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Abstract

The central insight of asset pricing is that value depends on both expected payo¤s and
how payo¤s covary with risks investors care about. In credit markets, many investors focus
exclusively on measures of expected payo¤s (e.g., credit ratings, default likelihoods) without
considering the state of the economy in which default is likely to occur. Such investors are
likely to be attracted to securities whose payo¤s resemble those of economic catastrophe bonds
�bonds that default only under severe economic conditions. This paper argues that almost all
securities created by structured �nance share this feature. We demonstrate that although the
risks of these securities closely resemble those of a more transparent economic catastrophe bond
�a portfolio that is long a Treasury bond and short deeply out-of-the-money S&P put options
�their prices do not. Investors in structured �nance products receive far less compensation for
bearing economic catastrophe risk than those that write out-of-the-money index put options.
We argue that this di¤erence arises from the willingness of rating agencies to certify the former
as �safe�and from the large supply of investors who view them as such.
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Economic catastrophe bonds fail to deliver their promised payments in the �worst� economic

states, precisely when a dollar is most valuable. Like most catastrophe bonds, they can easily be

constructed to have a small probability of default, or equivalently a high expected payo¤ relative to

face value. However, unlike bonds that insure non-economic or actuarial risks, economic catastrophe

bonds should have large price discounts to account for the extreme variation of payo¤s across states

with di¤erent levels of aggregate wealth. This simple, but seemingly abstract security becomes

meaningful when one considers recent trends in the development of structured �nancial products.

The increasingly popular act of pooling economic assets into large portfolios and tranching them

into sequential cash �ow claims e¤ectively creates economic catastrophe bonds. For example, a

so-called �safe�tranche of a collateralized default obligation (CDO) is AAA-rated based on its low

default probability, but fails to deliver its promised payo¤ in an economic environment in which

15% to 20% of large US �rms have defaulted on their debt, which is almost surely a state where

aggregate wealth is low. The analysis presented in this paper shows how recent innovation in

�nancial products tends to concentrate risks in a manner that is particularly important for pricing,

but which can be obscured with common methods of credit risk and price analysis.

Structured �nance instruments have played a key role in the recent growth of �nancial markets,

with $3.1 trillion in issuance in 2005 alone and a total outstanding, notional value of $8.1 trillion

at 2005 year-end. These instruments are typically created in a process known as securitization,

in which assets are �rst combined into a collateral pool, and then claims with varying degrees of

seniority, known as tranches, are issued against this pool. One of the motivations for securitization

is its ability to create derivative claims with credit ratings superior to the average credit rating of

the assets in the underlying pool. This allows for an expansion of the investment opportunity set

by creating payo¤s that were previously unavailable or available naturally in short supply.

As a result of the prioritization of cash �ows (liabilities) stemming from the underlying collateral

pool, a senior claim only su¤ers losses after the principal of all of the subordinate tranches has been

exhausted. While this prioritization scheme e¤ectively ensures that the senior tranche has a high

expected payo¤, and is likely to receive a commensurately high credit rating, it also con�nes the

tranche losses to systematically bad states. The central insight of asset pricing theory is that in

order to determine an asset�s price one has to know both its expected payo¤ (e.g. credit rating),

and how that payo¤ covaries with risks investors care about. The higher the expected payo¤, the

higher the asset�s price, and conversely, the higher the payo¤ covariance, the less insurance the

asset provides in systematically bad states and the lower the asset�s price. Interestingly, while

asset pricing theory predicts that the AAA-rated tranche should trade at a relatively low price,

commanding a large risk premium, we show in this paper that this prediction does not �nd empirical

support. This �nding not only suggests the presence of a quantitatively large mispricing, but also

highlights the need for a careful investigation of the structure of the credit market, including the

role of credit ratings in the structured �nance domain.

Credit agencies have long played a central role in �xed income markets, where they categorize

investments in terms of their likelihood of meeting coupon and principal repayment obligations.
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Although these ratings do not include any form of adjustment for how default is expected to

relate to other economic risks, they are heavily relied upon by investors, issuers, and monitors in

valuing and assessing the risks of �xed income investments. In the case of single-name issuers,

neglecting the covariance of the bond�s payo¤with other economic risks turns out to be a relatively

benign shortcut, since the majority of the cross-sectional variation in bond yields is attributable

to di¤erences in payo¤ expectations, rather than risk premia. In other words, a naïve investor

who prices bonds solely on the basis of their credit rating would not be making a large mistake.

However, because pooling and tranching can have a dramatic impact on the risk characteristics

of the resulting claims, such shortcuts are generally no longer warranted for structured �nance

instruments.

To investigate the recent behavior of the structured credit market we develop a simple framework

for understanding how tranching schemes commonly applied to portfolios of economic assets a¤ect

risk and pricing. In particular, we show that if investors were to naïvely price securities using

rules of thumb that heavily emphasized expected payo¤s over appropriate required rates of return,

then the tranching of economic assets, or the creation of economic catastrophe bonds naturally

emerges as an optimal means of exploiting these investors. Our empirical analysis suggests that

investors that purchase senior CDO tranches receive yield spreads that are several factors too low

to appropriately compensate them for the highly systematic nature of the risks they are bearing.

In particular, we estimate that an investor that purchases the AAA-rated CDO tranche bears risks

that are highly similar to those of a 50% out-of-the-money �ve-year put spread on the S&P 500

index. However, on average the put spread o¤ers nearly three times as much compensation for

bearing these risks.

The remainder of the paper is organized as follows. Section 1 develops a simple framework

for understanding how tranching schemes commonly applied to portfolios of economic assets a¤ect

risk and pricing. Section 2 describes the data. Section 3 presents a calibration methodology that

allows us to compare the risk and return properties of CDO tranches to market index put spreads

that have equivalent default risk. Section 4 evaluates the time series properties of actual CDO

tranche spreads relative to model predicted spreads. Section 5 discusses the recent evolution of the

structured credit market, and Section 6 concludes.

1 The Impact of Tranching on Asset Prices

Assets cannot be priced solely on the basis of their expected payo¤. This simple insight underlies

the entirety of modern asset pricing, which stipulates that in order to determine the price of an

asset one has to know both its expected payo¤, and how that payo¤ covaries with priced states of

nature (i.e. the stochastic discount factor). Take, for example, the case of a risky discount bond

which pays one dollar T -periods hence, conditional on not defaulting, and zero otherwise. The

price of this bond can be obtained from the fundamental law of asset pricing, which states that an

asset�s price is given by the expectation of the product of its future payo¤, CFT , and the realization
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of the stochastic discount factor, MT ,

P0 = E[CFT �MT ] = e
�rf �T � E[CFT ] + Cov[CFT ;MT ] (1)

In the case of this risky discount bond, which pays zero conditional on default, the future cash �ow

is given by,

CFT = (1� 1D;T ) � 1 + 1D;T � 0 (2)

where 1D;T is an indicator random variable, which takes on the value of one conditional on the

bond being in default at time T , and zero otherwise. If the probability of default at time T is given

by pD, the bond�s price will satisfy,

P0 = e
�rf �T � (1� pD)� Cov[1D;T ;MT ] (3)

The bond price is equal to the the expected future cash �ow discounted at the riskless rate, adjusted

for the covariation of defaults with priced states of nature. Although the relative magnitude of the

two terms is likely to vary across various securities, the rapid growth of credit rating agencies, which

specialize in delivering unconditional estimates of default probabilities and losses given default,

suggests that practitioners are most interested in the �rst term. Of course, there are circumstances

where this shortcut can lead to signi�cant errors. The pricing formula, (3), reveals that neglecting

the risk premium for the covariation of defaults with prices states of nature may lead to severe

mispricings. In particular, we argue that the magnitude of the potential mispricing is likely to

be largest within structured �nance products, where the risk premium is magni�ed through the

pooling and tranching of securities. Paradoxically, the largest recent driver of credit rating agency

revenues �structured �nance products (e.g. collateralized debt obligations) �are also likely to be

the products where estimates of default probabilities are least likely to be su¢ cient for pricing.

In the next section we provide some intuition for the magnitude of the mispricing that can

be created by neglecting the risk premium for covariation of defaults with priced states of nature,

and show how pooling and tranching reallocates payo¤s across these states. Indeed, if market

participants assigned identical prices to all �xed income securities with identical credit ratings,

issuers would have an incentive to create and sell securities whose default probability strongly

covaries with priced states of nature. We show that tranching arises as an endogenous mechanism

for exploiting this naïve, credit-rating-based approach to pricing �xed income securities.

