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Abstract

This paper studies the optimal mortgage design in a continuous time setting with volatile and privately

observable income and a stochastic market interest rate. We show that the optimal mortgage takes form

of either an option ARM or a combination of an interest only mortgage with a HELOC. The default

rates and interest rates on the optimal mortgage correlate positively with the market interest rate. The

gains from using the optimal contract relative to simpler mortgages are substantial and the biggest for

those who buy pricey houses given their income level or make little or no downpayment.
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1 Introduction

Recent years have seen a rapid growth in originations of more sophisticated alternative mortgage prod-

ucts (AMPs), such as option adjustable rate mortgages (option ARMs) and interest only mortgages. In the

United States, from 2003 through 2005, the originations of AMPs grew from less than 10% of residential

mortgage originations to about 30%.1 As of the �rst half of 2006, 37%2 of mortgage originations were

AMPs. Option adjustable rate mortgages experienced particularly fast growth. They accounted for as little

as 0.5% of all mortgages written in 2003, but their share soared to at least 12.3% through the �rst �ve

months of 2006.3 As AMPs have complemented other forms of housing loans rather than replaced them,

these nontraditional mortgages account for a signi�cant part of the recent increase in household mortgage

debt in the United States, from about 60% of GDP in 2003 to above 75% of GDP in 2006.4 AMPs are

frequently marketed as an �a¤ordability�product to allow less creditworthy and less wealthy borrowers to

purchase homes they otherwise might not be able to a¤ord with a conventional mortgage.5 Consequently,

AMP lending has been concentrated in the higher-priced regional markets on the East and West coasts,

where homes are least a¤ordable.6

Unlike traditional �xed rate mortgages (FRMs) and adjustable rate mortgages (ARMs), AMPs let bor-

rowers pay only the interest portion of the debt or even less than that, while the loan balance can grow

above the amount borrowed initially. Often, these mortgages carry teaser rates and come with a second

mortgage, taking the form of a home equity line of credit (HELOC). Interest rates on such loans can increase

as interest rates in the economy move higher, resulting in increased risk of delinquencies and defaults among

AMP borrowers.

Because of concern about increased delinquencies and defaults among AMPs borrowers, these forms of

borrowing have generated great controversy and criticism. Critics contend that AMPs can hurt borrowers

with high interest payments in the future and accuse AMP originators of predatory lending to naive borrowers

who do not fully understand mortgage terms.7 On the other hand, proponents claim that AMPs are more

e¢ cient than traditional mortgages because they allow both lenders and borrowers to manage their cash

�ows intelligently. They maintain that AMPs have helped bring the US homeownership rate to a record

high in part by extending credit to millions of borrowers who previously would have been denied credit, both

for mortgages and for other consumer loans.8

1United States Government Accountability O¢ ce (2006).
2 Inside Mortgage Finance (2006a).
3Data from LoanPerformance, an industry tracker unit of First American Real Estate Solutions (FARES).
4The mortgage debt data are from Flow of Funds Accounts of the United States, Federal Reserve Board, and the GDP data

are from Bureau of Economic Analysis.
5See United States Government Accountability O¢ ce (2006).
6See Government Accountability O¢ ce (2006).
7See for example Department of the Treasury, Board of Governors of the Federal Reserve System, Federal Deposit Insurance

Corporation, National Credit Union Administration (2006), or United States Government Accountability O¢ ce (2006).
8See for example Gerardi, Rosen, and Willen (2007) who provide empirical evidence showing that households are now more

able to buy homes whose values are consistent with their long-term income prospects. They conjecture that this development
is due in part to innovative mortgage products.
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Surprisingly, despite the economic signi�cance of AMPs and the extent of the surrounding controversy,

there has been no attempt so far to formally address whether these new mortgages improve bene�ts to

borrowers and lenders relative to traditional mortgages. In this paper, we formally approach this issue by

addressing the following more general normative question. Assuming full rationality, what is the best possible

mortgage contract between a home buyer and a �nancial institution? Instead of considering a particular

class of mortgages, we derive an optimal mortgage contract as a solution to a general dynamic contracting

problem in a setting with as few assumptions as possible about payments between the borrower and the

lender and about circumstances under which the home is repossessed. Then we examine whether features of

existing mortgage contracts are consistent with the properties of the best possible contract.

Speci�cally, we consider a continuous-time setting in which a borrower with limited liability needs outside

�nancial support from a risk-neutral lender in order to purchase a house. Home ownership generates for

the borrower a public and deterministic utility stream. The borrower�s consumption is divided into two

categories: "necessary" consumption, which includes grocery food, medicine, transportation and other goods

and services essential for the household survival, and "luxury" consumption, which includes everything else.

We assume that the borrower is in�nitely risk averse with respect to the necessary consumption and risk

neutral with respect to the luxury consumption. The minimum level of necessary consumption is given by an

exogenous stochastic process. After paying for his necessary consumption the borrower is free to allocate the

remaining part of his income among luxury consumption, saving and debt repayment. The distribution of the

"excess" income, which the borrower can use to pay back his debt, is publicly known, however its realizations

are privately observable by the borrower. There is a liquidation technology that allows termination of the

relationship and transfer of the house to the lender. This transfer of ownership leads to ine¢ ciencies due to

associated dead-weight costs. This setting allows us to focus on the fundamental feature of the borrowing-

lending relationship with collateral, which is how to e¢ ciently provide a borrower with incentives to repay

his debt using a threat of a costly liquidation and at the same time to insure him against the �uctuations in

his income.

An important assumption of our model is that the borrower and the lender have di¤erent discount rates.

The borrower�s discount rate 
 represents his intertemporal consumption preferences and is constant over

time. On the other hand, the lender, a big �nancial institution, discounts future cash �ows using a stochastic

market interest rate rt. To the best of our knowledge, this is the �rst paper that allows for a stochastic

interest rate in an optimal dynamic security design setting. We further assume that rt follows a two-state

Markov process and is smaller than the borrower�s discount rate. We assume that the borrower is more

impatient than the lender re�ecting that a borrowing-constrained household has a higher marginal rate of

substitution then a �nancial institution.

Before purchase of the house, the borrower and the lender sign a contract that will govern their rela-

tionship after the purchase is made. The contract speci�es transfers between the borrower and the lender,

conditional on the history of the borrower�s reports and the circumstances under which the lender would
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foreclose the loan and seize the home. Although the borrower�s reports cannot be veri�ed, the threat of

losing ownership of the home induces the borrower to pay his debt.

We characterize the optimal allocation using two state variables: the market interest rate rt, and the

borrower�s continuation utility at, i.e., the expected payo¤ at time t to the borrower provided he acts

optimally given the terms of his contract with the lender. Under the optimal allocation, the borrower

truthfully reports his income. The home is repossessed when the borrower�s continuation utility at hits

the borrower�s reservation utility A for the �rst time. The borrower consumes part of his excess income

whenever at reaches the upper boundary a1 (rt). When at 2 [A; a1 (rt)], all the excess income of the

borrower is transferred to the lender and so he enjoys no luxury consumption in this region. The borrower�s

continuation utility increases (decreases) when his excess income realization is high (low).

Interestingly, when the interest rate rt switches from high to low, the borrower�s continuation utility jumps

up. On the other hand, when the interest rate rt switches from low to high, the borrower�s continuation

utility jumps down, which, in certain cases, can trigger immediate liquidation.9 This is optimal because the

stream of borrower�s payments is more valuable for the lender when the market interest rate is low, because

they are discounted at the low interest rate. As a result, the chances of home repossession are reduced by

moving the borrower�s continuation utility further away from the default boundary A when the interest rate

switches to low. However, the threat of repossession must be real enough in order for the borrower to share

his income with the lender. As a result, the optimal allocation increases the chances of repossession when

the interest rate is high in order to compensate for the weakened threat of repossession in the low state. This

is done by moving the borrower�s continuation utility closer to the default boundary A when the interest

rate switches to high.

After characterizing the optimal allocation in terms of the continuation utility of the borrower and the

lender, we examine whether features of existing mortgage contracts are consistent with the properties of

optimal allocation. We show that the optimal allocation can be implemented in three di¤erent ways using

combinations of existing residential mortgage instruments. First, it can be implemented using an option

ARM with a preferential interest rate. Second it can be implemented using an interest only mortgage with

HELOC and two way balance adjustment. Third, it can be implemented using an interest only mortgage

with HELOC with a preferential rate and one way balance adjustment.

The option ARM mortgage charges a low preferential interest rate on a portion of the balance. On the

remaining part of the balance, a variable rate is charged which positively correlates with the market interest

rate. The balance subject to the preferential rate increases when the interest rate switches from high to low

and decreases when the interest rate switches from low to high. Also, in general, the borrower enjoys a higher

negative amortization limit when the market rate is low and vice versa. The borrower can further indebt

himself to �nance the interest rate payments or his consumption as long as his debt balance is below the

9 If at is substantially high, the borrower�s continuation utility can jump in the opposite direction. However, e¢ ciency gains
from such jumps are small. As a result, our approximate implementation does not incorporate jumps in the opposite direction.
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negative amortization limit. The borrower is in default if he is unable to make mortgage payments without

exceeding the negative amortization limit. In this case, the lender forecloses the loan and seizes ownership of

the home. It is optimal for the borrower to use his income in excess of �nancing his necessary consumption

to make the current interest rate payments and to repay his debt balance. When the borrower realization

of the excess income is low, the borrower increases his debt balance to �nance interest payments, as long as

he does not exceed the negative amortization limit. Once the borrower repays a su¢ cient amount of debt,

so that all his remaining balance is subject to a low preferential interest rate, he spends part of his excess

income on luxury consumption.

Under the interest only mortgage with HELOC and two way balance adjustment, the borrower owns a

home, while being obligated to make interest coupon payments on the interest only mortgage and interest

payments on the home equity credit line balance. The borrower can use the HELOC to �nance the interest

rate payments or his consumption as long as the HELOC balance is below the credit line limit. The borrower

is in default if he is unable to make mortgage payments without exceeding the HELOC credit limit. In this

case, the lender forecloses the loan and seizes ownership of the home. The parameters of HELOC are reset

every time the market interest rate changes. When the market interest rate switches from high to low, the

balance on HELOC is automatically reduced by an amount proportional to the outstanding balance and the

interest rate charged on HELOC balance is also reduced. Conversely, the balance and the HELOC interest

rate are automatically increased when the market interest rate switches from low to high. It is optimal for

the borrower to use all income he has after �nancing his necessary consumption to make the current interest

rate payments on the interest only mortgage and to repay his HELOC balance. When the realization of the

borrower�s excess income is low, the borrower draws on the credit line to make the current debt payments,

as long as he does not exceed the credit limit. He enjoys luxury consumption only after he repays all his

HELOC balance.

Although mortgages with HELOC and two way balance adjustment are interesting from a theoretical

point of view, we do not yet observe them in practice. While we actually observe reductions of mortgage debt

balance in the form of "cramdown"10 provisions, the unusual feature of these mortgages is their automatic

increase in debt balance in response to a market interest rate increase. The implementation using the interest

only mortgage with HELOC with a preferential rate and one way balance adjustment addresses this issue.

The interest only mortgage with HELOC with a preferential rate and one way balance adjustment is

similar to the interest only mortgage with HELOC and two way balance adjustment, except that a part

of the HELOC balance is subject to a low preferential (teaser) rate and balance adjustment occurs only

when the interest rate changes from high to low. This reduction in debt can be interpreted as an automatic

"cramdown" provision to be applicable whenever the market interest rate switches to low. When the interest

rate changes from low to high, the total amount of the HELOC debt does not change. Instead, the balance

10"Cramdown" is a court-ordered reduction of the secured balance due on a home mortgage loan, granted to a homeowner
who has �led for personal bankruptcy protection.
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subject to the preferential rate shrinks.

All three optimal mortgage implementations provide �nancial �exibility for the borrower to cover possible

low excess income realizations. Given the interest only mortgage with HELOC and two way (or one way)

balance adjustment, the borrower can draw on HELOC up to its limit, whenever his excess income is not

su¢ cient to make the coupon payment. Under the option ARM, there is no minimum payment requirement �

a low payment from the borrower translates into a higher balance, as long as the balance does not exceed the

negative amortization limit. Although home repossession is costly, the borrower does not need to maintain

precautionary savings, because the credit commitments by the lender provide a safety net. The borrower

only defaults after receiving a su¢ cient amount of positive shocks to his necessary spending or negative

shocks to his total income.11

None of the optimal contracts allows borrowers to re�nance their mortgages with another lender. O¤ering

this option would limit the ability to provide incentives to the borrower to repay his debt, resulting in a less

e¢ cient contract. Therefore, our results lend support to prepayment penalties on re�nancing.12

This paper shows that the properties of AMPs are consistent with the properties of the optimal mortgage

contract, which represents a Pareto improvement over traditional mortgages. Thus, our analysis provides a

theoretical evidence that AMPs can bene�t both lenders and borrowers, and the explosion in option-ARMs

and other exotic mortgages might be driven by their superior e¢ ciency over traditional mortgages.

Critics of AMPs have raised concerns that teaser rates and low minimum payments can result in sub-

stantially higher mortgage payments and, as a consequence, higher default rates when interest rates in the

economy increase. Nevertheless, this paper demonstrates that this possibility does not necessarily contradict

optimality of AMPs. Under the optimal mortgage contract, mortgage payments and default rates are indeed

higher when the market interest rate is high. However, borrowers bene�t from low mortgage payments and

low default rates when the interest rate is low.

The parametrized examples we consider indicate substantial e¢ ciency gains from using the optimal

mortgage contract compared to more traditional mortgages. Because AMPs manage default timing more

intelligently than simpler mortgages, the gains are biggest for those who buy pricey houses given their

income level or make little or no downpayment. Thus, our results provide a theoretical evidence that

high concentration of AMPs among riskier borrowers and in the higher-priced regional markets may be

economically e¢ cient.

Because of concern about increased delinquencies and defaults among AMPs borrowers, the new federal

guidelines issued recently by the Treasury Department, Federal Reserve Board, Federal Deposit Insurance

Corporation, and the National Credit Union Administration are designed to tighten lenders�underwriting

11This result is consistent with empirical evidence pointing that consumer delinquency problems are mainly the result of
unexpected negative events, that neither the lender nor the borrower could have anticipated at the time the credit request was
evaluated (see for example Getter (2003)). In the words of Amy Crews Cutts, deputy chief economist for Freddie Mac, cited
by NYT (2007): �If you come in at the edge of a¤ordability, and gas prices go up $100 a month, and insurance premiums go
up, and then a water heater breaks, that�s the kind of thing that can put a family over the edge.�
12According to the Wall Street Journal (2005) between 40% and 70% of option ARMs now carry prepayment penalties.
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standards for payment-option adjustable rate mortgages, interest-only mortgages, and simultaneous use of

home equity line of credits. Also, Congress is contemplating a serious tightening of regulations to make

the new forms of lending more di¢ cult.13 We believe that while taking action on predatory lenders could

be bene�cial, restricting borrowers�access to these new mortgages might be a bad idea from an economic

standpoint. Low default rates of the past might have been economically suboptimal because many potential

homebuyers were shut out of the housing market due to excessively tight underwriting standards.

Related Literature

This paper belongs to the growing literature on dynamic optimal security design, which is a part of the

literature on dynamic optimal contracting models using recursive techniques that began with Green (1987),

Spear and Srivastava (1987), Abreu, Pearce and Stacchetti (1990) and Phelan and Townsend (1991), among

many others. Sannikov (2006a) developed continuous-time techniques for a principal-agent problem. The two

studies most closely related to ours are DeMarzo and Fishman (2004) and its continuous-time formulation

by DeMarzo and Sannikov (2006). These papers study long-term �nancial contracting in a setting with

privately observed cash �ows, and show that the implementation of the optimal contract involves a credit

line with a constant interest rate and credit limit, long-term debt, and equity. Biais et al. (2006) study

the optimal contract in a stationary version of DeMarzo and Fishman�s (2004) model and show that its

continuous time limit exactly matches DeMarzo and Sannikov�s (2006) continuous-time characterization of

the optimal contract. Tchistyi (2006) considers a setting with correlated cash �ows and shows that the

optimal contract can be implemented using a credit line with performance pricing. Sannikov (2006b) shows

that an adverse selection problem, due to the borrower�s private knowledge concerning the quality of a project

to be �nanced, implies that, in the implementation of the optimal contract, a credit line has a growing credit

limit. He (2007) studies the optimal executive compensation in the continuous-time agency model where the

manager privately controls the drift of the geometric Brownian motion �rm size. Clementi and Hopenhayn

(2006) and DeMarzo and Fishman (2006) o¤er theoretical analyses of optimal investment and security design

in moral hazard environments.

