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Abstract

A firm is subject to accident risk, which the manager can mitigate by exerting effort.
An agency problem arises because effort is unobservable and the manager has limited
liability. The occurrence of accidents is modelled as a Poisson process, whose intensity
is controlled by the manager. We use martingale techniques to formulate the manager’s
incentive compatibility constraints. The optimal contract is then characterized by a
differential equation with delay. In this contract, the manager receives cash transfers
only if no accident occurs during a sufficiently long period of time, while the firm is
downsized when sinistrality is too large. This can be implemented by cash reserves, along
with insurance, financial, and compensation contracts. The insurance contract involves
a deductible and a bonus-penalty system. The financial contract consists of a bond that
pays constant coupons until the firm enters financial distress. Covenants requests that
the firm be downsized when its liquidity ratio falls below a threshold. The manager’s
compensation policy promises incentive wages when the accumulated performance of the
firm is strong enough. Our theoretical analysis also delivers new empirical implications
about the dynamics of insurance premia and bond credit spreads.
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1. Introduction

On March 23, 2005, a series of explosions occurred at the BP Texas City refinery, resulting
in 15 deaths, more than 170 injuries and significant economic losses.1 The U.S. Chemical
Safety and Hazard Investigation Board (CSB) as well as an independent panel, chaired by
James A. Baker, investigated the case. Both concluded that the accident occurred because
BP’s management had not exerted sufficient risk prevention effort. In October 2006, CSB
Chairman Carolyn W. Merritt stated, “BP’s global management was aware of problems
with maintenance, spending, and infrastructure well before March 2005. [...] Unsafe and
antiquated equipment designs were left in place, and unacceptable deficiencies in preventative
maintenance were tolerated.”2 In January 2007, the Baker Panel Report concluded that
“BP executive and corporate refining management have not provided effective process safety
leadership.”3 In addition to such dramatic events as the BP explosion, numerous smaller
scale accidents occur regularly in industrial firms, generating serious damages.4 Systematic
analyses of these accidents concur with the above reported conclusions: Leadership and
managerial failures are a major cause of risk.5

Under laisser-faire, firms will not fully internalize the externalities generated by such
industrial risk. This will result in socially suboptimal risk prevention efforts. One way
to stimulate risk prevention would be to make firms and managers bear the social cost of
accidents. For example, they could have to compensate all the parties hurt in an accident
and to clean up environmental damages. Yet, such Pigovian taxes are often impossible to
enforce in practice. This is because the size of the total damages often exceeds the wealth of
the managers and even the net worth of the firms, which are protected by limited liability
and bankruptcy laws.6 As a result of this, managers and firms have little incentives to lower
the probability of accidents generating losses that greatly exceed the value of their assets.7

Nevertheless, if risk prevention were observable, it would still be possible to provide managers
with appropriate incentives to exert socially optimal risk prevention efforts. To a large extent,
however, managerial risk prevention efforts are unobservable to external parties, which leads
to a moral hazard problem.

Besides moral hazard, one important dimension of risk prevention in industrial projects
is time. Indeed, severe accidents are rare and dramatic events. This contrasts with day-
to-day firm operations and cash-flows. It is therefore natural to study moral hazard in risk
prevention in a dynamic set-up, in which the timing of environmental risk differs from that of
firm operations. To do so, we focus on the simplest possible model, in which operating cash-
flows are constant per unit of time, while accidents follow a Poisson process whose intensity

1Other examples of large accidents include toxic gas leaks in Bhopal in 1989, oil spills such as Exxon Valdes
in 1989, Erika in 2000 and Prestige in 2002, and the chemical explosion at AZF in Toulouse in 2001.

2“CSB Investigation of BP Texas City Refinery Disaster Continues as Organizational Issues are Probed,”
CSB News Release, October 30, 2006.

3“The Report of the BP U.S. Refineries Independent Safety Review Panel,” January 16, 2007.
4Elliott, Wang, Lowe and Kleindorfer (2004) report that, out of 15,083 facilities storing hazardous material

in the U.S. between 1994 and 1999, 4.4% had an accident causing worker or public injury.
5See for instance Leplat and Rasmussen (1984), Gordon, Flin, Mearns and Fleming (1996), or Hollnagel

(2002).
6As Katzman (1988) reports, “In Ohio v. Kovacs (U.S.S.C. 83–1020), the U.S. Supreme Court unanimously

ruled that an industrial polluter can escape an order to clean up a toxic waste site under the umbrella of federal
bankruptcy.”