1.1 The Cheapest to Supply Bond

To get a sense of how much the prices of a set of bonds with identical unconditional default

probabilities, i.e. credit ratings, can vary, let us consider all possible payo¤ pro�les in the priced

state space, 
. As before, we will assume that the bond either pays one dollar conditional on not

defaulting, and zero otherwise. If we denote the state-contingent probability of default by pD(!)
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and the probability of observing state ! by f(!), this set of securities includes all bonds that satisfy,

pD �
Z
!2


pD(!)f(!)d! (4)

where pD is the pre-speci�ed, unconditional default probability. In principle, to price these securities

we can simply integrate their state contingent payo¤ expectations against the state prices, q(!),1

P (pD(!); pD) �
Z
!2


(1� pD(!))q(!)d!: (5)

However, to derive bounds on the prices of the bonds it is useful to re-write the above expression

in terms of the stochastic discount factor, m(!), which is given by the ratio of the state price and

the state probability, f(!),

P (pD(!); pD) =

Z
!2


(1� pD(!)) �
�
q(!)

f(!)

�
� f(!)d!

=

Z
!2


(1� pD(!)) �m(!)dF (!): (6)

The stochastic discount factor, m(!), re�ects the marginal utility of consumption in each state

and provides a natural means by which states can be ordered from �most expensive� to �least

expensive�. Once the states ! have been ordered according to their corresponding value of m(!)

�from highest to lowest � it is immediate that the most expensive asset pays o¤ with certainty

on a set of measure, 1 � pD, containing the most expensive states �as measured by m(!) �and
zero elsewhere. We denote the set of states in which the most expensive asset delivers a unit payo¤

by 
. Conversely, the least expensive asset pays of with certainty on a set of measure 1 � pD,
but containing the least expensive states, and zero elsewhere. Correspondingly, we denote the set

of states with a sure, one unit payo¤ for the cheapest asset by 
. However, absent an explicit

characterization of the priced state, !, and the state-contingent value of the stochastic discount

factor, m(!), it is not possible to determine how large the wedge is between the prices of these two

identically rated assets.

One natural state space in which to consider the pricing of these �toy�securities is the state

space de�ned by the realizations of the market return. This state space underlies the Sharpe (1963)

- Lintner (1965) capital asset pricing model, and plays a crucial role in many other multi-factor

characterizations of priced states. Moreover, because the market factor describes the evolution

of wealth of the representative agent, low (high) realizations of the market return identify states

with high (low) marginal utility, or equivalently, high (low) values of the stochastic discount factor.

Consequently, indexing states by the magnitude of the realized market return also provides the

requisite ordering of states in descending order of marginal utility of consumption.

In the market state space, the two securities with the highest and lowest prices, and an uncon-

1The state price is equal to the price of the Arrow-Debreu security for state !, i.e. a security which pays one unit
of consumption in state ! and zero otherwise.
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ditional default probability of pD, correspond to a digital market put and call option, respectively.

The strike price of each option is set such that the probability of observing the option expire out of

the money is equal to pD, and the sets of states for which they yield unit payo¤s correspond to the

perviously identi�ed 
 and 
. To price these options analytically it is convenient to specialize to

the assumptions underlying the Black-Scholes (1973) / Merton (1973) option pricing model, and re-

quire that the market follow a lognormal di¤usion with constant volatility. Under this speci�cation,

the evolution of the market is described by the following stochastic di¤erential equation,

dM

M
= (rf + �)dt+ �mdZm: (7)

where, rf is the continuously compounded riskless rate, � it the market risk premium and �m is

the volatility of instantaneous market returns. Moreover, the prices of Arrow-Debreu securities,

and many other derivatives, including digital options, can be obtained in closed form (see Breeden

and Litzenberger (1978)). After some simple manipulation it is possible to show that the prices of

the digital market put and call option with a default probability of pD are given by,

P 0 = e�rfT � �
�
��1(1� pD) +

�

�m
�
p
T

�
(8)

P 0 = e�rfT � �
�
��1(1� pD)�

�

�m
�
p
T

�
(9)

where �(�) denotes the cumulative normal distribution of the standard normal random variable.

These expressions indicate that the maximal and minimal prices for a bond with an unconditional

default probability of pD, will depend on the default probability itself (i.e. expected cash �ow),

and the T -period market Sharpe ratio. As intuition would suggest, when the market Sharpe ratio

is equal to zero (i.e. no risk premium), the prices of the two bonds will be identical, and equal to

the price of a discount bond with a constant, idiosyncratic default probability of pD in all market

states.

To get a sense of the magnitude of the mispricing that can arise from omitting the risk premium

in the computation of the price of a security with a 5-year unconditional default probability of 1%,

consider the following calibration. Suppose the (annualized) continuously compounded riskless rate,

rf , is equal to 5%, and that the annualized market Sharpe ratio is 0:33. Under these assumptions

the price of a discount bond with a par value of one, whose defaults are purely idiosyncratic, would

be equal to P0 = 0:7710. On the other hand, the price of the cheapest security with the identical

default probability is given by the price of digital market call, P 0, and is equal to 0:7351. If market

participants naïvely assume that defaults are idiosyncratic and assign equal prices to all securities

with an identical credit rating, a clever agent could exploit them by obtaining a rating for the

digital market call, and marketing it at the price of other securities with the same rating, while

pocketing the 4:66% price di¤erential.

This simple analysis illustrates that securities with identical credit ratings, interpreted as un-

conditional default probabilities, can trade at signi�cantly di¤erent prices. This is not surprising
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in the context of asset pricing theory, which posits that an asset�s price should re�ect a premium

for the covariation of its payo¤ with priced states of nature. It also suggests a simple mechanism

for exploiting market participants who naïvely assign the same price to all securities with the same

credit rating. So long as the price assigned to a security of a given credit rating di¤ers from the

price of the cheapest to supply bond, i.e. the digital market call, arbitrageurs have an incentive to

sell digital market calls, or other securities with similar payo¤ pro�les. However, the transparency

of this ploy, combined with the improbability of being able to obtain a credit rating for a digital

market call option, suggests this is not possible. Astoundingly, we show that tranching the cash

�ows from a portfolio which pools a large number of economic assets (e.g. bonds, credit default

swaps, etc.) �a commonly accepted market practice aimed at obtaining credit enhancement �does

just this.

1.2 Tranching as a Mechanism for Reallocating Risk

Structured �nance activities e¤ectively proceed in two steps. In the �rst step, a portfolio of

similar securities (bonds, loans, credit default swaps, etc.) is pooled in a special purpose vehicle.

In the second step, the cash �ows of this portfolio are redistributed, or tranched, across a series of

derivatives securities. The absolute seniority observed in re-distributing cash �ows among the deriv-

ative claims, called tranches, enables some of them to obtain a credit rating higher than the average

credit rating of the securities in the reference portfolio. Aside from allowing the issuer to satisfy the

demands of clienteles with various tolerances for default risk, tranching also mitigates asymmetric

information problems regarding the quality of the underlying securities (DeMarzo (2005)). Unlike

DeMarzo though, our focus is not on the agency problems motivating the existence of tranching, but

rather on its impact on the systematic risk exposures of the resulting securities, and consequently,

on their prices. We show that losses on highly rated tranches are concentrated in states with high

state prices (i.e. marginal utility), suggesting that they should trade at signi�cantly higher yield

spreads than single-name bonds with identical credit ratings. Surprisingly, this implication turns

out not to be supported by the data, which shows that triple-A rated tranches trade at comparable

yields to triple-A rated bonds. This suggests a di¤erent, and more tantalizing, explanation for

explosive growth of the credit derivative tranche market.