Unlike this paper, none of the above studies considers an environment with a stochastic discount rate. We

solve for the optimal allocation in the stochastic discount rate environment and �nd that its implementation

involves a variable interest rate charged on the borrower�s debt, as well adjustable preferential debt treat-

ment or balance adjustments, or a combination of both. On the technical side, building on the martingale

techniques developed for Lévy processes, we extend DeMarzo and Sannikov (2006) characterization of the

optimal allocation in a continuous-time setting to a stochastic discount rate environment.

There is a sizeable real estate �nance literature that addresses the design of mortgages in the presence

of asymmetric information between the borrower and lender. The bulk of this literature focuses on adverse

13See Joint Economic Committee (2007).
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selection and how it a¤ects the menu of mortgages being o¤ered to borrowers with limited insurance possi-

bilities. Chari and Jagannathan (1989) consider a model with two private types of borrowers, who di¤er in

terms of the riskiness of their potential gains from selling the property, and show that the optimal contract

to be chosen by borrowers with larger potential gains involves contractual arrangements such as points14

and prepayment penalties together with a "due-on-sale" clause. Brueckner (1994) develops a model in which

borrowers self-select into di¤erent loans, and shows that the optimal menu of mortgages will induce longer

term borrowers to select loans with higher points and a lower coupon. Unlike these two papers, LeRoy

(1996) considers a stochastic interest rate environment and �nds that, when borrowers re�nance optimally,

if interest rates fall, the points/coupon choice can at best serve only to separate the least mobile borrower

type from all others. Stanton and Wallace (1998) show that in the presence of transaction costs payable by

borrowers on re�nancing, it is possible to construct a separating equilibrium in which borrowers with di¤ering

mobility select �xed rate mortgages with di¤erent combinations of coupon rate and points. Posey and Yavas

(2001) study how borrowers with di¤erent private levels of default risk would self-select between �xed rate

mortgages and adjustable rate mortgages, and show the unique equilibrium may be a separating equilibrium

in which the high-risk borrowers choose the adjustable rate mortgages, while low-risk borrowers select the

�xed rate mortgages. Unlike these papers that focus on adverse selection, Dunn and Spatt (1985) consider

a two-period moral hazard model, where future income realizations of borrowers are uncertain and private,

and show that the optimal mortgage would involve a due-on-sale clause. In terms of this literature, to our

knowledge, our paper is the �rst study of optimal mortgage design in a dynamic moral hazard environment,

and the �rst study that addresses the optimality of alternative mortgage products.

There is also a large literature that focuses on the choice of mortgage contracts and the risk associated

with them (for example, Campbell and Cocco (2003)). Unlike our paper, this literature takes a space of

contracts as exogenously given, and studies the household choice within this restricted set of contracts.

Another branch of research investigates limited participation models, where housing collateral insulates

households from labor income shocks. Lustig and Van Nieuwerburgh (2006) typi�es this approach.

The paper is organized as follows. Section 2 presents the continuous-time setting of the model. Section

3 introduces the dynamic contracting model with a stochastic discount rate. Section 4 derives the optimal

contract. Section 5 presents the implementations of the optimal contract. Section 6 discusses the approx-

imate implementations of the optimal contract. Section 7 studies the e¢ ciency gains due to optimal and

approximately optimal contracts. Section 8 concludes.

14Points represent the amount paid either to maintain or lower the interest rate charged.
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2 Set-up

Time is continuous and in�nite. There is one borrower (a homebuyer) and one lender (a big �nancial

institution).15 The lender is risk neutral, has unlimited capital, and values a stochastic cumulative cash �ow

fftg as

E

24 1Z
0

e�Rtdft

35 ;
where Rt is the market interest rate at which the lender discounts cash �ows that arrive at time t. We

assume that

Rt =

tZ
0

rsds;

where r is an instantaneous interest rate process, which takes values in the set frL; rHg, where 0 < rL < rH :

We assume that r is a continuous-time process adapted to N , where N = fNt;F1;t; 0 � t <1g is a standard

compound Poisson process with the intensity �(Nt) on a probability space (
1;F1;m1), such that for t � 0 :

rt(Nt) =

8<: r0 if Nt is even

rc0 if Nt is odd
;

�(Nt) =

8<: �(r0) if Nt is even

�(rc0) if Nt is odd
;

where r0 2 frL; rHg is given, and rc0 = frL; rHg n fr0g : The above formulation implies that the interest rate

process is a �rst-order time-invariant continuous Markov chain with an exponential distribution with the

rate parameter �(rt) of waiting times between successive changes. That is, for any t � 0;

P [rt+s = rL for all s 2 [t; t+�) jrt = rL ] = e��(rL)�;

P [rt+s = rH for all s 2 [t; t+�) jrt = rH ] = e��(rH)�:

We assume that the borrower and the lender are su¢ ciently small so that their actions have no e¤ect on

macroeconomic variables such as the market interest rate.16

The borrower�s consumption consists of three categories. The �rst is "necessary" consumption, which

includes grocery food, medicine, transportation, shelter and other goods and services essential for the house-

hold survival. The second is housing consumption, which comes from owning or renting a house. Everything

15Without loss of generality, we can think about the lender as a group of investors who maximize their combined payo¤ from
the relationship with the borrower. How the investors divide proceeds among themselves is not relevant for the purpose of
designing an optimal contract between the borrower and the investors.
16 In a general equilibrium framework, actions of mortgage lenders and homebuyers on the aggregate level can a¤ect macro-

economic variables. However, as long as the economic agents on the individual level have no market power, they should regard
macroeconomic variables as exogenous in an equilibrium.
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else is "luxury" consumption, which, among many other things, may include such items as restaurant dining,

vacation trips, buying a new car, et cetera.

The cumulative minimum level of necessary consumption is given by an exogenous stochastic process f�tg

that incorporates shocks such as medical bills, auto repair costs, �uctuations of food and gasoline prices,

and so on. We assume that the borrower is in�nitely risk averse with respect to the necessary consumption

and risk neutral with respect to the luxury and housing consumption. That is, the borrower�s instantaneous

utility function is given by

u
�
dC0t ; dCt; dC

H
t

�
=

8<: �1; if dC0t < d�t

dCt + dC
H
t ; if dC

0
t � d�t

;

where
�
C0t
	
, fCtg and

�
CHt
	
denote cumulative �ows of the necessary, luxury and housing consumption.17

We assume that housing and luxury consumption are perfect substitutes. In other words, housing is a part

of luxury consumption. This assumption can be justi�ed by the fact that most US households tend to buy

houses by far exceeding their minimum housing needs. The primary di¤erence between luxury consumption

and housing is that luxury consumption can be adjusted instantaneously, while housing consumption is very

rigid. We assume that housing consumption remains constant as long as the borrower stays in the same

house.18

The borrower must use his income to �rst cover the necessary expenses �t before spending on luxury

consumption. Let �Yt � 0 denote the borrower�s total income up to time t. We will focus on the borrower�s

"excess" income Yt � �Yt � �t, which represents a better measure of the borrower�s ability to pay for a

house than the total income. From now on, we will refer to Yt and Ct simply as the borrower�s income and

borrower�s consumption.

The borrower values a stochastic cumulative consumption �ows fCtg and
�
CHt
	
as

E

24 1Z
0

e�
t
�
dCt + dC

H
t

�35 :
We assume that the borrower is credit constraint and impatient, i.e., for all t; 
 � rt.

A standard Brownian motion Z = fZt;F2;t; 0 � t <1g on (
2;F2;m2) drives the borrower�s income

process, where fF2;t; 0 � t <1g is an augmented �ltration generated by the Brownian motion. The bor-

17This speci�cation is similar in �avor to the one used by Ait-Sahalia, Parker and Yogo (2004) who propose a partial resolution
of the equity premium puzzle by distinguishing between the consumption of basic goods and that of luxury goods. In their
model, households are much more risk averse with respect to the consumption of basic goods, of which a certain amount is
required in every period, which is consistent with the subsistence aspect of basic goods and the discretionary aspect of luxuries.
18For simplicity, we do not consider a possibility that the borrower can make modi�cations that can either increase or decrease

the quality of the house.
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rower�s income up to time t, denoted by Yt, evolves according to

dYt = �dt+ �dZt; (1)

where � is the drift of the borrower�s disposable income and � is the sensitivity of the borrower�s income

to its Brownian motion component. We assume that the lender knows � and �, but does not know realiza-

tions the borrower�s excess income shocks Zt, so the borrower has the ability to misrepresent his income.

Thus, realizations of the borrower�s income are not contractible. These assumptions are motivated by the

observation that lenders use a variety of methods19 to determine a type of the borrower (represented here

by (�; �) pair) before the loan is approved, but henceforth do not condition the terms of the contract on the

realizations of the borrower�s income, likely because the borrower�s necessary spending shocks and possibly

his total income as well are too costly or impossible to monitor.

The borrower is allowed to maintain a private savings account. The private savings account balance S

grows at the interest rate �, which is adapted to the process r, and is such that for all t; �t � rt. The

borrower must maintain a non-negative balance in his account.

The borrower wants to buy a home at date t = 0.20 We assume that the borrower intends to live in

this home forever. The ownership of the home would generate him public and deterministic utility stream
dCH

t

dt = �. The price P of the home is less than the borrower�s initial wealth Y0, i.e., 0 � Y0 < P .21 Thus,

the borrower must obtain funds from the lender to �nance the purchase of the home.

Before purchase of the house, the borrower and the lender sign a contract that will govern their rela-

tionship after the purchase is made. The contract speci�es transfers between the borrower and the lender,

conditional on the history of the borrower�s reports and the circumstances under which the lender would

foreclose the loan and seize the home. If the borrower violates the terms of the contracts or defaults at

time t, he loses the home and receives his reservation value equal to A. Reservation value A represents the

borrower�s continuation utility after the loss of the home, which incorporates such factors as the consumption

value �

 of his expected future income, �nancial and intangible moving costs, losses with the damaged credit

history, and the option to buy or rent another home in the future. The lender sells the repossessed house at

a foreclosure auction and receives payo¤ L.

We assume that the liquidation value L of the house and the borrower�s reservation utility A are low

enough:

rHL+ 
A < � + �;

19Like credit score, demographic variables and so on.
20To justify the initial purchase of the home, we assume that the borrower extracts more utility from the house when he owns

it than when he rents it.
21The price P is considered as a macroeconomic variable, which is not a¤ected by actions of the borrower and the lender. It

is reasonable to expect that the home price P is increasing in its utility �, and the borrower optimizes over the set of available
(�; P ) pairs. This optimization is not considered in the paper. This clearly does not lead to a loss of generality, since our
analysis applies to any (�; P ) pair.
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so that it is not e¢ cient to repossess the house, and that A � �

 . For the sake of simplicity, our analysis is

focused on a time homogeneous environment with L and A being constant over time.

3 Dynamic Moral Hazard Problem

At time 0, the funds needed to purchase the home in the amount of P � Y0 are transferred from the lender

to the borrower. An allocation, (� ; I); speci�es a termination time of the relationship, � ; and the transfers

between the lender and the borrower that are based on the borrower�s report of his income and the realized

interest rate process. Let (
;F ;m) := (
1 � 
2;F1 �F2;m1 �m2) be the product space of (
1;F1;m1)

and (
2;F2;m2). Let Ŷ =
n
Ŷt : t � 0

o
be the borrower�s report of his income, where Ŷ is (Y; r)-measurable

(Ft�measurable). At any time 0 � t � � , the allocation transfers the reported amount, Ŷt; from the borrower

to the lender, and It(Ŷ ; r) from the lender to the borrower. Below we formally de�ne an allocation.

De�nition 1 An allocation, � = (� ; I); speci�es a termination time; � ; and transfers from the lender to the

borrower, I = fIt : 0 � t � �g ; that are based on Ŷ and r. Formally, � is a (Ŷ ; r)-measurable stopping time,

and I is a (Ŷ ; r)-measurable continuous-time process, which is such that the process

E

24 �Z
0

e�
sdIs jFt

35
is square-integrable for 0 � t � � and Ŷ = Y:

The borrower can misreport his income. Consequently, under the allocation � = (� ; I); up to time t � � ,

the borrower receives a total �ow of income equal to

(dYt � dŶt)| {z }
misreporting

+ dIt;

and his private savings account balance, S, grows according to

dSt = �tStdt+ (dYt � dŶt) + dIt � dCt; (2)

where dCt is the borrower�s consumption at time t; which must be non-negative. We remember that, for all

t � 0; St � 0 and �t � rt:

In response to an allocation (� ; I); the borrower chooses a feasible strategy that consists of his consumption

choice and the report of his income in order to maximize his expected utility. Below we formally de�ne the

feasible strategy of the borrower.

De�nition 2 Given an allocation � = (� ; I); a feasible strategy for the borrower is a pair (C; Ŷ ) such that

12



(i) Ŷ is a continuous-time process adapted to (Y; r),

(ii) C is a nondecreasing continuous-time process adapted to (Y; r);

(iii) the savings process de�ned by (2) stays non-negative.

The borrower�s strategy is incentive compatible if it maximizes his lifetime expected utility in the class

of all feasible strategies given an allocation � = (� ; I). As a result, we have the following de�nition.

De�nition 3 Given an allocation � = (� ; I), the borrower�s strategy (C; Ŷ ) is incentive compatible if

(i) given an allocation � = (� ; I); the borrower�s strategy (C; Ŷ ) is feasible,

(ii) given an allocation � = (� ; I); the borrower�s strategy (C; Ŷ ) provides him with the highest expected

utility among all feasible strategies, that is

E

24 �Z
0

e�
t(dCt + �dt) + e
�
�A jF0

35 � E0

24 �Z
0

e�
t(dC 0t + �dt) + e
�
�A jF0

35

for all the borrower�s feasible strategies (C 0; Ŷ 0); given an allocation � = (� ; I):

The above de�nition does not explicitly include the participation constraint imposing the condition that

the borrower�s utility from the continuation of the allocation should be at least as large as the borrower�s

outside option, A; which he can receive at any time by quitting. As the borrower can always under-report

and steal at rate 
A until a termination time, any incentive compatible strategy would yield the borrower

utility of at least A.

The above de�nition of an incentive compatible strategy allows us to de�ne the incentive compatible

allocation as follows.

De�nition 4 An incentive compatible allocation is an allocation � = (� ; I), together with the recommenda-

tion to the borrower, (C; Ŷ ); where (C; Ŷ ) is a borrower�s incentive compatible strategy given an allocation

� = (� ; I).

The allocation is optimal if it provides the borrower with his initial expected utility a0 and maximizes the

expected pro�t of the lender in the class of all allocations that are incentive-compatible. Below we provide

a formal de�nition of the optimal allocation.

De�nition 5 Given the continuation utility to the borrower, a0, an allocation � = (��; I�), together with a

recommendation to the borrower (C�; Ŷ �) is optimal if it maximizes the lender�s expected utility:

E

24 �Z
0

e�Rt(dŶt � dIt) + e�R��L jF0

35
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in the class of all incentive-compatible allocations that satisfy the following promise keeping constraint:

a0 = E

24 �Z
0

e�
t(dCt + �dt) + e
�
�A jF0

35 :
We note that maximizing the lender�s expected utility is equivalent to maximizing the lender�s pro�t,

which equals the lender�s expected utility less the loan amount to the borrower [P � Y0], which we take as

given.

In the following lemma, we show that searching for optimal allocations, we can restrict our attention to

allocations in which truth telling and zero savings are incentive compatible.

Lemma 1 There exists an optimal allocation in which the borrower chooses to tell the truth and maintains

zero savings.

Proof In the Appendix.

The intuition for this result is straightforward. The �rst part of the result is due to the direct-revelation

principle. The second part follows from the fact that it is weakly ine¢ cient for the borrower to save on his

private account (�t � rt) as any such allocation can be improved by having the lender save and make direct

transfers to the borrower. Therefore, we can look for an optimal allocation in which truth telling and zero

savings are incentive compatible.