7See Shavell (1984, 1986) for a discussion of how a party’s inability of paying for the full magnitude of
harm done affects its incentives to control risk.
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depends on the level of risk prevention.
This paper studies the optimal contract providing appropriate risk prevention incentives

in a dynamic moral hazard context. The manager of the firm is risk-neutral and protected
by limited liability. She can exert effort to reduce the instantaneous probability of accidents.
Effort is costly to the manager and unobservable to other parties. We characterize the set
of implementable risk prevention policies. The optimal contract maximizes the expected
benefit to society of an implementable risk prevention policy, subject to the constraint that
the manager receives at least her reservation utility. The optimal contract relies on two
instruments, non-negative transfers to the manager, and irreversible downsizing of the firm.
The former serve as a reward to motivate the manager, while the latter is used to punish her.
We assume constant returns to scale, in that downsizing reduces by the same factor the size of
operating profits, the social costs of accidents, and the manager’s temptation to shirk. In the
optimal contract, downsizing and payout decisions are functions of the entire past history of
the accident process. However, this complex history dependence can be summarized by two
state variables: the size of the firm, reflecting past downsizing decisions, and the continuation
utility of the manager, reflecting the promise of future transfers. The main features of the
optimal contract are as follows.

C1. For a given firm size, incentive compatibility requires that the continuation utility of
the manager be reduced by at least a certain amount following an accident. This
punishment motivates the manager to exert effort. The greater the magnitude of the
moral hazard problem, the greater the minimum necessary punishment. The induced
sensitivity of the manager’s continuation utility to the random occurrence of accidents
is socially costly because the value function is concave in this state variable. Therefore,
it is optimal to set the reduction in the manager’s continuation utility following an
accident to the minimum level consistent with incentive compatibility.

C2. Irreversible downsizing is costly, since it reduces the scale of operation of a positive net
present value project. Hence, the firm is downsized only when this cannot be avoided.
This is the case when, following an accident, the continuation utility of the manager
becomes so low that it cannot be further reduced without violating her limited liability
constraint. In that situation, the threat that can be used to motivate the manager is
limited. To cope with this limitation, it is necessary to lower the manager’s temptation
to shirk by reducing the scale of operation of the firm. Apart from such circumstances,
and in particular when no accident occurs, the firm is never downsized.

C3. In addition to these threats, the promise of future compensation helps motivating the
manager. If the initial utility of the manager is relatively low, there is a probation period
after the firm is set up during which the manager does not receive any compensation.
This typically occurs if the frequency or the social cost of accidents are high. Then,
if a sufficiently long period of time elapses with no accidents occurring, the manager
starts receiving a constant wage per unit of time. But, as soon as an accident occurs,
the manager reverts to a probation phase.

This abstract optimal mechanism can be implemented using instruments consistent with
arrangements observed in practice. In the implementation, the firm is requested to contract
with an insurance company.8 The latter is liable for the accident cost and makes sure the

8Compulsory insurance is observed in practice. For instance, the Resource Conservation and Recovery Act
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manager has appropriate incentives to prevent risk. The implementation of the optimal
contract is based on four main instruments.

I1. The firm holds cash reserves, that are held on its bank account and remunerated at
the market rate. As in Biais, Mariotti, Plantin and Rochet (2007), cash reserves mirror
the evolution of the continuation utility of the manager. In the implementation, the
assets of the firm reflect its cash reserves and the size of its operations. The cash-flow
statement of the firm is characterized, as a direct implication of the implementation of
the optimal contract.

I2. Our implementation also involves contracting with an insurance company. The latter
is liable for the cost of accidents, minus a deductible, which is paid by the firm out
of its cash reserves. The payment of this deductible reflects the manager’s incentive
compatibility constraint. In any period, the firm pays an insurance premium, combining
an actuarial component with an incentive component. The latter can be interpreted
as a bonus-penalty score. If no accident occurs for a long period of time, the firm
enjoys a high bonus, which reduces its insurance premium. By contrast, the firm pays
a high premium when its sinistrality is high. The incentive component of the insurance
premium is in a decreasing relationship with the cash reserves of the firm. Finally, the
insurance contract involves a downsizing covenant, which stipulates that if the liquidity
ratio of the firm falls below a certain threshold, then the firm must be downsized.

