plot, the
dotted line represents the case where φ = 0 and all agents have the correct beliefs, while the solid
line represents the case where φ = 0.50 and the dashed line represents the case where φ = 0.95
implying that Group A is overconfident. The parameter values used here are given in Table 1. In
particular, the two groups of investors have equal initial weights, ω0 = 1/2.
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considers agents who consume intertemporally and make optimal savings decisions. In an economy

with a specification that is very close to ours, Berrada (2004) has discussed the issue of survival by

means of simulations.

Most previous studies, with the exception of Berrada (2004), have defined “survival” in terms

of the “irrational” agents’ asymptotic share of wealth as the horizon goes to infinity. In general,

however, wealth is a sufficient summary statistic neither of an agent’s welfare nor of his or her

influence on asset prices. Under von Neuman-Morgenstern, time-additive utility, the share of

consumption is such a summary statistic. Therefore, we measure the survival of overconfident

agents in the economy by studying the evolution of the share of the total dividend that will be

consumed by them. The probability distribution of this share is computed under the objective, or

true, probability measure rather than under the measure of either Group A or B.

Group A’s ratio of consumption to aggregate dividends is given by Equation (28). To compute

the distribution of this ratio under the true or effective probability measure, we need the conditional

distribution of ηu, given ηt, ft, f̂
A
t , andf̂Bt at t. As in Section 4, we first obtain its characteristic

function (see Lemma 5 in the appendix). Then, the expected value and the probability distribution

of the share of Group A’s consumption in (28) can be obtained by means of Fourier inversion (as

shown in Equation (A61) of the appendix).

We study the case where Groups A and B start out with the same estimate of the future growth

rate, that is, f̂A = f̂B and also consume the same share of aggregate dividend, ω0 = 1/2. Recall

also that we are assuming that both categories of agents have the same, time additive, isoelastic
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utility function. In the left plot of Figure 5, we plot the probability density function of Group A’s

share of consumption after the passage of different numbers of years. We see from the left plot

that as time passes, the density moves to the left, and thus, Group A’s share of consumption is

decreasing. To understand the rate at which this share is decreasing, in the right plot we plot the

expected value of this share, EP0 [ωu], against time measured in years. This plot in the right plot

considers three cases: one, where Group A has the proper beliefs (φ = 0), the second where Group A

is overconfident with φ = 0.50, and the third where it is even more confident with φ = 0.95.

Both plots confirm that ultimately, overconfident agents become extinct in that their share of

consumption vanishes. This is simply the result of the fact that ω is a monotonic function (28) of

a positive martingale η. As is the case for any positive martingale, the probability mass (or the

mode of the distribution) accumulates towards zero. Equation (6) implies that

ηt = exp
[
−1

2

∫ t

0
ĝ2
u

1
σ2
δ

du−
∫ t

0
ĝu

1
σδ
dWB

δ,u

]
, (73)

so that this long-run decrease takes place at the rate ĝ2. But, the more interesting observation is

that, in contrast to what is typically assumed in models of rational asset pricing, overconfident

agents do not lose out right away. For instance, the right-hand side plot in Figure 5 shows that

after 100 years the overconfident agents’ expected share of consumption of the aggregate dividends

is still at 20% compared to the initial share of 50%. Recall that in Figure 2 we showed that the

relation between the volatility of equity returns and the consumption share of Group A is close to

being linear. The fact that the overconfident group is not eliminated from the population instantly

implies that the phenomenon of excess volatility will also not be eliminated quickly.

9 Conclusion

In a capital market characterized by excessive volatility, we have analyzed the return behavior that

would prevail in equilibrium and the trading strategy that would allow a rational investor with the

proper beliefs to take advantage of the excess volatility generated by the presence of overconfident

investors. To achieve our goal, we have constructed a general-equilibrium “difference-of-opinion”

model in which stock prices are excessively volatile, using the device proposed by Scheinkman and

Xiong (2003). In our model, there are two groups of agents, and one group (overconfident) believes

that the magnitude of the correlation between the innovations in the signal and innovations in

some unobserved variable (the expected growth rate of dividends) is larger than it actually is.