4 Derivation of the Optimal Allocation

In this subsection, we formulate recursively the dynamic moral hazard problem and determine the optimal

allocation. First, we consider a problem in which the borrower is not allowed to save and we determine the

optimal allocation22 in this environment. We know from Lemma 1 that it is su¢ cient to look for optimal

allocations in which the borrower reports truthfully and maintains zero savings, and so the optimal allocation

of the problem with no private savings, for a given continuation utility to the borrower, yields to the lender

at least as much utility as the optimal allocation of the problem when the borrower is allowed to privately

save. Finally, we show that the optimal allocation of the problem with no private savings is fully incentive

compatible, even when the borrower can maintain undisclosed savings.

Methodologically, our approach is based on continuous-time techniques used by DeMarzo and Sannikov

(2006). We extend their techniques to a setting with Lévy processes.

22That is the allocation satisfying the properties of De�nition 5 and the additional constraint that S = 0.
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4.1 The Optimal Allocation without Hidden Savings

Consider for a moment the dynamic moral hazard problem in which the borrower is not allowed to save.

First, we will �nd a convenient state space for the recursive representation of this problem. For this purpose,

we de�ne the borrower�s total expected utility received under the allocation � = (� ; I) conditional on his

information at time t, from transfers and termination utility, if he tells the truth:

Vt = E

24 �Z
0

e�
s [dIs + �ds] + e
�
�A jFt

35 :
Lemma 2 The process V = fVt;Ft; 0 � t < �g is a square-integrable Ft-martingale.

Proof follows directly from the de�nition of process V and the fact that this process is square-integrable,

which is implied by De�nition 1.

Below is a convenient representation of the borrower�s total expected utility received under the allocation

� = (� ; I) conditional on his information at time t, from transfers and termination utility, if he tells the

truth. Let M = fMt = Nt � t�(Nt);F1;t; 0 � t <1g be a compensated compound Poisson process.

Proposition 1 There exists Ft-predictable processes (�;  ) = f(�t;  t); 0 � t � �g such that

Vt = V0 +

Z t

0

e�
s�sdZs +

Z t

0

e�
s sdMs =

V0 +

Z t

0

e�
s�s

�
dYs � �ds

�

�
| {z }

dZs

+

Z t

0

e�
s s(dNs � �(Ns)ds): (3)

Proof We note that the couple (Z;N) is a Brownian-Poisson process, and it is an independent increment

process, which is a Lévy processes, on the space (
;F ;m): Then, Theorem III.4.34 in Jacod and Shiryaev

(2003) gives us the above martingale representation for a square-integrable martingale adapted to Ft taking

values in a �nite dimensional space (the process V ).

According to the martingale representation (3), the total expected utility of the borrower under the

allocation � = (� ; I) and truth telling conditional on his information at time t equals its unconditional

expectation plus two terms that represent the accumulated e¤ect on the total utility of, respectively, the

income uncertainty revealed up to time t (Brownian motion part), and the interest rate uncertainty that has

been revealed up to time t (compensated compound Poisson part).

According to Proposition 1, when the borrower reports truthfully, his total expected utility under the

allocation � = (� ; I) conditional on the termination time � equals

V� = V0 +

Z �

0

e�
s�s

�
dYs � �ds

�

�
+

Z �

0

e�
s sdMs:
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As I and � depend exclusively on the borrower�s report Ŷ and the public interest rate process r, when the

borrower reports Ŷ ; by (3) he gets the expected utility, a0(Ŷ ), which equals

a0(Ŷ ) = E

26664V0 +
Z �

0

e�
t�t

 
dŶt � �dt

�

!
+

Z �

0

e�
t tdMt +

Z �

0

e�
t(dYt � dŶt)| {z }
utility from stealing

jF0

37775 =
E

�
V0 +

Z �

0

e�
t�t

�
dYt � �dt

�

�
+

Z �

0

e�
t
�
1� �t

�

��
dYt � dŶt

�
+

Z �

0

e�
t tdMt jF0
�
: (4)

Note that because the process (�;  ) = f(�t;  t); 0 � t � �g is Ft�predictable; as for any t � 0, s � 0;

E0 [Zt+s � Zt jF0 ] = E0 [Mt+s �Mt jF0 ] = 0; and given that E [V0 jF0 ] = V0; we have that

a0(Ŷ ) = V0 + E

�Z �

0

e�
t
�
1� �t

�

��
dYt � dŶt

�
jF0
�
: (5)

Representation (5) leads us to the following formulation of incentive compatibility.

Proposition 2 If the borrower cannot save, truth telling is incentive compatible if and only if �t � �

(m� a:s:) for all t � � :

Proof Immediately follows from (5).

It is important to stress that in providing incentives for truth telling one can neglect an impact of reporting

strategies on the magnitude of the adjustments,  ; in the borrower�s continuation utility that occurs when

the lender�s interest rate changes. It follows from (4) that, though in principle the reporting strategy of

the borrower does a¤ect the magnitude of these adjustments, from the perspective of the borrower such

adjustments have zero e¤ect on the borrower�s expected utility, whatever is his reporting strategy. This

property considerably simpli�es the formulation of incentive compatibility.

To characterize the optimal allocation recursively, we de�ne the borrower�s continuation utility at time t

if he tells the truth as

at = E

�Z �

t

e�
(s�t) [dIs + �ds] + e
�
(��t)A jFt

�
:

Note that for t � � we have that

Vt =

Z t

0

e�
s(dIs + �dt) + e
�
tat:

But this, together with (3), implies the following law of motion of the borrower�s continuation utility:

dat = 
atdt� �dt� dIt + �tdZt +  tdMt = (
at � � �  t�(rt)) dt� dIt + �tdZt +  tdNt: (6)
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Here we discuss informally, using the dynamic programming approach, how to �nd out the most e¢ cient

way to deliver to a borrower any continuation utility a � A. The proof of Proposition 3 formalizes our

discussion below. Let b(a; r) be the highest expected utility of the lender that can be obtained from an

incentive compatible allocation that provides the borrower with utility equal to a given that the current

interest rate is equal to r. To simplify our discussion we assume that the function b is concave and C2 in

its �rst argument. Let b0 and b00 denote, respectively, the �rst and the second derivative of b with respect to

the borrower�s continuation utility a.

We start by observing that transferring lump-sum dI from the lender to the borrower with continuation

utility a; moves an allocation to that of the borrower�s continuation utility of a� dI: The e¢ ciency implies

that

b(a; r) � b(a� dI; r)� dI; (7)

which shows that for all (a; r) 2 [A;1)�frL; rHg the marginal cost of delivering the borrower his continuation

utility can never exceed the cost of an immediate transfer in terms of the lender�s utility, that is

b0(a; r) � �1:

De�ne a1(r); r 2 frL; rHg, as the lowest value of a such that b0(a; r) = �1: Then, it is optimal to pay the

borrower as follows

dI(a; r) = max(a� a1(r); 0):

These transfers, and the option to terminate, keep the borrower�s continuation utility between A and a1(r):

But this implies that when a 2 [A; a1(r)]; and when the borrower is telling the truth, his continuation utility

evolves according to

dat(rt) = (
at � � � �(rt) t) dt+ �tdZt +  tdNt: (8)

We need to characterize the optimal choice of process (�t;  t); where
�t
� determines the sensitivity of the

borrower�s continuation utility with respect to his report, and  t determines the adjustment of the borrower�s

continuation utility due to a change in the interest rate. Using Ito�s lemma, we �nd that

db(at; rt) = (
at � � �  t�(rt))b0(at; rt)dt

+
1

2
�2t b

00(at; rt)dt+ �tb
0(at; rt)dZt + [b(at +  t; r

c
t )� b(at; rt)] dNt;
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where rct = frL; rHg n frtg. Using the above equation, we �nd that the lender�s expected cash �ows and the

change in the value he assigns to the allocation are given as follows:

E [dYt + db(at; rt) jFt ] =�
�+ (
at � � �  t�(rt))b0(at; rt) +

1

2
�2t b

00(at; rt) + �(rt) (b(at +  t; r
c
t )� b(at; rt))

�
dt:

From Proposition 2, we know that if �t � � for all t � � then the borrower�s best response strategy is

to report the truth, that is, Ŷ = Y: Because at the optimum, at any time t; the lender should earn an

instantaneous total return equal to the interest rate, rt, we have the following Bellman equation for the

value function of the lender

rtb(at; rt) =

max
�t��,  t�A�at

�
�+ (
at � � �  t�(rt))b0(at; rt) +

1

2
�2t b

00(at; rt) + �(rt) (b(at +  t; r
c
t )� b(at; rt))

�
: (9)

Given the concavity of the function b(�; rt), b00(at; rt) = d2b(at;rt)
da2t

� 0, setting

�t = �

for all t � � is optimal. The concavity of the objective function in  t in the RHS of the Bellman equation

(9) also implies that the optimal choice of  t is given as a solution to

b0(at; rt) = b0(at +  t; r
c
t ); (10)

provided that  t > A� at; and otherwise  t = A� at. Note that this implies that  t =  (at; rt):

The lender�s value function therefore satis�es the following di¤erential equation

rtb(at; rt) = �+(
at��� (at; rt)�(rt))b0(at; rt)+
1

2
�2b00(at; rt)+�(rt) (b(at +  (at; rt); r

c
t )� b(at; rt)) (11)

with b(at; rt) = b(a1(rt); rt)� (a� a1(rt)) for at > a1(rt) and the function  speci�ed above.

We need some boundary conditions to pin down a solution to this equation and the boundaries a1(r);

r 2 frL; rHg. The �rst boundary condition arises because the relationship must be terminated to hold the

borrower�s value to A, so b(A; rt) = L. The second boundary condition comes from the fact that the �rst

derivatives must agree at the boundary, so b0(a1(rt); rt) = �1: The �nal boundary condition is the condition

for the optimality of a1(rt), which requires that the second derivatives match at the boundary. This condition

implies that b00(a1(rt); rt) = 0, or equivalently, using equation (11), that

rtb(a
1(rt); rt) = �+ � � 
a1(rt) + �(rt)

�
 (a1(rt); rt) + b(a

1(rt) +  (a
1(rt); rt); r

c
t )� b(a1(rt); rt)

�
: (12)
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By de�nition, a1(r) is the lowest value of a such that b0(a; r) = �1; thus

 (a1(rL); rL) = � (a1(rH); rH) = a1(rH)� a1(rL):

This, combined with (12) implies that

�+ � = rLb(a
1(rL); rL) + 
a

1(rL)� �(rL)
�
b(a1(rH); rH)� b(a1(rL); rL) + a1(rH)� a1(rL)

�
;

�+ � = rHb(a
1(rH); rH) + 
a

1(rH)� �(rH)
�
b(a1(rL); rL)� b(a1(rH); rH) + a1(rL)� a1(rH)

�
:

The proposition below formalizes our �ndings.

Proposition 3 Let b be a C2 function (in a) that solves:

rb(a; r) = �+ (
a� � �  (a; r)�(r))b0(at; rt) +
1

2
�2b00(a; r) + �(rt) (b(at +  (a; r); r

c)� b(a; r)) ; (13)

when a is in the interval [A; a1(r)]; and b0(a; r) = �1 when a > a1(r), with boundary conditions b(A; r) = L

and

�+ � = rLb(a
1(rL); rL) + 
a

1(rL)� �(rL)
�
b(a1(rH); rH)� b(a1(rL); rL) + a1(rH)� a1(rL)

�
;

�+ � = rHb(a
1(rH); rH) + 
a

1(rH)� �(rH)
�
b(a1(rL); rL)� b(a1(rH); rH) + a1(rL)� a1(rH)

�
;

and where

 (a; r) =

8>>>>>><>>>>>>:

is a C1 (in a) solution to b0(a; r) = b0(a+  ; rc) for all (a; r)

for which the solution is such that  (a; r) > A� a

otherwise it is equal to A� a

; (14)

where r 2 frL; rHg and rc = frL; rHg n frg :

Then the optimal allocation that delivers to the borrower the value a0 takes the following form:

(i) If a0 2 [A; a1(r0)]; r0 2 frL; rHg ; at evolves as

dat(rt) = (
atdt� �dt� dIt) + (dŶt � �dt) +  (at; rt)(dNt � �(rt)dt); (15)

and

�when at 2 [A; a1(rt)), dIt = 0;

�when at = a1(rt) the transfers dIt cause at to re�ect at a1(rt):

(ii) If a0 > a1(r0) an immediate transfer a0 � a1(r0) is made.
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The relationship is terminated at time � when at hits A. The lender�s expected utility at any time t is

given by the function b(at; rt) de�ned above, which is strictly concave in at over [A; a1(rt)].

Proof In the Appendix.

The evolution of the continuation utility (15) implied by the optimal allocation serves three objectives:

promise keeping, incentives, and e¢ ciency. The �rst component of (15) accounts for promise keeping. In

order for at to correctly describe the lender�s promise to the borrower, it should grow at the borrower�s

discount rate, 
; less the payment, �dt, he receives from owning the home, and less the �ow of payments,

dIt; from the lender.

The second term of (15) provides the borrower with incentives to report truthfully his income to the

lender. Because of ine¢ ciencies resulting from liquidation, reducing the risk in the borrower�s continuation

utility lowers the probability that the borrower�s expected utility reaches A, and thus lowers the probability

of costly liquidation. Therefore, it is optimal to make the sensitivity of the borrower�s continuation utility

with respect to its report as small as possible provided that it does not erode his incentives to tell the truth.

The minimum volatility of the borrower�s continuation utility with respect to his report of income required

for truth-telling equals 1. To understand this, note that, under this choice of volatility, underreporting

income by one unit would provide the borrower with one additional unit of current utility through increased

consumption, but would also reduce the borrower�s continuation utility by one unit, so that this volatility

provides the borrower with just enough incentives to report a true realization of income. Note that when

the borrower reports truthfully, the term
�
dŶt � �dt

�
is driftless and equals to �dZt.

The last term of (15) captures the e¤ects of changes in the lender�s interest rate process on the borrower�s

continuation utility. The optimal adjustments,  , in the borrower�s continuation utility, which are applicable

when there is a change in the lender�s interest rate, are such that the sensitivity of the lender�s expected

utility, b, with respect to the borrower�s continuation utility, a, is equalized just before and after an adjust-

ment is made.23 This sensitivity represents an instantaneous marginal cost of delivering the borrower his

continuation utility in terms of the lender�s utility, and so the e¢ ciency calls for equalizing this cost across

the states. We note that these adjustments imply the compensating trend in the borrower�s continuation

utility, ��(rt) (at; rt)dt, which exactly o¤sets the expected e¤ect these adjustments have on the borrower�s

expected utility.

Below we state a useful lemma that characterizes the behavior of the optimal allocation when the bor-

rower�s continuation utility is close to liquidation and there is an interest rate change.

Lemma 3 At the optimal allocation, there exists �a 2 (A; a1(rL)] such that

-  (A; rH) = �a�A;

23Provided that the solution to (10) is interior.
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-  (a; rL) = A� a for a 2 [A; �a]:

Proof From the de�nition of function b and the fact that rL < rH it follows that, for any a > A,

b(a; rL) > b(a; rH): This, together with b(A; rL) = b(A; rH) = L, implies that b0(A+; rL) > b0(A+; rH). Let

�a be the smallest a > A such that b0(a; rL) = b0(A+; rH). The existence of such �a follows from the fact that,

for any a 2 [A; a1(rt)]; b0(a; rt) � �1 and b0(a1(rt); rt) = �1: This combined with (14) yields us the alleged

properties of function  .

Corollary 1 Lemma 3 implies that under the optimal allocation, whenever at 2 (A; �a], an instantaneous

increase of the interest rate, rt; triggers the termination of the relationship.

4.2 The Optimal Allocation with Hidden Savings

So far we have characterized the optimal allocation under the assumption that the borrower cannot save.

Now we show that, given the optimal allocation of the problem with no hidden savings, the borrower has no

incentive to save at the solution, and thus the allocation of Proposition 3 is also optimal in the environment

where the borrower can privately save.

Proposition 4 Suppose that the process at is bounded above and solves

dat = 
atdt� �dt� dIt + (dŶt � �dt) +  tdMt (16)

until stopping time � = min ft jat = Ag ; where  t is an Ft�predictable process. Then the borrower�s expected

utility from any feasible strategy in response to an allocation (� ; I) is at most a0: Moreover, the borrower

attains the expected utility a0 if the borrower reports truthfully and maintains zero savings.