I3. The compensation of the manager also reflects the evolution of the firm’s liquidity ratio.
After a long period without accident, the firm holds large cash reserves and the liquidity
ratio reaches a high water mark. At this point, the manager is compensated by cash
transfers as long as no accident occurs. This compensation is designed so that the
liquidity ratio of the firm stays constant. As soon as an accident occurs, the liquidity
ratio of the firm drops down, as the deductible is paid out of its cash reserves, and one
reverts to the regime without immediate managerial compensation.

I4. Finally, the implementation includes a financial component. The firm issues a bond,
paying a coupon that is proportional to the size of the firm. In particular, bondholders
are exposed to the risk of downsizing.

This implementation of the optimal contract rationalizes several regulatory and contractual
features observed in practice, such as compulsory insurance, deductibles, and bonus-penalty
systems for insurance premia. It also delivers new implications. There should be a decreasing
relationship between a firm’s liquidity and the insurance premium it pays. We obtain an
analytic characterization of the dynamics of the bonus-penalty score of the firm and the
insurance premium. Firms subject to greater moral hazard should have insurance premia
that decrease more strongly when there are no accidents and increase more sharply following
accidents. We also characterize the dynamics of the value of the optimal insurance policy
and relate it to the moral hazard parameters and the history of the firm. Finally, our model
generates unpredictable credit risk for the bond issued by the firm, in line with empirical
evidence, and allows us to derive an explicit formula for the link between the credit spread
on the bond and the liquidity ratio of the firm.

makes insurance compulsory, unless firms can show they are financially strong enough to bear liability risk
(Katzman (1988)).
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Our model is related to previous analyses of dynamic moral hazard. Unlike Holmström
and Milgrom (1987), Rogerson (1985), and Sannikov (2003), we consider a risk-neutral agent,
but we assume that the agent has limited liability, as in DeMarzo and Fishman (2003),
Clementi and Hopenhayn (2006), DeMarzo and Sannikov (2006), or Biais, Mariotti, Plantin
and Rochet (2007). While these two last papers model operating cash-flows as a Brownian
motion with drift, we suppose that the manager controls the intensity of a Poisson accident
process. This leads us to extend the martingale methods of Sannikov (2003) to the case of an
unpredictable process. This gives rise to substantial differences in the optimal contract. In
DeMarzo and Sannikov (2006), and Biais, Mariotti, Plantin and Rochet (2007), the optimal
transfer process is singular, and is characterized by a local time that reflects the diffusion
process followed by the manager’s continuation utility at a dividend boundary. By contrast,
the optimal transfer process is regular in our analysis, as the manager receives a constant
wage per unit of time when she is effectively compensated. Another difference with Sannikov
(2003), DeMarzo and Sannikov (2006), and Biais, Mariotti, Plantin and Rochet (2007) is that
the optimal continuous-time contract involves discrete and unpredictable downsizing, while
liquidation is predictable in these Brownian motion models.

Contemporaneous work by Myerson (2007) also analyzes dynamic moral hazard in a
Poisson framework. While we focus on environmental risk, he considers a political economy
model, in which a sovereign prince seeks to deter his governors from corruption and rebellion.
The formal analysis is also quite different in the two papers. Myerson (2007) considers the
case where the principal and the agent have the same discount rates. As explained in Biais,
Mariotti, Plantin and Rochet (2007), this case is not conducive to continuous-time analysis,
as an optimal contract does not exist. To cope with this difficulty, Myerson (2007) imposes
an exogenous upper bound on the continuation utility of the agent. In that constrained
problem, existence is restored. In contrast, we do not impose such an exogenous bound, but
we consider the case where the principal is more patient than the agent. While this makes
the formal analysis more complex, this also restores existence of an unconstrained optimal
contract. The boundedness of the continuation utility of the agent is an endogenous feature
of this contract.

The paper is organized as follows. In Section 2, we present the model. In Section 3, we
characterize the optimal contract. In Section 4, we discuss the implementation of the optimal
contract and we spell out the testable implications of our model. Section 5 concludes. All
proofs are to be found in the appendices.

2. The Model

Time is continuous, and indexed by t ≥ 0. There are two agents, the manager of a firm and
an insurance company. The insurance company is risk-neutral and has a discount rate r > 0.
The manager is also risk neutral and has a discount rate ρ > r. She is thus more impatient
than the insurance company. The manager has limited liability, that is, contracts cannot
stipulate negative payments to her.