Consequently, when a signal is received, this group of agents adjusts their beliefs too much and
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overreacts to it, which then generates excessive stock price movements. The excess movement was

regarded as a “sentiment” factor.

For given beliefs, however, both classes of agents are rational in their decision making, in the

sense that both are intertemporal optimizers. In this way, the overconfident investors are not sitting

ducks. We show that investors with the proper beliefs have to engage in a fairly intricate investment

strategy to triumph over the overconfident ones. And their victory can be achieved only in the

fairly long run.

We believe that our undertaking brings two benefits. First, given that we have worked out in

careful detail the optimal portfolio strategies to be followed by rational investors with the proper

beliefs, our model should be of practical use to hedge funds who play the price-convergence game

and in so doing expose themselves to “market sentiment” risk. They often have at their disposal

perfect-market pricing models that allow them to spot pricing anomalies. But, that is not sufficient

information to put into place a “risk arbitrage” strategy, including the optimal timing of trades

into the strategy, of trades out of the strategy, plus the accompanying hedges. For that purpose,

hedge funds also need a model of the equilibrium stochastic process which describes how sentiment

will drive price spreads. We provide one such model.

Second, the model parsimoniously combines the technical virtues of continuous-time, rational-

expectations equilibrium asset pricing models (including the use of the martingale approach) with

a single, well-defined, almost axiomatic deviation from the case where all agents have the proper

beliefs. In this way, it has allowed us to analyze the equilibrium consequences of that specific

deviation. We hope that this model, or similar models obtained by this method, can become

workhorses in the development of behavioral equilibrium theory.
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Appendix: Proofs for lemmas

Proof for Lemma 2: Volatilities of the state variables

Substituting Equations (1) and (14) into (12) and (13) gives the expressions in Equations (15),
(16), and (17). The sign for each expression can then be established using the expressions for γA
and γB in Footnote 11 and by showing that γA is decreasing in φ, while γB is equal to γA evaluated
at φ = 0.

Proof for Proposition 1: The moment-generating function

To prove this lemma, we need to determine:

H
(
δ, η, f̂B, ĝ, t, u; ε, χ

)
= EB

δ,η, bfB ,bg [(δu)
ε (ηu)

χ] . (A1)

This function satisfies the linear PDE:

0 ≡ LH
(
δ, η, f̂B, ĝ, t, u; ε, χ

)
+
∂H

∂t

(
δ, η, f̂B, ĝ, t, u; ε, χ

)
, (A2)

with the initial condition H
(
δ, η, f̂B, ĝ, t, t; ε, χ

)
= δεηχ, and where L is the differential generator

of
(
δt, ηt, f̂

B
t , ĝt

)
under the probability measure of Group B.

Spelling out (A2) we have:

0 =
∂H

∂δ
δf̂B − ∂H

∂f̂B
ζ
(
f̂B − f

)
− ∂H

∂ĝ
ĝ

(
ζ +

γA

σ2
δ

)
+

1
2
∂2H

∂δ2
(δσδ)

2 (A3)

+
1
2
∂2H

∂η2
(ηĝ)2

1
σ2
δ

+
1
2
∂2H

∂ĝ2

[(
γB − γA

σδ

)2

+ (φσf )
2

]

+
1
2

∂2H

∂
(
f̂B
)2

(
γB

σδ

)2

− ∂2H

∂δ∂η
δηĝ +

∂2H

∂δ∂ĝ
δ
(
γB − γA

)
+

∂2H

∂δ∂f̂B
δγB

− ∂2H

∂η∂ĝ
ηĝ

(
γB − γA

σ2
δ

)
− ∂2H

∂η∂f̂B
ηĝ
γB

σ2
δ

+
∂2H

∂ĝ∂f̂B

(
γB − γA

σ2
δ

)
γB +

∂H

∂t
.