We show that when the number of assets in the underlying portfolio of a tranche becomes large,

the tranche converges to an option on the market portfolio. Speci�cally, if we restrict our attention

to a tranche o¤ering a digital payo¤ referenced to the loss on the underlying portfolio, the tranche

payo¤ converges to the payo¤ of a digital market call option.2 However, the previous section shows

that holding the default probability constant, a digital call represents the cheapest to supply asset

with a pre-speci�ed credit rating. Because pooling and tranching synthetically creates the cheapest

to supply asset in a given credit rating category, it e¤ectively provides the optimal mechanism

2Although the digital payo¤ is a simpli�ed version of tranche structures actively traded in real-world credit markets,
this simpli�cation is largely without loss of generality. To see this, it is su¢ cient to note that any non-digital tranche
can be represented as a strictly positive combination of digital tranches. Consequently, the risk characterstics and
pricing properties of a digital tranche carry over to the tranche structures traded in real-word credit markets.
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for exploiting the arbitrage opportunity created by agents employing a naïve pricing model, which

prices bonds solely on the basis of their expected payo¤ (i.e. credit rating). In other words, aside

from completing the market by increasing the supply of highly-rated securities, the growth of the

credit tranche market can potentially be explained as an endogenous, institutional response to an

arbitrage opportunity in the credit markets.

To verify this claim we examine the risk characteristics and pricing of a prototypical tranche,

o¤ering a digital payo¤ referenced to the loss on the underlying portfolio of economic assets. Eco-

nomic assets are assets whose conditional probability of default increases in the adversity of the

economic state, and can be thought of in contrast to actuarial claims, whose default probability

is unrelated to the economic state. In other words, economic assets are more likely to default in

states of the world in which high marginal utility of wealth, or equivalently, in states where the

value of one unit of consumption is high. For example, if we were to identify the priced states with

realizations of the market return, economic assets could generally be described as assets whose ex-

pected value covaries positively with the realized market return (i.e. assets with a positive CAPM

beta). This feature is typical of essentially all non-actuarial assets, and arises trivially in Merton�s

(1974) structural model of debt.

1.3 Integrating Merton�s (1974) Credit Model with the CAPM

To �x ideas we examine the pricing and risk characteristics of a CDO tranche with an uncon-

ditional default probability, pD, written on a portfolio of economic assets, in this case - bonds. To

build up an analytical model for pricing the CDO tranche we rely on the Merton structural model

to determine the individual bond default probabilities, and then derive the distribution of portfolio

losses using a central limit theorem argument. Speci�cally, we begin with the assumption that �rm

asset values are characterized by the following stochastic di¤erential equation,

dAi
Ai

= (rf + � � �)dt+ ��mdZm + ��dZi; (10)

where rf is the riskless rate, � is the CAPM beta of the asset returns on the market portfolio, � is

the market risk premium and �m and �� and the market and idiosyncratic asset return volatilities,

respectively. We make the common assumption that a �rm defaults whenever the terminal value

of its assets, AT , falls below the face value of debt, D. Crucially, we assume asset returns satisfy a

CAPM relationship, which will later allow us to represent the CDO tranche as a derivative claim

on the market portfolio. Using the distribution of asset returns conditional on the realization of the

T -period market return, rM;T , it is easy to show that the an individual �rm�s conditional probability

of default is given by,

pD(rM;T ) = �

24 ln D
At
�
�
rf + �

� rM;T

T � rf
�
� �2�

2

�
� T

��
p
T

35 ; (11)
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where the expression appearing in the brackets can be interpreted as the conditional distance to

default given an observed market return of rM;T . As posited earlier, the CAPM beta of economic

assets is positive (� > 0), causing their conditional default probability to decrease with the mag-

nitude of the T -period market return, rM;T (
dpD(rM;T )
drM;T

< 0). Conveniently, after conditioning on

the realization of the market return, asset returns and defaults are independent and idiosyncratic.

This implies that the distribution of the number of defaulted �rms in the underlying portfolio of

bonds will be binomial with parameter pD(rM;T ).

To derive the portfolio loss distribution we assume that the loss given default for each individual

�rm is a random variable between [0; 1], with mean l and variance v2. In other words, losses given

default are purely idiosyncratic and have identical expectations under the objective and risk-neutral

probability measures.3 The conditional portfolio loss is then given by an equal-weighted sum of the

issuer-speci�c losses:

~Lp(rM;T ) =
1

N

~N(rM;T )X
i=1

~Li(rM;T ) (12)

Although it is typically not possible to derive a convenient analytical expression for the distribu-

tion of the conditional portfolio loss, ~Lp(rM;T ), progress can be made via a central limit theorem

argument. When the number of �rms in the underlying bond portfolio, N , is su¢ ciently large the

central limit theorem indicates the portfolio loss distribution converges to,

~Lp(rM;T ) � �
 
l � pD(rM;T );

pD(rM;T ) �
�
(1� pD(rM;T )) � l2 + v2

�
N

!
; (13)

With the conditional portfolio loss distribution in hand we can now characterize the payo¤s to

various tranches written on the bond portfolio. In what follows, we focus on the pricing of a

digital tranche, which pays one dollar when the (percentage) portfolio loss is less that X, and zero

otherwise. The (percentage) magnitude of the portfolio loss beyond which the tranche ceases to

pay, X, is known as the tranche attachment point.

Using the limiting distribution of the portfolio loss one can readily show that the conditional

tranche default probability, is given by,

pD(rM;T ; X;N) = 1� �
 

X � l � pD(rM;T )p
pD(rM;T ) � ((1� pD(rM;T )) � l2 + v2)

�
p
N

!
: (14)

and the unconditional tranche default probability can be obtained by integrating the conditional

default probability against the distribution of the T -period market return, f(rM;T ). The tranche

attachment point is �xed such that the unconditional tranche default probability is equal to pD.

Focusing on the asymptotic tranche behavior as the number of securities in the underlying portfolio

3The reduced-form credit literature typically �xes LQ, and instead focuses on establishing the di¤erence between
the default intensity processes under the two measures, �P and �Q (see Du¢ e and Singleton (2003) and Pan and
Singleton (2006)).
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becomes large (N ! 1),4 the conditional tranche default probability converges to the following
indicator function,

lim
N!1

pD(rM;T ; X;N) = 1X< l�pD(r̂M;T ) (15)

where r̂M;T is implicitly de�ned through the condition,X = l�pD(r̂M;T ). In fact, the binary nature of
the conditional default probability indicates that the payo¤ function of the digital tranche converges

(in probability) to the payo¤ function of a digital call option on the market portfolio. To see this

more clearly, note that the tranche pays one dollar conditional on the market return being greater

than r̂M;T and zero otherwise. We formalize this result in the following theorem.

Theorem 1 Suppose a digital tranche is written on a portfolio containing N identical economic

assets, and has an attachment point of X, corresponding to an unconditional default probability

of pD. As the number of securities in the portfolio underlying the tranche converges to in�nity,

N ! 1, the tranche payo¤ function converges in probability to the payo¤ function of a digital
market call with the same probability of expiring out of the money, and its price converges to the

price of that call,

lim
N!1

PX;N0 = e�rfT � �
�
��1(1� pD)�

�

�m
�
p
T

�
(16)

To obtain more intuition about the convergence of the tranche price to the price of the digital

market call, PX;10 , as a function the number of securities in the underlying portfolio, N , we make

use of the Arrow-Debreu pricing formalism. To do this, we specialize to the state-space de�ned

by the realizations of the market return, rM;T , and re-express the tranche price as an integral of

the product of its state-contingent payo¤ expectation (1 � pD(rM;T ; X;N)) with the state price
(q(rM;T )) across all possible states,

PX;N0 =

Z 1

�1
(1� pD(rM;T ; X;N)) � q(rM;T )drM;T (17)

Because the realization of rM;T orders states in ascending order of marginal utility and the derivative

of the conditional tranche default probability with respect to the number of underlying securities,
@pD(rM;T ;X;N)

@N , is positive (negative) for market returns rM;T smaller (larger) than r̂M;T , increasing

N e¤ectively reallocates the probability of default from states with low marginal utility to states

with high marginal utility. This causes the price of the digital tranche to decline monotonically in

N , because it o¤ers progressively less protection against systematically bad states. A full proof of

this claim can be found in the Appendix.

Theorem 2 The price of a digital tranche with attachment point, X, written on a portfolio of N
identical assets, PX;N0 , is monotonically decreasing in N , and converges to the price of the limiting

4The focus on the asymptotic behavior is further warranted by the fact that our analysis already required N to
be large to invoke the central limit theorem in the derivation of the portfolio loss distribution.
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digital market call, PX;10 , as N !1.

