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Abstract

This paper addresses two puzzles about corporate debt: the “credit spread puzzle”

– why yield spreads between corporate bonds and treasuries are high and volatile, and

the “under-leverage puzzle” – why firms use debt conservatively despite seemingly large

tax benefits and low costs of financial distress. I propose a unified explanation for both

puzzles: investors demand high risk premia for holding defaultable claims, including

corporate bonds and levered firms, because (i) defaults tend to concentrate in bad times

when marginal utility is high; (ii) default losses are also higher during such times. I

study these comovements in a structural model, which endogenizes firms’ financing and

default decisions in an economy with business-cycle variation in expected growth rates

and economic uncertainty. These dynamics coupled with recursive preferences generate

countercyclical variation in risk prices, default probabilities, and default losses. The

credit risk premia in the calibrated model are large enough to account for most of the

high spreads and low leverage ratios. Relative to a standard structural model without

business-cycle variation, the average spread between Baa and Aaa-rated bonds rises

from 48 bp to around 100 bp, while the average optimal leverage ratio of a Baa-rated

firm drops from 67% to 42%, both close to the U.S. data.
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1 Introduction

This paper addresses two puzzles about corporate debt. The first one is the “credit spread

puzzle”: yield spreads between corporate bonds and treasuries are high and volatile relative

to the observed default probabilities and recovery rates. The second is the “under-leverage

puzzle”: firms choose low leverage ratios despite facing seemingly large tax benefits of debt

and small costs of financial distress.

To address these puzzles, I build a structural model that endogenizes firms’ financing

and default decisions over the business cycle. Aggregate consumption and firms’ cash flows

are exogenous, and their expected growth rates and volatility move over the cycle. Asset

prices are determined by a representative household with recursive preferences. Firms choose

their capital structure based on the trade-off between the present value of tax benefits of

debt and deadweight losses at default. Examples of such deadweight losses include legal fees

and losses made during asset liquidation. Ex ante, these losses are born by equity-holders,

because they lower the value of bonds at issue. Due to lumpy adjustment costs, firms only

change their capital structure infrequently. Corporate bond investors also suffer losses at

default if they cannot recover the full amount of principal. The valuation of these default

losses is key to solving the puzzles.

The main mechanism of the model is as follows. First, marginal utilities are high in

recessions, which means that the default losses that occur during such times will affect

investors more. Second, recessions are also times when cash flows are expected to grow

slower and become more volatile. These factors, combined with higher risk prices at such

times, imply lower continuation values for equity-holders, which makes firms more likely

to default in recessions. Third, since many firms are experiencing problems in recessions,

asset liquidation can be particularly costly, which will result in higher default losses for

bond and equity-holders. Taken together, the countercyclical variation in risk prices, default

probabilities, and default losses raises the present value of expected default losses for bond

and equity-holders, which leads to high credit spreads and low leverage ratios.

There are two types of shocks in the economy: small shocks that directly affect con-

sumption levels, and large shocks that change the conditional moments of consumption and

cash flow growth, which drive the business cycle in this model. I model large shocks with

a continuous-time Markov chain, which not only helps me obtain closed form solutions for

stock and bond prices (up to a system of nonlinear equations), but allows me to characterize

firms’ default policies analytically. Risk prices for small consumption shocks rise with the

conditional volatility of consumption growth. Risk prices for large shocks will be zero with

time-separable preferences, because they are uncorrelated with small consumption shocks.
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However, with recursive preferences, investors are concerned with news about future con-

sumption. The arrival of a recession brings bad news of low expected growth rates, and

investors will demand a high risk premium on securities that pay off poorly in such times.

Risk prices for these shocks increase in the frequency, size, and persistence of the shocks,

which change over the business cycle.

The calibration strategy is to match empirical moments of the exogenous fundamentals.

I use data on aggregate consumption and corporate profits to calibrate consumption and

systematic components of the cash flows of individual firms. The volatility of firm-specific

shocks is calibrated to match the average default probabilities associated with a firm’s credit

rating. Next, I calibrate the preference parameters to match the moments of stocks and the

riskfree rate. Finally, I estimate default losses from the data of recovery rates. Relative to

a benchmark case where consumption and cash flow growth are i.i.d., and default losses are

constant, the average spread for a 10-year Baa-rated coupon bond rises from 57 bp to around

140 bp, while the spread between Baa and Aaa-rated bonds rises from 48 bp to around 100

bp. The average optimal leverage ratio of a Baa-rated firm drops from 67% to around 42%.

These values are close to the U.S. data. There is also large variation in default probabilities

and credit spreads. The volatility of the Baa-Aaa spread is about 35 bp, again close to the

U.S. data.

Endogenizing firms’ capital structure and default decisions has two advantages. First,

the model is able to predict how default probabilities will depend on the business cycle while

taking into account the endogenous adjustments in firms’ capital structures. With infre-

quent adjustments in the capital structure, the model predicts that changes in the economic

conditions can lead to large variation in the conditional default probabilities. Second, while

default losses for bond-holders can be calculated from the observable recovery rates, default

losses for equity-holders (deadweight losses) are not observable. However, there is a link

between recovery rates and deadweight losses: recovery rates are determined by firm values

at default net of deadweight losses. Since this model determines firm values at default en-

dogenously, it provides a precise link between default losses for equity-holders and recovery

rates.

Through this link, I estimate default losses as a function of the state of the economy

using the simulated method of moments. The procedure matches the mean and volatility

of recovery rates, as well as the correlations of recovery rates with macro variables, and it

identifies countercyclical variation in default losses. The intuition is as follows. Although

asset values are lower in recessions, they do not drop as much as do recovery rates. Moreover,

firms tend to default at higher cash flow levels in recessions, which partially offsets the
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Figure 1: Annual Global Corporate Default Rates and Monthly Baa-Aaa Credit Spreads,
1920-2006. Shaded areas are NBER-dated recessions. For annual data, any calendar year
with at least 5 months being in a recession as defined by NBER is treated as a recession
year. Data source: Moody’s.

variation in asset values. Thus, default losses must be higher in recessions in order for the

model to fit the recovery rates.

Figure 1 and 2 provide evidence on the business-cycle movements of default rates, credit

spreads, and recovery rates. Panel A of Figure 1 plots the historical annual default rates

from 1920 to 2006. There are several spikes in the default rates, all coinciding with an

NBER recession. Panel B of Figure 1 plots the monthly Baa-Aaa spreads from 1920 to 2006.

Credit spreads shoot up in almost every recession, including the ones during which default

rates changed little.1 These patterns suggest that understanding the high credit spreads

in recessions is key to solving the credit spread puzzle. Business-cycle movements of the

recovery rates are evident in Figure 2. Recovery rates during the three recessions in the

1The correlation between default rates and annual averages of monthly spreads is 0.65.
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Figure 2: Annual Average Recovery Rates, 1982-2005. Value-weighted mean recovery rates
for “All Bonds” and “Sr. Unsecured” are from Moody’s. “Altman Data Recovery Rates” are
from Altman and Pasternack (2006). Shaded areas are NBER-dated recessions.

sample, 1982, 1990 and 2001, were all significantly lower.2 The difference in recovery rates

between senior unsecured bonds and other bonds is negligible in bad times, but becomes

significant in good times, suggesting that senior unsecured bonds are more affected by the

cycle.

Besides the business cycle, I also investigate the impact of risky tax benefits and costly

equity issuance on the capital structure. Tax benefits are risky because firms lose part of

their tax shield when they generate low cash flows for extended periods, which is more likely

in bad times. Costs of (seasoned) equity issuance make leverage less attractive because they

make it more costly for firms to issue equity to meet debt payments. I find considerable

impact of the risky tax benefits on the capital structure, while the impact of equity issuance

costs appears to be small.

2Moody’s calculate recovery rates as the weighted average of all corporate bond defaults, using closing
bid prices on defaulted bonds observed roughly 30 days after the default date. For robustness, I also plot the
value-weighted recovery rates from Altman and Pasternack (2006), who use the Altman Defaulted Bonds
Data Set and measure recovery rates using closing bid prices as close to default date as possible. The results
from these two methodologies are similar.
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The model has several additional implications. First, it predicts that firms are more

likely to raise their debt levels in good times. Default probability will not rise as much

following new debt issuance during such times, which reduces the effect of claim dilution on

credit spreads. Second, I model default based on the dynamics of cash flows. With expected

growth rates and risk premia changing over time, cash flows and market value of assets no

longer have a one-to-one relation as in the earlier studies. As a result, both cash flows and

market value of assets should be informative about default probabilities. For example, the

model predicts that the optimal default boundaries based on cash flows are countercyclical.

However, since the procyclical variation in price-dividend ratios still dominates, the resulting

default boundaries based on asset value are procyclical.

Third, the model provides an explanation for default waves. The large shocks cause major

changes in macroeconomic conditions, which can lead many firms to default simultaneously

when the economy enters into a recession. Similarly, when the economy enters into an

expansion, the model generates clustering of debt issuance, with many firms levering up

simultaneously.

Related Literature

The credit spread puzzle refers to the finding of Huang and Huang (2003). They calibrate

various structural models to match leverage ratios, default probabilities, and recovery rates,

and find that these models produce credit spreads well below historical averages.3 Miller

(1977) highlights the challenge of the under-leverage puzzle: in expectation, default losses

for firms seem disproportionately small compared to tax benefits of debt. For example,

Graham (2000) estimates the capitalized tax benefits of debt to be as high as 5% of firm

value, much larger than conventional estimates for the present values of default losses.

This paper is closely related to Hackbarth, Miao, and Morellec (2006) (HMM) and Chen,

Collin-Dufresne, and Goldstein (2006) (CCDG). HMM is one of the first papers to study

the impact of macroeconomic conditions on capital structure decisions. They consider an

economy where investors are risk-neutral, and the driving force behind the macroeconomic

conditions is a systematic cash-flow shock. Such a setting generates rich predictions for

firms’ financing policies, but it does not allow for time-varying risk premia, and will not be

able to account for the credit spread puzzle. CCDG find that strongly cyclical risk prices

and default probabilities lead to high credit spreads. They focus on the credit spreads and

treat firms’ financing and default decisions as exogenous. In this paper, I investigate how

3Earlier work include Jones, Mason, and Rosenfeld (1984) and Eom, Helwege, and Huang (2004).
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corporate financing and default decisions endogenously respond to the changes in macroeco-

nomic conditions and risk price, which in turn moves credit spreads. The result is a coherent

picture of financing policies and bond pricing over the business cycle.

A contemporaneous and independent paper by Bhamra, Kuhn, and Strebulaev (2007)

uses a theoretical framework similar to this paper. They focus on the common macro risk

factors behind the equity premium and credit spreads, and their model only considers static

capital structure decisions. In contrast, I model the economy based on the long-run risk

model of Bansal and Yaron (2004), which is capable of generating large time-varying equity

premium, and identify the common causes of high credit risk premium and low leverage in

a dynamic capital structure model.

The connections between credit spreads and capital structure are also exploited by

Almeida and Philippon (2006). They use a reduced-form approach, extracting risk-adjusted

default probabilities from observed credit spreads to calculate expected default losses, and

find the present value of expected default losses are much larger than traditional estimates.

In this paper, I not only identify the risks behind defaultable claims, but formally assess the

ability of a trade-off model to generate reasonable leverage ratios. Moreover, I demonstrate

the importance of countercyclical default losses for solving the under-leverage puzzle.

Countercyclical variation in default losses is consistent with Shleifer and Vishny (1992):

liquidation of assets is more costly in bad times because the industry peers of the defaulted

firm and other firms in the economy are likely experiencing similar problems. Acharya,

Bharath, and Srinivasan (2006) find evidence that recovery rates are significantly lower

when the industry of defaulted firm is in distress, and the relation is stronger for industries

with non-redeployable assets. Altman, Brady, Resti, and Sironi (2005) also provide evidence

that recovery rates are lower in recessions.

Lumpy capital structure adjustment is consistent with firms’ financing behavior in reality.

Welch (2004) documents that firms do not adjust their debt levels in response to changes

in the market value of equity. Leary and Roberts (2005) find empirical evidence that such

behaviors are likely due to adjustment costs. Strebulaev (2006) shows through simulation

that a trade-off model with lumpy adjustment costs can replicate such effects. There is also

evidence that such adjustment costs are asymmetric. For example, Gilson (1997) find that

transaction costs for reducing debt are very high outside of Chapter 11.

The model’s prediction of how default depends on market conditions echoes the findings

of Pástor and Veronesi (2005) on IPO timing: just as new firms are more likely to exercise

their options to go public in good times, existing firms are more likely to exercise their

options to default (quit) in bad times. The model’s prediction that both cash flows and
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market value of assets help predict default probabilities is consistent with the empirical

finding of Davydenko (2005).

The model-generated default risk premium is time-varying and has a large component

due to jump risks, which are consistent with several recent empirical studies using data of

corporate bonds and credit derivatives. Longstaff, Mithal, and Neis (2005) show that the

majority of the corporate spread is due to default risk; Diressen (2005) finds that a large part

of BBB-rated bond returns is due to risk premium associated with price jump at default;

Berndt, Douglas, Duffie, Ferguson, and Schranz (2005) show that default risk premia vary

significantly over time; Cremers, Driessen, and Maenhout (2006) show that the jump risk

premia implied by option prices raise credit spreads significantly in a structural model.

Theoretically, this model extends the literature on capital structure models.4 These

models view default as an option for equity-holders, so that we can apply option pricing

techniques to solve the models. Adding business cycles into these models increases the num-

ber of state variables, which brings the “curse of dimensionality”. I provide a general solution

to this problem by applying the option pricing technique for Markov modulated processes

developed by Jobert and Rogers (2006): by approximating the dynamics of macroeconomic

variables with a Markov chain, we reduce a high-dimensional free-boundary problem into a

tractable system of ordinary differential equations.

This paper also contributes to the field of long-run risk models, led by Bansal and Yaron

(2004), Hansen, Heaton, and Li (2005), Bansal, Dittmar, and Lundblad (2005), and others.

Long-run risk models use predictable components in consumption growth to amplify the risk

premia for financial claims, which also helps generate high credit spreads and low leverage

ratios in this model.5 To get equilibrium pricing results, there are two popular approximation

methods, by Campbell (1993) and Hansen, Heaton, and Li (2005). Both methods are exact

when the elasticity of intertemporal substitution (EIS) is equal to 1.6 This paper uses the

Brownian motion–Markov chain setup to find closed form solutions for the prices of stocks,

bonds and other derivatives, which are exact even when the EIS is not equal to 1. Chen

(2007b) studies in detail the properties of this new method.

4See Leland (1994, 98), Leland and Toft (1996), Goldstein, Ju, and Leland (2001), Ju, Parrino, Poteshman,
and Weisbach (2005), Titman and Tsyplakov (2005), Hackbarth, Miao, and Morellec (2006), and earlier work
of Merton (1974), Brennan and Schwartz (1978), Kane, Marcus, and McDonald (1985), Fischer, Heinkel, and
Zechner (1989). With the exception of HMM, these models do not consider the impact of macroeconomic
risks on the capital structure.

5An alternative way to generate big variation in risk premia is to use the habit formation model of
Campbell and Cochrane (1999). Since the surplus-consumption ratio is a state variable that is driven by
small consumption shocks, one cannot separately model the dynamics of this state variable with a Markov
chain, which is key to tractability in this model.