The solution of this PDE is

H
(
δ, η, f̂B, ĝ, t, u; ε, χ

)
= δεηχ ×Hf

(
f̂B, t, u; ε

)
×Hg (ĝ, t, u; ε, χ) , (A4)

where Hf (f̂B, t, u; ε) and Hg(ĝ, t, u; ε, χ) are defined in (33) and (34).39 Substituting (A4) into the
PDE and simplifying, we find that the functions of time, A1, A2, B and C, that are present in (34)

39To see that Hf , which is defined in (33), is the moment generating function for δu/δ under Group B’s measure,

one can verify that δεHf ( bfB , t; u, ε) solves the PDE in (A4) but with all terms that are the partial derivatives of H
with respect to either η or bg dropped.
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need to solve the following ODEs:

C ′ (u− t) = aC2 (u− t)− 2bC (u− t) + c, C (0) = 0, (A5)
B′ (u− t) = B (u− t) [aC (u− t)− b] + k + le−ζ(u−t)

+2
[
m+ ne−ζ(u−t)

]
C(u− t), B (0) = 0, (A6)

A′1 (u− t) =
a

2
C (u− t) , A1 (0) = 0, (A7)

A′2 (u− t) = B (u− t)
[
m+ ne−ζ(u−t) +

a

4
B (u− t)

]
, A2 (0) = 0, (A8)

where

a = 2

[(
γB − γA

σδ

)2

+ (φσf )
2

]
, (A9)

b = ζ +
γA

σ2
δ

+ χ

(
γB − γA

σ2
δ

)
, (A10)

c =
1
2
χ (χ− 1)

1
σ2
δ

, (A11)

and

k = −χ
[
1 +

γB

ζ

1
σ2
δ

]
, (A12)

l = χ
γB

ζ

1
σ2
δ

, (A13)

m = γB − γA +
γB

ζ

(
γB − γA

σ2
δ

)
, (A14)

n = −γ
B

ζ

(
γB − γA

σ2
δ

)
. (A15)

Of the ODEs (A5)–(A8), all are first-degree linear with constant coefficients, except (A5),
which is a Riccati (i.e., quadratic) equation. Radon’s lemma says that one solution is of the form:
C (u− t) = y (u− t) /x (u− t) , where y and x satisfy a system of two linear ODEs with constant
coefficients. We can, therefore, obtain the solution. Denoting

q =
√
b2 − ac, (A16)

and

υ1 = 0, ϑ1 =
2cm+ k (b+ q)

q
, (A17)

υ2 = 2q, ϑ2 =
2cm+ k (b− q)

q
, (A18)

υ3 = ζ, ϑ3 =
2cn+ l (b+ q)

q − ζ
, (A19)

υ4 = 2q + ζ, ϑ4 =
2cn+ l (b− q)

q + ζ
, (A20)

υ5 = q, ϑ5 = − (ϑ1 + ϑ2 + ϑ3 + ϑ4) , (A21)
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we obtain

C (u− t) =
c
(
1− e−2q(u−t))

q + b+ (q − b) e−2q(u−t) , (A22)

B (u− t) =
∑5

i=1 ϑie
−υi(u−t)

q + b+ (q − b) e−2q(u−t) , (A23)

A1 (u− t) =
a

2

∫ u

t
C (τ − t) dτ (A24)

=
1
2

[
(b− q) (u− t) + ln (2q)− ln

(
q + b+ (q − b) e−2q(u−t)

)]
,

A2 (u− t) =
∫ u

t
B (τ − t)

[
m+ ne−ζ(τ−t) +

a

4
B (τ − t)

]
dτ (A25)