The strike price of the limiting digital market call option, can be obtained by setting the

unconditional default probability of the digital tranche equal to pD. Speci�cally, as N ! 1,
a simple manipulation shows that � in moneyness space � the option strike price is given by

K� = exp(r̂M;T ), where,

r̂M;T =

�
rf + � �

�2m
2

�
� T � �m

p
T � ��1(1� pD) (18)

Finally, we assert without proof that the pricing results derived for the digital tranches carry

over to the more standard tranches observed in practice, which are characterized by a pair of

attachment points. To see this note that the payo¤ to a non-in�nitesimally tight tranche, can be

replicated by a strictly positive combination (i.e. portfolio) of digital tranches. Consequently, the

pricing properties of the basis assets (i.e. the digital tranches) are inherited by the composite asset.

2 Data Description

Our empirical analysis relies on two main sets of data. The �rst consists of daily spreads of

CDOs whose cash �ows are tied to the DJ CDX North American Investment Grade Index. This

index, which is described in detail in Longsta¤ and Rajan (2007), consists of a liquid basket of CDS

contracts for 125 U.S. �rms with investment grade corporate debt. Our data, which come from a

proprietary database made available to us by Lehman Brothers, cover the period October 2004 to

October 2006. The data contain daily spreads of the index as well as spreads on the 0-3, 3-7, 7-10,

10-15, and 15-30 tranches. As in Longsta¤ and Rajan (2007), we focus on the �on-the-run�indices

which uses the �rst six months of CDX NA IG 4 through CDX NA IG 7 to produce a continuous

series of spreads over the two-year period.

Our analysis also requires accurate prices for out-of-the-money market put options with �ve

year maturity. During our sample period, no index options with maturity exceeding three years

traded on centralized exchanges. However, two separate proprietary trading groups provided us

with databases of daily over-the-counter quotes on �ve-year S&P 500 options. The two sources

contain virtually identical quotes suggesting that the quotes re�ect actual tradable spreads. The

�ve-year option quotes include both at-the-money and 30 percent out-of-the-money put options

which enable us to estimate a volatility skew for long-dated put options.

In addition to CDX and option data, we use a daily series of average corporate bond spreads on

AA, A, BBB, BB, and B-rated bonds. These spreads, which were obtained from Lehman Brothers,

are reported in terms of the 5-year CDS spread implied by corporate bond prices. Finally, we use

the daily VIX obtained from the CBOE website. The VIX is a measure of near-term, at-the-money

implied volatility of S&P 500 index options.
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2.1 Summary Statistics

Table 1 provides summary statistics for the CDX index and tranche spreads as well as the

bond spreads and the VIX series. Panel A reports average spread levels (and the VIX index level)

and standard deviations for each of our series across the sample. As expected, average spreads

are decreasing across the bond portfolios and across the tranches as the credit quality improves.

The average spreads of the 3-7 and 7-10 tranches signi�cantly exceed those of similarly rated bond

portfolios across our sample period. However, both of these averages are strongly in�uenced by the

early pricing of the CDX when, prior to it being widely accepted as a benchmark, mezzanine and

senior tranche spreads were highly in�ated. For example, as Figure 3 indicates, since October 2005

the 7-10 tranche spread has converged to that of the AA-rated bond portfolio. Indeed, tranche

spreads have continued to match those of comparably rated bonds well into 2007.

Panels B reports daily correlations of each series in levels and Panel C reports correlations of �rst

di¤erences. In both levels and �rst di¤erences, the AA are negatively correlated with the CDX index

and its tranches. They are also negatively correlated in levels and in changes with the VIX volatility

index. All other bonds are positively correlated with the CDX spread. The CDX and tranches have

high correlations with each other and with the VIX, suggesting that market volatility is a key factor

in the pricing of the CDX and its tranches but is not important in determining investment grade

corporate bond yields.

3 Model Calibration

To calibrate the proposed structural model to empirical data on the credit default index (CDX)

and its tranches, we rely on the assumption that the CDX is comprised of bonds issued by N

identical �rms. Historically, the representative �rm included in the CDX index has had a credit

rating of BBB or A.5 We use this fact, combined with estimates of credit risk premia and the

historical average CDX spread �approximately 45 bps over our sample period �to determine the

implied bond recovery rate and the characteristics of the underlying �rms (debt-to-asset ratios,

asset betas, and asset idiosyncratic volatility) consistent with the Merton model estimates of the

�rms�default probabilities. We then use this information, combined with properties of the market

return process (mean equity premium, market volatility), to derive the strike prices for the index

puts spreads used to replicate the payo¤ to the CDO tranche.

3.1 Determining Firm Characteristics and Recovery Rates

The goal of �rst step of our calibration will be to match the ratio of the risk-neutral, �Q, and

objective default intensities, �P , for the representative bond in the CDX to values reported in

the credit literature, while simultaneously matching the mean historical yield spread on the CDX

5The decision regarding the credit rating of the representative �rm is important, because it determines the �credit
rating�of the index itself. Kakodar and Martin (2004) report that the CDX index had an average rating of BBB+
at the end of June 2004.
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index. Because the ratio of �Q and �P re�ects the relative importance of the risk-premium term

(i.e. second term in (3)) in the pricing of a defaultable bond it is frequently considered a measure of

credit risk. For example, if a bond�s defaults are idiosyncratic and the recovery rate conditional on

default is zero, the ratio is equal to one indicating that no additional risk premium is being attached

to the timing of the defaults. Conversely, the higher a security�s propensity to default only in states

with high marginal utility the higher the value of the ratio. For example, Hull, Predescu and White

(2005) report ratios of �
Q

�P
of 9:8 for A-rated bonds and 5:1 for BBB-rated bonds. Consistent with

intuition, this indicates that the average economic state in which an A-rated bond defaults is worse

than the average state in which a BBB-rated security is likely to default. By matching this ratio we

ensure that the component securities in the CDX have the correct quantity of systematic default

risk relative to idiosyncratic default risk. On the other hand, by matching the historical yield

spread on the CDX, we ensure that each component bond is priced correctly, and consequently, so

is the index. To match the CDX yield spread, which itself is a function of the recovery rate, we

will also need to develop the pricing formula for the credit index.

The risk-neutral default intensity for the index can be backed out from an estimate of the

annualized CDX yield, yCDX , and risk-neutral recovery rate, RQ, through the following formula,

e�yCDX �T = e�rf �T �
�
e��

Q�T +RQ � (1� e��Q�T )
�

(19)

Formally, this equation states the the CDX price (left-hand side) is equal to the discounted value

of the expected payo¤ under the risk-neutral measure (right-hand side).6 Using a series of simple

linear expansions it can be shown that the risk-neutral CDX default intensity, �Q, satisfying this

condition is approximately equal to the ratio of the CDX yield spread and the (expected) loss given

default, yCDX�rf1�R .

The objective, or real-world, default intensity is simply the annualized rate of default on the

bond. If the T -period default probability is pD, the corresponding default intensity is,

�P = � 1
T
ln (1� pD)

In our modi�ed version of the Merton model in which asset returns obey a CAPM relation, and

a �rm is considered in default only if its asset value at maturity, AT , is below the face value of

debt the unconditional default probability, pD, can be derived in closed form.
7 Speci�cally, we

can show that the objective default intensity, �P , is determined by market volatility and a series

of �rm-speci�c parameters, which include the �rm�s debt-to-asset ratio, D
At
, asset beta, �a, and

6 In what follows, we assume that the recovery rate is constant across all states, and consequently, the risk-neutral
and objective measure recovery rates are identical. We therefore drop the superscript on the recovery rate. Note also
that (1�R) is the expected loss conditional on default denoted by l in Section 1.

7This assumption can be trivially modi�ed to allow defaults at intermediate dates, for example if the asset value
falls below the face value of debt at any point in time between t �the origination of the bond �and its maturity, T ,
as in Hull, Predescu, and White (2006).