6Duffie, Schroder, and Skiadas (1997) also derive close-form solutions for bond prices in continuous time
when the EIS equals 1.
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2 Simple Two-Period Example

In this section, I present a simple two-period example to illustrate how the comovements

among risk prices, default probabilities, and default losses lead to higher present value of

expected default losses. Suppose the economy can either be in a good state (G) or bad state

(B) at t = 1 with equal probability, as illustrated in Figure 3. The prices of one-period

Arrow-Debreu securities that pay $1 in one of the two states are QG and QB. Since marginal

utility is high in the bad state, agents will pay more for consumption in that state: QB > QG.

t = 0   t = 1

1−L
B

1−p
B

p
B

1−p
G

p
G

G

no default

default

1

default1−L
G

no default1

B

Figure 3: Payoff Diagram of a Defaultable Zero Coupon Bond in a Two-period Example.

There is a firm which issues one-period defaultable bonds with face value $1 at t = 0. The

probabilities of default in the two states, pG and pB, are different. Conditional on default,

the recovery rate in the two states are FG and FB.

The price of the zero-coupon bond at t = 0 is:

B = QG [(1− pG) · 1 + pG · FG] + QB [(1− pB) · 1 + pB · FB] ,

which can be rewritten as:

B = QG + QB − [QGpG(1− FG) + QBpB(1− FB)] .
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This equation says that the price of a defaultable bond is equal to the price of a default-free

bond minus the present value of expected losses at default.

In the benchmark case, the default probabilities and recovery rates are assumed to be

the same across the two states, and are equal to their unconditional means: p̄ = (pG + pB)/2

and F̄ = (FG + FB)/2. Now, suppose that the average default probabilities and recovery

rates are unchanged, but: (i) the bond is more likely to default in the bad state, pB > pG;

(ii) the recovery rate is lower in the bad state, FB < FG. Such changes shift the credit losses

to the state with a higher Arrow-Debreu price, which raises the present value of expected

credit losses. As a result, the bond price at t = 0 is lower relative to the benchmark case.

Moreover, the bigger the difference between the Arrow-Debreu prices QG and QB, the larger

the above effects will be. The same logic applies when we calculate the present value of

default losses for equity.

This simple example treats the Arrow-Debreu prices, default probabilities, and default

losses as exogenous. In principle, firms could adjust their capital structure over the business

cycle and avoid default in bad states. A contribution of this paper is that it predicts how

default probabilities endogenously depend on the business cycle. Moreover, the model derives

the Arrow-Debreu prices from the representative household’s marginal utilities, and estimates

default losses from the data of recovery rates. I will check whether the comovements among

these quantities are sufficient to solve the puzzles of credit spreads and leverage ratios.

3 The Economy

I study an economy with government, firms, and households. The government serves as a

tax authority, levying taxes on corporate profit, dividend and interest income. Firms are

financed by debt and equity, and generate infinite cash flow streams. Households are the

owners and lenders of firms.

3.1 Preferences and Technology

There is a large number of identical infinitely lived households in the economy. The rep-

resentative household has stochastic differential utility of Duffie and Epstein (1992b) and

Duffie and Epstein (1992a), which is a continuous-time version of the recursive preferences

of Kreps and Porteus (1978), Epstein and Zin (1989) and Weil (1990). I define the utility

9



index at time t for a consumption process c as:

Ut = Et

(∫ ∞

t

f (cs, Us) ds

)
. (1)

The function f (c, v) is a normalized aggregator of consumption and continuation value in

each period. It is defined as:

f (c, v) =
ρ

1− 1
ψ

c1− 1
ψ − ((1− γ) v)

1−1/ψ
1−γ

((1− γ) v)
1−1/ψ
1−γ

−1
. (2)

where ρ is the rate of time preference, γ determines the coefficient of relative risk aver-

sion for timeless gambles, and ψ determines the elasticity of intertemporal substitution for

deterministic consumption paths.

Let Jt be the value function of the representative household at time t. Duffie and Epstein

(1992b) and Duffie and Skiadas (1994) show that the stochastic discount factor in this

economy is equal to:

mt = e
∫ t
0 fv(cu,Ju)dufc (ct, Jt) . (3)

There are two types of shocks in this economy: small shocks that directly affect output

and nominal prices, and large but infrequent shocks that change expected growth rates and

volatility. More specifically, a standard Brownian motion Wm
t provides systematic small

shocks to the real economy. Large shocks come from the movements of a state variable

s. I assume that st follows an n-state time-homogeneous Markov chain, and takes values

in the set {1, · · · , n}. The generator matrix for the Markov chain is Λ = [λjk] for j, k ∈
{1, · · · , n}, which means that the probability of st changing from state j to k within time ∆

is approximately λjk∆.

We can equivalently express this Markov chain as a sum of Poisson processes see, e.g.,

Duffie (2001):

dst =
∑

k 6=st−

δk (st−) dN
(st− ,k)
t , (4)

where

δk (j) = k − j,

and N (j,k) (j 6= k) are independent Poisson processes with intensity parameters λjk. The

movements in the state variable are driven by these jumps.

Let Yt denote the real aggregate output in the economy at time t, which evolves according
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to the following process:
dYt

Yt

= θm (st) dt + σm (st) dWm
t . (5)

The state variable s determines the conditional moments θm and σm, which represent the

expected growth rate and volatility of aggregate output. Because s has n states, θm and σm

can each take up to n different values.

In equilibrium, aggregate consumption equals aggregate output. We can solve for the

value function J of the representative agent, and substitute J and Y into (3) to get the

stochastic discount factor.

Proposition 1 The real stochastic discount factor for this economy follows a Markov-modulated

jump-diffusion:

dmt

mt

= −r (st) dt− η (st) dWm
t +

∑

st 6=st−

(
eκ(st− ,st) − 1

)
dM

(st− ,st)
t , (6)

where r is the real riskfree rate; η is the risk price for systematic Brownian shocks Wm
t :

η(s) = γσm(s); (7)

κ (j, k) determines the relative jump size of the discount factor when the Markov chain

switches from state j to k; Mt is the vector of compensated processes,

dM
(j,k)
t = dN

(j,k)
t − λjkdt, j 6= k, (8)

where N
(j,k)
t are the Poisson processes that move the state variable st as in equation (4). The

expressions for r and κ are in Appendix A.

Proof. See Appendix A.

The stochastic discount factor is driven by the same set of shocks that drive aggregate

output. Small systematic shocks affect marginal utility through today’s consumption levels.

The risk price for these shocks takes a familiar form (equation (7)), which says that the risk

price rises with risk aversion and consumption volatility. Large shocks that change the state

of the economy lead to jumps in the discount factor, even though consumption is perfectly

smooth. The relative jump sizes κ(j, k) are the risk prices for these large shocks.

With recursive preferences, investors care about the temporal distribution of risk, so that

news about future consumption matters. The Markov chain that generates business-cycle

variation in this economy brings such news. For example, investors will dislike news (large
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shocks) that lower the expected growth rates or raise the economic uncertainty, which means

the stochastic discount factor will jump up when such news arrive. With a time-separable

expected utility, investors would be indifferent to the temporal distribution of risk, and these

large shocks would no longer be priced.

Finally, since credit spreads are based on nominal yields and taxes are collected on

nominal cash flows, I specify a stochastic consumption price index to get nominal prices and

quantities. The price index follows the diffusion

dPt

Pt

= πdt + σP,1dWm
t + σP,2dW P

t , (9)

where W P
t is another independent Brownian motion that generates additional shocks to

nominal prices. For simplicity, the expected inflation rate π and volatility (σP,1, σP,2) are

constant. Then, the nominal stochastic discount factor is:

nt =
mt

Pt

. (10)

Applying Ito’s formula to nt, we get the nominal interest rate:

rn (st) = r (st) + π − σP,1η (st)− σ2
P . (11)

3.2 Firms

The technology of firm i is a machine that produces a perpetual stream of real cash flows.

The cash flow net of investments at time t is Y i
t . Since operating expenses such as wages

are not included in a firm’s earnings, but are still part of aggregate output, the Y i
t ’s across

firms do not add up to the aggregate real output Yt. The dynamics of Y i
t is governed by the

following process:
dY i

t

Y i
t

= θi (st) dt + σi
m (st) dWm

t + σi
fdW i

t , (12)

where θi and σi
m are firm i’s mean growth rate and systematic volatility, W i

t is a standard

Brownian motion independent of Wm
t , which generates idiosyncratic shocks specific to firm

i. Finally, σi
f is firm i’s idiosyncratic volatility, which is constant over time.

In principle, the expected growth rates and systematic volatility of cash flows can differ

across firms. For computational reasons, however, it is important to keep number of states

in the Markov chain low. I therefore assume that they are perfectly correlated with the
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aggregate expected growth rate and volatility:

θi(s) = ai(θm(s)− θm) + θ
i

m ,

σi
m(s) = bi(σm(s)− σm) + σi

m ,

where θm and σm are the average growth rate and volatility of aggregate output, θ
i

m and

σi
m are the average growth rate and systematic volatility of firm i. The coefficients ai and bi

determine the sensitivity of firm-level expected growth rate and volatility are to changes in

the aggregate values.

Firms issue bonds and pay taxes on a nominal basis. The nominal cash flow of firm i is

denoted X i
t = Y i

t Pt. An application of the Ito’s formula gives:

dX i
t

X i
t

= θi
X (st) dt + σi

X,m (st) dWm
t + σP,2dW P

t + σi
fdW i

t , (13)

where

θi
X (st) = θi (st) + π + σi

m (st) σP,1 ,

σi
X,m (st) = σi

m (st) + σP,1 .

Valuation of Unlevered Firms and Default-free Bonds

If a firm never takes on any leverage, its value (before taxes) is simply the expected value

of future cash flows discounted with the stochastic discount factor. Equivalently, the value

is the expected value of cash flows discounted with riskfree rates under the risk-neutral

probability measure Q. Technical details for the change of measure are in Appendix B.

The risk-neutral measure adjusts for risks by changing the distributions of shocks. Under

Q, the expected growth rate of firm i’s nominal cash flows becomes:

θ̃i
X (st) = θi

X (st)− σi
X,m (st) (η (st) + σP,1)− σ2

P,2, (14)

where θi
X is the expected growth rate under the physical measure P . If cash flows are

positively correlated with marginal utility, the adjustment lowers the expected growth rate

of cash flows under Q.

In addition, the generator matrix for the Markov chain becomes Λ̃ =
[
λ̃jk

]
, where the

transition intensities are adjusted by the corresponding jump sizes of the stochastic discount
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factor (see equation (6)):

λ̃jk = eκ(j,k)λjk , j 6= k (15a)

λ̃jj = −
∑

k 6=j

λ̃jk . (15b)

Bad news about future cash flows are particularly “painful” if they occur at the same time

when the economy enters into a recession (marginal utility jumps up). The risk-neutral

measure adjusts for such risks by increasing the probability that the economy will enter

into a bad state, and reducing the probability that it will leave a bad state for a good one.

For example, if marginal utility jumps up when the economy changes from state i to j,

κ(j, k) > 0, then the jump intensity associated with this change of state will be higher under

the risk-neutral measure.

Next, the value of an unlevered firm is the expected value of its future nominal cash

flows discounted with the nominal interest rates. The following proposition gives the pricing

formula.

Proposition 2 Suppose firm i’s cash flows evolve according to (13) and it never levers up.

If its current cash flow is X i, and the economy is in state s, then the value of the firm (before

taxes) is:

V i
(
X i, s

)
= X ivi (s) . (16)

Let vi = [vi (1) , ..., vi (n)]
′
, then

vi =
(
rn − θ̃i

X − Λ̃
)−1

1, (17)

where rn , diag
(
[rn (1) , ..., rn (n)]′

)
, θ̃i

X , diag

([
θ̃i

X (1) , ..., θ̃i
X (n)

]′)
, with θ̃i

X (s) defined

in (14), 1 is an n× 1 vector of ones, and Λ̃ is the generator of the Markov chain under the

risk-neutral measure defined by (15a-15b).

Proof. See Appendix C.

The value of the firm is given by the Gordon growth formula. Without large shocks, the

ratio of value to cash flows, v, is equal to 1/(rn − θ̃), where θ̃ is the expected growth rate

of cash flows under the risk-neutral measure. Proposition 2 extends the Gordon formula to

the more general case with large shocks. The new feature is that the expected growth rate

is now adjusted by Λ̃, the risk-neutral Markov chain generator, which accounts for possible

changes of the state in the future.
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Bad times come with higher risk prices, higher cash flow volatility and lower expected

growth rate. According to equation (14), all these lead to a lower risk-neutral growth rate,

hence lower ratios of value to cash flows. In addition, real interest rates are countercyclical

in this model. Thus, high interest rates will also push down the value of assets in recessions.

Finally, since the adjustments in the transition probabilities increases the duration of bad

times, they lead to even lower asset values in bad times.

A default-free consol bond is a cash flow stream with expected growth rate and volatility

equal to 0. Thus, we can determine its value as a special case of Proposition 2.

Corollary 1 In state s, the value of a default-free nominal consol bond with coupon rate C

(before taxes) is:

B (C, s) = Cb (s) , (18)

where

b = [b(1), · · · , b(n)]′ =
(
rn−Λ̃

)−1

1, (19)

and rn, Λ̃ and 1 are defined in Proposition 2.

3.3 Financing Decisions

The setup of firms’ financing problems closely follows that of Goldstein, Ju, and Leland

(2001). Firms make financing and default decisions. Their objective is to maximize equity-

holders’ value. Because interest expenses are tax deductible, firms lever up with debt to

exploit the tax shield. As they take on more and more debt, the probability of financial

distress rises, which raises the expected default losses. Thus, firms will lever up to a point

when the marginal benefit of debt is zero.

Firms have access to two types of external financing: debt and equity, and they are

initially financed entirely by equity. I assume that firms do not hold cash reserves. In each

period, a levered firm first uses its cash flow net of investments to make interest payments on

its debt, then pay taxes, and finally distributes the rest to equity-holders as dividend. The

firm faces a “liquidity crunch” whenever its internally generated cash flows fall short of the

interest expenses. To finance its debt payments, the firm can issue additional equity. If the

“liquidity crunch” becomes too severe and equity-holders are no longer willing to contribute

more capital, the firm defaults.

Debt is in the form of a consol bond, i.e., a perpetuity with constant coupon rate C. This

is a standard assumption in the literature (see, e.g., Fischer, Heinkel, and Zechner (1989),

Leland (1994), Duffie and Lando (2001), Goldstein, Ju, and Leland (2001)), which helps
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maintain a time-homogeneous setting for the model. One interpretation for this assumption

is that firms commit to a constant financing plan, rolling over debt perpetually. All bonds

have a pari passu covenant, which requires newly issued bonds have equal seniority as any

old issues. This assumption helps to simplify the seniority structure of outstanding debt.

Bond and equity issues are costly. For equity, these costs are a constant fraction e of the

proceeds from issuance. For debt, these costs are “quasi-fixed”, i.e., they are a fraction q

of the amount of debt outstanding after issuance (not the amount newly issued). The idea

behind behind this assumption is that debt issuance incurs two types of costs: underwriting

costs, which are proportional to the value of new issues, and costs of negotiating with the

firm’s existing debt-holders (to get the permission to issue additional pari passu debt), which

are proportional to the value of old issues. These adjustment costs help the model match

the lumpiness of debt issues in the data.7

Default losses are proportional to the value of a firm’s unlevered assets at the time of

default. This assumption is standard in the literature. These costs are likely to be higher

in bad times, when the demand for both physical and intangible assets is low, making

liquidation more costly. I therefore allow the fractional default losses α(s) to depend on the

state of the economy s.

The tax environment consists of a constant tax rate τi for personal interest income, and

τd for dividend income. A firm’s taxable income is equal to cash flow (EBIT) minus interest

expenses. Positive taxable income is taxed at rate τ+
c , while negative taxable income is

taxed at a lower rate τ−c . The assumption of two different corporate tax rates is a crude

way to model “partial loss offset”. The US tax laws allow firms to carry net operating losses

backward and forward for a limited number of years, which means a firm can lose part of the

tax shield when earnings are low.8 Since cash flows are more likely to be low in bad times,

so will tax benefits, which increases the riskiness of tax benefits.