=
5∑
j=1

ϑj [mD1 (υj ;u− t) + nD1 (υj + ζ;u− t)] +
a

4

5∑
i,j=1

ϑiϑjD2 (υi + υj ;u− t)

where, denoting by H the standard hypergeometric function,

D1 (p;u− t) =
∫ u

t

e−p(τ−t)

q + b+ (q − b) e−2q(u−t)dτ (A26)

=


2q(u−t)−ln(2q)+ln(q+b+(q−b)e−2q(u−t))

2q(q+b) , p = 0,

1
p(q+b)

[
H
(
1, p2q , 1 + p

2q ,−
q−b
q+b

)
− e−p(u−t)H

(
1, p2q , 1 + p

2q ,−
q−b
q+be

−2q(u−t)
)]
, p > 0,

and

D2 (p;u− t) =
∫ u

t

e−p(τ−t)[
q + b+ (q − b) e−2q(u−t)

]2dτ
=

1
2q (q + b)

[
1
2q
− e−p(u−t)

q + b+ (q − b) e−2q(u−t) + (2q − p)D1 (p;u− t)

]
. (A27)

To show that the function Hg (ĝ, t, u; ε, χ) is well defined for χ ∈ [0, 1] and u ≥ t, first note that
the radicand in the expression (A16) for q may be written as a quadratic trinomial of χ:

b2 − ac = q2χ
2 + q1χ+ q0, (A28)

where

q2 = −
φ2σ2

f

σ2
δ

, (A29)

q1 = 2
φ2σ2

f

σ2
δ

, (A30)

q0 = ζ2 +
(
1− φ2

) σ2
f

σ2
δ

. (A31)

Because φ ∈ [0, 1] and ζ > 0, it is immediate that q2 ≤ 0, q0 > ζ2, and

q2 + q1 + q0 = ζ2 +
σ2
f

σ2
δ

> ζ2. (A32)
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So, when χ ∈ [0, 1], q =
√
b2 − ac is real. Moreover, q > ζ so that {ϑi}5

i=1 are finite.

Taking into account that a ≥ 0, and for χ ∈ [0, 1], c ≤ 0 and

b = χ

√
ζ2 +

σ2
f

σ2
δ

+ (1− χ)

√
ζ2 +

(
1− φ2

) σ2
f

σ2
δ

> ζ, (A33)

we obtain that q − b ≥ 0 and

q + b+ (q − b) e−2q(u−t) ≥ q + b > 0. (A34)

Therefore, when χ ∈ [0, 1] and u ≥ t, the functions C (u− t) and B (u− t) are well defined and
bounded; the integrals A1 (u− t) and A2 (u− t) are convergent, and thus, their closed-form expres-
sions (A25) and (A8) are also well defined.

To derive the properties of Hg, note that

1
Hg

∂Hg

∂ĝ
(ĝ, t, u; ε, χ) = εB (χ;u− t) + 2ĝC (χ;u− t) . (A35)

Because ηu is a martingale under the measure of Group B, for 0 ≤ χ ≤ 1, it must be the case by
Jensen’s inequality that EBbg

[(
ηu
η

)χ]
≤ 1 for any value of ĝ. Because from (34)

EBbg
[(

ηu
η

)χ]
= Hg (ĝ, t, u; 0, χ) = exp

{
A1 (χ;u− t) + ĝ2C (χ;u− t)

}
, (A36)

this implies C (χ;u− t) ≤ 0.

We prove that B (χ;u− t) is non-positive by contradiction. Assume the function B (u− t)
takes positive values. Then because this function is smooth and B (0) = 0, there must exist u1 ≥ t
such that B (u1 − t) = 0 and B′ (u1 − t) > 0. However, it can be shown that the RHS in (A6) is
nonpositive at u1. Actually, because B (u1 − t) = 0 the first term in (A6) is equal to zero. Then
from (A12) and (A13), k, k + l ≤ 0 and hence k + le−ζ(u1−t) ≤ 0. Finally, m + ne−ζ(u1−t) ≥ 0
because from (A14) and (A15)

m+ n = γB − γA ≥ 0, (A37)

m ≡ a

4ζ
≥ 0, (A38)

where the last identity can be verified by substituting the expressions for γA and γB into (A9) and
(A14). Therefore, by contradiction, we have shown that B (u− t) ≤ 0.