12



idiosyncratic asset volatility, �", through the following expression,

�P = � 1
T
ln

0@1� �
24 ln D

At
�
�
rf + �� � �2a�

2
m+�

2
�

2

�
� Tq

�2a�
2
m + �

2
� �
p
T

351A (20)

where the expression inside �(�) is the distance-to-default under the objective probability measure.
To price the CDX index we �rst derive the formula for its expected payo¤, as a function of the

market return. Because the expected payo¤ to the CDX index is identical to the expected payo¤

of an underlying bond, this step e¤ectively corresponds to pricing the representative bond in the

CDX. The expected payo¤ to the CDX is given by the sum of payo¤s on the N bonds underlying

the index,

E[CDX(rM;T )] = E

"
1

N

NX
i=1

1 � 1Ai;T (rM;T )>D +R � 1Ai;T (rM;T )<D

#
= 1� (1�R) � pD(rM;T ) (21)

To determine the price of the CDX index we simply apply the Arrow-Debreu valuation technique

to the above conditional payo¤ expectation. By integrating the product of the conditional CDX

payo¤ and the state price, q(rM;T ), across all realization of the market returns we obtain the price

of the CDX (or, equivalently, the price of the representative bond),

PCDX(R) �
Z 1

�1
E[CDX(rM;T )] � q(rM;T ; �IV )drM;T

In pricing the CDX index we exploit the fact that the state prices can be found in closed-form (see

Breeden and Litzenberger (1978)) when the market follows a log-normal di¤usion. Furthermore,

by using the time-series average of the implied volatility for the 5-year index option as our estimate

of �IV , this approach allows us to ensure that the pricing of the bonds underlying the CDX is

roughly consistent with option prices. The spirit of this approach is similar to the recent work by

Cremers et al. (2007), which shows that the pricing of individual credit default swaps is indeed

consistent with the option-implied pricing kernel. Speci�cally, we set �IV = 25%, and assume

� for the purposes of the calibration � that the implied volatility does not change across option

strikes. We then convert the CDX price into its equivalent yield spread (relative to the riskless

rate) through, � 1
T lnPCDX(R) � rf , and match this quantity to the historical mean of the CDX

spread (45 bps).

Consequently, the �rst part of the calibration procedure requires that we �nd a set of parameters

f DAt ; �a; �"; Rg, which satis�es the restriction on the ratio of the risk-neutral and objective default
intensities consistent with the average credit quality of the bonds underlying the index and matches

the mean historical yield spread on the CDX index. In general, there may be multiple solutions to

this system of non-linear equation given that we have only two constraints and four parameters. To

ameliorate this problem we additionally require that the calibrated parameters roughly match the
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empirically observed characteristics of the underlying �rms, such us equity volatility, equity beta

and debt-to-asset ratio.

3.2 Determining the Strike Prices of the Replicating Put Spread

In the second step we solve for the strike prices of the index put spread, which replicates the

tranche payo¤. These strike prices are found by solving for the level of the market (i.e. moneyness)

for which the expected CDX loss is equal to a given value, say X%. The expected CDX loss is equal

to E[Lp(rM;T )] = 1� E[CDX(rM;T )], or equivalently,

E[Lp(rM;T )] = (1�R) � pD(rM;T )

Setting this value equal to X and solving for exp(rM;T ), yields the corresponding put price strike,

KX ,8

KX = exp

�
1

�

�
ln
D

At
�
�
rf � (1� �)�

�2�
2

�
� T � ��

p
T � ��1

�
X

1�R

���
(22)

Repeating this procedure for the upper and lower tranche attachment points of the tranche yields

the strike prices of the puts included in the replicating put spread. Consequently, the payo¤ to a

tranche with a lower attachment point of X and upper attachment point of Y , is approximated by

the payo¤ obtained by buying a riskless bond, writing a market index put at KX , and buying a

market index put with a strike price of KY .

Since the average bond in the CDX over our sample period is rated between BBB (BBB) and

A, we calibrate the model under each of these two scenarios. The calibrated model parameters

and the resulting index attachment points (put strike prices) are collected in Table 2.

3.3 Calculating Yields on Index Put Spreads

Having determined the relevant attachment points, or index put strike prices, that identify a

portfolio that matches the systematic risk of various CDX tranches, we now want to be able to

compare prices. To do so, we calculate the time series of yields for the index put spreads implied by

the model. Each day the value of the replicating portfolio, Vt, is obtained by summing the value of

a discount bond with face value of one and a maturity matching that of the CDX, a short position

of q index put options struck at the lower loss attachment point (higher strike price, KH), and a

long position of q index put options at the upper loss attachment point (lower strike price, KL).

The quantity of options, q = 1
KH�KL

, is set such that the exposure to the market is eliminated

outside of the range of strike prices (see the tranche payo¤ displayed in Figure 2), and remains

constant over the life of the tranche. The yield of the replicating portfolio is simply � 1
T lnVt.

The key input to this valuation procedure is the behavior of long-term implied volatility, which

determines the pricing of the put options in the replicating portfolio. Speci�cally, because the puts

8All option strike prices are expressed as a fraction of the spot price.
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present in the replicating portfolio will generally be deep out-of-the-money, both the at-the-money

implied volatility and the implied volatility skew for 5-year index options will play a central role in

determining the yield on the replicating portfolio. To ensure the robustness of our results we value

the index put spread using two models of the implied volatility skew in long-term options. Using

data on 5-year implied volatilities at-the-money and 30% out-of-the-money that are viewed to be

tradeable by the �nancial intermediaries who supplied the data, we model the skew (1) by linearly

extrapolating at the observed skew between a moneyness of 0.7 and 1; and (2) assuming no skew

below a moneyness of 0.7 (i.e. �xing the implied volatility at moneyness levels smaller than 0.7 at

the implied volatility of the 0.7 moneyness put option).

4 Empirical Results

Table 3 presents the calibration results. We compute the average spreads predicted by our

model and compare these to the spreads o¤ered by each of the CDX tranches. We also calculate

the daily correlations between the two sets of spreads. Across all tranches, our model predicts

signi�cantly greater spreads than are present in the data. With a linear skew, the disparity gets

worse (as a fraction of the spread) as the tranches increase in seniority. The 7-10 tranche spread

predicted by our model exceeds actual spreads by more than a factor of two. For 10-15 and 15-30

tranches our model predicts spreads that are three times as large as in the data. Figures 4-7 graph

the predicted and actual spreads through time. As can be seen, the model spreads signi�cantly

exceed actual spreads across the entire sample for each of the senior tranches. Only the 3-7 tranche

is matched by our model at some point during the sample period. Moreover, because of the steady

decline in senior tranche spreads over the sample period, by the end of the period the mispricing is

even worse. As Figures 4-7 show, by the end of September 2006 the model spreads exceed actual

spreads in the 7-10, 10-15, and 15-30 tranches by roughly a factor of �ve.

On the other hand, correlations in spread levels (daily) and changes between our model and

observed spreads are uniformly large. This suggests that although their price levels are o¤ by

an order of magnitude, the returns o¤ered by the put spread identi�ed by our model and its

corresponding CDX tranche are driven by common economic risk factors.

Table 3 also presents two robustness checks. The �rst examines the spread o¤ered by the put

spread if we assume no volatility skew on options with moneyness below 0.7. In this case, the option

prices are computed using the implied volatility on the option that is 30% out-of-the-money. As we

can see, this has a modest impact on the predicted spreads for all but the most senior tranche. In

fact, for the 3-7 tranche, eliminating the skew increases the spread because the upper attachment

point has a moneyness of 0.67 and so the main e¤ect is to decrease the price of the lower put option

(which is purchased by the investor). The 15-30 tranche has its predicted spread signi�cantly

reduced when the skew is eliminated. Because the upper attachment point has a moneyness of 0.37

its price is far higher when a linear skew is extrapolated from 0.7 to 0.37.

The second robustness check involves replacing the BBB bonds in our CDX with bonds rated
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single A. Interestingly, tranching a portfolio of bonds with higher average credit quality has the

e¤ect of increasing the senior tranche spreads. In other words, given the observed level of the

CDX, improving the credit quality of the average bond increases the implied level of market risk to

which each bond is exposed. As a result, the more senior tranches that default only on bad market

outcomes must o¤er greater compensation to investors for bearing these risks.

Although the calibration o¤ers an economically motivated and statistically sound pricing esti-

mate, it does not o¤er much in the way of sensitivity analysis. An alternative approach is to ask

what option strike prices are required to match observed CDX tranche spreads. Table 4 presents

the annual yield spreads o¤ered by put spreads with di¤erent upper and lower strike prices. Panel

A presents yields calculated using a linearly extrapolated put spread. Panel B presents yields

calculated with no skew in implied volatilities below moneyness of 0.7.