The manager runs an industrial project that can be continuously operated over an infinite
horizon, but may be downsized or liquidated at any date. Downsizing is irreversible. For each
t ≥ 0, denote by Xt the scale of the firm’s operations at date t. We assume the project has
positive net present value. Hence reducing the scale of the project or liquidating it outright
is socially costly. However, as shown below, downsizing after bad performance can be useful

4



as a threat to the manager. This is in line with DeMarzo and Fishman (2003), Clementi and
Hopenhayn (2006), DeMarzo and Sannikov (2006), and Biais, Mariotti, Plantin and Rochet
(2007). Without loss of generality, we normalize to 0 the set-up cost of the project, as well
as the initial cash endowment of the manager.

Previous continuous-time analyzes of principal-agent interactions have typically modelled
operating profits as diffusion processes (see for instance Holmström and Milgrom (1987),
Sannikov (2003), DeMarzo and Sannikov (2006)). By contrast, we assume that instantaneous
profits are deterministic. In addition, we assume constant returns to scale: given firm size
Xt, operating profits at date t are equal to Xtµ, for some µ > 0. We hereafter refer to µ as
size-adjusted operating profits.

While size-adjusted operating profits are constant, the firm is subject to accident risk.
The occurrence of accidents is modelled as a point process N = {Nt}t≥0, where for each t ≥ 0,
Nt is the number of accidents up to and including date t. When an accident occurs, it creates
social and environmental costs. These costs are borne by society at large rather than by the
manager of the firm. For example, an oil spill imposes huge damages on the environment and
on the inhabitants of the affected region, but has no direct impact on the manager of the oil
company. Since the manager has limited liability, she cannot be held responsible for these
costs in excess of her current wealth. As for operating profits, we assume constant returns to
scale: given firm size Xt, the social cost of an accident is XtC, for some size-adjusted social
cost C > 0. Overall, for each t ≥ 0, the net output flow generated by the firm during the
infinitesimal time interval [t, t + dt) is equal to

Xt(µdt− CdNt).

By exerting effort, the manager affects the probability with which accidents occur. The
manager’s risk prevention effort at date t is equal to the intensity of the process N at date t,
Λt. A higher level of effort reduces the probability Λtdt of an accident during the infinitesimal
time interval [t, t + dt). For simplicity, we consider only two levels of managerial effort,
Λt ∈ {λ, λ + ∆λ}, with λ > 0 and ∆λ > 0. To model the cost of effort, we adopt the same
convention as Holmström and Tirole (1997). If the manager exerts low effort at date t, that is
Λt = λ+∆λ, she receives a private benefit XtB, for some size-adjusted private benefit B > 0.
By contrast, when the manager exerts high effort at date t, that is Λt = λ, she receives no
private benefit. This formulation is equivalent to one in which the manager incurs a constant
cost per unit of time and per unit of size of the firm when exerting effort, and no cost when
shirking. We let µ > λC, so that the expected instantaneous net output flow is positive when
the manager exerts high effort. Under these circumstances, operating the project is socially
preferable to closing the firm.

Unlike profits and accidents, the manager’s effort decisions are assumed to be unobservable
to the insurance company. This leads to a moral hazard problem, whose key parameters are
B and ∆λ. The larger is B, the more attractive it is to shirk. The smaller is ∆λ, the more
difficult it is to detect shirking. We assume that C > B/∆λ, so that the private benefits of
shirking are lower than the social cost of increased accident risk. In the absence of moral
hazard, this implies that it is socially optimal to always require high effort from the manager.
In Subsection 2.3, we derive the more restrictive conditions under which this maximal risk
prevention policy remains optimal under moral hazard.

The firm is required to obtain insurance against the environmental risk, so that third
parties are protected against the social costs of accidents. The insurance company has deep
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pockets and is liable for the social costs. It designs the compensation contract of the manager
to give her incentives to adopt an appropriate risk prevention policy. Three contractual
instruments can be used to cope with the moral hazard problem and provide incentives to
the manager:

(i) First, the firm can be downsized. Denote by X = {Xt}t≥0 the non-increasing and
non-negative process describing the size of the firm. This process is bounded above by
some maximal initial scale of operations X0− > 0.

(ii) Next, non-negative transfers can be made to the manager. Denote by L = {Lt}t≥0

the non-decreasing and non-negative process describing the cumulative transfers to the
manager.