Proof In the Appendix.

The above proposition shows that allocations from a broad class, including the optimal allocation of

Proposition 3, remain incentive-compatible even if the borrower is allowed to privately save.

4.3 An Example

In this section we illustrate the features of the optimal allocation in a parametrized example. Table 1 shows

the parameters of the model.
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Table 1. Parameters of the model

Interest rate process
Borrower�s

discount rate

Income

process

Utility �ow

from home

Liquidation

values

rL rH �(rL) �(rH) 
 � � � A L

1.5% 6.5% 0.12 0.12 8% 1 1 1 12.5 12

The left hand-side of Figure 1 shows the lender�s value function at both interest rates as a function of the

borrower�s continuation utility. For a given continuation utility to the borrower, the value function of the

lender at the low interest rate is always above the one at the high interest rate, except at termination when

they are equal, as the lender attaches more value to the proceeds from the continuation of the relationship

when his discount rate is lower. As we observe, it is optimal to allow the borrower to consume his disposable

income earlier when the interest rate is low, that is a1(rL) < a1(rH). Intuitively, when the lender�s interest

rate is low, it is more costly to postpone borrower�s consumption, as tension between the borrower�s valuation

of future payo¤s and that of the lender is larger. To reduce this cost, it is optimal to allow the borrower to

consume his excess disposable income earlier.

The right hand-side of Figure 1 shows the optimal adjustments in the borrower�s continuation utility,  ,

applicable when there is a change in the market interest rate. The borrower�s continuation utility increases

with a decrease in the interest rate and decreases with an interest rate increase, except in the area close to

the re�ection barriers when this relationship is reversed. The size of these adjustments is proportional to

the distance of the borrower�s continuation utility from the termination cuto¤ of A.

The optimal adjustment of the borrower�s continuation utility,  , is shaped by two competing forces

stemming from, respectively, the costly termination of the relationship and the di¤erence in the discount

rates. The closer the borrower�s continuation utility is to the termination boundary A; the bigger is the role

played by the costly termination in shaping the optimal adjustment function. It is e¢ cient to reduce the

chances of costly termination when the interest rate falls, as the stream of transfers from the borrower is more

valuable for the lender when the interest rate is low. A reduction in the likelihood of termination is engineered

by in�uencing the borrower�s continuation utility in two ways. First, it is optimal to instantaneously increase

the borrower�s continuation utility if the market interest rate falls, and this is even more so the more likely

the relationship is to be terminated. Second, it is optimal to introduce a positive trend in the law of motion of

the borrower�s continuation utility, which reinforces the �rst adjustment over time to the extent the interest

rate stays low. As a result of these adjustments, the chances of costly home repossession are reduced by

moving the borrower�s continuation utility further away from the termination boundary A. However, the

threat of repossession must be real enough in order for the borrower to share his income with the lender. As

a result, the optimal allocation increases the chances of repossession when the interest rate is high in order

to compensate for the weakened threat of repossession in the low-interest state, both by instantaneously
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Figure 1: The lender�s value function and the optimal adjustments in the borrower�s continuation utility.

decreasing the borrower�s continuation utility and by introducing a negative trend in its law of motion.

If the borrower�s continuation utility is distant from the termination boundary A; then, intuitively,

the discrepancy in the discount rates begins to play the dominant role in shaping the optimal adjustment

function, as the likelihood of termination is small. When the lender�s interest rate switches to low, there is

more tension between the borrower�s valuation of future payo¤s and that of the lender, and thus it is more

costly to postpone the borrower�s consumption, the more so the bigger is his continuation utility. To reduce

this cost, it is optimal to decrease the borrower�s continuation utility when the interest rate falls, by both

an instantaneous adjustment and a negative time trend, provided that his prior continuation utility was

su¢ ciently large. In order to compensate for this reduction in the borrower�s continuation utility when the

interest rate switches to low, his continuation utility is increased to a range of high values of the borrower�s

continuation utility when the interest rate increases. It is important to observe that the adjustment of the

borrower�s continuation utility in this region has second order welfare e¤ects. This is because there is less

di¤erence between the slopes of the lender�s value function at the low and at the high interest rate state, the

further away the borrower�s continuation utility is from the termination boundary A: We will use this fact

in Section 6, where we simply ignore the adjustments of the borrower�s continuation utility in a region close

to the re�ection barriers.
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5 Implementations of the Optimal Allocation

So far, we have characterized the optimal allocation in terms of the transfers between the borrower and the

lender and liquidation timing. In this section, we show that the optimal allocation can be implemented using

�nancial arrangements that resemble the ones used in the residential mortgage market.

We consider di¤erent ways to implement the optimal allocation. First, we show that the optimal allocation

can be implemented using an option adjustable rate mortgage (option ARM) with a preferential interest

rate. The practical advantage of this implementation is that the mortgage balance is not directly a¤ected

by changes in the interest rates in the economy. Second, we discuss alternative implementations: (i) an

interest only mortgage with HELOC and two way balance adjustment and (ii) an interest only mortgage

with HELOC with a preferential rate and one way balance adjustment.

We start with the following de�nition.

De�nition 6 The mortgage contract is optimal if it implements the optimal allocation of Proposition 3.

5.1 Option ARM

In this section, we consider an option ARM. This is an adjustable rate mortgage with no minimum payment.

A part of the mortgage debt is subject to the preferential interest rate. The de�nition below provides a

formal description of this class of mortgage contracts.

De�nition 7 An option adjustable rate mortgage with a preferential interest rate consists of:

- Mortgage loan with a time-t negative amortization limit equal to CLt : If the balance of the loan exceeds

the negative amortization limit, default occurs, in which case the lender repossesses the home.

- At any time t, an instantaneous interest rate on the balance, Bt; is equal to a preferential rate �r
p
t on a

part of the balance below pt, and �rt on the part of the balance above pt.

Figure 2 graphically demonstrates features of option ARM.

The proposition below shows that the optimal allocation can be implemented with an option ARM with

a preferential interest rate.

Proposition 5 There exists an optimal option adjustable rate mortgage with a preferential interest rate that
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Figure 2: Option ARM structure

has the following features

�rt(Bt � pt; rt) = 
 + �(rt)

�
 (a1(rt)� (Bt � pt); rt)�  (a1(rt); rt)

�
Bt � pt

; if Bt � pt (17)

�rpt (pt; rt) =
� + �� 
a1(rt) + �(rt) (a1(rt); rt)

pt
(18)

CLt (pt; rt) = pt + a
1(rt)�A (19)

dpt =

8<:
�
 (a1(rt)� (Bt � pt); rt)�

�
a1(rct )� a1(rt)

��
dNt; if Bt � pt

0; if Bt < pt
: (20)

Under the terms of this mortgage, it is optimal for the borrower to use all available cash �ows to pay down

balance Bt when Bt > pt, and consumes all excess cash �ows once the balance drops to pt. For balance

Bt � pt, the borrower�s continuation utility at is equal to

at = A+
�
CLt (pt; rt)�Bt

�
= a1(rt)� (Bt � pt) (21)

If the preferential rate reaches its upper boundary 
, the mortgage is reset to a more complicated contract

that implements the continuation of the optimal allocation.

Proof In the Appendix.
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Remark 1 The initial balance B0 should be greater than or equal to p0. If B0 < p0, it is optimal for the

borrower to consume p0 �B0 immediately by increasing the balance to p0.

Remark 2 The negative amortization limit equal to CLt , preferential balance pt, and the preferential interest

rate �rpt are reset only when the interest rate in the economy changes.

Remark 3 When default happens, the lender receives the liquidation value L of the home, and the borrower

obtains the value A of his outside option.

Remark 4 In order for the mortgage to remain incentive compatible, the preferential rate �rpt must stay

below 
. Although it is theoretically possible, our simulations show that for most parameters chances of the

preferential rate reaching its upper boundary 
 over a period of 30 years are extremely small.

Remark 5 In the proposed implementation, parameter p0 at time zero can be chosen arbitrarily, provided

interest rate �rp0 given by (18) is no greater than 
. One way to initiate the mortgage is to have the market

value of the mortgage equal to the book value:

B0 = b
�
r0; p0 + a

1(r0)�B0
�
:

How does the optimal option adjustable rate mortgage implement the optimal allocation? The debt

balance above the debt limit subject to the preferential interest rate can be considered as a memory device

that summarizes all the relevant information regarding the past cash �ow realizations revealed by the bor-

rower through repayments. The interest rates charged on the balance, along with the preferential debt limit,

and the negative amortization limit are chosen so that equation (21) always holds. This ensures incentive

compatibility of the mortgage. Indeed, at any time t the borrower can consume all his available credit

CLt (pt; rt) � Bt and default immediately. However, (21) implies that the payo¤ from this strategy is equal

to the expected utility at the borrower would obtain by postponing consumption until his debt balance is

reduced to the preferential debt limit.

The adjustable features of the above mortgage contract are needed to implement the e¤ects of the changes

in the interest rate on the borrower�s continuation utility. In the optimal option ARM, the adjustments of the

debt subject to the preferential rate (20) and the adjustments to the negative amortization limit implement

all instantaneous adjustments in the borrower�s promised utility that are applicable when the lender�s interest

rate changes. The variable component of the interest rate (28) guarantees that a change in the borrower�s

promised utility implied by the mortgage contract includes the trend that compensates the borrower, in

expectation, for the instantaneous adjustments in his promised utility that happen when the interest rate

changes.

The �xed component of the interest rate (17) on the debt above the preferential debt limit insures that

under the optimal strategy of the borrower, given the above mortgage contract, the borrower�s promised
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utility would be increased at the rate of 
 as in the optimal allocation. The preferential interest rate insures

that an above-average income realization and thus an above-average repayment increases the borrower�s

promised utility, which corresponds here to a decrease in his debt balance, and vice versa.

To further characterize the above mortgage contract, we will restrict our attention to the environment in

which the optimal contract satis�es the following condition.24

Condition 1 Function  implied by the optimal allocation is such that  (a; rL) is strictly increasing in a

for a 2 [�a; a1(aL)]; and so  (a; rH) is strictly decreasing in a for a 2 [A; a1(aH)], where �a is de�ned as in

Lemma 3.

Parameters CLt , pt, �r
p
t and �rt are reset each time the interest rate in the economy changes. This is needed

to take into account the e¤ects that the interest rate in the economy has on the borrower�s continuation

utility. As the following corollary shows, under the optimal option ARM with preferential interest rate,

whenever the debt balance is close to the negative amortization limit, an increase in the interest rate would

cause default on the mortgage. If the optimal adjustment function,  , satis�es the properties of Condition 1,

a decrease in the lender�s interest rate results in an increase in the amount of debt subject to the preferential

rate and vice versa. In addition, interest rate �rt positively correlates with the lender�s interest rate.

Corollary 2 The optimal option ARM with preferential interest rate has the following properties:

i) Let �Bt = pt + a
1(rL)� �a where �a is de�ned as in Lemma 3. Then, whenever Bt 2 [ �Bt; CLt (pt; rL)); an

instantaneous increase in the interest rate in the economy triggers mortgage default;

ii) Suppose further that function  corresponding to the optimal contract satis�es the properties of Con-

dition 1, then,

� dpt < 0; whenever interest rate rt increases,

� dpt > 0; whenever interest rate rt decreases,

� for any B0 2 [pt; CLt (rL)] and B00 2 [pt; CLt (rH)];

�rt(B
0 � pt; rL) < 
 < �rt(B

00 � pt; rH)

Proof Corollary 2 follows from Proposition 5 and Lemma 3.

Since it is optimal for the borrower to use all available cash �ows to pay down balance Bt as long as

Bt > pt, lower rates on the mortgage do not necessarily reduce the mortgage payments. It is optimal to

reduce interest rates, and as a result default rates, when the interest rate in the economy is low because the

stream of borrower�s payments is more valuable for the lender when the lender discounts them with lower

24This condition holds in all parametrized examples we considered.
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interest rate. On the other hand, the threat of repossession must be real enough for the borrower to share

his income with the lender. As a result the optimal option ARM increases the chances of repossession by

charging higher rates when the interest rate in the economy is high in order to compensate for the weakened

threat of repossession when the interest rate in the economy is low. Also, unless the borrower�s balance is

su¢ ciently close to the preferential debt limit, the borrower enjoys an increase of the negative amortization

limit when the market rate switches to low and vice versa.

Figure 3: Variable interest rate charged on the optimal option ARM�s balance above the preferential debt
limit.

Figure 3 presents the variable interest rate charged on the balance of the optimal option ARM above the

preferential debt limit in the parametrized environment of Section 4.3.

5.2 Alternative Implementations

In this section, we discuss alternative implementations of the optimal allocation. Option ARM, which is

essentially a single revolving line of credit, is one but not the only way to implement the optimal allocation.

Its main advantage is that evolution of the balance on the loan is determined entirely by the borrower�s

payments and the interest rates charged on the balance. We show that the optimal allocation can also

be implemented using interest only mortgages with home equity line of credit (HELOC), a contract that

emerges from the option ARM by explicitly separating the interest payments on the mortgage debt from the

embedded credit line.

An interest only mortgage with HELOC is a combination of two forms of debt - an interest only mortgage
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Figure 4: Optimal balance adjustment and the variable interest rate on the HELOC debt.

and a second "piggyback"25 mortgage that closes simultaneously with the �rst. Recently, there has been a

noticeable increase in the use of "piggyback" mortgages, and many lenders structure a second "piggyback"

loan as a home equity line of credit. These lines are revolving lines of credit like credit cards, yet they are

secured by the borrower�s home collateral. Homeowners who pay o¤ the line of credit can continue to draw

upon it and use the funds for other purposes.

5.2.1 Interest Only Mortgage with HELOC and Two Way Balance Adjustment

Unlike the option ARM, this implementation does not make use of the preferential debt but instead allows

for adjustments of the HELOC balance when the interest rate in the economy changes. A de�nition below

formally describes an interest only mortgage with HELOC and two way balance adjustment.

De�nition 8 An interest only mortgage with HELOC and two way balance adjustment consists of:

- interest only mortgage with a required coupon (interest payment) xt;

- HELOC with interest rate �rt charged on HELOC balance Bt and credit limit CLt ,

- Adjustment BAt of HELOC balance, applicable whenever the interest rate in the economy changes,

25Named as such in the housing �nance industry because a second mortgage is "piggybacked" onto the original mortgage
loan.
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- Default happens when either the coupon is not paid or the HELOC balance exceeds the credit limit, in

which case the lender repossesses the home.

The following proposition shows that the optimal allocation can be implemented using an interest only

mortgage with HELOC and two way balance adjustment.

Proposition 6 There exists an optimal interest only mortgage with HELOC and two way balance adjustment

that has the following properties:

�rt(Bt; rt) = 
 + �(rt)

�
 (a1(rt)�Bt; rt)�  (a1(rt); rt)

�
Bt

; (22)

CLt (rt) = a1(rt)�A; (23)

xt(rt) = � + �� 
a1(rt) + �(rt) (a1(rt); rt); (24)

BA(Bt; rt) = � (a1(rt)�Bt; rt) + (a1(rct )� a1(rt)): (25)

Under the terms of this mortgage, it is optimal for the borrower to use all available cash �ows to pay down the

HELOC balance, and consumes all excess cash �ows once the HELOC balance becomes zero. The borrower�s

expected payo¤, at, is determined by the HELOC balance as follows:

at = A+
�
CLt (rt)�Bt

�
= a1(rt)�Bt: (26)

Proof In the Appendix.

Similarly to loan balance in the option ARM implementation, the HELOC balance plays the role of a state

variable that summarizes all the relevant information about the past and tracks the borrower�s continuation

utility according to equation (26). The interest rate along with the required mortgage coupon payment,

balance adjustment, and the credit line limit, determine the dynamics of the HELOC balance and default

time. Unlike the option ARM, the interest only mortgage with HELOC and two way balance adjustment

does not have a preferential debt feature. Instead, it has balance adjustment. Similarly to the adjustments in

size of preferential debt, balance adjustments, which happen when the interest rate in the economy changes,

help to implement the e¤ects that the interest rate in the economy has on the borrower�s continuation utility

under the optimal contract.