First, consider the 7-10 tranche, which o¤ered a spread of 43.7 basis points over the sample

period. Looking across the various put spreads, we see that 43 or more basis points are o¤ered by

put spreads with an upper strike price of 0.45 and a lower strike price of 0.4 or an upper strike

price of 0.5 and a lower strike price of 0.3. Thus, to be willing to purchase the 7-10 tranche during

our sample period, one must have believed that it was less likely to default than a 50 percent

out-of-the-money 5-year put option on the S&P 500 was to expire in-the-money.

Given the decline in senior CDX tranche spreads across our sample, the yield spreads at the

end of the sample paint an even worse picture. At the end of the sample, the 7-10 yield spread

traded at 15 basis points. This �gure can be compared to the yield spreads o¤ered by put spreads

at the end of the sample period. In Panel C, we see that the 40-30 put spread matches the yield

spread of the 7-10 tranche at the end of the sample. An investor who purchases the 7-10 tranche

must believe a decline of roughly 65% in the market over the next �ve years is more likely than a

default of 15-20 percent of the investment-grade industrial �rms in the US (assuming a 50 percent

recovery rate).

5 Discussion

Our model provides a novel vantage point from which one can assess the recent developments in

the structured �nance domain, and suggests some directions for the future growth of this, already

burgeoning, market segment. First, due to its focus on pricing, our model suggests a character-

ization of the equity tranche that is distinct from the conclusions o¤ered by agency theory and

asymmetric information (DeMarzo (2005)). Although, in the presence of asymmetric information

about the cash �ows of the underlying securities, the equity tranche is indeed very risky to the

uninformed �as emphasized by DeMarzo (2005) �its cash �ow risk is primarily of the idiosyncratic

variety. In other words, because the equity tranche bears the �rst losses on the underlying portfolio,

it is exposed primarily to diversi�able, idiosyncratic losses. The benign nature of the underlying

risk � re�ected in its low equilibrium price � stands in marked contrast to the tranche�s popu-

lar characterization as �toxic waste.� Although issuers of structured products are often required
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to hold this tranche as a means of alleviating the asymmetric information problem emphasized by

DeMarzo (2005), they are also likely to be overcharging clients for this seemingly dangerous service.

Second, our theoretical derivations show that if the marginal investor prices a structured product

solely on the basis of its credit rating (or, equivalently, default probability), the magnitude of the

product�s mispricing will grow with the number of securities, N , included in the underlying portfolio.

Speci�cally, as the value of N becomes larger and the portfolio becomes more granular, tranches

bear progressively more systematic risk, and should trade at higher yield spreads. If this is not

the case, originators of structured products seeking to exploit this pricing error, will have a natural

incentive to create products with more granular collateral pools (N !1), e.g. comprised of loans,
credit-card receivables, etc. The potential pro�tability of this scheme is further accentuated by

a results of a recent investor survey conducted by the Bank of International Settlements (2005).

The survey revealed that �there is much more appetite for granular than for non-granular pools,�

suggesting the presence of a natural clientele.

Finally, the deviation of tranche spreads from their default probabilities is predicted to be the

greatest when the underlying securities have signi�cant systematic risk themselves. This creates an

incentive to supply structured products in which the underlying assets are themselves instruments

with signi�cant credit risk, i.e. high values of �
Q

�P
. As we have shown, senior tranches �t this

description precisely, suggesting a potential explanation for the recent appearance of products such

as the CDO2, where the collateral pool is comprised of various CDO tranches, and CPDOs, which

provide leveraged exposures to highly-rated credit portfolios. Because the very senior tranches have

tiny unconditional probabilities of default, while the highest credit rating is AAA, the suppliers or

originators of CDOs are leaving money on the table unless they lever up these securities to match

more closely the default probabilities of other AAA-rated securities.

6 Conclusion

This paper presents a framework for understanding the risk and pricing implications of struc-

tured �nance activities. We demonstrate that senior CDO tranches have signi�cantly di¤erent

systematic risk exposures than their credit rating matched counterpart, and should therefore com-

mand di¤erent risk premia. Credit rating agencies, including sophisticated services like KMV, do

not provide customers with adequate information for pricing. Forecasts of unconditional cash �ows

are insu¢ cient for determining the discount rate and therefore can create signi�cant mispricing in

derivatives on bond portfolios.

In the spirit of Arrow-Debreu, we develop an intuitive approach relative to the current statistics-

heavy approaches that are popular in the credit literature and in practice. Our pricing strategy for

credit default obligations (CDOs) and the claims, or tranches, written against them is to identifying

packages of other investable securities that deliver identical payo¤s conditional on the market. Pro-

jecting expected cash �ows into market return space may be an e¤ective way to identify investable

portfolios that replicate the systematic risk in other applications. Our analysis demonstrates that
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an Arrow-Debreu approach to pricing can be operationalized relatively easily.

Our pricing estimates suggest that investors in senior CDO tranches are grossly undercom-

pensated for the highly systematic nature of the risks they bear. We demonstrate that an investor

willing to incur these risks bears highly similar risks by writing out-of-the-money put options on

the market but receives far greater compensation for doing so. We argue that this discrepancy has

much to do with the fact that credit rating agencies are willing to certify CDO tranches as �safe�

when, from an asset pricing perspective, they are quite the opposite.
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A Properties of the Digital Tranche

If we let f(rM;T ) and F (rM;T ) denote the probability density function and cumulative density
function of the T -period market return, the unconditional default probability of the digital tranche
is given by,

pD(X;N) =

Z 1

�1
pD(rM;T ; X;N) � f(rM;T )drM;T

!
Z r̂M;T

�1
f(rM;T )drM;T = F (r̂M;T ) as N !1 (23)

Setting this expression equal to the desired unconditional default probability, pD, then allows us to
obtain the strike price of the digital market call option to which the tranche converges as N !1.
The option strike price is given by K� = exp(r̂M;T ), where,

r̂M;T =

�
rf + � �

�2m
2

�
� T � �m

p
T � ��1(1� pD) (24)

To price the digital tranche we de�ne a state-space over the realizations of the market return,
rM;T , and make use of the Arrow-Debreu pricing formalism. In other words, we price the tranche
by summing the product of its state-contingent payo¤ expectation with the state price across all
possible states. If we let pD(rM;T ; X;N) denote the state-contingent default probability for the
digital tranche, and q(rM;T ), denote the Arrow-Debreu state price for state, rM;T , the tranche price
will be given by,

PX;N0 =

Z 1

�1
(1� pD(rM;T ; X;N)) � q(rM;T )drM;T (25)

Substituting the asymptotic tranche default probability into (17) yields the following expression
for the tranche price,

PX;10 =

Z 1

�1
(1� 1X< l�pD(r̂M;T )) � q(rM;T )drM;T

=

Z 1

r̂M;T

q(rM;T )drM;T (26)

which, unsurprisingly, is the equation de�ning the price of a T -period digital call option on the
market portfolio, with a strike price of K� = exp(r̂M;T ) (in moneyness space).

Finally, the law of one price ensures that the value of the digital tranche is simply given by
the value of the digital market call with a strike price of K� = exp(r̂M;T ) (in moneyness space).
Substituting in the expression for K� into the Black-Scholes formula for the price of the digital
market call we immediately obtain the price of the digital tranche,

PX;10 = e�rfT � �
�
��1(1� pD)�

�

�m
�
p
T

�
(27)

The tranche price can also be expressed in terms of a yield spread, �Q in excess of the riskless rate
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by setting PX;10 = e�(rf+�
Q)�T ,

�Q = � 1
T
ln�

�
��1(1� pD))�

�

�m
�
p
T

�
(28)

�Q has the interpretation of a risk-neutral default intensity and depends on the the expected payo¤,
as determined by the probability of default, and - on a risk adjustment determined by the T -period
market Sharpe ratio. As intuition would suggest, whenever the market risk premium, �, is equal
to zero, the tranche will trade at a yield spread equal to its objective default intensity �P .