Proof for Lemma 3: Malliavin derivatives of state variables

The solution of Equation (2) being:

f̂Bu = f̂Bt +
(
f − f̂Bt

)
×
[
1− e−ζ(u−t)

]
+
∫ u

t

γB

σδ
dWB

δ,v,

it follows that:
DBt f̂Bu = e−ζ(u−t)

[
γB

σδ
0
]
. (A39)
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Similarly, the solution of Equation (4) being:

ĝu = ĝt × e−ψ(u−t) +
∫ u

t
σbgδ

dWB
δ,v + σbgs

dWB
s,v,

it follows that:
DBt ĝu = e−ψ(u−t) [ σbgδ

σbgs

]
. (A40)

Because the solution of Equation (1) is:

δT = δt exp
[∫ T

t

(
f̂Bu −

1
2
σ2
δ

)
du+ σδ

∫ T

t
dWB

δ,u

]
,

it follows that:

DBt δT = δT ×
{[

σδ 0
]
+
∫ T

t

(
DBt f̂Bu

)
du

}
,

DBt δT
δT

=
DBt δt
δt

+
∫ T

t

(
DBt f̂Bu

)
du,

DBt δT = δT ×
{[

σδ 0
]
+

1
ζ

[
1− e−ζ(T−t)

] [
γB

σδ
0
]}

. (A41)

Similarly, Equation (6) for η implies:

ηt = exp
[
−1

2

∫ t

0
ĝ2
u

1
σ2
δ

du−
∫ t

0
ĝu

1
σδ
dWB

δ,u

]
, (A42)

so that:

DBt ηT = ηT ×

{[
− bgt

σδ
0
]
−
∫ T

t

(
DBt ĝu

) [
ĝu

1
σ2
δ

du+
dWB

δ,u

σδ

]}
,

DBt ηT
ηT

=
DBt ηt
ηt

−
∫ T

t

(
DBt ĝu

) [
ĝu

1
σ2
δ

du+
dWB

δ,u

σδ

]
, (A43)

=
[
− bgt

σδ
0
]
−
∫ T

t
e−ψ(u−t)

[
ĝu

1
σ2
δ

du+
dWB

δ,u

σδ

] [
σbgδ

σbgs

]
.

Proof for Lemma 5: Moment-generating function of η under the effective measure

Lemma 5 The moment generating function of η under the effective probability measure is

EPbgA,bgB

[
ηu
η

]χ
= HP

(
ĝA, ĝB, t, u;χ

)
, (A44)

where ĝA , f̂A − f , ĝB , f̂B − f , and

HP

(
ĝA, ĝB, t, u;χ

)
= exp

{
AP (χ;u− t) + CA (χ;u− t)

(
ĝA
)2

+ CB (χ;u− t)
(
ĝB
)2

+ 2ĝAĝBCAB (χ;u− t)
}
, (A45)

for certain functions of time AP , CA, CB, and CAB that are given in the proof.
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Proof: We wish to compute the following expected value:

H̃
(
η, ĝA, ĝB, t, u;χ

)
= EPη,bgA,bgB [ηu]

χ . (A46)

Under the objective probability measure, the processes η, ĝA and ĝB obey the following stochastic
differential equations:

dĝAt = −ĝAt
(
ζ +

γA

σ2
δ

)
dt+

γA

σδ
dZδt + φσfdZ

s
t − σfdZ

f
t , (A47)

dĝBt = −ĝBt
(
ζ +

γB

σ2
δ

)
dt+

γB

σδ
dZδt − σfdZ

f
t , (A48)

dηt
ηt

=
(
ĝBt − ĝAt

)
ĝBt

1
σ2
δ

dt−
(
ĝBt − ĝAt

) 1
σδ
dZδt . (A49)