Proposition 6, together with Lemma 3, implies

Corollary 3 The optimal interest only mortgage with HELOC and two way balance adjustment has the

following properties:

i) Let �B = a1(rL)��a where �a is de�ned in Lemma 3. Then, whenever Bt 2 [ �B;CLt (rL)); an instantaneous

change of the interest rate in the economy from rL to rH triggers default on the mortgage;
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ii) BA(B; rt) = 0 for B = 0. Suppose further that the optimal function  satis�es the properties of

Condition 1. Then,

�BA(B; rL) is positive and strictly increasing in B for B 2 (0; �B];

�BA(B; rH) is negative and strictly decreasing in B for B 2 (0; CLt (rH)];

� �rt(B0; rL) < 
 < �rt(B
00; rH); for any B0 2 [0; CLt (rL)]; B00 2 [0; CLt (rH)]:

As the above corollary shows, under the optimal interest only mortgage with HELOC and two way

balance adjustment, whenever the HELOC balance is close to the credit limit, an increase in the interest

rate in the economy would result in default on the mortgage. The variable interest rate on the HELOC

balance positively correlates with the interest rate in the economy. Figure 4 presents the optimal balance

adjustment and the variable interest rate charged on the HELOC balance in the parametrized environment

of Section 4.3.

Although mortgages with HELOC and two way balance adjustment are interesting from the theoretical

point of view, we do not yet observe anything like that in practice. While we actually observe reductions

of mortgage debt balance in the form of "cramdown" provisions, the unusual feature of these mortgages is

the automatic increase in debt balance in response to a market interest rate increase. Below, we discuss an

implementation using the interest only mortgage with HELOC with a preferential rate and one way balance

adjustment that addresses this issue.

5.2.2 Interest Only Mortgage with HELOC with Preferential Rate and One Way Balance

Adjustment

In this section, we consider a combination of an interest only mortgage with HELOC, where a part of the

HELOC balance is subject to a preferential interest rate. Only reductions of the HELOC balance are allowed.

The de�nition below provides a formal description of this class of mortgage contracts.

De�nition 9 An interest only mortgage with HELOC with preferential rate and one way balance adjustment

consists of:

- Interest only mortgage with a required coupon (interest payment) xt;

- HELOC with interest rate �rpt charged on the portion of the HELOC balance Bt below pt and interest

rate �rt charged on the portion of the balance above pt, and credit limit CLt .

- Reductions BA�t in the HELOC balance, applicable whenever the interest rate in the economy decreases.

- Default happens when either the coupon is not paid or the HELOC balance exceeds the credit limit, in

which case the lender repossesses the home.
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The proposition below shows that the optimal allocation can be implemented using an interest only

mortgage with HELOC with preferential rate and one way balance adjustment.

Proposition 7 There exists an optimal interest only mortgage with HELOC with preferential rate and one

way balance adjustment that has the following features:

�rpt = 0; (27)

�rt(Bt � pt; rt) = 
 + �(rt)

�
 (a1(rt)� (Bt � pt); rt)�  (a1(rt); rt)

�
Bt � pt

; (28)

dpt =

8<:
�
 (a1(rL)� (Bt � pt); rL)�

�
a1(rH)� a1(rL)

��
I(rt�=rL) if Bt � pt

0; if Bt < pt
; (29)

BA�(Bt � pt) = � (a1(rH)� (Bt � pt); rH) +
�
a1(rL)� a1(rH)

�
; (30)

xt(rt) = � + �� 
a1(rt) + �(rt) (a1(rt); rt); (31)

CLt (pt; rt) = pt + a
1(rt)�A: (32)

Under the terms of this mortgage, it is optimal for the borrower to use all available cash �ows to pay down

HELOC balance Bt when Bt > pt, and consumes all excess cash �ows once the balance drops to pt. For

balance Bt � pt, the borrower�s continuation utility at is equal to:

at = A+
�
CLt (pt; rt)�Bt

�
= a1(rt)� (Bt � pt): (33)

If the amount of debt subject to the preferential rate falls to zero, the mortgage is reset to a more complicated

contract that implements the continuation of the optimal allocation.

Proof In the Appendix.

The above implementation combines such features as preferential debt, which is present in option ARM,

and balance adjustment, which is present in an interest only mortgage with HELOC with preferential rate

and two way balance adjustment. Both these features are used to implement adjustments in the borrower�s

continuation utility due to changes of the market interest rate. Unlike the implementation with the interest

only mortgage and HELOC with two way balance adjustment, this implementation avoids increasing the

borrower�s balance when the interest rate in the economy changes from low to high by decreasing instead

the amount of the HELOC balance subject to the preferential rate.

Proposition 7, together with Lemma 3, imply

Corollary 4 The optimal interest only mortgage with HELOC with preferential rate and one way balance

adjustment has the following properties:
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Figure 5: A simulated path of the optimal interest only mortgage with HELOC.

i) Let �Bt = pt + a
1(rL)� �a where �a is de�ned as in Lemma 3. Then, whenever Bt 2 [ �Bt; CLt (pt; rL)); an

instantaneous increase in the interest rate in the economy triggers default on the mortgage;

ii) BA�(Bt � pt) = 0 for Bt = pt. Suppose further that the optimal function  satis�es the properties of

Condition 1. Then,

�BA�(Bt � pt) is negative and strictly decreasing in (Bt � pt) for Bt 2 (pt; CLt (rH)];

� dpt < 0 for any Bt > pt; whenever the interest rate in the economy increases,

� �rt(B0 � pt; rL) < 
 < �rt(B
00 � pt; rH); for any B0 2 [pt; CLt (rL)]; B00 2 [pt; CLt (rH)]:

As the above corollary shows, whenever the HELOC balance is close to the credit limit, an increase in

the interest rate would cause the liquidation of the mortgage. If the optimal adjustment function  satis�es
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the properties of Condition 1, the variable interest rate on the HELOC balance (28) positively correlates

with the interest rate in the economy. A decrease in the interest rate in the economy causes a reduction of

the borrower�s HELOC balance. This reduction can be interpreted as o¤ering the borrower an automatic

"cramdown" provision, whenever the interest rate in the economy goes down. An increase in the interest rate

in the economy causes a drop in the amount of debt subject to the preferential interest rate. Consequently,

under this contract, it is optimal to reduce the preferential treatment of the HELOC debt over time. We

note that a declining preferential treatment of debt over time is a typical feature of many mortgage contracts

currently o¤ered in the housing �nance market.

Figure 6: The optimal negative balance adjustment and the variable interest rate on the HELOC debt.

The top part of Figure 5 presents a simulated path of the market interest rate, the middle one presents

a simulated path of the borrower�s continuation utility under the optimal contract, and the bottom one

presents the behavior of credit line, the preferential debt range, and the HELOC balance implied by the

optimal mortgage contract of Proposition 7, where the parameters of the model are set as in Section 4.3.

Figure 6 presents the optimal negative balance adjustment and the variable interest rate on the HELOC

debt in this parametrized example.

6 Approximate Implementations

In this section we consider simpler mortgage contracts that implement the optimal allocation approximately.

The idea of approximate implementation is based on the observation that the results of Propositions 5
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- 7 concerning the implementation of the optimal allocation do not rely on any particular properties of

functions  and a1. In other words, if we replace the optimal function  from Proposition 3 by any function

 ̂ : [A;1) � frL; rHg ! R, such that,  ̂(a; r) + a � A for any a � A; and replace the re�ection barriers

a1(r) by any �nite â1(r) � A, then the resulting suboptimal contract will remain incentive compatible.

Figure 7: The approximately optimal function  ̂ and â1:

In what follows, we will focus on the following approximation of the optimal functions  and a1:

De�nition 10 The approximately optimal function  ̂ and â1 satisfy

- â1 � â1(rL) = â1(rH) = inf fa � A :  (a; rL) =  (a; rH) = 0g,

-  ̂(a; rL) =

8<: A� a for a 2 [A; �a]

�
�
�a�A
â1��a

� �
â1 � a

�
for a 2 [�a; â1]

;

-  ̂(a; rH) =
�
�a�A
â1�A

�
(â1 � a) for a 2 [A; â1] ;

where  and a1 are the functions from the optimal contract of Proposition 3.

Figure 7 presents the approximately optimal functions  ̂ and â1, together with their optimal counterparts

in the parametrized environment of Section 4.3. We note that function  ̂ satis�es Condition 1. We also note

that  ̂ approximates  reasonably well except for the region with high continuation utility, which is much

less important in terms of contract optimality than the region near the bankruptcy threshold A. As we will
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show next, this approximation leads to simpler mortgage contracts that do not sacri�ce much in terms of

their payo¤ e¢ ciency.

6.1 Approximately Optimal Option ARM with Preferential Rate

In Section 5.1, we demonstrated that the optimal allocation can be implemented using the optimal option

ARM. Replacing optimal function  with approximately optimal function  ̂ de�ned in Section 6 gives us an

approximately optimal option ARM with the following parameters

CLt (pt) = pt + â
1 �A (34)

�rpt (pt) =
� + �� 
â1

pt
(35)

�rt(Bt � pt; rt) =

8>>><>>>:

 � �(rL)

�
�a�A
â1��a

�
for Bt 2 [pt; B̂t] and rt = rL


 � �(rL)
�
â1�A�Bt+pt

Bt�pt

�
for Bt 2 [B̂t; CLt ] and rt = rL


 + �(rH)
�
�a�A
â1�A

�
for Bt 2 [pt; CLt ] and rt = rH

; (36)

dpt =

8>>><>>>:
�
�
�a�A
â1��a

�
(Bt � pt) for Bt 2 [pt; B̂] and rt = rL�

�a�A
â1�A

�
(Bt � pt) for Bt 2 [pt; CLt ] and rt = rH

0 for Bt < pt

; (37)

where B̂t = pt + â
1 � �a:

Proposition 8 Under the terms of option ARM given by (34-37), it is optimal for the borrower to use all

available cash �ows to pay down balance Bt when Bt > pt, and to consume all excess cash �ows once the

balance drops to pt. The borrower�s continuation utility ât is determined by the balance above the preferential

debt limit as follows:

ât = A+ CLt �Bt = â1 � (Bt � pt) (38)

Proof In the Appendix.

The intuition behind incentive compatibility of the postulated strategy of the borrower under the above

mortgage contract is the same as in the case of the optimal mortgage contract of Proposition 5. The negative

amortization limit (34), the interest rates (35) and (36), and the preferential debt limit (37) play the same

role in the approximate implementation as their counterparts from Proposition 5 in the exact implementation

of the optimal allocation.

As the following corollary shows, a decrease in the interest rate in the economy results in smaller mortgage

interest rates, higher amount of debt subject to the preferential rate, and higher negative amortization limit.

Corollary 5 The approximately optimal option ARM has the following properties:
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(i) �rt(B0 � pt; rL) < 
 < �rt(B
00 � pt; rH); for any B0 2 [pt; CLt (rL)]; B00 2 [pt; CLt (rH)]:

(ii) dpt < 0; dCLt < 0; d�rpt > 0 whenever rt increases and Bt > pt;

dpt > 0; dC
L
t > 0; d�rpt < 0 whenever rt decreases and Bt > pt;

Proof follows directly from (34) - (37).

Figure 8: Variable interest rate charged on the approximately optimal option ARM�s balance above the
preferential debt limit.

Figure 8 shows the interest rate charged on the balance of the approximate option ARM above the

preferential debt limit.

6.2 Approximately Optimal Interest Only FRM with HELOC and Two Way

Balance Adjustment

In Section 5.2.1, we demonstrated that the optimal allocation can be implemented using the optimal interest

only mortgage with HELOC and two way balance adjustment. Replacing optimal function  with approxi-

mately optimal function  ̂ de�ned in Section 6 gives us an approximately optimal interest only FRM with

HELOC and two way balance adjustment with the following parameters:
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xt = x = � + �� 
â1; (39)

CLt = CL = â1 �A; (40)

�rt(Bt; rt) =

8>>><>>>:

 � �(rL)

�
�a�A
â1��a

�
for Bt 2 [0; B̂] and rt = rL


 � �(rL)
�
â1�A�Bt

Bt

�
for Bt 2 [B̂; CL] and rt = rL


 + �(rH)
�
�a�A
â1�A

�
for Bt 2 [0; CL] and rt = rH

; (41)

BA(Bt; rt) =

8<:
�
�a�A
â1��a

�
Bt for Bt 2 [0; B̂] and rt = rL

�
�
�a�A
â1�A

�
Bt for Bt 2 [0; CL] and rt = rH

; (42)

where B̂ = â1 � �a:

Proposition 9 Under the interest only FRM with HELOC and two way balance adjustment with the para-

meters given by (39) - (42), it is optimal for the borrower to use all available cash �ows to pay down the

HELOC balance, and consume all excess cash �ows once the HELOC balance becomes zero. The borrower�s

continuation utility at is determined by the HELOC balance as follows:

ât = A+
�
CLt (rt)�Bt

�
= â1 �Bt: (43)

Proof follows from the proof of Proposition 6 by replacing function  with  ̂ and the re�ection barriers

a1(r) with â1:

The approximately optimal interest only mortgage with HELOC takes a simple form of the interest only

FRM with the constant interest coupon payment of (39). The HELOC has a constant credit limit given by

(40), and a simple variable rate given by (41). It follows from (39) - (42) that this mortgage has the following

properties.

Corollary 6 The approximately optimal interest only FRM with HELOC and two way balance adjustment

has the following properties:

i) BA(B; rt) = 0 for B = 0, and

�BA(B; rL) is positive and strictly increasing in B for B 2 (0; B̂];

�BA(B; rH) is negative and strictly decreasing in B for B 2 (0; CL];

(ii) �rt(B0; rL) < 
 < �rt(B
00; rH); for any B0 2 [0; CL]; B00 2 [0; CL]:

As the above corollary shows, under the approximately optimal interest only FRM with HELOC and two

way balance adjustment, a decrease in the interest rate in the economy causes a decrease in the borrower�s
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Figure 9: Approximately optimal balance adjustment and the variable interest rate on the HELOC debt.

HELOC balance and vice versa. The magnitude of these adjustments is linearly proportional to the HELOC

balance. The variable interest rate on the HELOC balance positively correlates with the lender�s interest rate,

and does not depend on the borrower�s HELOC balance, except the debt region [B̂; CL], where the HELOC

interest rate increases with the balance when the interest rate in the economy is low (rt = rL). Figure 9

presents the approximately optimal balance adjustments and the variable interest rate on the HELOC debt

in the parametrized environment of Section 4.3.

6.3 Approximately Optimal Interest Only FRM with HELOC with Preferential

Interest Rate and One Way Balance Adjustment

In Section 5.2.2, we showed that the optimal allocation can be implemented using the optimal interest only

mortgage with HELOC and one way balance adjustment. Replacing optimal function  with approximately

optimal function  ̂ de�ned in Section 6 gives us an approximately optimal interest only FRM with HELOC

and one way balance adjustment with the following parameters:

xt = x = � + �� 
â1; (44)

CLt (pt) = pt + â
1 �A; (45)

�rpt = 0; (46)

39



Figure 10: The approximately optimal negative balance adjustment and the interest rate on the HELOC
debt.

�rt(Bt � pt; rt) =

8>>><>>>:

 � �(rL)

�
�a�A
â1��a

�
for Bt 2 [pt; B̂t] and rt = rL


 � �(rL)
�
â1�A�Bt+pt

Bt�pt

�
for Bt 2 [B̂t; CLt ] and rt = rL


 + �(rH)
�
�a�A
â1�A

�
for Bt 2 [pt; CLt ] and rt = rH

; (47)

dpt =

8<: �
�
�a�A
â1��a

�
(Bt � pt) for Bt 2 [pt; B̂t] and rt = rL

0 for Bt < pt

; (48)

BA�(Bt � pt) = �
�
�a�A
â1 �A

�
(Bt � pt); (49)

where B̂t = pt + â
1 � �a:

Proposition 10 Under the interest only FRM with HELOC and one way balance adjustment with the para-

meters given by (44) - (49), it is optimal for the borrower to pay down HELOC balance Bt when Bt > pt, and

consumes all excess cash �ows once the balance drops to pt. For balance Bt � pt, the borrower�s continuation

utility at is equal to

at = A+
�
CLt (pt; rt)�Bt

�
= â1 � (Bt � pt): (50)

Proof follows from the proof of Proposition 7 by replacing function  with  ̂ and the re�ection barriers

a1(r) with â1:

The approximately optimal interest only mortgage with HELOC with preferential interest rate and one

way balance adjustment takes the simple form of the interest only FRM, with the constant interest coupon
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payment of (44), combined with the HELOC with the credit limit of (45) and the simple variable rate given

by (46).