A.1 Tranche Price Convergence as N !1
The price of the digital tranche satis�es the following integral equation, expressing its price as

the integral of its state contingent payo¤ and the corresponding state price,

PX;N0 =

Z 1

�1
(1� pD(rM;T ; X;N)) � q(rM;T )drM;T (29)

We are interested in establishing the direction and monotonicity of the convergence of the tranche
price as N ! 1. To do this we begin by noting that all tranches along the path N ! 1 are
constrained to have the same unconditional default probability pD. This implies that,

@

@N

Z 1

�1
pD(rM;T ; X;N)f(rM;T )drM;T = 0 (30)

where f(rM;T ) is the probability density function of the T -period market return. Because increasing
N has no e¤ect on the unconditional tranche default probability, it also has no e¤ect on the
unconditional expectation of the tranche payo¤, which is equal to 1 � pD. In other words, two
digital tranches with di¤erent values of N but identical unconditional default probabilities can be
thought of as mean-preserving spreads of each other.

Now consider di¤erentiating the expression for the tranche price with respect to N ,

@PX;N0

@N
= �

Z 1

�1

@pD(rM;T ; X;N)

@N
� q(rM;T )drM;T

where the partial derivative of the conditional tranche default probability changes sign at r̂M;T :

@pD(rM;T ; X;N)

@N
> 0 for rM;T < r̂M;T

@pD(rM;T ; X;N)

@N
< 0 for rM;T > r̂M;T

Multiplying and dividing each term in the expression for @P
X;N
0
@N by the probability density function

of the T -period market return, f(rM;T ), we obtain,

@PX;N0

@N
= �

Z 1

�1

@pD(rM;T ; X;N)

@N
� q(rM;T )
f(rM;T )

� f(rM;T )drM;T (31)

where the ratio, m(rM;T ) =
q(rM;T )
f(rM;T )

, represents the stochastic discount factor for state rM;T , and is
monotonically declining in rM;T . To exploit the monotonicity property of the stochastic discount
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factor we �rst split the above integral at r̂M;T and then apply the mean-value theorem twice,

@PX;N0

@N
= �

�Z r̂M;T

�1

@pD(rM;T ; X;N)

@N
�m(rM;T ) � f(rM;T )drM;T +

+

Z 1

r̂M;T

@pD(rM;T ; X;N)

@N
�m(rM;T ) � f(rM;T )drM;T

�
= �

 
m �

Z r̂M;T

�1

@pD(rM;T ; X;N)

@N
� f(rM;T )drM;T +m �

Z 1

r̂M;T

@pD(rM;T ; X;N)

@N
� f(rM;T )drM;T

!

where m is some number in [m(�1);m(r̂M;T )], m is some number in [m(r̂M;T );m(1)]. However,
because m(rM;T ) is monotonic in the market return we immediately have m > m. Moreover, we
have also established that for all N , the expectation of the derivative of the conditional default
probability with respect to N evaluated under the objective probability measure satis�es,Z r̂M;T

�1

@pD(rM;T ; X;N)

@N
� f(rM;T )drM;T +

Z 1

r̂M;T

@pD(rM;T ; X;N)

@N
� f(rM;T )drM;T = 0

In other words, the two terms in the above expression are of equal magnitude, �, but opposing sign.
Consequently, we can conclude that,

@PX;N0

@N
= � (m � � �m � �) = � � (m�m) < 0

which indicates that the price of the digital tranche is monotonically declining in N , since the sign
of the derivative does not depend on N .
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Table 1 
Summary Statistics for US Credit Market (9/2004 – 9/2006) 

 
This table reports summary statistics of various credit market securities.  The credit spreads for various bond indices 
correspond to the difference between 5-year S&P US bond yields and the 5-year swap rate.  The CDX series is the 
Lehman Brothers investment grade index of 5-year US industrials credit default swaps.  The CDX tranche spreads are 
denoted as [lower loss attachment, upper loss attachment].  The VIX is the Chicago Board Options Exchange (CBOE) 
volatility index measuring near term implied volatility from S&P500 index options.  Five-year at-the-money implied 
volatility is denoted as 5-yr Vol. 
 
Panel A:  Time series means and standard deviations of daily series in basis points (volatility in percent) 

  VIX  5yVOL AA   A   BBB BB  B   CDX   3-7    7-10 10-15 15-30
Mean 13.2 17.8 15.3 25.6 46.9 143.3 254.8 47.8 146.4 44.1 19.9 9.2
Std 1.8 1.3 2.2 2.6 5.6 22.8 36.7 6.9 56.8 24.9 9.0 3.7

             

Panel B:  Correlations between daily series 
  VIX  5yVOL AA   A   BBB BB  B   CDX   3-7    7-10 10-15 15-30

  VIX  1.00     
 5yVOL 0.36 1.00    
  AA   0.01 0.55 1.00   
   A   -0.03 0.13 0.24 1.00   
  BBB  0.11 0.52 0.50 0.85 1.00   
  BB   0.24 0.62 0.26 0.60 0.74 1.00   
   B   -0.02 0.39 0.21 0.74 0.77 0.86 1.00   
  CDX  0.08 -0.12 -0.24 0.57 0.43 0.56 0.68 1.00   
  3-7  0.21 -0.41 -0.48 0.35 0.16 0.09 0.22 0.66 1.00  
  7-10 0.16 -0.48 -0.43 0.30 0.13 -0.07 0.07 0.53 0.95 1.00 
 10-15 0.14 -0.44 -0.43 0.42 0.23 0.11 0.26 0.72 0.96 0.95 1.00
 15-30 -0.02 -0.31 -0.41 0.54 0.30 0.36 0.50 0.87 0.70 0.61 0.79 1.00

             

Panel C:  Correlations between first-differences of daily series 

  VIX  5yVOL AA   A   BBB BB  B   CDX   3-7    7-10 10-15 15-30
  VIX  1.00     
 5yVOL 0.18 1.00    
  AA   0.02 0.02 1.00   
   A   0.10 0.06 0.66 1.00   
  BBB  0.07 0.14 0.59 0.77 1.00   
  BB   0.13 0.10 0.19 0.31 0.36 1.00   
   B   0.12 0.09 0.08 0.21 0.30 0.63 1.00   
  CDX  0.39 0.20 0.00 0.07 0.12 0.29 0.19 1.00   
  3-7  0.14 0.08 0.04 0.13 0.21 0.26 0.23 0.20 1.00  
  7-10 0.16 0.05 0.04 0.11 0.18 0.23 0.20 0.18 0.89 1.00 
 10-15 0.17 0.09 0.07 0.12 0.20 0.27 0.23 0.25 0.84 0.86 1.00
 15-30 0.13 0.07 0.07 0.10 0.15 0.19 0.14 0.14 0.73 0.72 0.78 1.00
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Table 2 
Model Parameters and Resulting Attachment Points 

 
 

  A BBB  Source 

         
RN / RW Intensity 9.8 5.1  Hull, Predescu, and White (2005) 
Rf 4.5% 4.5%  Assumption 
Market Risk Premium 5.0% 5.0%  Assumption 
Market Vol 15.0% 15.0%  Assumption 
Kernel Vol 25.0% 25.0%  Assumption 
T 5.0 5.0  Contract maturity 
Debt-to-Assets 0.55 0.55  Calibration 
Asset Beta 0.54 0.54  Calibration 
Idiosyncratic Vol 11.9% 13.1%  Calibration 
Recovery Rate 42.3% 54.1%  Calibration 
         
         
Attachment Points        

3.0% 0.6303 0.6733  Model output 
7.0% 0.5164 0.5132  Model output 
10.0% 0.4665 0.4478  Model output 
15.0% 0.4068 0.3740  Model output 
30.0% 0.2843 0.2421  Model output 
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Table 3 
Comparison of Actual and Model Implied Tranche Spreads 

 
The actual CDX tranche spreads corresponds to various tranches on the Lehman Brothers investment grade index of 5-
year US industrials credit default swaps.  The yield on the S&P 500 put spread is calculated using strike prices identified 
from a Merton credit model calibration procedure.  The calibration assumes the CDX consists of 125 BBB bonds and a 
linear skew in 5-year implied volatilities. 
 