I study firms’ financing decisions in two settings: a static setting where firms only issue

debt once at time 0 and makes no adjustment later on, and a dynamic setting where firms

can make subsequent adjustments to their debt levels.

Static Financing Decisions

The static financing problem is to choose an amount of debt and a default policy that

maximize the value of equity right before issuance, EU , which is equal to the expected

7Technically, this assumption together with the “pari passu covenant” helps relax the requirement in
Goldstein, Ju, and Leland (2001) that a firm retires all its outstanding debt before issuing new debt.

8A more realistic way to model “partial loss offset” will be to assume τ−c decreases with the net losses,
since firms lose their tax shield only when they accumulate net losses for an extended period of time.
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present value of the firm’s cash flow stream, plus the tax benefits of debt, minus default

losses and debt/equity issuance costs:

max
{C,TD}

EU (C, TD, χ0) , (20)

where C is the coupon rate of perpetual debt issued at time 0, TD is a stopping time that

determines the default policy, and χ0 contains all the state variables at time 0.

Dynamic Financing Decisions

The dynamic problem allows firms to issue additional debt after time 0, which I refer to as

“upward restructuring”. Now, in addition to the initial coupon rate and default policy, a

firm also needs to decide when to increase its debt level, and by how much. Thus, the firm’s

problem becomes:

max
{C,TD,{TU},{CTU}}

EU (C, TD, {TU} , {CTU
} , χ0) , (21)

where {TU} is a series of stopping times that determines the firm’s restructuring policy, and

{CTU
} are the new coupon rates at each restructuring point.

4 Static Financing Decisions

The static financing problem is solved in three steps. The first step computes debt and

equity values for a fixed amount of debt outstanding and a fixed set of default boundaries.

The second step determines the optimal default boundaries for a fixed amount of debt out-

standing. The third step determines the optimal amount of debt by maximizing the value

of equity before debt issuance.

There is no need to distinguish between firms yet, so I will temporarily drop the su-

perscript i for cash flow Xt. For a fixed amount of debt, the default policy is an optimal

stopping problem. This policy is characterized by a set of default boundaries, Xk
D for state

k, k = 1, · · · , n. A firm defaults if its cash flows fall below the boundary Xk
D while the

economy is in state k. Although these boundaries are endogenous, I can always re-order the

macroeconomic states such that:

X1
D ≤ X2

D ≤ · · · ≤ Xn
D ≤ C. (22)

The last inequality follows from the optimality of default. It is never optimal to default when
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the value of equity is above zero, which will be the case if cash flows at default are higher

than interest payments.

The default boundaries and coupon rate divide the relevant range for cash flows into

n + 1 regions: Dk , [Xk
D, Xk+1

D ) for k < n, Dn , [Xn
D, C) and Dn+1 , [C, +∞). In regions

D1 through Dn−1, firms face immediate default threats. For example, suppose the economy

is currently in state 1, the state with the lowest default boundary. If a firm’s cash flow is

in region Dn−1, then it is below the default boundary in state n, but above the boundary

for the current state. The firm will not default now, but if a big shock suddenly changes

the state from 1 to n, thus raising the default boundary above current cash flow, it will

default immediately. In region Dn, there is no immediate danger of default, but firms face

a liquidity crunch because they are short of internal cash flows to cover interest payments.

Finally, Dn+1 is the “normal” region (without default threats or liquidity problems).

4.1 Debt and Equity Value

Debt and equity are contingent claims based on a firm’s cash flows as well as the state of the

economy. They belong to a general class of perpetual securities J (Xt, st), paying a dividend

F (Xt, st) for as long as the firm is solvent, and a default payment H (XTD
, sTD

) when default

occurs at time TD. What distinguishes one security is the dividend stream and the default

payment. I define J(X) as an n-dimensional vector of the security J ’s values in the n states.

For debt, the “dividend” is the after-tax coupon rate. With strict priority, the default

payment is equal to the residual value of the firm at default:

VB(X, s) =
(
1− τ+

c

)
(1− τd)(1− α(s))V (X, s), (23)

which is the value of the unlevered firm V ,9 net of taxes (τ+
c , τd) and default losses α(s).

Thus, the dividend and default payment for debt are:

F (X, s) = (1− τi) C , (24a)

H (X, s) = VB (X, s) . (24b)

For equity, the dividend is positive when cash flows exceed interest expenses. If cash

flows are less than interest, the firm faces a liquidity crunch. On such occasions, as long as

the present value of future dividend income exceeds their debt obligations, equity-holders

9In principle, debt-holders should be able to takeover the residual assets and lever up optimally. I use
the simplifying assumption to avoid the fix-point problem, which leads to a small downward bias on default
losses when the model is calibrated to match recovery rates.

18



will contribute additional capital through costly equity issuance. The issuance costs are a

fraction e of the proceeds. If the firm defaults, default payment to equity-holders is zero.

So, the dividend and default payment for equity are:

F (X, s) =

{
(1− τd) (1− τ+

c ) (X − C) X ≥ C

− (1− τ−c ) (C −X) / (1− e) X < C
, (25a)

H (X, s) = 0. (25b)

Let D(X, s) and E(X, s) be the value of debt and equity in state s. The following two

propositions summarize the valuation of debt and equity given the default policy.

Proposition 3 Suppose a firm has a consol bond outstanding with coupon rate C and a

default policy characterized by a set of default boundaries (X1
D, · · · , Xn

D), which satisfy the

ordering of (22). Then, the value of debt is:

D(X; C) =
2k∑

j=1

wD
k,jgk,jX

βk,j + ξD
k X + ζD

k , X ∈ Dk , k = 1, · · · , n + 1. (26)

The coefficients g, β, (wD, ξD, ζD) are given in Appendix D.

Proof. See Appendix D.

This proposition specifies the value of debt in each of the n + 1 regions Dk. In the first

n − 1 regions, the firm will already be in default for some of the states, and the value of

debt corresponding to those states will be 0. In the last region Dn+1, the firm is alive in

all n states. Given the amount of debt outstanding, as X increases, the firm gets further

away from bankruptcy. In the limit, the firm is free of default risk. Thus, the value of the

corporate consol is bounded from above by that of a default-free consol:

lim
X↑+∞

D (X; C) = (1− τi) Cb,

where b is the value of a default-free consol with unit coupon rate as given in Corollary 1.

This intuition suggests that the coefficients wD
n+1,j associated with those exponents βn+1,j

that are positive will be zero, ξD
n+1 will be zero, and ζD

n+1 will be equal to (1− τi)Cb.

The values of all perpetual securities J(X, s) described earlier can be written in the same

form as debt, and they share the same coefficients g and β. However, the coefficients wD, ξD

and ζD are specific to debt. They are determined by the dividend rate, the default payment,

and a set of conditions that ensure that the value of the claim is continuous and smooth

across adjacent regions.
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Proposition 4 For a given coupon rate C, the value of equity can be decomposed into two

parts: the value of future positive dividend payments, and the costs of equity contribution to

cover future shortfalls in cash for debt payments.

E (X, s; C) = (1− τd)
(
1− τ+

c

)
E+ (X, s; C)− 1− τ−c

1− e
E− (X, s; C) , (27)

where

E+ (X; C) =
2k∑

j=1

wE+

k,j gk,jX
βk,j + ξE+

k X + ζE+

k , X ∈ Dk , k = 1, · · · , n + 1. (28)

and

E− (X; C) =
2k∑

j=1

wE−
k,j gk,jX

βk,j + ξE−
k X + ζE−

k , X ∈ Dk , k = 1, · · · , n + 1. (29)

The coefficients g and β are given in Proposition 3, while (wE+
, ξE+

, ζE+
) and (wE− , ξE− , ζE−)

are given in Appendix D.

Proof. See Appendix D.

When cash flows are sufficiently large, partial loss offset becomes irrelevant, and the firm

no longer needs to issue equity to finance debt payments. In the limit, the value of equity

should be equal to the value of future cash flows net of the value of the default-free debt and

taxes:

lim
X↑+∞

E (X; C) = (1− τd)
(
1− τ+

c

)
(Xv − Cb) ,

where v is the value-cash flow ratio given in Proposition 2. This intuition implies the

following: in the region Dn+1, all the coefficients wE+

n+1,j, w
E−
n+1,j associated with positive

exponents βn+1,j are equal to zero, and so are ξE−
n+1 and ζE−

n+1, while ξE+

n+1 = v, ζE+

n+1 = −Cb.

For any default policy (a set of default boundaries), we are interested in the conditional

probability that a firm will default within a given amount of time. In other words, we are

interested in the distribution of the stopping time TD, the first time that cash flow X is

below one of the n default boundaries while the economy is in the corresponding state:

TD , inf
{
u > 0 | Xt+u ≤ Xk

D, st+u = k for any k between 1 and n
}

.

In Chen (2007a), I provide an algorithm to evaluate the distribution of stopping time TD.

Default can be triggered by small shocks or large shocks. For example, the economy
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Figure 4: Illustration of Two Types of Defaults. In the left panel, default occurs when cash
flow drops below a default boundary; in the right panel, default occurs when the default
boundary jumps up, which is triggered by a change of the aggregate state.

could remain in state i while Xt keeps decreasing until it reaches X i
D. Alternatively, Xt

could already be below X i
D, but the economy is currently in state j with j < i. Then a large

shock that changes the economy from state j to i will cause the firm to default immediately.

Figure 4 illustrates these two types of defaults. Firm A and B have the same cash flow

processes and default boundaries, but they experience different idiosyncratic shocks. Firm

A defaults shortly after year 27, as a series of small shocks drive its cash flow below the

default boundary. Firm B’s cash flows stay above the default boundary until the end of year

29, when a big shock causes the default boundary to jump above the firm’s cash flow level,

which leads to default.

The second type of default is especially interesting because it suggests that those firms

with cash flows between two default boundaries can default at the same time when the

boundary jumps up. Hackbarth et. al. (2006) point out that this mechanism can be used to

explain default waves. Their model predicts that default waves occur when aggregate cash

flow levels jump down, while in this model default waves occur when expected growth rates,

volatility, and risk prices change.
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4.2 Optimal Default Boundaries and Capital Structure

The optimal default boundaries satisfy the smooth-pasting conditions for equity:

∂

∂X
E (X, k; C)

∣∣∣∣
X=Xk

D

= 0, k = 1, ..., n. (30)

Given the pricing formula for equity in Proposition 4, the n smooth-pasting conditions

translate into a system of nonlinear equations (details are in Chen (2007a)).

The optimal amount of debt to issue at time 0 is determined by the coupon rate that

maximizes the value of equity right before issuing debt. This value is equal to the sum of

equity and debt right after issuance minus debt issuance costs, which are a fraction q of debt

value. Thus, the value of equity right before debt issuance is:

EU (X, s; C) = E (X, s; C) + (1− q) D (X, s; C) , (31)

and the optimal coupon rate is:

C∗ (X, s) = arg max
C

EU (X, s; C) . (32)

5 The Puzzles of Credit Spreads and Leverage Ratio

I first calibrate the process for aggregate output to the consumption data. Next, I calibrate

preferences so that the model can match the key moments of the asset market. Then, I

calibrate the cash flow processes, default probability, and recovery rates to the data for firms

with different credit ratings. Using these parameters, I calculate the optimal leverage ratios

and credit spreads in the model.

While the model provides close-form solutions for the credit spreads of consols, these

numbers are not directly comparable with those of finite maturity coupon bonds. A main

reason is that all the cash flows of a consol are subject to personal taxes, while the principal

payment of a finite maturity coupon bond is not. Thus, I also compute the credit spreads of

hypothetical 10-year coupon bonds, which have exactly the same default probabilities and

recovery rates as firms with the same credit ratings.

For target credit spreads, I use the estimates of Duffee (1998). In his sample, the average

credit spread of a Baa-rated medium-maturity (close to 10 years) bond in the industrial

sector is 148 bp, while the average Baa-Aaa spread is 101 bp. The advantage of Duffee’s

estimates is that they are based on corporate bonds without option-like features. His sample
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Table 1: Asset Pricing Implications Of The Markov Chain Model

Data Model
Variable Estimate SE γ = 7.5 γ = 10
E(rm − rf ) 6.33 (2.15) 6.71 7.54
E(rf ) 0.86 (0.42) 1.37 0.92
σ(rm) 19.42 (3.07) 16.45 14.95
σ(rf ) 0.97 (0.28) 1.20 1.05
E(SR) 0.33 0.41 0.51
E(P/D) 26.56 (2.53) 21.54 18.80
σ(log(P/D)) 0.29 (0.04) 0.23 0.18

Note: The statistics of the data are from BY (2004) (Table IV). The variables rm

and rf are returns on the market portfolio and risk-free rate; SR is the Sharpe ratio;
P/D is the price-dividend ratio for the market portfolio. Two additional preference
parameters are ψ = 1.5, and ρ = 0.015. All values are annualized when applicable.

covers the period 1985-1995, a period when the Baa-Aaa spread is relatively low and smooth.

Huang and Huang (2003) estimate credit spreads over the sample period 1973-1993. Their

estimates are higher (194 bp for Baa, 131 bp for Baa-Aaa) because of the embedded call

options and the inclusion of two recessions with high spreads. I calculate the volatility of

Baa-Aaa spreads using the Moody’s data, which is 40 bp.

5.1 Calibration

I calibrate the Markov chain that controls the conditional moments of consumption growth

to be consistent with the consumption model of Bansal and Yaron (2004), which are in

turn calibrated to the annual consumption data from 1929 to 1998. Appendix G provides

the details of the calibration. For numerical reasons, I choose a small number of states

(n = 9) for the Markov chain. Simulations show that the Markov chain captures the main

properties of consumption reasonably well. Some of the median values from simulations

(with corresponding sample estimates reported in parentheses) are: average annual growth

rate 1.81% (1.80%), volatility 2.64% (2.93%), first order autocorrelation 0.42 (0.49), second

order autocorrelation 0.18 (0.15).

Table 1 reports the pricing implications of the Markov chain model. The equity premium

is based on the same levered up series of aggregate consumption as in BY (2004). With

γ = 7.5, the model generates moments that are largely consistent with the data. Changing γ

to 10 raises the Sharpe ratio substantially and also lowers the price-dividend ratio. In both
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Table 2: Parameters Of The Model

Inflation, Taxes, and Issuance Costs
π σP ρP,m τ+

c τ−c τd τi q e
0.036 0.014 -0.12 0.35 0.20 0.12 0.296 0.01 0.05

Cash Flow Process

θ
i

m σi
m σi

f ai bi

Baa 0.018 0.141 0.169 3.0 4.5
Aaa 0.018 0.093 0.117 2.0 3.0

Note: Variables are annualized, when applicable. Inflation data are from NIPA. Tax
rates (except τ−c ) are from Graham (2000). Issuance costs are from Altinkihc and
Hansen (2000).

cases, the model requires a tiny subjective discount factor to keep the risk-free rate down.

Moreover, the model predicts that short term interest rates are higher in good times, and

that the real yield curve is downward sloping on average. This result is consistent with the

findings of Piazzesi and Schneider (2006). I use γ = 7.5 as the benchmark case in this paper.

There are 5 parameters associated with a firm’s cash flow process (see equation (12)). I

assume that the long-run average growth rate of cash flows for all firms are the same as that

of aggregate consumption. For a Baa-rated firm, I set the multipliers ai and bi to 3 and 4.5,

and the average systematic volatility σi
m to 0.141, so that the cash flows fit the moments

of the real growth rates of corporate profits for nonfinancial firms as reported by NIPA.