Corollary 7 The approximately optimal interest only FRM with HELOC with preferential rate and one way

balance adjustment has the following properties:

i) BA�(Bt � pt) = 0 for Bt = pt, and

�BA�(Bt � pt) is negative and strictly decreasing in (Bt � pt) for Bt 2 (pt; CLt (rH)];

� dpt � 0; dCLt � 0 for any Bt � pt; with strict inequality whenever the interest rate, rt, increases

and Bt > pt;

(ii) �rt(B0 � pt; rL) < 
 < �rt(B
00 � pt; rH); for any B0 2 [pt; CLt (rL)]; B00 2 [pt; CLt (rH)]:

As the above corollary shows, a decrease in the interest rate in the economy causes a decrease in the

borrower�s HELOC balance. The magnitude of this adjustment is linearly proportional to the HELOC

balance, and, as before, can be interpreted as o¤ering the borrower an automatic "cramdown" provision. An

increase in the interest rate in the economy causes a drop in the amount of debt subject to the preferential

interest rate and a decrease in the credit line limit. Consequently, under this contract, the preferential

HELOC debt treatment is reduced over time. The variable interest rate charged on the HELOC balance

positively correlates with the interest rate in the economy, and does not depend on the borrower�s debt

balance, except the debt region [B̂; CL], where it increases with the balance when that the interest rate in

the economy is low.

Figure 10 presents the negative balance adjustment and the variable interest rate on the HELOC debt

as a function of the borrower�s mortgage debt above the preferential range in the parametrized environment

of Section 4.3.

7 E¢ ciency Gains Due to Optimal and Approximately Optimal

Contracts

What are the e¢ ciency gains from using mortgages that allow for the adjustable rate and the preferential

debt treatment? How close, in terms of e¢ ciency, is the approximately optimal mortgage contract to the

optimal one? To study these questions, we compare the lender�s payo¤ under the approximately optimal

contract and the optimal contract with the lender�s payo¤ under a mortgage, which is not conditional on

the market interest rate. This simpler mortgage is a �xed rate mortgage that lacks preferential debt but has

the credit line feature.26

26This mortage implements an allocation found by solving, for a given continuation utility of the borrower, the problem of
maximizing the lender�s expected pro�t subject to incentive compatibility and promise keeping constraints, and subject to an
additional constraint that forbids any adjustments in the borrower�s continuation value due to changes in the lender�s interest
rate.
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Figure 11 presents the percentage improvement (in basis points) in the lender�s value27 across the initial

continuation utility of the borrower under, respectively, the approximately optimal contract and the optimal

contract, relative to the highest value of the lender achievable under a simpler mortgage with �xed rate and

no preferential debt. The computations are performed in the parametrized environment of Section 4.3.

Figure 11: Gains (in basis points) of the lender�s value under the optimal and the approximately optimal
contract relative to a mortgage with �xed rate and no preferential debt

As we observe from Figure 11, the value of the lender under the approximately optimal contract is close to

that under the optimal contract with loss ranging from zero to just above 10 basis points of the value. Both

contracts yield much better performance compared to a simpler mortgage with �xed rate and no preferential

debt. The gain can be as high as 70 basis points of the lender�s value and, in the renegotiation proof region28 ,

the gain can be close to above 50 basis points for the optimal contract and close to 40 basis points for the

approximately optimal contract.29 Given that the origination fee charges in mortgages are usually in the

order of 0.5% to 1% of the loan amount, these gains are very substantial.30

Many reasonable models of determination of initial starting point in terms of the borrower�s continuation

27We remember that the lender�s value represent his expected pro�t plus the amount loaned to the borrower [P � Y0]:
Therefore, with no downpayment the lender breaks even if his value is at least as large as the amount of loan.
28The renegotiation proof region corresponds to the area where the value of the lender is decreasing in the borrower�s

continuation utility.
29These gains come exclusively from conditioning the optimal mortgage on the market interest rate and do not include the

gains coming from the credit line feature. Compared to a traditional FRM without a credit line attached to it, the gains
associated with the optimal mortgage should be substantially higher.
30See for example Freddie Mac (2007).

42



utility will have a property that the borrower�s continuation utility increases with the amount of downpay-

ment and the borrower�s future expected income, and decreases with the home price. Figure 11 indicates

that, if this is the case, the largest e¢ ciency gains in the renegotiation proof region are to be realized on the

optimal mortgages given to those households who buy pricey homes given their income level or make little or

no downpayment. This result is intuitive as adjustable features allow for the more intelligent management

of default timing, and so the e¢ ciency gains they present are bigger for borrowers who are more likely to

default. Therefore, our analysis provides theoretical evidence that the observed high concentration of the

alternative mortgages among riskier borrowers and in the higher-priced regional markets can be economically

e¢ cient. Our comparison also suggests that the mortgage terms can be considerably simpli�ed, with little

loss of e¢ ciency, by implementing the approximately optimal allocation instead of the optimal one.31

8 Concluding Remarks

Recent years have seen a rapid growth in originations of more sophisticated alternative mortgage prod-

ucts (AMPs), such as option adjustable rate mortgages (option ARMs) and interest only mortgages. Critics

of AMPs point out that they seem to be more pro�table for lenders than traditional mortgages. They con-

clude that AMPs allow lenders to pro�teer at the expense of homeowners. However, this paper shows that

the properties of AMPs are consistent with the properties of the optimal allocation governing the relationship

between the borrower and the lender, which represents a Pareto improvement over traditional mortgages. As

a consequence, it is possible that both lenders and borrowers can bene�t from AMPs. Critics of AMPs have

raised the concern that teaser rates and low minimum payments can result in substantially higher mortgage

payments and, as a consequence, higher default rates when the market interest rate increases. Nevertheless,

this paper demonstrates that this does not necessarily contradict the optimality of AMPs. Under the optimal

mortgage contract, mortgage payments and default rates are indeed higher when the market interest rate

is high. However, borrowers bene�t from low mortgage payments and low default rates when the market

interest rate is low.

Our analysis is based on the assumption of full rationality of borrowers. Thus, it cannot be applied

to a situation with irrational borrowers. Borrowers lacking self control may abuse such features of AMPs

as teaser rates and low minimum payments, which would lead to ine¢ ciently high default rates. However,

policy makers considering banning or imposing strong regulations on AMPs should justify such actions by

presenting evidence of borrowers� irrationality and predatory lending, rather than simply pointing out to

higher default rates among AMP borrowers.

The optimal contracts do not allow borrowers to re�nance their mortgages with another lender. O¤ering

this option would increase the borrower�s reservation value, which would limit the ability to provide him

31These results hold across all parameterizations we considered.
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incentives to repay his debt, resulting in a decrease of e¢ ciency of the contract. Therefore, our results

lend support to prepayment penalties on re�nancing. Introduction of borrowers�mobility would result in a

"soft" prepayment penalty, borrowers could sell their home at anytime without penalty, but if they want to

re�nance the mortgage, they would pay the prepayment penalty su¢ ciently large to discourage it.

In this paper, we ignored in�ation, which is an important consideration for home buyers choosing between

ARMs and FRMs.32 However, as long as in�ation a¤ects the borrower�s income and the liquidation value of

the home equally, it would not change the properties of the optimal mortgage in real terms. We also did not

allow for contract renegotiations, because a possibility of renegotiation would lead to a suboptimal contract.

In practice, lenders should be able to commit to the terms of a mortgage contract, as the competition among

them would drive those who are unable to do so out of the market.

We assumed that the liquidation values do not depend on the interest rate. Even if house prices were

sensitive to the interest rate, a documented signi�cant delay33 from initiation of the foreclosure process till

foreclosure sale would make the liquidation values much less sensitive to the interest rate compared to house

prices. The independence of liquidation values from the interest rate was meant to capture this reality in

our setting. We also assumed that the borrower�s income process does not depend on the interest rate. This

assumption is motivated by our view of the borrower as a borrowing constrained household as well as the

empirical evidence34 indicating that most household income shocks are correlated only weakly with asset

returns.

For the sake of tractability of our dynamic contracting problem, we had to assume risk-neutrality of the

borrower with respect to luxury consumption. The properties of the optimal mortgage are determined by the

con�ict of interest between the borrower and the lender and by the gains from trade based on the di¤erences

between the borrower�s and the lender�s discount factors. In particular, the adjustable features of the optimal

mortgage are driven by the fact that the lender values his relationship with the borrower more when his

discount rate is low. Therefore, we expect that a more general form of risk-aversion on the borrower�s

side would weaken but not completely eliminate the adjustable features of the optimal mortgage. However,

solving the model with risk-aversion would require development of a completely new solution method.

There are a number of research directions one might pursue from here. In this paper we have considered

a time-homogeneous setting, in which agents are in�nitely lived and the borrower�s average income and

the liquidation values of the home do not change over time. Relaxing these assumptions would allow us

to study the e¤ects of home prices and households� life-cycle income pro�les on optimal mortgage design.

For example, a positive income trend of the borrower would imply smaller required initial payments on the

mortgage, which would then be increased as time goes on. A signi�cant decrease in house prices would result

in an increased number of defaults as now the borrowers�outside option would be more valuable to them

32See, for example, Campbell and Cocco (2003).
33Ambrose et al. (1997) report that borrowers whose delinquency continues to foreclosure spend an average of 13.8 total

months in default before their property rights are terminated.
34See for example Campbell et al. (2000).
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due to the possibility of getting their housing service more cheaply. Hence, the amount of defaults implied

by the optimal mortgage would negatively correlate with house prices. While these extensions would allow

us to capture some additional characteristics of the residential mortgage borrowing, they should preserve

optimality of the optional payments and adjustable features and their properties we derived in our setting.

This is because the forces and trade-o¤s that shape them would also be present in a richer environment.

Another avenue of research would be to extend our analysis to a general equilibrium framework and to study

what e¤ects the presence of private information in the mortgage origination market have on equilibrium

home prices, and how this varies over the business cycle.
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Appendix

A.1 Proofs of Lemmas and Propositions

Proof of Lemma 1

Consider any incentive compatible allocation (� ; I; C; Ŷ ). We prove the lemma by showing the existence of

the new incentive-compatible allocation that that has the following properties:

(i) the borrower gets the same expected utility as under the old allocation (� ; I),

(ii) the borrower chooses to reveal the cash �ows truthfully,

(iii) the borrower maintains zero savings,

(iv) the lender gets the same or greater expected pro�t as under the old allocation (� ; I).

Consider the candidate incentive compatible allocation (� 0; I 0; C; Y ) where

� 0(Y; r) = �(Ŷ (Y; r); r);

I 0(Y; r) = C(Y; r):

We observe that the borrower�s consumption and the termination time under the new allocation and the

proposed borrower�s response strategy, (C; Y ); are the same as under the old allocation, so he earns the same

expected utility, which establishes property (i). Also, by construction, the proposed response of the borrower

to the allocation (� 0; I 0) involves truth-telling and zero savings, which establishes properties (ii) and (iii).

Now we will show that (C; Y ) is the borrower�s incentive compatible strategy under the allocation (� 0; I 0):

We note that the strategy (C; Y ) yields the same utility to the borrower under the allocation (� 0; I 0) as

the incentive compatible strategy associated with the allocation (� ; I). Therefore, to show that (C; Y ) is

the borrower�s incentive compatible strategy under the allocation (� 0; I 0); it is enough to show that if any

alternative strategy (C 0; Y 0) is feasible under the allocation (� 0; I 0), then C 0 is also feasible under the old

allocation (� ; I).

It follows that if C 0 is feasible under the new allocation, then the borrower has nonnegative savings if

he reports Ŷ (Y 0(Y; r); r) and consumes C 0 under the old allocation, and thus C 0 is also feasible under the

old allocation (� ; I): To see this we note that that the borrower�s savings at any time t � �(Ŷ (Y 0(Y; r); r) =
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� 0(Y 0(Y; r); r) under the old allocation (� ; I) and the borrower�s strategy (C 0; Ŷ (Y 0(Y; r); r)) are equal to

tZ
0

e�t(t�s)
h
dYs � dŶs(Y 0(Y; r); r) + dIs(Ŷ (Y 0(Y; r); r)� dC 0s(Y; r)

i
| {z }

=

Savings under the old allocation, the borrower�s strategy (C0;Ŷ (Y 0(Y;r);r)), and the realized (Y; r)

tZ
0

e�t(t�s)
h
dY 0s (Y; r)� dŶs(Y 0(Y; r); r) + dIs(Ŷ (Y 0(Y; r); r)� dCs(Y 0(Y; r); r)

i
| {z }

(�0) Savings under the old allocation given the borrower�s strategy (C;Ŷ (Y 0(Y;r);r)), and the realized (Y 0(Y;r);r)

+

tZ
0

e�t(t�s)

264dYs � dY 0s (Y; r) + dCs(Y 0(Y; r); r)| {z }
=I0(Y 0(Y;r);r)

� dC 0s(Y; r)

375
| {z }

(�0) Savings under the new allocation, the borrower�s strategy (C;Y 0(Y;r)), and the realized (Y; r)

� 0:

Finally, to complete the proof, we need to show that under the new allocation (� 0; I 0) the lender gets the

same or greater expected pro�t as under the allocation (� ; I). Note that under the new allocation the lender

does savings for the borrower. As by assumption the lender�s interest rate process is always greater or equal

from the saving�s interest rate available to the borrower (i.e., for all t; rt � �t); the lender�s expected pro�t

improves by

E0

24 �Z
0

e�Rt (rt � �t)Stdt

35 � 0;
which shows (iv). �

Proof of Proposition 3

Let b be a C2 function (in a) that solves:

rb(a; r) = �+ (
a� � �  (a; r)�(r))b0(at; rt) +
1

2
�2b00(a; r) + �(rt) (b(at +  (a; r); r

c)� b(a; r)) (51)

when a is in the interval [A; a1(r)]; and b0(a; r) = �1 when a > a1(r), with boundary conditions b(A; r) = L

and

�+ � = rLb(a
1(rL); rL) + 
a

1(rL)� �(rL)
�
b(a1(rH); rH)� b(a1(rL); rL) + a1(rH)� a1(rL)

�
;

�+ � = rHb(a
1(rH); rH) + 
a

1(rH)� �(rH)
�
b(a1(rL); rL)� b(a1(rH); rH) + a1(rL)� a1(rH)

�
;
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where

 (a; r) =

8>>>>>><>>>>>>:

is a C1 (in a) solution to b0(a; r) = b0(a+  ; rc) for all (a; r)

for which the solution is such that  (a; r) > A� a

otherwise it is equal to A� a

;

and where r 2 frL; rHg and rc = frL; rHg n frg :

We start by showing that the function b is strictly concave in a over [a; a1(r)].

Lemma 4 The function b is strictly concave over [a; a1(r)].

Proof We will proceed in the series of steps below.

Step 1. Strict concavity in the neighborhood of the re�ection barriers: De�ne the social

surplus function as:

F (a; r) = a+ b(a; r): (52)

Then the social surplus function satis�es the following di¤erential equation:

r(F (a; r)� a) = �+ (
a� � �  (a; r)�(r))(F 0(a; r)� 1) + 1
2
�2F 00(a; r)

+�(r) (F (a+  (a; r); rc)� F (a; r) +  (a; r))

which equals

rF (a; r) = �(
 � r)a+ �+ � + (
a� � �  (a; r)�(r))F 0(a; r) + 1
2
�2F 00(a; r)

+�(r) (F (a+  (a; r); rc)� F (a; r)) (53)

with the boundary conditions:

F (A; r) = A+ L;

F 0(a1(r); r) = 0;

F 00(a1(r); r) = 0:

Let�s now focus on a 2 [�a(r); a1(r)] when �a(r) � A is the smallest a such that b0(a; r) = b0(a +  ; rc)

holds for all a 2 [�a(r); a1(r)]. This together with (52) implies that F 0(a; r) = F 0(a +  ; rc) holds for all

a 2 [�a(r); a1(r)]: Di¤erentiating (53) with respect to a 2 [�a(r); a1(r)] and using F 0(a; r) = F 0(a+  ; rc) that

holds for all a 2 [�a(r); a1(r)] and the boundary conditions implies that

dF 00(a1(r)�; r)

da
=
2(
 � r)
�2

> 0:
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Note that as F 00(a1(r); r) = 0 and as we have that dF 00(a1(r)�;r)
da > 0 it implies that there exists " > 0 such

that F 00(a; r) < 0 over the interval (a1(r)�"; a1(r)). Also as F 0(a1(r)) = 0 and F 00(a; r) < 0 over the interval

(a1(r)� "; a1(r)) it implies that F 0(a; r) > 0 over the interval (a1(r)� "; a1(r)):

Step 2. Strict concavity of b(a; r) over [~a(r); a1(r)]; ~a(r) � �a(r), for which  (a; r) � 0: Let�s pick

r 2 frL; rHg and the smallest ~a(r) � �a(r) such that  (a; r) � 0 holds over the interval [~a(r); a1(r)]: Such

~a(r) must exists given that over [�a(r); a1(r)] we have that

 (a; r) = � (a+  (a; r); rc); (54)

which follows from the de�nition of function  .