The function H̃
(
η, ĝA, ĝB, t, u;χ

)
satisfies the linear PDE:

0 ≡ LH̃
(
η, ĝA, ĝB, t, u;χ

)
+
∂H̃

∂t

(
η, ĝA, ĝB, t, u;χ

)
, (A50)

with the initial conditionH
(
η, ĝA, ĝB, t, t;χ

)
= ηχ, where L is the differential generator of

(
ηt, ĝ

A
t , ĝ

B
t

)
under the objective probability measure. Spelling out (A50) using (A47) and (A48), we have:

0 =
∂H̃

∂η
η
(
ĝBt − ĝAt

)
ĝBt

1
σ2
δ

− ∂H̃

∂ĝA

(
ζ +

γA

σ2
δ

)
ĝA − ∂H̃

∂ĝB

(
ζ +

γB

σ2
δ

)
ĝB

+
1
2
∂2H̃

∂η2

[
η
(
ĝBt − ĝAt

)]2 1
σ2
δ

+
1
2

∂2H̃

∂ (ĝA)2

((
γA
)2

σ2
δ

+ (φσf )
2 + σ2

f

)

+
1
2

∂2H̃

∂ (ĝB)2

((
γB
)2

σ2
δ

+ σ2
f

)
− ∂2H̃

∂η∂ĝA
η
(
ĝBt − ĝAt

) γA
σ2
δ

− ∂2H̃

∂η∂ĝB
η
(
ĝBt − ĝAt

) γB
σ2
δ

+
∂2H̃

∂ĝA∂ĝB

(
γAγB

σ2
δ

+ σ2
f

)
+
∂H̃

∂t
. (A51)

The appropriate solution of this PDE is

H̃
(
η, ĝA, ĝB, t, u;χ

)
= ηχ ×HP

(
ĝA, ĝB, t, u;χ

)
, (A52)

where HP

(
ĝA, ĝB, t, u;χ

)
is defined in (A45) and

AP (u− t) =
∫ u

t
(τ − t)

[
CA

((
γA
)2

σ2
δ

+ σ2
f

)
+ CB

((
γB
)2

σ2
δ

+ σ2
f

)

+2CAB
(
γAγB

σ2
δ

+ σ2
f

)]
dτ. (A53)

By Radon’s lemma, the functions of time CA, CAB and CB are obtained as elements of the matrix

Z =
(

CA CAB

CAB CB

)
, itself defined as follows. Let matrices X (u− t) and Y (u− t) be the unique

solution of the linear Cauchy problem{ .
X = Q11X +Q12Y, X (0) = I,
.
Y = Q21X +Q22Y, Y (0) = 0,

(A54)
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where I is the 2 × 2 identity matrix. Then Z (u− t) = Y (u− t) [X (u− t)]−1. The coefficients in
(A54) are given by:

Q21 =

(
1
2χ (χ− 1) 1

σ2
δ

−1
2χ

2 1
σ2

δ

−1
2χ

2 1
σ2

δ

1
2χ (χ+ 1) 1

σ2
δ

)
, (A55)

Q11 = −
(
Q22

)> =

 ζ + (1− χ) γ
A

σ2
δ

χγ
A

σ2
δ

−χγ
B

σ2
δ

ζ + (1 + χ) γ
B

σ2
δ

 , (A56)

Q12 =

 −2
(

(γA)2

σ2
δ

+ (φσf )
2 + σ2

f

)
−2
(
γAγB

σ2
δ

+ σ2
f

)
−2
(
γAγB

σ2
δ

+ σ2
f

)
−2
(

(γB)2

σ2
δ

+ σ2
f

)
 , (A57)

which completes the proof.