Finally, I calibrate the idiosyncratic volatility σi
f to match the 10-year default probability

of Baa-rated firms (4.9%). It can be the case that a typical Baa-rated firm has less volatile

cash flows than an average nonfinancial firm. In that case, we will need higher idiosyncratic

volatility to match the average 10-year default rates.

It is difficult to calibrate the cash flow process for an Aaa-rated firm directly to the data,

because there are few Aaa-rated nonfinancial firms available. Instead, I adopt a somewhat

arbitrary method: scaling down ai, bi, σi
m and σi

f from their Baa values by the same propor-

tion to match the 10-year default rate for Aaa-rated firms (0.6%). This assumption makes

the cash flows of Aaa firms less volatile, but still have the same correlation with consumption

as Baa firms.

Miller (1977) points out that tax benefits of debt at the corporate level is partially offset

by individual tax disadvantages of interest income. Under certain simplifying assumptions,
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Miller gives the condition for tax benefits to be positive:

τc >
τi − τd

1− τd

.

In the Miller equilibrium, τd = 0, and τc = τi, so that the tax benefits zero. While this is

an extreme case, it shows that the optimal leverage ratio will depend on the tax rates. To

address this concern, I use the tax rate estimates of Graham (2000), which take into account

the sheltering of capital income at the personal level. There is no good guidance on how

large τ−c should be. I set it to .2, which is small enough to violate the above condition.

The inflation statistics are based on the price index for nondurables and services from

NIPA. The costs of debt and equity issuance are based on the estimates of Altinkihc and

Hansen (2000) on the underwriting fees for straight bond and seasoned equity offerings.

Table 2 summarizes the calibrated parameters.

The Cyclicality of Recovery Rates and default losses

There are direct and indirect costs for a firm when it is in financial distress. Examples

of direct costs include litigation expenses and loss due to fire sales of assets. Examples

of indirect costs include loss of customers, human capital, and growth options, etc. With

business-cycle variation, not only the average levels, but the distribution of default losses

over different states of the economy matters.

Shleifer and Vishny (1992) argue that liquidation of assets will be particularly costly in

recessions when many firms are in distress. This suggests that default losses are countercycli-

cal. However, default losses are difficult to measure, partly because it is hard to distinguish

between costs of financial and losses due to economic distress. With most defaults happen-

ing in bad times, it is even harder to measure the variation in default losses over time. A

common practice in structural models is to assume that default losses are a constant fraction

α of the market value of firms’ assets at default. In fact, many studies set this fraction to

the estimates by Andrade and Kaplan (1998), which suggest a number between 10 ∼ 20%.

However, this approach is problematic for several reasons. The estimates of Andrade

and Kaplan (1998) are relative to the pre-distress value of a firm, which are likely to be

significantly larger than the firm value at default. Thus, default losses as a fraction of the

firm value at default could well exceed 20%. Moreover, it is unclear how well these estimates

represent the default losses of a typical firm. On the one hand, Leland (1998) argues that

firms choosing to undergo highly leveraged buyouts might have lower default losses than

others. On the other hand, the distress periods of many firms in their sample coincide with
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Figure 5: Recovery Rates and Macroeconomic Variables, 1982-2005. All the series are nor-
malized to have mean 0 and standard deviation 1. The dotted line is the normalized re-
covery rate. GDP, IP and consumption data are from NIPA. Consumption is the sum of
nondurables and services deflated with a chain-weighted price indice. Price-Earnings ratios
are from Robert Shiller’s web site. All macro variables are annual growth rates.

the 1990-91 recession. If default losses are higher in bad times, then the estimates of Andrade

and Kaplan might be higher than average.

I use a different approach to identify the cyclical variation in default losses. Unlike

default losses, recovery rates for corporate bonds are straightforward to measure, and have

a relatively long time series (Moody’s average recovery rates series starts in 1982). If we

know when a firm will default (the default boundary), we can compute the recovery rate

by deducting default losses and taxes from the value of assets at the default boundary.

Thus, using the endogenously determined default boundaries, we can identify the variation

in default losses across different states of the economy from the variation of recovery rates.

I first provide more evidence for the cyclical variation in recovery rates. Figure 2 shows

that recovery rates are lower during recessions. Figure 5 shows that recovery rates covary

with several macroeconomic variables: GDP, industrial production, consumption, and price-

earnings ratio.

We can use regressions to formally assess the relationship between default rates and
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Table 3: Explaining Aggregate Default Rates

Dependent Variable – Default Rate (DR)
Intercept 2.01 2.50 1.74 2.75 3.62 3.59 3.74

(0.38) (0.64) (0.27) (0.54) (0.40) (0.31) (0.33)
∆IP -0.14 -0.09 -0.10

(0.07) (0.06) (0.05)
∆GDP -0.28

(0.15)
∆PE -0.03

(0.01)
g -0.55 -1.82 -1.70 -1.77

(0.17) (0.38) (0.28) (0.31)
g2 0.33 0.34 0.37

(0.12) (0.09) (0.10)
rf -0.24

(0.23)
R2 0.28 0.29 0.15 0.32 0.50 0.60 0.61

Adj R2 0.25 0.26 0.11 0.29 0.45 0.54 0.53

Note: DR - Default Rate, ∆IP - real industrial production growth, ∆GDP - real GDP
growth, ∆PE - growth rate of Price/Earnings ratio, g - real consumption growth, rf

- real riskfree rate. Numbers in brackets are standard errors computed with GMM
based on Newey-West with lag 3. All variables are annualized, from 1982 to 2005 (24
observations). GDP, IP, consumption and CPI series are from NIPA. PE ratios are
from Robert Shiller’s web site. Riskfree rates are the 1-month T-bill rates from Ken
French’s web site. Default Rates are from Moody’s.

macro variables. Altman et al. (2005) find that the levels and changes in default rates

have strong explanatory power for recovery rates, while macro variables appear to explain

little. However, default rates are themselves strongly affected by macroeconomic conditions:

as shown in Table 3, the growth rates of industrial production, GDP, price-earnings ratio,

and consumption all show significant explanatory power. For example, consumption growth

and squared consumption growth alone can explain nearly half of the variation in default

rates. The signs of the coefficients are as expected, with lower growth rates in industrial

production, GDP, price-earnings ratio and consumption all leading to higher default rates.

The squared consumption growth term captures the nonlinear relationship between default

rates and consumption growth: default rates rise more rapidly when consumption growth

becomes negative.

In Table 4, the univariate regression of recovery rates on default rates confirms the finding

of Altman et al. (2005). However, a regression with only macro variables (PE, g and g2)
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Table 4: Explaining Aggregate Recovery Rates

Dependent Variable – Recovery Rate (RR)
Intercept 52.96 37.05 32.92 39.60 33.58 28.03 31.68 31.79

(2.69) (2.61) (4.09) (2.27) (3.47) (2.47) (2.90) (2.37)
DR -7.36 -6.95

(1.14) (1.83)
∆IP 1.43

(0.44)
∆GDP 2.55

(0.95)
∆PE 0.33 0.31 0.35 0.35

(0.07) (0.08) (0.09) (0.07)
g 3.63 12.86 11.04 10.99

(1.42) (3.36) (2.52) (2.83)
g2 -2.83 -2.29 -2.28

(0.85) (0.67) (0.74)
rf -5.39 -5.55

(3.54) (2.38)
R2 0.60 0.32 0.27 0.23 0.16 0.42 0.50 0.74

Adj R2 0.58 0.29 0.24 0.20 0.12 0.33 0.40 0.67

Note: DR - Default Rate, RR - Recovery Rate, ∆IP - real industrial production
growth, ∆GDP - real GDP growth, ∆PE - growth rate of Price/Earnings ratio, g - real
consumption growth, rf - real riskfree rate. Numbers in brackets are standard errors
computed with GMM based on Newey-West with lag 3. All variables are annualized,
from 1982 to 2005 (24 observations). GDP, IP, consumption and CPI series are from
NIPA. PE ratios are from Robert Shiller’s web site. Riskfree rates are the 1-month
T-bill rates from Ken French’s web site. Default rates and recovery rates are from
Moody’s.

can explain 42% of the variation in recovery rates. This number increases to 50% where

the riskfree rate is included. Default rates appear to contain information about recovery

rates that is not captured by the macro variables. In a two-stage regression (Table 4, last

column), the residuals from the regression of default rates on the other macro variables still

have significant explanatory power for recovery rates, suggesting that other factors, such as

the supply and demand of defaulted securities as identified by Altman et al. (2005), could

also affect recovery rates.

In light of the regression results, I model default losses as a function of the expected
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Table 5: Estimating Default Losses

Panel A: Moments for Recovery Rates
Mean: 48%
Volatility: 7%
Correlation with default rates: −0.77
Correlation with consumption growth: 0.40
Correlation with changes in price-earnings ratio: 0.48

Panel B: SMM Estimates
Baa: α(s) = −0.04− 12.88× θm(s) + 209.02× θ2

m(s) + 10.29× σm(s)
Aaa: α(s) = −0.15− 9.61× θm(s) + 109.26× θ2

m(s) + 19.80× σm(s)

growth rate θm(s) and volatility σm(s) of aggregate consumption:

α(s) = a0 + a1θm(s) + a2θ
2
m(s) + a3σm(s). (33)

I estimate the 4 coefficients for Baa and Aaa firms separately using the simulated method of

moments. The target moments are: the mean and volatility of recovery rate, plus the cor-

relations between recovery rate and default rate, price-dividend ratio, realized consumption

growth. They are the same for Baa and Aaa firms.

The average recovery rate for all corporate bonds between 1982-2005 is $41.1 per $100

par, with a standard deviation of $9.4. These numbers do not apply to debt instruments

such as bank loans or mortgages, which likely have higher and more stable recovery rates.

For example, Moody’s report that the value-weighted average recovery rate of senior secured

bank loans is $64.2. According to the Flow of Funds data, bank loans account for a relatively

small fraction of debt instruments (10 ∼ 20%). To be conservative, I assume that around

70% of debt instruments have recovery rates similar to corporate bonds, and the rest similar

to bank loans, which leads to the estimates of mean and volatility of recovery rates for all

debt instruments. The target moments and resulting estimates of the coefficients in equation

(33) are given in Table 5.

5.2 Credit Spreads and Leverage Ratios

To illustrate the difficulty for standard structural models to generate reasonable credit

spreads and leverage ratios, I first study the benchmark case of this model by shutting

down the business-cycle variation in aggregate consumption and cash flows. I set all vari-

ables to their unconditional means, with two exceptions: the default cost coefficient α, and
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Figure 6: Benchmark Case: No Variation in Macroeconomic Conditions. All variables are
set to their unconditional averages, except for α and σ, which are calibrated to match the
recovery rate and 10-year default probability for Baa-rated firms (4.9%).

total volatility of cash flow, σ. I use these two variables to match the average recovery rate

and 10-year default probability of a Baa and Aaa-rated firm.

Figure 6 reports results for a wide range of recovery rates, from $40 to $60. Credit spreads

are rather insensitive to changes in recovery rates, while the optimal leverage ratio rises with

the recovery rate. The latter is intuitive: as recovery rates rise, default losses drop, making

firms take on more debt. Higher leverage raises the probability of default, which cancels out

the effect of higher recovery rates on bond prices, thus leaving the credit spread flat. The

expected excess returns for levered firms appear to be high, which is because these firms are

highly-levered, making their dividend processes volatile. The rise in expected excess return

with recovery rates is again due to rising leverage.

For Baa firms, with a relative risk aversion of 7.5, and a recovery rate of 48%, the model
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Table 6: Results For The Static Model

Panel A: Benchmark Case
Def10 Rec VolRec Spr10 Lev IntCov TaxBen Sprd ERx

Baa 4.9% 48.0% - 56.5 66.7% 0.7 10.8% 79.1 7.0%
Aaa 0.6% 48.0% - 7.1 91.2% 0.1 20.0% 4.2 8.3%

Panel B: Model with Business-cycle Variation
Def10 Rec VolRec Spr10 Lev IntCov TaxBen Sprd ERx

Baa 4.9% 47.3% 6.9% 141.3 50.4% 1.7 5.3% 262.8 9.3%
(1.2%) (1.7%) (0.3%) (9.7) (3.5%) (0.4) (0.4%) (50.5) (1.6%)

Aaa 0.6% 47.7% 7.0% 43.4 52.2% 1.3 6.9% 81.4 6.6%
(0.1%) (1.4%) (0.2%) (1.1) (1.8%) (0.2) (0.3%) (17.1) (1.2%)

Note: Def10 - 10-year cumulative default probability; Rec - average recovery rate
for firm’s debt; VolRec - volatility of recovery rates; Spr10 - average credit spread
for a 10-year coupon bond; Lev - market leverage; IntCov - Interest Coverage (Cash
Flow/Coupon); TaxBen - Net tax benefits as measured by percentage increases in firm
value; sprd - average credit spread of consol bond; ERx - exp. excess return on equity.

generates a credit spread of 57 bp for a 10-year coupon bond, far short of the average spread

in the data (148 bp). The model predicts a leverage ratio of 67%, significantly higher than

the average leverage of 42% for Baa firms, or 35% for all nonfinancial firms (according to

the Flow of Funds Accounts data). The interest coverage, measured as the ratio of cash

flow to interest expenses, is 0.7, much lower than the number in the data (around 3). These

discrepancies highlight the dual puzzles of credit spreads and leverage ratio. The puzzles get

worse as recovery rate rises. With a recovery rate of $60, 10-year credit spread drops to 50

bp, while leverage ratio rises to 76%.

One can not resolve the puzzles simply by raising the risk aversion. While a higher

risk aversion does push up the credit spreads, it increases the equity premium dramatically.

Moreover, a higher risk aversion actually increases the leverage ratio. It does increase the

expected costs of financial distress, which leads to lower optimal coupon rate lower and

higher interest coverage. However, a drop in debt value comes with a bigger drop in equity

value, resulting in a higher leverage ratio.

Table 6 compares the results after introducing variation in macroeconomic conditions

with those of the benchmark case. I first consider the case that leaves out partial loss offset

and equity issuance costs. A firm can lever up in any state. Rather than reporting the results

for all nine states, the table reports the average values across all states for each variable,
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along with their standard deviations. From the first few columns, we can see that the model

matches the 10-year default probability, and the mean and volatility of recovery rates quite

well.

The model has some success in addressing the two puzzles. It raises the average credit

spread of a 10-year Baa-rated bond from 57 to 141 bp, while the average credit spread

between Baa and Aaa-rated bonds is 98 bp. The market leverage drops from 67% in the

benchmark model to 50%. The levered firm has an expected excess return of 9.3%, which is

a little high. The value of the net tax benefits, which is the percentage increase in the value

of a firm when it takes on optimal leverage, is about 5.3%, which is much lower than the

10.8% in the benchmark. Finally, since Aaa-rated firms have safer cash flows in this model,

they have much higher leverage ratios and net tax benefits.

The standard deviations for credit spreads reported in Table 6 do not measure the volatil-

ity of credit spreads for firms with certain credit ratings. They measure the deviation in credit

spreads across optimally levered firms in different states. Because of the lumpy adjustment

costs, a firm does not always adjust its capital structure immediately following a large shock.

The firm’s leverage ratio and credit spread will change, but not necessarily the credit rating,

because rating agencies assign ratings through the cycle. Thus, the lumpiness of a firm’s

capital structure can lead to high volatilities in credit spreads.10 I calculate the volatility

of credit spreads across different states for the same bond issued in the normal state (with

medium expected growth rate and medium volatility). For a 10-year Baa-rated bond, the

volatility is 35.2 bp (40 bp in the data).