From (53) we have that

F 00(a; r) =
K(a; r)� (
a� �)F 0(a; r)

2�2
; (55)

where

K(a; r) = rF (a; r) + (
 � r)a+  (a; r)�(r)F 0(a; r)� �(r) (F (a+  (a; r); rc)� F (a; r))� (�+ �):

Now we note that K(a1(r); 0) = 0 and that

K 0(a; r) = rF 0(a; r) + (
 � r) +  (a; r)�(r)F 00(a; r) (56)

which holds over [A; a1(r)]:

Then (55) and (56), and the fact that F 00(a1(r)�; r) < 0; imply that as long as F 0(a; r) > 0 over

[~a(r); a1(r)) we have that F 00(a; r) < 0 in this interval. To see this note that (55) and (56) imply that we

cannot have F 0(a; r) > 0 over [~a(r); a1(r)) and at the same time F 00(a; r) = 0 in this interval, as for the largest

â 2 [~a(r); a1(r)) for which F 00 = 0 we would have that K(â; r) < 0 as K would be increasing on [â; a1(r))

and K(a1(r); 0) = 0: But then given that F 0(â; r) > 0, K(â; r) < 0; and (
â � �) > 0 (as by assumption

A � �

 ) we would have by (56) that F

00(â; r) < 0; which is a contradiction. So as long as F 0(a; r) > 0 over

[~a(r); a1(r)) we would have that F 00(a; r) < 0 over [~a(r); a1(r)).

Now we remember that F 0(a; r) > 0 in [a1(r)�"; a1(r)). We want to show that F 0(a; r) > 0 over the entire

[~a(r); a1(r)); and thus by the above discussion that F (a; r) is strictly concave over [~a(r); a1(r)): Now suppose

by contradiction that F 0 � 0 for some ~a(r) � a � a1(r) � ", and let â = sup
�
a � a1(r)� " : F 0(:; r) � 0

	
:

Then it follows that F 0(â; r) = 0; and that for all a 2 (â; a1(r)) we have that F 0 > 0. But this implies that

F 00(a; r) < 0 for a 2 (â; a1(r)): From the Fundamental Theorem of Calculus it follows that:

F 0(a1(r); r) = F 0(â; r) +

a1(r)Z
â

F 00(a; r)da;
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which given that F 0(a1(r); r) = 0 implies that

F 0(â; r) = �
a1(r)Z
â(r)

F 00(a; r)da

As F 00 < 0 for a 2 (â; a1(r)) the above implies that F 0(â; r) > 0; which is a contradiction. Hence we have

that F 0 > 0 for a 2 [~a(r); a1(r)) and hence F 00(a; r) < 0 for a 2 [~a(r); a1(r)): Also if ~a(r) > �a(r), and noting

that F is C2 (in a) and F 00(~a(r); r) < 0, there exists " > 0 such that F (a; r) is strictly concave and increasing

over the interval (~a(r)� "; ~a(r)):

Step 3. Strict concavity of b(a; rc) over [~a(rc); a1(rc)), ~a(rc) = ~a(r)+ (~a(r); r), where  (a; rc) � 0:

From (54) it follows that if  (a; r) � 0 holds over the interval [~a(r); a1(r)], then we have that  (a; rc) � 0

holds over the interval [~a(rc); a1(rc)]: Now note that for a 2 [~a(rc); a1(rc)) we have that

F 0(a; rc) = F 0(a+  (a; rc); r) (57)

Now di¤erentiating (57) we obtain

F 00(a; rc) = F 00(a+  (a; rc); r)(1 +  0(a; rc)): (58)

We note that (54) implies that for a 2 [~a(rc); a1(rc)) we have that (a +  (a; rc)) 2 [~a(r); a1(r)) and so

F 00(a +  (a; rc); r) < 0. Now suppose that by contradiction F 00(a; rc) � 0 for some a 2 [~a(rc); a1(rc)). As

in the neighborhood of re�ecting barriers we have that F 00(a; rc) < 0, and as the function F is continuous

it would imply the existence of â 2 [~a(rc); a1(rc)) such that F 00(â; rc) = 0: But then (58) and the fact that

F 00(â; r) < 0 would imply that

 0(â; rc) = �1:

But then di¤erentiating

 (a; rc) = � (a+  (a; rc); r)

with respect to a and setting a = â yields

 0(â; rc) = � 0(â+  (â; rc); r)
�
1 +  0(â; rc)

�
;

which would imply that �1 = 0; which is a contradiction. Therefore we conclude that F 00(a; rc) < 0 and

by (57) F 0(a; rc) > 0 for all a 2 [~a(rc); a1(rc)). Also if ~a(rc) > �a(rc), and given that F is C2 (in a) and

F 00(~a(rc); rc) < 0, there exists " > 0 such that F (a; rc) is strictly concave and increasing over the interval

(~a(rc)� "; ~a(rc)):
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Step 4: Strict concavity of F (a; r) over [�a(r); a1(r)): If ~a(r) = �a(r) it follows by Steps 1, 2, and

3. Suppose that ~a(r) > �a(r): Then by Steps 1, 2, and 3 we know that the function F (a; r) is strictly

increasing and concave (in a) over the interval (~a(r) � "; a1(r)). Then let�s pick r0 2 frL; rHg and the

smallest ~a0(r) � �a(r) such that  (a; r00) � 0 holds over the interval [~a0(r0); ~a(r0)]: Then applying the same

reasoning as in Steps 3 and 4 we get that the functions F (a; r0) and F (a; r0c) are strictly increasing and

concave over, respectively, [~a0(r0); a1(r0)] and [~a0(r0c); a1(r0c)]; where ~a(r0c) = ~a0 +  (~a0; r0). Applying this

argument over and over again we obtain that the function F (a; r) is strictly increasing and concave over the

interval [�a(r); a1(r)).

Step 5. Strict concavity of F over [A;max(�a(r); �a(rc)]: It follows from the de�nition of function

F that min(�a(r); �a(rc)) = A and then Steps 1, 2, 3, and 4 imply that for r̂ 2 frL; rHg for which �a(r̂) = A

we have that F (a; r̂) is strictly concave and increasing over [A; a1(r̂)]. From the de�nition of function F it

follows that  (a; r̂c) = A� a over [A; �a(r̂c)]. By steps 1, 2, 3, 4 we know that F (a; r̂c) is strictly increasing

and concave over [�a(r̂c); a1(r̂c)]; and moreover because F is C2 (in a) there exists " > 0 such that F (a; r̂c) is

strictly increasing and concave over (�a(r̂c)� "; �a(r̂c)]: But then because  (a; r̂c) = A� a � 0 over [A; �a(r̂c)],

applying the same reasoning as in Step 2 yields us that F (a; r̂c) is strictly increasing and concave over

[A; �a(r̂c)] and so is strictly increasing and concave over [A; a1(r̂c)]:

Steps 1, 2, 3, 4, and 5 imply that F is strictly increasing and concave over [A; a1(r)) and as b00(a; r) =

F 00(a; r) for any a � A and r 2 frL; rHg we have that b(a; r) is strictly concave (in a) over [A; a1(r)).

Now for any incentive compatible allocation (� ; I; C; Y ) we de�ne:

Gt =

tZ
0

e�Rs(dYs � dIs) + e�Rtb(at; rt); (59)

where at evolves according to (6). We note that the process G is such that Gt is Ft�measurable.

We remember that under an arbitrary incentive compatible allocation, (� ; I; C; Y ), at evolves as

dat(rt) = (
at � � �  t�(rt)) dt� dIt + �tdZt +  tdNt:

where �t � � m-a.s. for any 0 � t � � . From Ito�s lemma we get that

db(at; rt) =

�
(
at � � �  t�(rt))b0(at; rt) +

1

2
�2t b

00(at; rt)

�
dt� b0(at; rt)dIt

+�tb
0(at; rt)dZt + [b(at +  t; r

c
t )� b(at; rt)] dNt:
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Then combining the above with (59) yields

eRtdGt =

�
�+ (
at � � �  t�(rt))b0(at; rt) +

1

2
�2t b

00(at; rt)� rtb0(at; rt)
�
dt

�(1 + b0(at; rt))dIt + (� + �tb0(at; rt)) dZt + [b(at +  t; rct )� b(at; rt)] dNt

Combining the above with (51) yields

eRtdGt �
�
1

2

�
�2t � �2

�
b00(at; rt) + �(rt)b

0(at; rt) [ (at; rt)�  t]
�
dt� (1 + b0(at; rt))dIt

+(� + �tb
0(at; rt)) dZt + [b(at +  t; r

c
t )� b(at +  (at; rt); rct )] dNt;

with equality whenever a 2 [A; a1(rt)]: From the above we have that for any 0 � t < � :

eRtdGt �
�
1

2

�
�2t � �2

�
b00(at; rt)

�
| {z }

�0

dt�(1 + b0(at; rt))dIt| {z }
�0

+�(rt) ([b(at +  t; r
c
t )�  tb0(at; rt)]� [b(at +  (at; rt); rct )�  (at; rt)b0(at; rt)])| {z }

�0

dt

+(� + �tb
0(at; rt)) dZt + [b(at +  t; r

c
t )� b(at +  (at; rt); rct )] dMt; (60)

with equality whenever a 2 [A; a1(rt)]: The �rst component of the RHS of the above inequality is less or

equal to zero because the function b is concave (Lemma 4) and �t � � for any t � � : The second component

is less or equal to zero because b0 � �1 and dIt � 0: The third component is less or equal to zero because,

by de�nition, the function  is a solution to

max
 �A�a

[b(a+  ; rc)�  b0(a; r))] :

The condition (60) implies that the process G is an Ft�supermartingale up to time t = � , where we recall

that Z and M are martingales. It will be an Ft�martingale if and only if, for t > 0; at � a1(rt); �t = �

m-a.s.,  t =  (at; rt); and It is increasing only when at � a1(rt).

We now evaluate the lender�s expected utility for an arbitrary incentive compatible allocation (� ; I; C; Y ),

which equals

E

24 �Z
0

e�Rs(dYs � dIs) + e�R�L

35 :
We note that b(a� ; r� ) = L as, from the de�nition of a; a� = A: Using this, and the de�nition of process G;
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we have that under any arbitrary incentive compatible allocation (� ; I; C; Y ) and any t 2 [0;1):

E

24 �Z
0

e�Rs(dYs � dIs) + e�R�L

35 =
E [Gt^� ] + E

241t��
0@ �Z
t

e�Rs(dYs � dIs) + e�R�L� e�Rtb(at; rt)

1A35 �
b(a0; r0) + E

241t��
0@ �Z
t

e�Rs(dYs � dIs) + e�R�L� e�Rtb(at; rt)

1A35 =
b(a0; r0) + e

�RtE

241t��
0@E

24 �Z
t

eRt�Rs(dYs � dIs) + eRt�R�L jFt

35� b(at; rt)
1A35 ; (61)

where, the inequality follows from the fact that Gt^� is supermartingale and G0 = b(a0; r0): We note that

in the above

E

24 �Z
t

eRt�Rs(dYs � dIs) + eRt�R�L jFt

35 < �

rL
+
�



� at;

as the RHS of the above inequality is the upper bound on the lender�s expected pro�t under the �rst-best

(public information) allocation. Using the above inequality in (61) we have that

E

24 �Z
0

e�Rs(dYs � dIs) + e�R�L

35 � b(a0; r0) + e
�RtE

�
1t��

�
�

rL
+
�



� at � b(at; rt)

��
:

Using b0(a; r) � �1, we have that, for any a � A; �a � b(a; r) � �A � L. Applying this to the above

inequality yields

E

24 �Z
0

e�Rs(dYs � dIs) + e�R�L

35 � b(a0; r0) + e
�RtE

�
1t��

�
�

rL
+
�



�A� L

��
:

Taking t!1 yields

E

24 �Z
0

e�Rs(dYs � dIs) + e�R�L

35 � b(a0; r0):

Let (��; I�; C�; Y ) be an allocation satisfying the conditions of the proposition. We remember that this

allocation is incentive compatible as it is feasible and �t = � � � for any t � � . Also under this allocation
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the process Gt is a martingale until time � (note that b0(a; r) is bounded). So we have that

E

24 ��Z
0

e�Rs(dYs � dI�s ) + e�R��L

35 =
b(a0; r0) + e

�RtE

241t���
0@E

24 ��Z
t

eRt�Rs(dYs � dI�s ) + eRt�R��L jFt

35� b(at; rt)
1A35 :

Taking t!1 and using

lim
t!1

e�RtE

241t���
0@E

24 ��Z
t

eRt�Rs(dYs � dI�s ) + eRt�R��L jFt

35� b(at; rt)
1A35 = 0;

yields

E

24 ��Z
0

e�Rs(dYs � dI�s ) + e�R��L

35 = b(a0; r0): �

Proof of Proposition 4

Let (C; Ŷ ) be any borrower�s feasible strategy given the allocation (� ; I). The borrower�s private saving�s

account balance, S, under the strategy (C; Ŷ ) and the allocation (� ; I) grows, for t 2 [0; � ]; according to

dSt = �tStdt+ (dYt � dŶt) + dIt � dCt; (62)

where we remember that �t � rt: De�ne the process V̂ as

V̂t =

tZ
0

e�
sdCs +

tZ
0

e�
s�ds+ e�
t(St + at);

From the above it follows that

e
tdV̂t = dCt + �dt+ dSt � 
Stdt+ dat � 
atdt

Using (16) and (62) yields

e
tdV̂t = (�t � 
)Stdt+ (dYt � �dt)dt+  tdMt =

(�t � 
)Stdt+ �dZt +  tdMt: (63)
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Noting that e
t � 1 for any t � 0, we have that

dV̂t � (�t � 
)Stdt+ �dZt +  tdMt:

Recall that Z and M are martingales, �t < 
, and that the process S is nonnegative. So it follows from the

above that the process V̂ is supermartingale up to time � (note that a is bounded from below). Using this

and the fact that by de�nition a� = A; we have that for any feasible strategy of the borrower,

a0 = V̂0 � E
h
V̂�

i
= E

24 �Z
0

e�
sdCs +

�Z
0

e�
s�ds+ e�
� (S� +A)

35 ; (64)

The right-hand-side of (64) represents the expected utility for the borrower under any feasible
�
C; Ŷ ; S

�
.