Proof for Lemma 6: Determining wealth and prices of equity and bond

Knowing the characteristic function (32), the single-maturity claims prices E
η, bfB ,bg

[
ξB

u

ξB
t

]
, E

η, bfB ,bg
[
ξB

u

ξB
t

δu
δt

]
and E

η, bfB ,bg
[
ξB

u

ξB
t

cBu
cBt

]
can be obtained by one of two methods. One is applicable only if 1 − α ∈ N.

Then the bracket
[(

ηu

λA

) 1
1−α +

(
1
λB

) 1
1−α

]1−α
can be expanded into an exact finite series by virtue

of the binomial formula as in Equation (35) of the text. The overall calculation in this case is
greatly simplified. It leads to the prices of single-maturity claims (36), (37) and (43).40 The second
method is general in that it applies for any value of risk aversion. This method is the inverse Fourier
transform, for which the formulae are given below and which can be computed by means of the
Fast Fourier Transform:

EB
η, bfB ,bg

[
ξBu
ξBt

]
= e−ρ(u−t)Hf

(
f̂B, t, u;α− 1

)
(A58)

×
∫ ∞

0

(
1− ω(η)
1− ω(η̃)

)1−α
[

1
2π

∫ +∞

−∞

(
η̃

η

)−iχ
Hg (ĝ, t, u;α− 1, iχ) dχ

]
dη̃

η̃
,

EB
η, bfB ,bg

[
ξBu
ξBt

δu
δt

]
= e−ρ(u−t)Hf

(
f̂B, t, u;α

)
(A59)

×
∫ ∞

0

(
1− ω(η)
1− ω(η̃)

)1−α
[

1
2π

∫ +∞

−∞

(
η̃

η

)−iχ
Hg (ĝ, t, u;α, iχ) dχ

]
dη̃

η̃
,

EB
η, bfB ,bg

[
ξBu
ξBt

cBu
cBt

]
= e−ρ(u−t)Hf

(
f̂B, t, u;α

)
(A60)

×
∫ ∞

0

(
1− ω(η)
1− ω(η̃)

)−α [ 1
2π

∫ +∞

−∞

(
η̃

η

)−iχ
Hg (ĝ, t, u;α, iχ) dχ

]
dη̃

η̃
.

Similarly, the share of consumption of Group A under the objective probability measure is:

EPη,bgA,bgB [ω (ηu)] =
∫ ∞

0
ω (η̃)

[
1
2π

∫ +∞

−∞

(
η̃

η

)−iχ
HP

(
ĝA, ĝB, t, u; iχ

)
dχ

]
dη̃

η̃
. (A61)

40The χ argument belongs to [0, 1] allowing us to apply Lemma 1 to conclude that Hg is well defined.
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Finally, we would like to consider only economies where the prices of perpetual claims are finite.
Because the prices of perpetual claims involve time integrals of (A58) and (A59) (or (36) and(37))
and these integrals have an infinite upper bound, we need to check for convergence. The conditions
for convergence of prices are derived in the lemma below

Lemma 6 The growth conditions for the price of perpetual equity, F , and the price of the perpetual
bond, P , to be well defined are, respectively:

G (α) < ρ and G (α− 1) < ρ, (A62)

where

G (ε) = εf +
1
2
ε(ε− 1)σ2

δ +
ε2σ2

f

2ζ2 . (A63)

Proof : Because for u ≥ t and χ ∈ [0, 1],
∣∣∣ b−qq+be

−q(u−t)
∣∣∣ < 1, we can take Taylor series in (A23):

B (u− t) =
∑5

i=1 ϑie
υi(u−t)

(q + b)
(
1− b−q

q+be
−2q(u−t)

) =
∑5

i=1 ϑie
υi(u−t)

(q + b)

∞∑
j=0

[
b− q

q + b
e−2q(u−t)

]j
,

=
∞∑
j=0

[
hIje

−jq(u−t) + hIIj e
−(jq+ζ)(u−t)

]
, (A64)

where hIj , and hIIj are certain functions of χ (and independent of time) such that the series in (A64)
is uniformly convergent.