To see how the optimal leverage ratios, default boundaries, recovery rates, and default

losses vary over the business cycle, I simulate the state of the economy for 100 years, and

plot the corresponding values of the above variables in Figure 7. Recessions, marked with

shades in the plots, are periods when the expected growth rates are negative. The darkness

of the shade represents the severity of a recession. Those recessions with high (low) volatility

are the most (least) severe, and are marked with the darkest (lightest) shades. The optimal

leverage ratios are lower in recessions, and they appear to be more sensitive to the movements

in volatility than in expected growth rates. The default boundaries are higher in recessions,

and they appear to be more sensitive to changes in the expected growth rates. Recovery

rates are lower in recessions, especially when the volatility is high. Default losses, specified

as percentages of pre-distress firm value, are rather low outside of recessions. They rise

10David (2006) argues that the time-varying leverage ratios can also lead to higher average credit spreads
over time, because credit spreads are convex functions of the solvency ratio (inverse of leverage ratio).
However, CCDG (2006) show that the bias due to convexity is small once the model is calibrated to match
historical default rates, recovery rates, and Sharpe ratios.
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Figure 7: Dynamics of Consumption and Capital Structure in Simulation. Conditional
moments of aggregate consumption, optimal leverage ratios, default boundaries, recovery
rates and default losses in a simulation. Default boundaries are relative to initial cash flow
level. Default losses are relative to pre-distress firm value. All variables are in percentages.

significantly in recessions, up to about 17% in a most severe recession, which is still below

the upper bound estimated by Andrade and Kaplan (1998).

The countercyclical default boundaries shown in Figure 7 implies that equity-holders will

voluntarily default earlier (at higher cash flow levels) in recessions. This feature, combined

with the fact that low expected growth rates and high uncertainty in bad times make it

more likely for a firm to enter into distress (by reaching low cash flow levels), results in high

default probabilities in recessions.

Why do firms choose higher default boundaries in bad times? As pointed out by Geske

(1977), equity-holders of a levered firm hold a perpetual compound option. At every point,

they can either retain the option by making debt payments, or forfeit the firm’s future cash
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Table 7: Comparative Statics For The Static Model – Baa Firms

Def10 Rec Spr10 Lev IntCov TaxBen Sprd ERx
Risky Tax 3.9% 48.8% 122.4 45.9% 1.96 4.7% 238.1 8.8%
Benefits (0.8%) (1.6%) (6.2) (2.9%) (0.41) (0.3%) (42.0) (1.6%)

Costly Eqt 4.7% 47.7% 136.5 49.1% 1.79 5.1% 255.9 9.2%
Issuance (1.1%) (1.6%) (8.6) (3.3%) (0.38) (0.4%) (47.8) (1.6%)

Combine 3.8% 49.2% 119.5 44.9% 2.02 4.6% 233.1 8.7%
Above Two (0.8%) (1.6%) (5.7) (2.8%) (0.42) (0.3%) (40.5) (1.6%)

Constant 13.4% 50.6% 281.8 65.6% 1.19 7.9% 321.9 12.1%
Deflt Costs (0.7%) (1.1%) (28.0) (0.5%) (0.16) (0.2%) (42.6) (2.4%)

Note: Def10 - 10-year cumulative default probability; Rec - average recovery rate for
firm’s debt; Spr10 - average credit spread for a 10-year coupon bond; Lev - market
leverage; IntCov - Interest Coverage (Cash Flow/Coupon); TaxBen - Net tax benefits
as measured by percentage increases in firm value; ERx - exp. excess return on equity.

flows to debt-holders in exchange for the waiver of their debt obligation. In bad times,

higher risk premia lower the present value of future cash flows. Expected growth rates are

also lower in bad times, which not only lower the present value of future cash flows directly,

but also raise the probability of default and the probability that the firm loses part of its

tax shield. I refer to the first channel as the “discount rate effect”, the second the “cash flow

effect”. Both effects reduce the continuation value for equity-holders, which makes them

default earlier. Finally, volatility is likely to be high in recessions, which makes the option

to wait more valuable. I call this channel the “volatility effect”. In the model, the discount

rate and cash flow effects dominate the volatility effect, thus making firms default earlier in

recessions.

Table 7 reports the results of four comparative static exercises. Case I considers the risk

aspect of tax benefits by modeling partial loss offset (setting τ−c = 0.2). Case II considers

costly equity issuance, while Case III combines Cases I and II. All the other variables are

unchanged. With partial loss offset, the optimal leverage drops significantly, to 45.9%.

Notice that the model predicts a 10-year default probability of only 3.9%. If we recalibrate

the model to match the default rate of 4.9%, the leverage ratio will drop further. In contrast,

the effect of costly equity issuance appears to be small.

Case IV sets the default losses α to their unconditional mean. This case ignores partial

loss offset and costs of equity issuance. The average leverage ratio jumps back to 65.6%,
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almost the same as the benchmark case. Moreover, the 10-year default probability is way

too high. If we recalibrate the model to bring down the default probability, the leverage

ratio will become even higher. The contrast between Case IV and the results in Table

6 Panel B clearly demonstrates the central role that countercyclical default losses play in

explaining the leverage puzzle. When α is constant, procyclical variation in asset value leads

to lower default losses in bad times, which actually generates a negative risky premium on

the defaultable claim for equity-holders. This is why the leverage ratio becomes so much

higher.

6 Dynamic Financing Decisions

The static model offers most of the intuition for the impact of macroeconomic conditions on

the capital structure and credit spreads. The obvious limitation of the model is that firms

cannot adjust their debt levels. This restriction is quite unrealistic, and it could introduce

a bias in leverage decisions. Firms might take on “too much” debt initially because they

cannot issue more debt later on. The opposite could also be true: firms might take on

“too little” debt because they cannot reduce leverage when they get into trouble. Another

undesirable feature is that the model generates nonstationary leverage ratios, which drop to

zero as the firm size increases.

In this section, I address some of these concerns by adding the option of debt restructuring

into firms’ problems. For simplicity, I assume costs for downward restructuring are too

high, so that firms only restructure upward. Gilson (1997) find that financially distressed

firms remain highly leveraged because transaction costs discourage debt reduction outside

of Chapter 11. Goldstein, Ju, and Leland (2001) argue that the value of the downward

restructuring option is much smaller than that of the upward restructuring option for a

healthy firm. Still, we need to be aware that excluding downward restructuring will lead to

a downward bias in the optimal leverage ratio. Finally, given the limited effects of partial

loss offset and equity issuance costs in the static model, I exclude these two features in the

dynamic model.

The costs of debt issuance are the sum of two parts: the underwriting costs for the new

debt, and the costs of negotiation to get the current creditors’ approval to issue additional

pari passu debt. With diffused debt ownership, the larger the amount of debt outstanding,

the more costly the negotiation process. For simplicity, I assume both types of costs are 1%,

which means the total debt issuance costs are 1% of the value of all debt after restructuring.

These “quasi-fixed” issuance costs help generate stickiness in the capital structure.
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Consider a firm’s problem at time 0 as defined in (21). After the firm chooses a coupon

rate C, it needs a default policy and a restructuring policy. The former is described by

a set of default boundaries (X1
D, ..., Xn

D), and the latter is described by a set of upward

restructuring boundaries (X1
U , ..., Xn

U). The firm will issue more debt when its cash flow is

above a restructuring boundary while the economy is in the corresponding state.

As in the static model, I assume the ordering of the default boundaries is:

X1
D ≤ X2

D ≤ · · · ≤ Xn
D.

However, there is no guarantee that the restructuring boundaries will have the same order. To

accommodate arbitrary orderings, I define a function u(·) that maps the order of restructuring

boundaries across states into the indices for the states. For example, u(i) denotes the state

with the ith lowest restructuring boundary. Then, by definition,

X
u(1)
U ≤ X

u(2)
U ≤ · · · ≤ X

u(n)
U .

For the parameters considered in this paper, the default and restructuring boundaries are

sufficiently apart such that Xn
D < X

u(1)
U .

Next, I define the default regions Dk ,
[
Xk

D, Xk+1
D

)
for k < n, and region Dn ,[

Xn
D, X

u(1)
U

]
where neither default or restructure will occur immediately due to a change

of state. In addition, there are restructuring regions Dn+k ,
(
X

u(k)
U , X

u(k+1)
U

]
for k < n.

After adding upward restructuring, for any corporate security J(Xt, st), we have to spec-

ify not only the dividend F (Xt, st) (before default and upward restructuring) and default

payment H (XTD
, sTD

), but also the restructuring payment at all potential restructuring

points, K (XTU
, sTU

).

Scaling Property

Since firms have infinite horizon, they face essentially the same problem at each restructuring

point. The cash flow level will be higher than at the previous restructuring point, and the

economy might be in a different state. Thus, the optimal capital structure problem is

recursive and can be formulated into a dynamic programming problem. A scaling property,

which is also used by Leland (1998), Goldstein, Ju, and Leland (2001) and Hackbarth, Miao,

and Morellec (2006), can further simplify the problem into a static one. I state it formally

in the following lemma.
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Lemma 1 If the state of the economy at the new restructuring point is the same as the

state at the previous one, then the new coupon rate and default/restructuring boundaries will

scale up by the same proportion from their previous values as do the cash flows. Moreover,

for k = 1, · · · , n, the value of total debt outstanding and the value of equity at the two

restructuring points satisfy:

D
(
Xk

U , k; C(Xk
U , k)

)
=

Xk
U

X0

D (X0, k; C(X0, k)) , (34)

E
(
Xk

U , k; C(Xk
U , k)

)
=

Xk
U

X0

E (X0, k; C(X0, k)) . (35)

Proof. See Appendix E.

The intuition of the scaling property is the following. If the state is the same, the firm

essentially faces an identical problem, except that the current cash flow level is higher than

at the previous restructuring point. This is due to the log-normality of cash flows, and the

costs of debt issuance being proportional to the total amount of debt after restructuring.

Thus, it will be optimal to to scale up the coupon rate, default boundaries, and restructuring

boundaries by the same proportion as cash flows, which leaves the conditional probability of

default and restructuring unchanged.

The scaling only holds after conditioning on the state, which introduces history depen-

dence in the following sense. When the firm raises debt at time 0, the coupon rate will

change with the initial state s0, which in turn affects the default and restructuring bound-

aries. Suppose the firm reaches the restructuring boundary Xk
U at time t with st = k, then

the scaling factor is Xk
U/X0. When we apply this scaling factor to get the new debt level,

default and restructuring boundaries, etc., we cannot scale up the time 0 values of these

variables in state s0, but their “shadow values” at time 0 in state k.

6.1 Debt and Equity

For debt, the dividend rate before default and restructuring is the same as in the static

model, and so is the payment at default. After restructuring, the outstanding debt from

previous issues gets diluted by new pari passu debt. Suppose at time 0, the state is i and

cash flow equals X0. Let the optimal coupon rate as a function of cash flow and state be

C(X, s). Then, if restructuring occurs in state j, the value of old debt becomes:

D
(
Xj

U , j; C (X0, i)
)

=
C(X0, i)

C(Xj
U , j)

D
(
Xj

U , j; C(Xj
U , j)

)
=

C (X0, i)

C (X0, j)
D (X0, j; C (X0, i)) .
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Figure 8: Cash Flow Sample Path for A Firm in the Dynamic Model. Light shades denote
the state of low growth and median uncertainty.

The first equality follows from the pari passu covenant, and the second equality is the result

of the scaling property.

When two consecutive restructurings occur in the same state, the value of old debt after

restructuring will be exactly the same as its value at the previous restructuring point. The

optimal coupon rate is higher in good times. Thus, if the economy is in a better state than

at the previous restructuring point, the firm will increase its debt level disproportionately

more, causing a bigger reduction in the value of old debt. If restructuring takes place in a

worse state, there will be less dilution in old debt.

The following proposition gives the value of debt and equity for given coupon rate and

default/restructuring boundaries.

Proposition 5 Suppose a firm has a consol bond outstanding with coupon rate C; it follows a

default policy characterized by a set of default boundaries (X1
D, · · · , Xn

D), and a restructuring

policy characterized by (i) a set of restructuring boundaries (X1
U , · · · , Xn

U), and (ii) scaling

of coupon rates and default/restructuring boundaries at each restructuring point. Then, the
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value of debt is:

D (X; C) =
∑

j

w̄D
k,jḡk,jX

β̄k,j + ξ̄D
k X + ζ̄D

k , X ∈ Dk, k = 1, · · · , 2n− 1. (36)

The value of equity is:

E (X; C) =
∑

j

w̄E
k,jḡk,jX

β̄k,j + ξ̄E
k X + ζ̄E

k , X ∈ Dk, k = 1, · · · , 2n− 1. (37)

The coefficients ḡ, β̄, (w̄D, ξ̄D, ζ̄D) and (w̄E, ξ̄E, ζ̄E) are given in Appendix F.

Proof. See Appendix F.

Given the current debt level, the conditions for optimal default boundaries again translate

into a set of nonlinear equations. As in the static model, these equations are easy to evaluate.

The conditions for the restructuring boundaries based on the current debt level require a

numerical evaluation of the smooth pasting conditions. Finally, we can choose optimal debt

level C to maximize the total value of the firm before levering up. The scaling property

simplifies the problem into a static one, from which we can solve for the complete set of

coupon rates {C1, ..., Cn} at time 0.

Figure 8 plots a sample path of cash flows for a firm in the dynamic problem. The firm

enjoys strong growth in early periods. Cash flows rise and hit the restructuring boundaries

twice, leading the firm to raise more debt. When the firm restructures, both the default and

restructuring boundaries scale up proportionally. There are two additional cases where the

default and restructuring boundaries change, which occur when the economy changes from

the normal state into a state of low growth. The firm’s luck reverses after 20 years, and its

cash flow keeps declining until the default boundary is hit, and the firm is in default.

The graph shows that, like the default boundaries, restructuring boundaries are also

countercyclical. The reasons that firms are less willing to restructure in bad times are

similar to those that make firms default earlier in bad times. Restructuring is also an option

to equity-holders. By exercising this option, a firm gets a bigger tax shield, but at the

expense of the lump-sum debt issuance costs. The discount rate, cash flow, and volatility

effects are still at work. The only difference is that earlier exercise implies lower boundaries

for restructuring, but higher boundaries for default.

Table 8 reports the results for the dynamic model. In order to match the 10-year default

probability of a Baa firm, the dynamic model requires a higher idiosyncratic volatility (σi
f =

0.206). Parameters for the default cost function (equation (33)) are also recalibrated. All
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Table 8: Results Of The Dynamic Model

Def10 Rec Spr10 Lev IntCov TaxBen Sprd ERx
Baa 4.9% 47.5% 139.8 41.8% 2.1 6.9% 261.5 7.7%

(0.9%) (1.5%) (8.5) (2.4%) (0.3) (0.4%) (30.0) (1.4%)

Aaa 0.6% 48.0% 42.4 45.5% 1.4 7.6% 78.8 5.9%
(0.1%) (1.2%) (0.9) (1.6%) (0.1) (0.3%) (14.9) (1.1%)

Note: Def10 - 10-year cumulative default probability; Rec - average recovery rate for
firm’s debt; Spr10 - average credit spread for a 10-year coupon bond; Lev - market
leverage; IntCov - Interest Coverage (Cash Flow/Coupon); TaxBen - Net tax benefits
as measured by percentage increases in firm value; ERx - exp. excess return on equity.

the other cash flow parameters remain the same as in the static model. As expected, the

optimal leverage ratio is significantly lower than in the static model (Table 6). On average,

the optimal leverage is 41.8%, compared to 50.4% in the static model. The interest coverage

rises to 2.1, and net tax benefits rise to 6.9%. Given the results from the static model, we

expect that the optimal leverage ratio will drop further once the effect of partial loss offset

and equity issuance costs are taken into account. The credit spreads of the consol and 10-

year coupon bond in the dynamic model do not differ much from their values in the static

model. This is because both models have similar default probabilities and recovery rates.