Calibration assumes CDX consists of 125 BBB bonds 

Tranche 
Mean Model 
Spread [bps] 

Mean Actual 
Spread [bps] 

Correlation of 
Model and 

Actual  

Correlation of 
Model and 

Actual  
(Changes) 

Linear Skew     
3%-7% 187 146 0.68 0.18 
7%-10% 111 44 0.51 0.18 
10%-15% 74 20 0.54 0.23 
15%-30% 34 9 0.43 0.17 
     
No Skew below 0.7    
3%-7% 221 146 0.65 0.18 
7%-10% 90 44 0.47 0.17 
10%-15% 43 20 0.49 0.22 
15%-30% 10 9 0.33 0.16 
     
     
Calibration assumes CDX consists of 125 A bonds  

Tranche 
Mean Model 
Spread [bps] 

Mean Actual 
Spread [bps] 

Correlation of 
Model and 

Actual  

Correlation of 
Model and 

Actual  
(Changes) 

Linear Skew     
3%-7% 172 146 0.66 0.18 
7%-10% 118 44 0.52 0.18 
10%-15% 87 20 0.56 0.23 
15%-30% 47 9 0.45 0.17 
     
No Skew below 0.7    
3%-7% 192 146 0.63 0.18 
7%-10% 99 44 0.48 0.17 
10%-15% 57 20 0.51 0.23 
15%-30% 18 9 0.36 0.16 
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Table 4 
Yields on Various S&P 500 Put Spreads 

 
The yield on the 5-year S&P 500 put spread is calculated using for a variety of strike prices.  The put spread consists of 
shorting an index put option at the upper strike price and buying an index put option at the lower strike price.  Panel A 
assumes a linear skew in long-term implied volatilities consistent with the observed skew between strike prices of 70 and 
100.  Panel B assumes that there is no skew below strike prices of 70. 
 

Average Daily Yield from 9/2004 to 9/2006 
 
Panel A:  Linearly extrapolated skew in implied volatilities 
  Upper Strike Price 
  0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 

0.00 7 11 17 24 32 42 52 64 77 91
0.05 8 13 19 27 36 46 57 69 83 98
0.10 10 16 23 31 40 51 63 76 90 105
0.15 13 19 27 36 46 57 70 84 98 114
0.20 17 24 33 42 53 65 78 92 108 125
0.25 23 31 40 50 61 74 88 103 119 136
0.30  38 48 59 71 84 99 114 131 149
0.35   58 69 82 96 111 127 145 163
0.40   81 94 109 125 142 160 179
0.45   108 123 140 157 176 196
0.50   139 156 174 193 214
0.55    173 192 212 233
0.60     211 232 254
0.65      253 275
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0.70       298
            
            
Panel B:  No skew in implied volatilities below the strike price of 70 
  Upper Strike Price 
  0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 

0.00 1 2 5 10 18 28 41 57 77 100
0.05 1 3 6 12 20 31 45 62 83 107
0.10 1 3 7 13 22 34 49 68 90 115
0.15 2 4 9 16 25 38 55 75 98 125
0.20 3 6 11 19 30 44 62 83 109 137
0.25 4 8 14 23 35 51 71 94 121 151
0.30  12 19 29 43 61 82 107 136 168
0.35   26 38 54 73 96 123 154 189
0.40   50 67 89 114 143 176 213
0.45   85 108 136 167 203 242
0.50   132 162 196 233 274
0.55    192 228 268 312
0.60     265 307 353
0.65      351 399

L
ow

er
 S

tr
ik

e 
P

ri
ce

 

0.70       448
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Table 4 (Continued) 
 

Yield on 9/11/2006 
 
Panel C:  Linearly extrapolated skew in implied volatilities 
  Upper Strike Price 
  0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 

0.00 5 9 14 20 27 35 44 55 66 79
0.05 6 10 16 22 30 39 49 60 72 85
0.10 8 12 18 25 34 43 53 65 78 91
0.15 10 15 22 29 38 48 59 72 85 99
0.20 13 19 26 35 44 55 66 79 93 108
0.25 18 24 32 41 51 63 75 88 103 118
0.30  31 39 49 60 72 84 98 113 129
0.35   48 58 69 82 95 110 125 142
0.40   68 80 93 107 123 139 156
0.45   92 106 121 136 153 171
0.50   120 135 151 168 187
0.55    150 167 185 204
0.60     184 203 222
0.65      221 241
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0.70       262
            
            
Panel B:  No skew in implied volatilities below the strike price of 70 
  Upper Strike Price 
  0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 

0.00 1 2 4 9 15 23 35 49 66 86
0.05 1 2 5 10 16 26 38 53 72 93
0.10 1 3 6 11 19 29 42 58 78 100
0.15 1 3 7 13 21 32 47 64 85 109
0.20 2 5 9 15 25 37 53 71 93 119
0.25 3 6 12 19 30 43 60 80 104 131
0.30  10 16 24 36 51 70 92 117 145
0.35   22 32 45 62 82 105 133 163
0.40   42 57 75 97 123 152 184
0.45   72 92 116 143 174 209
0.50   112 138 168 201 237
0.55    164 196 231 269
0.60     228 265 305
0.65      303 345
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0.70       388
            
 
 
Credit Market Summary on 9/11/2006 in basis points (volatility in percent) 

  VIX  5yVOL AA   A   BBB BB  B   CDX   3-7    7-10 10-15 15-30

Mean 13.0 19.3 15.9 28.1 52.5 158.9 264.1 37.3 71.5 15.5 7.5 4.0
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Figure 1.  Historical 5-year corporate default rates conditional on the 5-year stock market return (1926-2005). 
Each year, the 5 most recent annual default rates from Moody’s are summed and compared to the recent 5-year stock 
market return.  The stock market return is the return on the CRSP value-weight market portfolio.   
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Figure 2.  State Contingent CDX default rate, CDX payoff, and 7%-10% CDX tranche payoff. 
The Merton model applied to CAPM assets is used to determine the CDX default rate conditional on the market return.  
The CDX is assumed to consist of 125 identical BBB bonds with a debt-to-asset ratio of 0.46, asset beta of 0.61, 
unconditional default intensity of 9bps, idiosyncratic volatility of 15.7%, and a recovery rate of 48%.  The market 
portfolio has an annual volatility of 15%. 
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Figure 3.  Time series of tranche spread and credit spreads for bond indices (9/2004 – 9/2006). 
The credit spreads for the AA and BBB bond indices correspond to the difference between 5-year S&P US bond yields 
and the 5-year swap rate.  The CDX tranche spread corresponds to the 7%-10% tranche on the Lehman Brothers 
investment grade index of 5-year US industrials credit default swaps. 
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Figure 4.  Time series of tranche spread and S&P 500 index put spread (9/2004 – 9/2006). 
The CDX tranche spread corresponds to the 3%-7% tranche on the Lehman Brothers investment grade index of 5-year 
US industrials credit default swaps.  The yield on the S&P 500 put spread is calculated using strike prices identified from 
the calibration procedure.  The calibration assumes the CDX consists of 125 BBB bonds and a linear skew in 5-year 
implied volatilities. 
 
 
 
 
 
 
 



 32

4 5 6
0

20

40

60

80

100

120

140

160

180

200

Series

S
pr

ea
d 

[b
ps

]
S&P 500 Put Spread: [Upper = 0.5132;  Lower = 0.4478]
7%-10% Tranche

 
 
Figure 5.  Time series of tranche spread and S&P 500 index put spread (9/2004 – 9/2006). 
The CDX tranche spread corresponds to the 7%-10% tranche on the Lehman Brothers investment grade index of 5-
year US industrials credit default swaps.  The yield on the S&P 500 put spread is calculated using strike prices identified 
from the calibration procedure.  The calibration assumes the CDX consists of 125 BBB bonds and a linear skew in 5-
year implied volatilities. 
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Figure 6.  Time series of tranche spread and S&P 500 index put spread (9/2004 – 9/2006). 
The CDX tranche spread corresponds to the 10%-15% tranche on the Lehman Brothers investment grade index of 5-
year US industrials credit default swaps.  The yield on the S&P 500 put spread is calculated using strike prices identified 
from the calibration procedure.  The calibration assumes the CDX consists of 125 BBB bonds and a linear skew in 5-
year implied volatilities. 
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Figure 7.  Time series of tranche spread and S&P 500 index put spread (9/2004 – 9/2006). 
The CDX tranche spread corresponds to the 15%-30% tranche on the Lehman Brothers investment grade index of 5-
year US industrials credit default swaps.  The yield on the S&P 500 put spread is calculated using strike prices identified 
from the calibration procedure.  The calibration assumes the CDX consists of 125 BBB bonds and a linear skew in 5-
year implied volatilities. 
 