Define
Π
(
f̂B, ĝ, t, u; ε, χ

)
= e−ρ(u−t)Hf

(
f̂B, t, u; ε

)
Hg (ĝ, t, u; ε, χ) . (A65)

Because in (34) A1, A2, C ≤ 0, we have Π ≤ Π, where

Π
(
f̂B, ĝ, t, u; ε, χ

)
= e−ρ(u−t)Hf

(
f̂B, t, u; ε

)
exp [εĝB (χ;u− t)] . (A66)

Substituting (A64)and (33), we find that the function Π may be written as:

Π
(
f̂B, ĝ, t, u; ε, χ

)
= π0

(
f̂B, ĝ; ε, χ

)
exp

{
[G (ε)− ρ] (u− t) + π1 (ε) e−2ζ(u−t)

+
∞∑
j=0

[
πIj (ĝ; ε, χ) e−(j+1)q(u−t) + πIIj

(
f̂B, ĝ; ε, χ

)
e−(jq+ζ)(u−t)

] , (A67)

where the series converges uniformly.

Following the line of argument in Brennan and Xia (2001, Theorem 6)41 one can easily show
that, when χ ∈ [0, 1], the integrals ∫ ∞

t
Π
(
f̂B, ĝ, t, u; ε, χ

)
du (A68)

41To show that for integral (A68), one should additionally note that, because q, ζ > 0 and the series in (A67) is
uniformly convergent, it tends to zero when u→∞.
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and ∫ ∞

t
Π
(
f̂B, ĝ, t, u; ε, 0

)
du =

∫ ∞

t
e−ρ(u−t)Hf

(
f̂B, t, u; ε

)
du (A69)

are finite if and only if G (ε)− ρ < 0.

Assume first that 1 − α ∈ N. Then (30) and (29) imply that the prices are well defined as

long as the integral
∫∞
t Π

(
f̂B, ĝ, t, u; ε, χ

)
du is convergent for every χ ∈ J =

{
j

1−α

}1−α

j=0
and when

ε = α for the stock and ε = α−1. Therefore, convergence of integral (A69) is a necessary condition
(because χ = 0 ∈ J) and convergence of integral (A68) is a sufficient condition (because Π ≤ Π)
for the prices to be well defined. It only remains to notice that, for each price, these conditions are
identical and are given by (A62).

Now, let α be any real number such that 1 − α > 0. Observe that when y > 0, the function
f (x) =

(
1 + y1/x

)x
increases with x > 0:

f ′ (x) =
1
x

(
1 + y1/x

)x−1 [
x
(
1 + y1/x

)
ln
(
1 + y1/x

)
− y1/x ln y

]
>

1
x

(
1 + y1/x

)x−1 [
xy1/x ln

(
y1/x

)
− y1/x ln y

]
= 0. (A70)

Therefore,

1
λB

<

[(
ηu
λA

) 1
1−α

+
(

1
λB

) 1
1−α

]1−α

≤

[(
ηu
λA

) 1
1−[α]

+
(

1
λB

) 1
1−[α]

]1−[α]

. (A71)

Replacing the bracket
[(

ηu

λA

) 1
1−α +

(
1
λB

) 1
1−α

]1−α
with its lower and upper bounds (A71) in the

expressions (29) and (30) for securities market prices and applying the above results for the case of
1− α ∈ N, we obtain necessary (when the lower bound is substituted; χ = 0) and sufficient (when
the upper bound is substituted; χ = j

1−[α] , j = 0, ..., 1 − [α]) conditions for the prices to be well
defined. The fact that, for each price, the necessary and sufficient conditions are identical and are
given by (A62) completes the proof.
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