Collin-Dufresne and Goldstein (2001) argue that claim dilution due to firms issuing addi-

tional equal priority debt can raise credit spreads ex ante. Such effects appear to be small in

this model. The impact of new debt on default probability is smaller in good times. Thus,

the fact that firms are more likely to issue new debt in good times limits the effect of dilution.

Finally, to illustrate the countercyclical default rates and the clustering of defaults, I

simulate 1000 identical firms over 50 years, and record the timing of defaults. These firms

experience the same aggregate shocks, but have different outcome due to the idiosyncratic

shocks. Figure 9 plots the default counts and corresponding annual default rates for a typical

simulation. During this simulation, the economy experiences 3 states – (high growth, median

uncertainty), (low growth, median uncertainty), and (low growth, high uncertainty) (at the

end of 50 years). Most of the defaults occur in the latter two states where growth rate is

low. The simulation nicely replicates the countercyclical default rates in the data, and we

see the dramatic increase in default rate when the economy moves into the “worst state”

– low growth and high uncertainty. In the graph of default counts, the two highest spikes

occur right at the time when the economy moves from a high growth state into a low growth

one. These are examples of default clustering: firms default at the same time due to the

40



0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Monthly Default Count

P
er

ce
nt

ag
e

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10
Annual Default Rate

P
er

ce
nt

ag
e

Default 
clustering

Counter−cylical 
default rates

Figure 9: Simulated Default and the Annualized Default Rates. Areas with no shades are
periods where the economy is in the state of high growth and median uncertainty. Light
shades denote the state of low growth and median uncertainty. Dark shades denote the state
of low growth and high uncertainty.

sudden increase of default boundary.

7 Concluding Remarks

Since defaults tend to concentrate in bad times when marginal utility is high, and default

losses are particularly high during such times, investors will demand high risk premia for

holding defaultable claims, including corporate bonds and levered firms. In this paper, I

formally study these comovements in a structural model, and show that the risk premia are

large enough to account for the credit spread puzzle and under-leverage puzzle.

I consider a basic trade-off model of capital structure. While the model abstracts from

many realistic features, such as cash reserves, endogenous investments, different equity

regimes Hennessy and Whited (2005)(positive, zero or negative distributions, as in), agency

costs, or strategic debt services (e.g., Anderson and Sundaresan (1996), Mella-Barral and

Perraudin (1997)), it highlights the effects of macroeconomic conditions and risk premia on

firms’ financing decisions in a clean way. It will be interesting to see how macroeconomic

conditions interact with the different features above in affecting the capital structure.

The dynamic model rules out downward restructuring. Such a restriction makes firms less

capable of avoiding default. This could bias the leverage ratio downward ex ante, although

it is unlikely to change the result that firms take on less debt in a dynamic model. The
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net effect depends on exactly how restructuring is done. In practice, firms do restructure

their liabilities downward when they are in distress, and they do so through renegotiating

debt, cutting investments, and selling assets. This model can be extended to incorporate

“mechanical” asset sales as in Strebulaev (2006). For more realistic features, we will need to

endogenize investments and cash flows.

The model makes a prediction about debt capacity in the cross section. Since the co-

variation between default probabilities and macroeconomic conditions is key to low leverage,

the model predicts that firms with more cyclical cash flows will have less debt. Firms and

industries with more cyclical recovery rates should also take on less leverage.

The paper’s finding on the connections between macroeconomic conditions and credit risk

premia has important consequences for risk management. Cyclical risk factors can result

in large swings in financial institutions’ exposure to credit risk. As Allen and Saunders

(2004) point out, under the new Basel Capital Accord, these risk factors affect bank capital

requirements and lending capacity, which can exacerbate business-cycle fluctuations. This

mechanism resembles the “financial accelerator” of Bernanke, Gertler, and Gilchrist (1996),

but it is through a different channel. It will be very interesting to investigate this channel

in a general equilibrium setting.

Finally, the model provides an important role for macro variables in the determination of

credit spreads, which is consistent with the empirical findings of Collin-Dufresne, Goldstein,

and Martin (2001) and Elton, Gruber, Agrawal, and Mann (2001) that market wide factors

have additional explanatory power for credit spread variation. There is a large body of

research that use default spreads (levels or changes) to predict returns for stocks and bonds

(Cochrane (2006) surveys these studies). Unlike stocks, bond prices are less exposed to small

cash flow shocks. Moreover, this model suggests that credit spreads are especially sensitive

to risk prices in bad states. These features could make changes in credit spreads better

proxies for the variation in risk prices than other variables such as price-dividend ratios.
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Appendix

A Proof of Proposition 1

Proof. To get the stochastic discount factor, we first need to solve for the value function of the representative
household. In equilibrium, the representative household consumes aggregate output, which is given in (5).
Thus, I directly define the value function of the representative agent as:

J (Yt, st) = Et

[∫ ∞

0

f (Yt+s, Jt+s) ds

]
. (A.1)

The Hamilton-Jacoby-Bellman equation in state i is:

0 = f (Y, J (Y, i)) + Jc (Y, i)Y θm (i) +
1
2
Jcc (Y, i)Y 2σ2

m (i) +
∑

j 6=i

λij (J (Y, j)− J (Y, i)) . (A.2)

There are n such differential equations for the n states. Thus, by using a Markov chain to model the
expected growth rate and volatility, we replace a high-dimensional partial differential equation with a system
of ordinary differential equations. As long as the number of states for the Markov chain is not too large, the
ODE system will be relatively easy to handle.

I conjecture that the solution for J is:

J (Y, s) =
(h (s) Y )1−γ

1− γ
, (A.3)

where h is a function of the state variable s. Substituting J into the differential equations above, we get a
system of nonlinear equations for h:

0 = ρ
1− γ

1− δ
h(i)δ−γ +

[
(1− γ) θm (i)− 1

2
γ (1− γ) σ2

m (i)− ρ
1− γ

1− δ

]
h (i)1−γ

+
∑

j 6=i

λij

(
h (j)1−γ − h (i)1−γ

)
, i = 1, · · · , n (A.4)

where δ = 1/ψ, the inverse of the intertemporal elasticity of substitution. These equations can be solved
quickly using a nonlinear equation solver, even in the case when the number of states is fairly large, say 50.

Plugging J and Y into (3) gives:

mt = exp
(∫ t

0

ρ (1− γ)
1− δ

[(
δ − γ

1− γ

)
h (su)δ−1 − 1

]
du

)
ρh (st)

δ−γ
Y −γ

t . (A.5)

Applying Ito’s formula with jumps Duffie (2001) (see, e.g., Appendix F) to m, we get:

dmt

mt
= −r (st) dt− η (st) dBt +

∑

st 6=st−

(
eκ(st− ,st) − 1

)
dM

(st− ,st)
t , (A.6)
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where

r (i) = −ρ (1− γ)
1− δ

[(
δ − γ

1− γ

)
h (i)δ−1 − 1

]
+ γθm (i)

−1
2
γ (1 + γ)σ2

m (i)−
∑

j 6=i

λij

(
eκ(i,j) − 1

)
, (A.7a)

η (i) = γσm (i) , (A.7b)

κ (i, j) = (δ − γ) log
(

h (j)
h (i)

)
. (A.7c)

B The Risk-neutral Measure

Let (Ω, F,P) be the probability space on which the Brownian motions and Poisson processes in the model
are defined. Let the corresponding information filtration be (Ft). Applying Ito’s formula with jumps to (10),
we get the dynamics of the nominal stochastic discount factor nt,

dnt

nt
= −rn (st) dt− ηm (st) dWm

t − ηP dWP
t +

∑

st 6=st−

(
eκ(st− ,st) − 1

)
dM

(st− ,st)
t , (B.1)

where the nominal risk-free rate is

rn (st) = r (st) + π − σP,1η (st)− σ2
P , (B.2)

and the risk prices for the two Brownian motions are

ηm (st) = η (st) + σP,1, (B.3)

ηP = σP,2. (B.4)

We can define the risk-neutral measure Q associated with the nominal stochastic discount factor nt

(equation (B.1)) by specifying the density process ξt,

ξt = Et

[
dQ

dP

]
,

which evolves according to the following process:

dξt

ξt
= −ηm (st) dWm

t − ηP dWP
t +

∑

st 6=st−

(
eκ(st− ,st) − 1

)
dM

(st− ,st)
t . (B.5)

Applying the Girsanov theorem, we get the new standard Brownian motions under Q, W̃m and W̃P ,
which solve:

dW̃m
t = dWm

t + ηm (st) dt, (B.6)

dW̃P
t = dWP

t + ηP dt. (B.7)
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The Girsanov theorem for point processes (see Elliott (1982)) gives the new jump intensity of the Poisson
process under Q:

λ̃jk = E
[
eκ(j,k)

]
λjk = eκ(j,k)λjk, j 6= k (B.8)

which adjusts the intensity of the Poisson processes under measure P by the expected jump size of the
density ξt. Finally, the diagonal elements of the generator has to be reset to make each row sum up to zero,

λ̃jj = −
∑

k 6=j

λ̃jk. (B.9)

These two equations characterize the new generator matrix Λ̃ under Q.

C Proof of Proposition 2

Proof. I compute the value of a cash flow stream by solving a system of ordinary differential equations.11

Under the risk-neutral measure Q, the nominal cash flow process for firm i is:

dXi
t

Xi
t

= θ̃i
X (st−) dt + σi

X,m (st−) dW̃m
t + σP,2dW̃P

t + σi
fdW i

t ,

where θ̃i
X is the risk-neutral growth rate,

θ̃i
X (st) = θi

X (st)− σi
X,m (st−) ηm (st−)− σP,2η

P .

The total value of firm i’s cash-flows before taxes is:

V i
(
Xi

t , st

)
= EQ

t

[∫ ∞

t

exp
(
−

∫ τ

t

rn (su) du

)
Xi

τdτ

]
. (C.1)

Define the log nominal cash flow xi
t , log(Xi

t), total volatility

σi
X (st) ,

√(
σi

X,m (st)
)2

+ σ2
P,2 +

(
σi

f

)2

, (C.2)

and a new Brownian motion that aggregates all the shocks for firm i,

dW̃ i
t ,

σi
X,m (st)
σi

X (st)
dW̃m

t +
σP,2

σi
X (st)

dW̃P
t +

σi
f

σi
X (st)

dW i
t . (C.3)

Then, the risk-neutral dynamics of the log of firm i’s cash flow can be written as:

dxi
t =

(
θ̃i

X (st)− 1
2
σi

X (st)
2

)
dt + σi

X (st) dW̃ i
t . (C.4)

Let Vi (x) =
[
V i (x, 1) , ..., V i (x, n)

]′ be the vector of firm i’s asset values in n states. The Feynman-Kac

11Veronesi (2000) provides an alternative proof, which exploits the right-continuity of the continuous-time
Markov chain and obtains the same pricing formula with a limit argument.
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formula implies that Vi satisfies the following system of ODEs:

rnVi =
(

θ̃i
X − 1

2
Σi

X

)
Vi

x +
1
2
Σi

XVxx + Λ̃Vi + ex · 1, (C.5)

where rn, diag
(
[rn (1) , · · · , rn (n)]′

)
, θ̃i

X , diag
([

θ̃i
X (1) , · · · , θ̃i

X (n)
]′)

, 1 is an n×1 vector of ones, and

Σi
X , diag

([
σi

X(1)2, · · · , σi
X(n)2

]′). The set of boundary conditions are:

lim
x↓−∞

Vi(x) = 0. (C.6)

In fact, given the log-linear process for Xi, V i must be linear in Xi, which will also satisfy the boundary
conditions. Thus, I directly search for solution of the type:

Vi(x) = ex · vi,

where vi is an n× 1 vector of constants. Plugging this guess into the ODE system gives:

rnvi =
(

θ̃i
X − 1

2
Σi

X

)
vi +

1
2
Σi

Xvi + Λ̃vi + 1,

or (
rn − θ̃i

X − Λ̃
)
vi = 1.

Thus,

vi =
(
rn − θ̃i

X − Λ̃
)−1

1. (C.7)

D Proof of Proposition 3 and 4

Proof. To simplify notation, I temporarily drop the superscripts that denote the cash flows of different
firms. Start with a perpetual security J (xt, st), which pays a dividend rate F (xt, st) for as long as the firm
is solvent, and a default payment H (xτ , sτ ) when default occurs at time τ . Let F(x) be an n × 1 vector
of dividend rate across n states, and H(x) an n × 1 vector of the default payments. I also define an n × n

diagonal matrix A. Its ith diagonal element Ai is the infinitesimal generator for any C2 function φ(x) in
state i, where x is the log nominal cash flow specified in (C.2):

Aiφ (x) ,
(

θ̃X (i)− 1
2
σ2

X (i)
)

∂

∂x
φ (x) +

1
2
σ2

X (i)
∂2

∂x2
φ (x) . (D.1)

When cash flow X is in the region Dk = [Xk
D, Xk+1

D ) (for k < n), the firm will already be in default in
all states s > k. Thus, the security will only be “ alive” in the first k states. Define a set Ik , {1, ..., k} and
its complement Ic

k , {k + 1, ..., n}. When X ∈ Dk, the claims that are not in default yet are J[Ik], which
satisfy the following system of ordinary differential equations:

A[Ik,Ik]J[Ik] + F[Ik] + Λ̃[Ik,Ik]J[Ik] + Λ̃[Ik,Ic
k]H[Ic

k] = rn
[Ik,Ik]J[Ik]. (D.2)
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This equation states that, under the risk-neutral measure, the instantaneous expected return of a claim in
any state should be equal to the riskfree rate in the corresponding state. A sudden change of the state can
lead to abrupt changes in the value of the claim. It could also lead to immediate default, in which case the
default payment is realized. These explain the last two terms on the LHS of the equation.

In regions Dn and Dn+1, the firm is alive in all states. Sudden change of the state will not cause default.
Thus, the ODE becomes:

AJ + F + Λ̃J = rnJ. (D.3)

The homogeneous equation in region Dk can be written as:

A[Ik,Ik]J[Ik] +
(
Λ̃[Ik,Ik] − rn

[Ik,Ik]

)
J[Ik] = 0, (D.4)

which is a quadratic eigenvalue problem (see Kennedy and Williams (1990)). Jobert and Rogers (2006) show
its solution takes the following form:

J (x)[Ik] =
2k∑

j=1

wk,jgk,j exp (βk,jx) , (D.5)

where gk,j and βk,j are solutions to the following standard eigenvalue problem:


 0 I

−
(
2Σ−1

X

(
Λ̃− rn

))
[Ik,Ik]

−
(
2Σ−1

X θ̃X − I
)

[Ik,Ik]




[
gk

hk

]
= βk

[
gk

hk

]
, (D.6)

where I is an n×n identity matrix, rn, θ̃X and ΣX are defined in (C.5). The coefficients wk,j will be different
for different securities. Barlow, Rogers, and Williams (1980) show that there are exactly n eigenvalues with
negative real parts, and n with positive real parts.

The remaining tasks are to find a particular solution for the inhomogeneous equation, and solve for the
coefficients wk,j through the boundary conditions. Both the inhomogeneous equation and the boundary
conditions will depend on the specific type of security under consideration.