(iii) Last, the firm can be liquidated. Denote by τ the random time at which liquidation
occurs. We allow τ to be infinite and, without loss of generality, we assume that
τ ≤ inf{t ≥ 0 |Xt = 0}.

The contract between the insurance company and the manager is designed and agreed upon
at date 0, after which the firm operates and the contract is enforced. We assume the insurance
company and the manager can fully commit to a long-term contract Γ = (X,L, τ). Thus
we abstract from imperfect commitment problems and focus on a single source of market
imperfection, namely moral hazard in risk prevention. The manager reacts to the contract Γ
by choosing an effort process Λ = {Λt}t≥0. At any date t prior to liquidation, the sequence
of events in the infinitesimal time interval [t, t + dt) can be heuristically described as follows:

1. The size of the firm Xt is determined.

2. The agent takes her effort decision Λt.

3. With probability Λtdt, an accident occurs, in which case dNt = 1.

4. The agent receives a transfer dLt.

5. The firm is either liquidated or continued.

According to this timing, the downsizing and effort decisions are taken before knowing the
current realization of the accident process. This can be formalized by requiring X and Λ
to be FN–predictable, where FN = {FN

t }t≥0 is the filtration generated by N . By contrast,
payout and liquidation decisions at any date are taken after observing whether or not an
accident occurred at this date. Hence L and τ are FN–adapted.9 As described in detail in
the Appendix, an effort process Λ generates a unique probability distribution PΛ over the
paths of the accident process N . Denote by EΛ the corresponding expectation operator.

Given a contract Γ = (X, L, τ) and an effort process Λ, the expected discounted utility of
the manager is

EΛ

[∫ τ

0
e−ρt(dLt + 1{Λt=λ+∆λ}XtB dt)

]
, (1)

9See Dellacherie and Meyer (1978, Chapter IV, Definitions 12 and 61) for definitions of adapted and
predictable processes.
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while the insurance company obtains an expected discounted profit

EΛ

[∫ τ

0
e−rt[Xt(µdt− CdNt)− dLt]

]
. (2)

An effort process Λ is incentive compatible with respect to a contract Γ if it maximizes the
manager’s expected utility (1) given Γ. The problem of the insurance company is to find a
contract Γ and an incentive compatible effort process Λ that maximize its expected discounted
profit (2), subject to delivering to the manager a required expected discounted utility level.
It is without loss of generality to focus on contracts Γ such that the present value of the
payments to the manager is finite, that is:

EΛ

[∫ τ

0
e−ρtdLt

]
< ∞. (3)

Indeed, by inspection of (2), if the present value of the payments to the manager were
infinite, the fact that ρ > r would imply infinitely negative expected discounted profits for
the insurance company. The latter would be better off proposing no contract altogether.

3. The Optimal Contract

3.1. Incentive Compatibility

In this subsection, we derive the incentive compatibility condition of the manager, relying
on martingale techniques similar to those introduced by Sannikov (2003). When deciding
which effort decision to take at a date t, the agent considers how this decision will affect his
continuation utility, defined as

Wt(Γ,Λ) = EΛ

[∫ τ

t
e−ρ(s−t)(dLs + 1{Λs=λ+∆λ}XsBds) |FN

t

]
1{t<τ}. (4)

Denote by W (Γ, Λ) = {Wt(Γ,Λ)}t≥0 the manager’s continuation utility process. Note that,
by construction, W (Γ, Λ) is FN–adapted. In particular, Wt(Γ, Λ) reflects whether an accident
occurred or not at date t. To characterize how the manager’s continuation utility evolves over
time, it is useful to consider her lifetime expected utility, evaluated conditionally upon the
information available at date t, that is:

Ut(Γ, Λ) = EΛ

[∫ τ

0
e−ρs(dLs + 1{Λs=λ+∆λ}XsBds) |FN

t

]

(5)

=
∫ t∧τ

0
e−ρs(dLs + 1{Λs=λ+∆λ}XsBds) + e−ρtWt(Γ, Λ).

Since Ut(Γ, Λ) is an expectation conditional on FN
t , the process U(Γ, Λ) = {Ut(Γ,Λ)}t≥0 is

an FN–martingale under the probability measure PΛ. Its last element is Uτ (Γ, Λ), which is
integrable by (3).