This utility is bounded by a0. If the borrower maintains zero savings, St = 0, reports cash �ows truthfully,

dŶt = dYt, then V̂ is a martingale up to time � , which means that (64) holds with equality and the borrower�s

expected utility is a0. Thus, this is the optimal strategy for the borrower. �

Proof of Proposition 5

De�ne ~at as follows:

~at = A+ CLt (rt)�Bt (65)

= pt + a
1(rt)�Bt: (66)

Under the candidate mortgage contract the debt balance evolves according to

dBt =
�
�rptBt + (�rt � �r

p
t ) (Bt � pt)

+
�
dt� dŶt + dIt; (67)

when Bt � CLt , where It represents cumulative withdrawal of money by the borrower. In addition,

dCLt = dpt + da
1(rt)

=  (pt + a
1(rt)�Bt; rt)dNt (68)
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Using (17)-(19), (66)-(68), for Bt � pt we can write

d~at = dCLt (rt)� dBt

=  (pt + a
1(rt)�Bt; rt)dNt � (�rptBt + (�rt � �r

p
t ) (Bt � pt)) dt+ dŶt � dIt

= �
�
�rpt pt + �rt (Bt � pt)� � (pt + a1(rt)�Bt; rt)

�
dt+ dŶt � dIt

+ (pt + a
1(rt)�Bt; rt)dMt

= �
�
� + �� 
a1(rt) + 
 (Bt � pt)

�
dt+ dŶt � dIt +  (pt + a1(rt)�Bt; rt)dMt

= 
~atdt� �dt� �dt+ dŶt � dIt +  (~at; rt)dMt (69)

The borrower�s savings evolve according to

dSt = �tStdt+ dIt +
�
dYt � dŶt

�
� dCt: (70)

Consider

V̂t =

Z t

0

e�
s (�dt+ dCs) + e
�
t (
t + St)

where


t =

8<: a1 (rt) + (pt �Bt) ; if Bt < pt

~at; if Bt � pt
: (71)

We will show that for any feasible strategy
�
C; Ŷ ; S

�
of the borrower, V̂t is a supermartingale. Note that

d
t =

8>><>>:
�
a1(rct )� a1(rt)

�| {z }
 (a1(rt);rt)

dNt � dBt; if Bt < pt

d~at; if Bt � pt

: (72)

Using (70),

e
tdV̂t = �dt+ dCt + dSt � 
Stdt+ d
t � 

tdt

= �dt� (
 � �t)Stdt+ dIt +
�
dYt � dŶt

�
+ d
t � 

tdt:

First, we consider the case with Bt � pt. Using (1), (69), and (71)-(72),

e
tdV̂t = �dt� (
 � �t)Stdt+ dIt +
�
dYt � dŶt

�
+ d~at � 
~atdt

= (�t � 
)Stdt+ �dZt +  (~at; rt)dMt: (73)
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Now, let Bt < pt. Using (1), (18), (67)-(72) yields

e
tdV̂t = �dt� (
 � �t)Stdt+ dIt +
�
dYt � dŶt

�
+ d
t � 

tdt

= �dt� (
 � �t)Stdt+ dIt +
�
dYt � dŶt

�
+ (a1(rt); rt)dNt � dBt � 


�
a1 (rt) + (pt �Bt)

�
dt

= �
�
�rptBt + 
 (pt �Bt) + 
a1 (rt)� � � �+ (
 � �t)St

�
dt

+ (a1(rt); rt)dNt + �dZt

= �
�
�rptBt + 
 (pt �Bt)� r

p
t pt + � (a

1(rt); rt) + (
 � �t)St
�
dt

+ (a1(rt); rt)dNt + �dZt

= � (
 � �rpt ) (pt �Bt) dt� (
 � �t)Stdt+  (a1(rt); rt)dMt + �dZt (74)

Recall that Z and M are martingales, �rpt � 
, �t < 
. Thus, it follows from (73), (74), and the fact that

~at is bounded from below, that for any feasible strategy
�
C; Ŷ ; S

�
of the borrower V̂t is a supermartingale

until default time �
�
C; Ŷ ; S

�
= inf

�
t : Bt = CLt

	
. Since 
� = A,

A+ CL0 (r0)�B0 = ~a0 = V̂0 � E
h
V̂�(C;Ŷ ;S)

i
= E

"Z �(C;Ŷ ;S)

0

e�
s (�dt+ dCs) + e
�
�(C;Ŷ ;S)

�
A+ S�(C;Ŷ ;S)

�#
; (75)

where B0 is the time-zero draw on the credit line.

The right-hand-side of (75) represents the expected utility for the borrower under strategy
�
C; Ŷ ; S

�
,

given the terms of the mortgage. This utility is bounded by A + CL0 (r0) � B0. If the borrower maintains

zero savings, St = 0, reports cash �ows truthfully, dŶt = dYt, and consumes all excess cash �ows once the

balance on the credit line reaches pt(rt), so that Bt � pt and Ct = I�t = max(0; pt � Bt) = max(0; ~at � a1t );

then V̂t is a martingale, which means that (75) holds with equality and the borrower�s expected utility is

A+ CL0 (r0)�B0. Thus, this is the optimal strategy for the borrower.

Reproducing the above argument for the borrower�s optimal strategy, (C; Ŷ ; S) = (I�; Y; 0), and the

process V̂t0 , t0 � �(I�; Y; 0); de�ned in (82) yields that, for any 0 � t � �(C; Ŷ ; 0); ~at is equal to the

borrower�s continuation utility under the proposed mortgage contract with the initial expected utility for

the borrower given by a0 = A+ CL0 (r0)�B0, which establishes (21).

Under the proposed mortgage contract and the borrower�s optimal strategy (C; Ŷ ; S) = (I�; Y; 0), the

lender�s expected utility equals

E

264 �(I�;Y;0)Z
0

e�Rt(dYt � dI�t ) + e�R�(I�;Y;0)�(I
�;Y;0)L jF0

375 ;
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where

�(I�; Y; 0) = inf
�
t : Bt = CLt

	
= inf ft : ~at = Ag = ��(Y );

as the borrower�s continuation utility, ~a, evolve according to the equation (69), e.g. as in the optimal allo-

cation. Therefore, we conclude that the proposed mortgage contract implements the optimal allocation. �

Proof of Proposition 6

Consider the candidate mortgage contract. Under this contract the borrower�s balance on the credit line

evolves according to

dBt = �rt(Bt; rt)Btdt+ xt(rt)dt� (dŶt � dIt) +BA(Bt; rt)dNt; (76)

when Bt � CLt (rt); while the borrower�s savings evolve according to

dSt = �tStdt+ dIt +
�
dYt � dŶt

�
� dCt; (77)

where It represents cumulative withdrawal of money from the credit line by the borrower.

Let (C; Ŷ ; S) be any borrower�s feasible strategy under the proposed mortgage contract. For any feasible

borrower�s strategy (C; Ŷ ; S) de�ne a process V̂ as

V̂t =

tZ
0

e�
s(dCs + �ds) + e
�
t (~at + St) ; (78)

where

~at = a1(rt)�Bt (79)

It follows from (76), (79), and (22)-(25) that ~a evolves as

d~at =
�
a1(rct )� a1(rt)

�
dNt � dBt

=
�
a1(rct )� a1(rt)

�
dNt � �rt(Bt; rt)Btdt� xt(Bt; rt)dt�BA(Bt; rt)dNt + dŶt � dIt

=
�
a1(rct )� a1(rt)

�
dNt �

�


�
a1(rt)� ~at

�
� �(rt)

�
 (a1(rt); rt)�  (~at; rt)

��
dt

�
�
� + �� 
a1(rt) + �(rt) (a1(rt); rt)

�
dt�

�
� (~at; rt) + (a1(rct )� a1(rt))

�
dNt

+dŶt � dIt

= (
~at � � � �(rt) (~at; rt)) dt+ (dŶt � �dt)� dIt +  (~at; rt)dNt (80)
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Using (1), (77), (78), (80) yields

e
tdV̂t = dCt + �dt+ d~at + dSt � 
~atdt� 
Stdt

= �dZt +  (~at; rt)dMt + (�t � 
)Stdt

Recall that Z and M are martingales, �t < 
, and that the process S is nonnegative. So it follows from

the above that the process V̂ is a supermartingale up to time �
�
C; Ŷ ; S

�
= inf

�
t : Bt = CLt

	
(note that ~a

is bounded from below). Using this and the fact that by de�nition ~a� = A; we have that for any feasible

strategy of the borrower, (C; Ŷ ; S);

A+ CL0(r0)�B0 = a0 = ~a0 = V̂0 � E
h
V̂�(C;Ŷ ;S)

i

= E

264
�(C;Ŷ ;S)Z

0

e�
s(dCs + �ds) + e
�
�(C;Ŷ ;S)(S�(C;Ŷ ;S) +A)

375 (81)

The right-hand-side of (81) represents the expected utility for the borrower under any feasible strategy�
C; Ŷ ; S

�
, given the terms of the mortgage. This utility is bounded by A + CL0 (r0) � B0; where B0 is

the initial draw on the credit line. If the borrower maintains zero savings, St = 0, reports cash �ows

truthfully, dŶt = dYt, and consumes all excess cash �ows once the balance on the credit line reaches 0, so

that C = I = I� = max(0;�Bt) = max(0; ~at � a1(rt)); then V̂ is a martingale, which means that (81) holds

with equality and the borrower�s expected utility is A+CL0 (r0)�B0. Thus, this is the optimal strategy for

the borrower.

Reproducing the above argument for the borrower�s optimal strategy, (C; Ŷ ; S) = (I�; Y; 0); and the

process V̂t0 , t0 � �(I�; Y; 0); de�ned as

V̂t0;t =

tZ
t0

e�
(s�t
0)(dCs + �ds) + e

�
(t�t0)~at; t � t0; (82)

yields that, for any 0 � t � �(I�; Y; 0); ~at is equal to the borrower�s continuation utility under the proposed

mortgage contract with the initial expected utility for the borrower given by a0 = A+ CL0 (r0)� B0, which

establishes (26).

Under the proposed mortgage contract and the borrower�s optimal strategy, the lender�s expected utility

equals

E

264 �(I�;Y;0)Z
0

e�Rt(dYt � dI�t ) + e�R�(I�;Y;0)�(I
�;Y;0)L jF0

375 ;
where

�(I�; Y; 0) = inf
�
t : Bt = CLt

	
= inf ft : ~at = Ag = ��(Y );
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as the borrower�s continuation utility, ~a, evolve according to the equation (80), e.g. as in the optimal allo-

cation. Therefore, we conclude that the proposed mortgage contract implements the optimal allocation. �

Proof of Proposition 7

De�ne ~at as follows:

~at = A+ CLt (rt)�Bt (83)

= pt + a
1(rt)�Bt: (84)

Under the candidate mortgage contract the balance on the HELOC evolves according to

dBt =
�
�rptBt + (�rt � �r

p
t ) (Bt � pt)

+
�
dt+ xt(rt)dt+BA

�(Bt � pt)dNt � dŶt + dIt (85)

when Bt � CLt , where It represents cumulative withdrawal of money from the credit line by the borrower.

In addition,

dCLt = dpt + da
1(rt)

=
�
 (a1(rt)� (Bt � pt; rt)Irt�=rL

+ da1(rt)Irt�=rH

�
dNt (86)

Using (84)-(86) and (27)-(32), for Bt � pt, we can write

d~at = dCLt (rt)� dBt

=
�
 (pt + a

1(rt)�Bt; rt)Irt�=rL
dNt + da

1(rt)Irt�=rH

�
dNt � (�rptBt + (�rt � �r

p
t ) (Bt � pt)) dt

�xt(rt)�BA�(Bt � pt)dNt + dŶt � dIt

=
�
 (pt + a

1(rt)�Bt; rt)Irt�=rL
dNt + da

1(rt)Irt�=rH

�
dNt � (�rptBt + (�rt � �r

p
t ) (Bt � pt)) dt

�xt(rt)� (� (pt + a1(rt)�Bt; rt)Irt�=rH
dNt + da

1(rt)Irt�=rH
)dNt + dŶt � dIt

= �
�
� + �� 
a1(rt) + 
 (Bt � pt)

�
dt+ dŶt � dIt +  (pt + a1(rt)�Bt; rt)dMt

= 
~atdt� �dt� �dt+ dŶt � dIt +  (~at; rt)dMt (87)

The borrower�s savings evolve according to

dSt = �tStdt+ dIt +
�
dYt � dŶt

�
� dCt: (88)

Consider

V̂t =

Z t

0

e�
s (�dt+ dCs) + e
�
t (
t + St)
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where


t =

8<: a1 (rt) + (pt �Bt) ; if Bt < pt

~at; if Bt � pt
: (89)

We will show that for any feasible strategy
�
C; Ŷ ; S

�
of the borrower, V̂t is a supermartingale. Note that

d
t =

8>><>>:
[a1(rct )� a1(rt)]| {z }

 (a1(rt);rt)

dNt � dBt; if Bt < pt

d~at; if Bt � pt

: (90)

Using (88),

e
tdV̂t = �dt+ dCt + dSt � 
Stdt+ d
t � 

tdt

= �dt� (
 � �t)Stdt+ dIt +
�
dYt � dŶt

�
+ d
t � 

tdt:

First, we consider the case with Bt � pt. Using (1), (87), (89)-(90),

e
tdV̂t = �dt� (
 � �t)Stdt+ dIt +
�
dYt � dŶt

�
+ d~at � 
~atdt

= (�t � 
)Stdt+ �dZt +  (~at; rt)dMt: (91)

Now, let Bt < pt. Using (1), (27)-(31), (85)-(90) yields

e
tdV̂t = �dt� (
 � �t)Stdt+ dIt +
�
dYt � dŶt

�
+ (a1(rt); rt)dNt � dBt � 


�
a1 (rt) + (pt �Bt)

�
dt

= �dt� (
 � �t)Stdt+ dIt +
�
dYt � dŶt

�
+ (a1(rt); rt)dNt

�
h�
�rptBt + (�rt � �r

p
t ) (Bt � pt)

+
�
dt+ xt(rt)dt+BA

�(Bt � pt)dNt � dŶt + dIt
i

�

�
a1 (rt) + (pt �Bt)

�
dt

= �dt� (
 � �t)Stdt+ dYt

+ (a1(rt); rt)dNt � [� + �� 
a1(rt) + �(rt) (a1(rt); rt)]dt

�

�
a1 (rt) + (pt �Bt)

�
dt

= �
 (pt �Bt) dt� (
 � �t)Stdt+  (a1(rt); rt)dMt + �dZt (92)

Recall that Z and M are martingales and that �t < 
. Thus, it follows from (91), (92), and the fact that

~at is bounded from below, that for any feasible strategy
�
C; Ŷ ; S

�
of the borrower V̂t is a supermartingale
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until default time �
�
C; Ŷ ; S

�
= inf

�
t : Bt = CLt

	
. Since 
� = A,

A+ CL0 (r0)�B0 = ~a0 + S0 = V̂0 � E
h
V̂�(C;Ŷ ;S)

i
= E

"Z �(C;Ŷ ;S)

0

e�
s (�dt+ dCs) + e
�
�(Ŷ ;C;S)

�
A+ S�(C;Ŷ ;S)

�#
; (93)

where B0 is the time-zero draw on the credit line.

The right-hand-side of (93) represents the expected utility for the borrower under strategy
�
C; Ŷ ; S

�
,

given the terms of the mortgage. This utility is bounded by A+CL0 (r0)�B00+S0. If the borrower maintains

zero savings, St = 0, reports cash �ows truthfully, dŶt = dYt, and consumes all excess cash �ows once the

balance on the credit line reaches pt(rt), so that Bt � pt and Ct = I�t = max(0; pt � Bt) = max(0; ~at � a1t );

then V̂t is a martingale, which means that (75) holds with equality and the borrower�s expected utility is

A+ CL0 (r0)�B0. Thus, this is the optimal strategy for the borrower.

Reproducing the above argument for the borrower�s optimal strategy, (C; Ŷ ; S) = (I�; Y; 0), and the

process V̂t0 , t0 � �(I�; Y; 0); de�ned in (82) yields that, for any 0 � t � �(C; Ŷ ; 0); ~at is equal to the

borrower�s continuation utility under the proposed mortgage contract with the initial expected utility for

the borrower given by a0 = A+ CL0 (r0)�B0, which establishes (33).

Under the proposed mortgage contract and the borrower�s optimal strategy (C; Ŷ ; S) = (I�; Y; 0), the

lender�s expected utility equals

E

264 �(I�;Y;0)Z
0

e�Rt(dYt � dI�t ) + e�R�(I�;Y;0)�(I
�;Y;0)L jF0

375 ;
where

�(I�; Y; 0) = inf
�
t : Bt = CLt

	
= inf ft : ~at = Ag = ��(Y );

as the borrower�s continuation utility, ~a, evolve according to the equation (87), e.g. as in the optimal allo-

cation. Therefore, we conclude that the proposed mortgage contract implements the optimal allocation. �
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�(I�; Y; 0) = inf
�
t : Bt = CLt

	
= inf ft : ~at = Ag = ��(Y );

as the borrower�s continuation utility, ~a, evolve according to the equation (87), e.g. as in the opti-

mal allocation. Therefore, we conclude that the proposed mortgage contract implements the optimal

allocation. �
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