D.1 Debt

Let D (x, s) be the total value of corporate debt outstanding when the firm has log cash flow x and the
economy is in state s. As shown earlier,

F (X, s) = (1− τi) C, (D.7)

H (X, s) = VB (X, s) . (D.8)

Plug these values into equation (D.2). When X ∈ Dk (k < n), for those states i ∈ Ik, the total value of debt
satisfies:

rn(i)D (x, i) = AiD (x, i) + λ̃i,1D (x, 1) + · · ·+ λ̃i,kD (x, k)

+λ̃i,k+1VB (x, k + 1) + · · ·+ λ̃i,nVB (x, n) + (1− τi)C. (D.9)
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Stacking up D(X, s) in a vector, D(X) = [D (X, 1) , · · · , D (X, n)]′. We first get the following solution to
the homogeneous equations,

D (x)[Ik] =
2k∑

j=1

wD
k,jgk,j exp (βk,jx) , k < n, (D.10)

where gk,j and βk,j are characterized in the eigenvalue problem (D.6).

The inhomogeneous equation has the additional term that is linear in ex:

λ̃i,k+1VB (x, k + 1) + · · ·+ λ̃i,nVB (x, n) + (1− τi) C

=
(
1− τ+

c

)
(1− τd)

n∑

j=k+1

λ̃ij (1− α(j)) v (j) ex + (1− τi) C.

Thus, I will seek a particular solution that is linear in ex. For X ∈ Dk (k < n),

D (x, i) = ξD
k (i) ex + ζD

k (i) . (D.11)

The coefficients ξD
k (i) and ζD

k (i) will be zero for i ∈ Ic
k, because the firm is already in default in those states.

Substituting the guess into (D.9) and collecting terms, we get:

ξD
k (Ik) =

(
1− τ+

c

)
(1− τd)

(
rn − Λ̃− θ̃X

)−1

[Ik,Ik]

(
Λ̃[Ik,Ic

k] (α¯ v)[Ic
k]

)
,

ζD
k (Ik) = (1− τi)C

(
rn − Λ̃

)−1

[Ik,Ik]
1k, (D.12)

where the symbol ¯ denotes element-by-element multiplication; ξD
k (Ic

k) and ζD
k (Ic

k) are zero.

In the region Dn∪Dn+1 = [Xn
D, +∞), a sudden change of state will not lead to immediate default. Thus,

the extra term in the inhomogeneous equation no longer depends on x. The total value of debt satisfies

rn(i)D (x, i) = AiD (x, i) + λ̃i,1D (x, 1) + · · ·+ λ̃i,nD (x, n) + (1− τi) C. (D.13)

Now the solution to the homogeneous equation is:

D (x) =
n∑

j=1

wD
n,jgn,j exp (βn,jx) , (D.14)

and a particular solution in this region is:

D (x, i) = ζD
n (i) , (D.15)

where
ζD
n = (1− τi) Cb. (D.16)
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To summarize, and rewrite the value of debt in terms of cash flows,

D (X)[Ik] =
2k∑

j=1

wD
k,jgk,jX

βk,j + ξD
k (Ik)X + ζD

k (Ik), X ∈ Dk, k < n, (D.17)

D (X) =
2n∑

j=1

wD
n,jgn,jX

βn,j + (1− τi) Cb, X ∈ Dn ∪ Dn+1. (D.18)

Next, I specify the boundary conditions that determine the coefficients wD
k,j .

Debt value should be finite as x goes to infinity. To exclude any explosive terms, we need to set wD
n,j

associated with all the βn,j with positive real parts (n of them) to zero. Then, the value of debt as cash flow
gets large approaches that of a perpetuity without default risk:

lim
X→+∞

D (X) = (1− τi) Cb. (D.19)

Another set of boundary conditions specify the value of debt at the n different default boundaries:

D
(
Xi

D, i
)

= VB

(
Xi

D, i
)
, i = 1, · · · , n. (D.20)

Because the payoff function F and terminal payoff H are bounded and piecewise-continuous in X, while
the discount rate r is constant in each state, an application of Theorem 4.9 (Karatzas and Shreve 1991,
page 271) shows that D (X, s) must be piecewise C2 with respect to X over the region where it is defined,
[Xs

D, +∞). Thus, for any i ∈ In−1, we need to ensure that D (X, i) is C0 and C1 at the boundaries
Xi+1

D , · · · , Xn
D:

lim
X↑Xk

D

D (X, i) = lim
X↓Xk

D

D (X, i) , k = i + 1, ..., n

lim
X↑Xk

D

DX (X, i) = lim
X↓Xk

D

DX (X, i) , k = i + 1, ..., n

There are 2n2 of unknown coefficients for
{

wD
k,j

}
. The continuity of D and its derivatives at the different

default boundaries also give us 2n2 conditions. So we can solve for
{
wD

k,j

}
from a system of linear equations.

D.2 Equity

The dividend rate for equity naturally suggests a decomposition of equity into two parts, corresponding to
the positive and negative part of the payoff,

E (x, i) = (1− τd)
(
1− τ+

c

)
E+ (x, i)− 1− τ−c

1− e
E− (x, i) , (D.21)

Solving for E+ and E− is similar to solving for D, except for the different payoffs and boundary condi-
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tions. For E+, the “dividend rate” and payment upon default are:

F (X, s) = max (X − C, 0) , (D.22)

H (X, s) = 0. (D.23)

By definition of the regions, cash flow falls short of the interest expense in all regions except Dn+1.

Define E+ (x) = [E+ (x, 1) , · · · ,E+ (x, n)]′. Again, the solution to the homogeneous equation in Dk

(k ≤ n) is

E+ (x)[Ik] =
2k∑

j=1

wE+

k,j gk,j exp (βk,jx) .

In Dn+1, the homogeneous equation is identical to that in the region Dn. Thus, the solution shares the
same g and β:

E+ (x) =
2n∑

j=1

wE+

n+1,jgn,j exp (βn,jx) .

The solution to the inhomogeneous equation in region Dn+1 is:

E+ (x, i) = ξE+

n+1 (i) ex + ζE+

n+1 (i) ,

where it is straightforward to verify that:

ξE+

n+1 =
(
rn − θ̃X − Λ̃

)−1

1n = v

ζE+

n+1 = −C
(
rn − Λ̃

)−1

1n = −Cb (D.24)

The boundary conditions for E+ are similar to those for debt. As X becomes large, a firm becomes
essentially free of default risk, which makes the claim E+ equivalent to the difference between a claim on
the cash flow stream and a riskfree perpetuity.

lim
X→+∞

E+ (X) = (Xv − Cb) .

To satisfy this boundary condition, we need to set wE+

n+1,j associated with all the βn,j with positive real
parts.(n of them) to zero in region Dn+1.

The rest of the boundary conditions are:

E+
(
Xi

D, i
)

= 0, i = 1, · · · , n.
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We also need E+ (X, i) to be C0 and C1 at Xi+1
D , · · · , Xn

D and C for i = 1, ..., n− 1,

lim
X↑Xk

D

E+ (X, i) = lim
X↓Xk

D

E+ (X, i) , k = i + 1, ..., n

lim
X↑Xk

D

E+
X (X, i) = lim

X↓Xk
D

E+
X (X, i) , k = i + 1, ..., n

lim
X↑C

E+ (X, i) = lim
X↓C

E+ (X, i)

lim
X↑C

E+
X (X, i) = lim

X↓C
E+

X (X, i)

This time, there are 2n2 + 2n of unknown coefficients for
{

wE+

k,j

}
. There are the same number of

continuity conditions above, so we can solve for
{

wE+

k,j

}
from a system of linear equations.

Next, E− is a claim with “dividend rate” and payment upon default:

F (X, s) = max (C −X, 0) , (D.25)

H (X, s) = 0. (D.26)

When X ∈ Dk (k ≤ n) , the cash flow falls short of the interest expense, and the dividend is zero. When
X ∈ Dn+1, the cash flow exceeds the interest expense, and the dividend is positive.

The solutions to the homogeneous equations are:

E− (x)[Ik] =
2k∑

j=1

wE−
k,j gk,j exp (βk,jx) , for X ∈ Dk (k ≤ n)

E− (x) =
2n∑

j=1

wE−
n+1,jgn,j exp (βn,jx) , for X ∈ Dn+1

It is easy to verify that the solution to the inhomogeneous equation in the region Dk(k ≤ n) takes the
linear form:

E− (x, i) = ξE−
k (i) ex + ζE−

k (i) .

The coefficients ξE−
k (i) and ζE−

k (i) will be zero for i ∈ Ic
k, because the firm is already in default in those

states. For i ∈ Ik,

ξE−
k (Ik) = −

(
rn − θ̃X − Λ̃

)−1

[Ik,Ik]
1k,

ζE−
k (Ik) = C

(
rn − Λ̃

)−1

[Ik,Ik]
1k. (D.27)

The first set of boundary conditions specify that E− should approach zero as X becomes large. This
requires that, like E+, the coefficients wE−

n+1,j associated with all the βn,j with positive real parts.(n of them)
must equal zero. The rest of boundary conditions are identical to those for E+.

In summary,

E (x, i) = (1− τd)
(
1− τ+

c

)
E+ (x, i)− 1− τ−c

1− e
E− (x, i) , (D.28)
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where

E+ (X)[Ik] =
2k∑

j=1

wE+

k,j gk,jX
βk,j , X ∈ Dk, k ≤ n, (D.29)

E+ (X) =
n∑

j=1

wE+

n+1,jgn,jX
βn,j + Xv−Cb, X ∈ Dn+1. (D.30)

and

E− (X)[Ik] =
2k∑

j=1

wE−
k,j gk,jX

βk,j + ξE−
k (Ik)X + ζE−

k (Ik) , X ∈ Dk, k ≤ n, (D.31)

E− (X) =
n∑

j=1

wE−
n+1,jgn,jX

βn,j , X ∈ Dn+1. (D.32)

E Proof of Lemma 1

Proof. Outline of the proof: I first show that, conditional on the state, the value of debt, equity and the
boundary values, are all homogeneous of degree 1 in (X,C); then, I show that, again conditional on the
state, the optimal C is proportional to X.

The value of debt is:

D (X0, s0, C) = E

[∫ TD∧TU

0

nt

n0
(1− τi) Cdt

∣∣∣∣∣ F0

]

+E
[
1{TU >TD}

nTD

n0
(1− τeff ) VB (XTD

, sTD
)
∣∣∣∣ F0

]

+E
[
1{TU <TD}

nTU

n0

C

C (XTU
, sTU

)
D (XTU

, sTU
; C (XTU

, sTU
))

∣∣∣∣ F0

]
(E.1)

When scaling (X0, C) to (aX0, aC), if the firm also scales up the default and restructuring boundaries by a,
the distributions of TD and TU will be unchanged. Under this condition, we have:

D (aX0, s0, aC) = aD (X0, s0, C) . (E.2)

The value of equity after restructuring is given by the following Bellman equation:

E (X0, s0, C) = max
TD,TU ,C(XTU

,sTU )

{
E

[∫ TD∧TU

0

nt

n0
(1− τeff ) (Xt − C) dt

∣∣∣∣∣ F0

]

+E


1{TU <TD}

nTU

n0
(1− τeff )


 (1− q) D (XTU , sTU ; C (XTU , sTU ))
− C

C(X0,sTU )D (X0, sTU ; C (X0, sTU ))




∣∣∣∣∣∣
F0




+E
[
1{TU <TD}

nTU

n0
E (XTU , sTU , C (XTU , sTU ))

∣∣∣∣ F0

]}
. (E.3)
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Suppose the optimal stopping times and coupon rates are (T ∗D, T ∗U , C∗ (XTU
, sTU

)). When changing (X0, C)
to (aX0, aC), it is feasible for the firm to scale up future coupons and boundaries by a, which will again
leave the distributions of T ∗D and T ∗U unchanged. Then,

E (aX0, s0, aC) ≥ E
[∫ T ∗D∧T ∗U

0

nt

n0
(1− τeff ) (Xt − aC) dt

∣∣∣∣∣ F0

]

+E


1{T ∗U <T ∗D}

nT ∗U
n0

(1− τeff )


 (1− q) D (aXTU , sTU ; aC (XTU , sTU ))
− aC

aC(X0,sTU )D
(
aX0, sT ∗U ; aC

(
X0, sT ∗U

))



∣∣∣∣∣∣
F0




+E
[
1{T ∗U <T ∗D}

nT ∗U
n0

E
(
aXT ∗U , sT ∗U , aC

(
XT ∗U , sT ∗U

))∣∣∣∣ F0

]

≥ aE (X0, s, C) . (E.4)

Applying the same argument to the case when scaling from (aX0, aC) to (X0, C) leads to:

E (X0, s, C) ≥ 1
a
E (aX0, s, aC) . (E.5)

Thus,
E (aX0, s, aC) = aE (X0, s, C) . (E.6)

Since the optimum is obtained by scaling future coupon rates and default boundaries by a, these choices
must be optimal. It is also straightforward to directly check that optimal boundaries are homogeneous
of degree 1 in (X, C). Suppose the default boundary for state s is x. According to the smooth-pasting
conditions, x must satisfy:

∂

∂X
E (X, s,C)

∣∣∣∣
X=x

= 0. (E.7)

We also have
∂

∂X
E (X, s; aC)

∣∣∣∣
X=ax

= a
∂

∂X
E

(
X

a
, s; C

)∣∣∣∣
X=ax

= 0, (E.8)

suggesting that the optimal default boundary after scaling is indeed ax. Essentially the same argument
shows that the optimal restructuring boundaries should scale up by a as well.

Finally, we need to show that the optimal initial coupon rate C is indeed proportional to X. The initial
coupon rate is chosen to maximize the value of equity before issuing debt,

EU (X, s) = max
C

{(1− q)D (X, s, C) + E (X, s, C)} . (E.9)

Since both D (X, s,C) and E (X, s, C) are homogeneous of degree 1 in (X,C), we can repeat the “sandwich”
argument above to show that the optimal C must be proportional to X.

F Proof of Proposition 5

Proof. After adding the option of upward restructuring, for any corporate perpetual security J (xt, st),
we need to specify restructuring payment K (xTU

, sTU
), in addition to dividend rate F (xt, st) and default

payment H (xTD , sTD ).
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Now we have the following boundaries,
(
X1

D, · · · , Xn
D, Xu1

U , · · · , Xun

U

)
. Denote the regions with

D1, · · · Dn,Dn+1, · · · ,D2n−1,

where

Dk = [Xk
D, Xk+1

D ), k = 1, · · · , n− 1

Dn = [Xn
D, Xu1

U ] ,

Dn+k = (Xu(k)
U , X

u(k+1)
U ], k = 1, · · · , n− 1.

I use index set In+k , {u (k + 1) , · · · , u (n)} to denote states where the firm has not yet restructured, with
its compliment Ic

n+k , {u (1) , · · · , u (k)} denoting the states where restructuring has occurred.

In regions Dk (k < n), the equation governing J is identical to those in the static case (see equation
(D.2)). The same is true in Dn, where the firm will neither default nor restructure because of a sudden change
of state. Thus, I will focus on the restructuring regions. In Dn+k (k < n), the firm has not restructured yet
for any of the states in In+k, thus:

A[In+k,In+k]J[In+k] + F[In+k] + Λ̃[In+k,In+k]J[In+k] + Λ̃[In+k,Ic
n+k]K[Ic

n+k] = rn

[In+k,In+k]
J[In+k]. (F.1)

The homogeneous equation in region Dk (k ≤ n) is the same as in the static model, and will have the
same solution. The homogeneous equation in region Dn+k (k ≤ n− 1) can be written as:

A[In+k,In+k]J[In+k] +
(
Λ̃[In+k,In+k] − rn

[In+k,In+k]

)
J[In+k] = 0. (F.2)

Its solution takes the following form:

J (x)[In+k] =
2(n−k)∑

j=1

wn+k,j ḡn+k,j exp
(
β̄n+k,jx

)
, (F.3)

where ḡn+k,j and β̄n+k,j are solutions to the following standard eigenvalue problem:


 0 I

−
(
2Σ−1

X

(
Λ̃− rn

))
[In+k,In+k]

−
(
2Σ−1

X θ̃X − I
)

[In+k,In+k]




[
ḡn+k

h̄n+k

]
= β̄n+k

[
ḡn+k

h̄n+k

]
, (F.4)

where I is an n×n identity matrix, rn, θ̃X and ΣX are defined in (C.5). As in the static case, the coefficients
wn+k,j will be different for different securities.

F.1 Debt

Let D (x, s; C) be the value of corporate debt payments before restructuring occurs. These payments in-
clude the coupon payments, and the recovery value at default, if default occurs before restructuring. The
intermediate cash flows before default and restructuring are the same as in the static model, and so are the
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payments at default.

F (X, s) = (1− τi) C, (F.5)

H (X, s) = VB (X, s) . (F.6)

After restructuring, the outstanding debt from previous issues gets diluted by new issues. Suppose at
time 0, the state is i and cash flow equals X0. Let the corresponding optimal coupon rate be C (X0, i). Next,
consider a restructuring that occurs in state j when cash flow is XTU . Notice that XTU does not have to be
equal to Xj

U because restructuring can also be triggered by a change of state, as in the case of default. The
value of old debt at a restructuring point in state j is:

K (XTU , j) = D (XTU , j;C(X0, i)) =
C(X0, i)

C(XTU , j)
D (XTU , j; C(XTU , j))

=
C(X0, i)
C (X0, j)

D (X0, j; C(X0, i)) , (F.7)

where the second equality is due to newly issued debt being pari passu, and the third equality follows from
the scaling property. Thus, the value of old issues does not depend on the cash flow level at the restructuring
point. What matters is the state where restructuring occurs.

When X ∈ Dk (k < n), for i ∈ Ik, the ODE system driving D and the particular solution are the same
as in the static case.

D (x, i) = ξ̄D
k (i) ex + ζ̄D

k (i) , (F.8)

where ξ̄D
k and ζ̄D

k are the same as in (D.12). For X ∈ Dn, the particular solution is also the same as in the
static case:

D (x, i) = ζ̄D
n (i) , (F.9)

where ζ̄D
n is given in (D.16).

When X ∈ Dn+k (k < n), for i ∈ In+k,

rn(i)D (x, i) = AiD (x, i) + λ̃i,u(1)K (x, u (1)) + · · ·+ λ̃i,u(k)K (x, u (k))

+λ̃i,u(k+1)D (x, u (k + 1)) + · · ·+ λ̃i,u(n)D (x, u (n)) + (1− τi)C. (F.10)

Here, the values K (x, ·) depends on the initial value of debt. We will need to solve for that recursively.
Assume these values are known for now. Guess that a particular solution is:

D (x, i) = ζ̄D
n+k (i) . (F.11)

Then,

rn(i)ζ̄D
n+k (i) = λ̃i,u(1)

C

C (X0, u (1))
D (X0, u (1)) + · · ·+ λ̃i,u(k)

C

C (X0, u (k))
D (X0, u (k))

+λ̃i,u(k+1)ζ̄
D
n+k (u (k + 1)) + · · ·+ λ̃i,u(n)ζ̄

D
n+k (u (n)) + (1− τi) C,
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which implies:

ζ̄D
n+k(In+k) = C

(
rn − Λ̃

)−1

[In+k,In+k]

[
(1− τi)1k + Λ̃[In+k,Ic

n+k] [D (X0)®C (X0)][Ic
n+k]

]
, (F.12)

where ® denotes element-by-element division, D(X0) = [D (X0, 1) , · · · , D (X0, n)]′, and
C(X0) = [C (X0, 1) , · · · , C (X0, n)]′. Since ζ̄D

n+k depends on the initial debt value, we have to solve for the
value of debt in the dynamic case recursively.

The boundary conditions are as follows. First, as in the static model, there are n conditions specifying
the value of debt at the n different default boundaries:

D
(
Xi

D, i
)

= VB

(
Xi

D, i
)
, i = 1, · · · , n. (F.13)

Another n conditions specify the value of debt at the restructuring boundaries:

D
(
X

u(i)
U , u (i)

)
=

C

C (X0, u (i))
D (X0, u (i)) , i = 1, · · · , n. (F.14)

Moreover, we need to ensure that D (X, i) is C0 and C1 at all the boundaries for which neither default or
restructure has occurred.

lim
X↑Xk

D

D (X, i) = lim
X↓Xk

D

D (X, i) , k = i + 1, · · · , n

lim
X↑Xk

D

DX (X, i) = lim
X↓Xk

D

DX (X, i) , k = i + 1, · · · , n

and

lim
X↑Xu(k)

U

D (X,u (i)) = lim
X↓Xu(k)

U

D (X,u (i)) , k = 1, · · · , i− 1

lim
X↑Xu(k)

U

DX (X,u (i)) = lim
X↓Xu(k)

U

DX (X, u (i)) , k = 1, · · · , i− 1

There are 2n2 of unknown coefficients for
{
wD

}
(2 (1 + · · ·+ n + · · ·+ 1)). The boundary conditions com-

bined to give 2n2 conditions, so we can solve for
{
wD

}
from a system of linear equations.

In summary,

D (X)[Ik] =
2k∑

j=1

w̄D
k,j ḡk,jX

β̄k,j + ξ̄D
k (Ik)X + ζ̄D

k (Ik), X ∈ Dk, k = 1, · · · , n− 1.

D (X)[In] =
2n∑

j=1

w̄D
n,j ḡn,jX

β̄n,j + ζ̄D
n (In), X ∈ Dn (F.15)

D (X)[In+k] =
2(n−k)∑

j=1

w̄D
n+k,j ḡn+k,jX

β̄n+k,j + ζ̄D
n+k(In+k), X ∈ Dn+k, k = 1, · · · , n− 1.
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F.2 Equity

Consider the value of equity after restructuring. Without partial loss offset and equity issuance costs, I define
the “effective tax rate” for equity-holders as τeff = 1− (1− τd)(1− τc). Applying the scaling property,

E (X0, s0, C) = E

[∫ TD∧TU

0

nt

n0
(1− τeff ) (Xt − C) dt

∣∣∣∣∣ F0

]

+E

[
1{TU <TD}

nTU

n0
D (X0, sTU

; C (X0, sTU
))

[
(1− q)

X
sTU

U

X0
− C

C (X0, sTU
)

]∣∣∣∣∣ F0

]

+E

[
1{TU <TD}

nTU

n0

X
sTU

U

X0
E (X0, sTU

, C (X0, sTU
))

∣∣∣∣∣ F0

]
. (F.16)

The first term in the equation specifies the value of dividend payments until default or restructuring. The
second and third term specifies that, at a restructuring point, equity-holders receive the proceeds from new
debt issuance (net of issuance costs), plus the scaled-up equity claim after restructuring. Thus, the dividend
rate, default payment and restructuring payment for equity are:

F (X, s) = (1− τeff ) (X − C), (F.17)

H (X, s) = 0, (F.18)

K (X, s) = D (X0, s; C (X0, s))
(

(1− q)
X

X0
− C (X0, s0)

C (X0, s)

)
+

X

X0
E (X0, s, C (X0, s))

= k0 (s) + k1 (s) X. (F.19)

When X ∈ Dk (k ≤ n), for i ∈ Ik,

rn(i)E (x, i) = AiE (x, i) + λ̃i,1E (x, 1) + · · ·+ λ̃i,kE (x, k) + (1− τeff ) (ex − C) . (F.20)

The particular solution is:
E (x, i) = ξ̄E

k (i) ex + ζ̄E
k (i) , (F.21)

where we can verify through the ODE system above that:

ξ̄E
k (Ik) = (1− τeff )

(
rn − θ̃X − Λ̃

)−1

[Ik,Ik]
1k,

ζ̄E
k (Ik) = − (1− τeff )C

(
rn − Λ̃

)−1

[Ik,Ik]
1k. (F.22)

When X ∈ Dn+k (k < n), for i ∈ In+k,

rn(i)E (x, i) = AiE (x, i) + λ̃i,u(1)K (x, u (1)) + · · ·+ λ̃i,u(k)K (x, u (k))

+λ̃i,u(k+1)E (x, u (k + 1)) + · · ·+ λ̃i,u(n)E (x, u (n)) + (1− τeff ) (ex − C) .

The particular solution is the same as in the static case:

E (x, i) = ξ̄E
n+k (i) ex + ζ̄E

n+k (i) . (F.23)
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Plug the guess into the ODE above,

rn(i)
(
ξ̄E
n+k (i) ex + ζ̄E

n+k (i)
)

= ξ̄E
n+k (i) θ̃ (i) ex +

k∑

j=1

λ̃i,u(j)

(
k0 (u (j)) + k1 (u (j)) ex

)

+
n∑

j=k+1

λ̃i,u(j)

(
ξ̄E
n+k (u (j)) ex + ζ̄E

n+k (u (j))
)

+ (1− τeff ) (ex − C) .

Collecting terms leads to:

rn(i)ζ̄E
n+k (j) =

n∑

j=k+1

λ̃i,u(j)ζ̄
E
n+k (u (j)) +

k∑

j=1

λ̃i,u(j)k
0 (u (j))− (1− τeff )C.

rn(i)ξ̄E
n+k (i) = θ̃ (i) ξ̄E

n+k (i) +
n∑

j=k+1

λ̃i,u(j)ξ̄
E
n+k (j) +

k∑

j=1

λ̃i,u(j)k
1 (u (j)) + (1− τeff ) .

Thus,

ξ̄E
n+k(In+k) =

(
rn − θ̃X − Λ̃

)−1

[In+k,In+k]

[
(1− τeff )1k + Λ̃[In+k,Ic

n+k]k
1

[Ic
n+k]

]
, (F.24)

ζ̄E
n+k(In+k) =

(
rn − Λ̃

)−1

[Ik,Ik]

[
Λ̃[In+k,Ic

n+k]k
0

[Ic
n+k]

− (1− τeff ) C1k

]
. (F.25)

The boundary conditions for E are similar to those for debt. First, as in the static model, there are n

conditions specifying the value of debt at the n different default boundaries:

E
(
Xi

D, i
)

= 0, i = 1, · · · , n. (F.26)

Another n conditions specify the value of debt at the restructuring boundaries, for i = 1, · · · , n,

E
(
X

u(i)
U , u (i)

)
= D (X0, u (i) ;C (X0, u (i)))

(
(1− q)

X
u(i)
U

X0
− C (X0, s0)

C (X0, u (i))

)

+
X

u(i)
U

X0
E (X0, u (i) ; C (X0, u (i))) . (F.27)

Finally, we need to ensure that E (X, i) is C0 and C1 , which lead to an identical set of conditions as for D.
These boundary conditions help determine the coefficients

{
wE

k,j

}
.

Define E(X) = [E (X, 1) , · · · , E (X, n)]′. Then, in summary,

E (X)[Ik] =
2k∑

j=1

w̄E
k,j ḡk,jX

β̄k,j + ξ̄E
k (Ik)X + ζ̄E

k (Ik), X ∈ Dk, k = 1, · · · , n.

E (X)[In+k] =
2(n−k)∑

j=1

w̄E
n+k,j ḡn+k,jX

β̄n+k,j + ξ̄E
n+k(In+k)X + ζ̄E

n+k(In+k),

X ∈ Dn+k, k = 1, · · · , n− 1.
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G Calibrating the Continuous-time Markov Chain

The Markov chain for the expected growth rate and volatility of aggregate consumption is calibrated using
a two-step procedure. Start with the discrete-time system of consumption and dividend dynamics of Bansal
and Yaron (2004) (BY):

gt+1 = µc + xt +
√

vtηt+1 (G.1a)

gd,t+1 = µd + φxt + σd
√

vtut+1 (G.1b)

xt+1 = κxxt + σx
√

vtet+1 (G.1c)

vt+1 = v̄ + κv (vt − v̄) + σvwt+1 (G.1d)

where g is log consumption growth, gd is log dividend growth, and η, u, e, w ∼ i.i.d.N(0, 1). I use the
parameters from BY, which are at monthly frequency and calibrated to the annual consumption data from
1929 to 1998.

Figure 10: Stationary Distribution of the Markov Chain
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The restriction that shocks to consumption, ηt+1, and shocks to the conditional moments, et+1, wt+1,
are mutually independent, allows me to approximate the dynamics of (x, v) with a Markov chain. I first
obtain a discrete-time Markov chain over a chosen horizon ∆, e.g. quarterly, using the quadrature method of
Tauchen and Hussey (1991). For numerical reasons, I choose a small number of states (n = 9) for the Markov
chain, with three different values for v, and three values for x for each v. Next, I convert the grid for (x, v)
into a grid for (θm, σm) as in equation (5). Finally, I transform the discrete-time transition matrix P = [pij ]
into the generator Λ = [λij ] of a continuous-time Markov chain using the method of Jarrow, Lando, and
Turnbull (1997) (an approximation based on the assumption that the probability of more than one change
of state is close to zero within the period ∆). The details of the procedure are in Chen (2007b).
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Table 9: Markov Chain Approximation of the BY Model

Panel A: Paramters for the BY Model
µc µd φ σd κx σx κv v̄ σv

0.0015 0.0015 3 4.5 0.979 0.044 0.987 6.08× 10−5 0.23× 10−5

Panel B: Properties of Annualized Time-Averaged Growth Rates
Data BY Markov Chain

Variable Estimate SE 5% 50% 95% 5% 50% 95%
µ(g) 1.80 - 0.59 1.79 2.99 0.74 1.81 2.90
σ(g) 2.93 (0.69) 2.26 2.79 3.44 2.19 2.64 3.12
AC(1) 0.49 (0.14) 0.25 0.46 0.63 0.23 0.42 0.58
AC(2) 0.15 (0.22) -0.04 0.22 0.45 -0.05 0.18 0.39
AC(5) -0.08 (0.10) -0.17 0.06 0.30 -0.17 0.05 0.28
AC(10) 0.05 (0.09) -0.24 -0.03 0.20 -0.24 -0.02 0.19
VR(2) 1.61 (0.34) 1.25 1.46 1.63 1.23 1.42 1.58
VR(5) 2.01 (1.23) 1.36 2.13 2.91 1.33 2.01 2.69
VR(10) 1.57 (2.07) 1.20 2.47 4.21 1.15 2.33 3.85

Note: Parameters in Panel A are from the discrete time model of BY (Table
IV). In Panel B, the statistics of the data are from BY (2004) (Table I), based
on annual observations from 1929 to 1998. The statistics for the two models are
based on 5,000 simulations, each with 70 years of data. The simulations are done
at high frequency and then aggregated to get annual growth rates. The symbols
µ(g) and σ(g) are mean and standard deviation of growth rates; AC(j) is the
jth autocorrelation; V R(j) is the jth variance ratio.

With just 9 states, the grid points are relatively far away from each other. I compute the discrete
time Markov chain at the quarterly frequency so that the transition probabilities are not too small, and the
assumption of no more than one jump within the period is reasonable. Under my calibration, the economy
spends about 54% of the time in the “center” state with median expected growth rate and volatility (see
Figure 10).

Table 9 Panel A shows the parameters for the discrete time consumption model of BY; Panel B compares
the statistical properties of consumption growth rates in the data with those of the simulated data from the
BY model and the Markov chain model. With just 9 states, the Markov chain approximation does a good in
matching the mean, volatility, autocorrelation and variance ratio of consumption growth in the BY model.
The noticeable differences are that the Markov chain appears to generate a distribution of volatility and
variance ratios with lighter right tail, which is likely due to the non-extreme grid points.
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