Relying on this martingale property, we now offer an alternative representation of U(Γ, Λ).
Consider the process MΛ = {MΛ

t }t≥0 defined by

MΛ
t = Nt −

∫ t

0
Λs ds (6)
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for all t ≥ 0. Equation (6) is best understood when Λ is a constant process. In that case,
MΛ

t is simply the number of accidents up to and including date t, minus its expectation.
More generally, a standard result from the theory of point processes implies that MΛ is an
FN–martingale under PΛ, see the Appendix. Changes in the effort process Λ induce changes
in the distribution of accidents, which essentially amount to Girsanov transformations of the
accident process N . The martingale representation theorem for point processes implies the
following lemma.

Lemma 1. The martingale U(Γ, Λ) satisfies

Ut(Γ, Λ) = U0(Γ, Λ)−
∫ t∧τ

0
e−ρsHs(Γ, Λ) dMΛ

s (7)

for all t ≥ 0, for some FN–predictable process H(Γ, Λ) = {Ht(Γ, Λ)}t≥0.

Along with (6), (7) implies that the lifetime expected utility of the manager evolves in
response to the jumps of the accident process N . At any date t, the change in Ut(Γ, Λ) is
equal to the product between a predictable function of the past, namely e−ρtHt(Γ,Λ), and
a term −dMΛ

t reflecting the events occurring at date t. This term is equal to the difference
between the instantaneous probability Λtdt of an accident, and the instantaneous change dNt

in the total number of accidents, which can be 0 or 1. Thus Ht(Γ, Λ) can be interpreted as
the sensitivity of the manager’s utility to the occurrence of accidents. Equations (5) and (7)
imply that the continuation utility of the manager evolves as

dWt(Γ,Λ) = [ρWt(Γ, Λ)− 1{Λs=λ+∆λ}XtB]dt + Ht(Γ,Λ)(Λtdt− dNt)− dLt (8)

for all t ∈ [0, τ). Thus the higher is H(Γ, Λ), the more sensitive to accidents is the continuation
utility of the manager. Building on this analysis, and denoting b = B/∆λ, we obtain the
following result.

Proposition 1. A necessary and sufficient condition for the effort process Λ to be incentive

compatible given the contract Γ = (X,L, τ) is that

Λt = λ if and only if Ht(Γ, Λ) ≥ Xtb (9)

for all t ∈ [0, τ), PΛ–almost surely.

It follows from (8) that, if an accident occurs at some date t ∈ [0, τ), the manager’s
continuation utility is instantaneously lowered by an amount Ht(Γ, Λ).10 Proposition 1 states
that, to incite the manager to choose a high level of risk prevention, this reduction in the
manager’s continuation utility must be at least as large as Xtb. This is because Xtb reflects
the attractiveness of the private benefits obtained by the agent when shirking.

Our characterization of incentive compatibility in a model with jumps in the output
process parallels that obtained in models where output is driven by a diffusion process. In

10In full generality, one should also allow for jumps in the transfer process. For incentive reasons, it is
however never optimal to distribute transfers to the manager in case an accident occurs. Moreover, it will
turn out that the optimal transfer process is absolutely continuous, so that transfers do not come in lump-
sums. To ease the exposition, we therefore rule out jumps in the transfer process in the body of the paper.
The possibility of allowing for such jumps is explicitly taken into account when we establish an upper bound
for the insurance company’s expected discounted profit, see the proof of Proposition 3.
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such Brownian models, the continuation utility of the agent must display a minimal level of
volatility in order to maintain incentive compatibility. However, there is no role for downsizing
and the optimal contract only relies on liquidation and transfers (see for instance DeMarzo and
Sannikov (2006), or Biais, Mariotti, Plantin and Rochet (2007)). By contrast, a distinctive
feature of our Poisson formulation of uncertainty is the role of firm size X in the provision
of incentives, as can be seen from (9).

Now turn to the limited liability constraint. It is convenient to introduce the notation
Wt−(Γ, Λ) = lims↑t Ws(Γ, Λ) to denote the left-hand limit of the process W (Γ,Λ) at t > 0.
While Wt(Γ, Λ) is the continuation utility of the manager at date t after observing whether
an accident occurred or not, Wt−(Γ, Λ) is the continuation utility of the manager evaluated
before such knowledge is obtained.11 Combining the fact that the continuation utility of the
manager must remain positive according to the limited liability constraint, with the fact that
it must be lowered by Ht(Γ,Λ) after an accident according to (8), one must have

Wt−(Γ, Λ) ≥ Ht(Γ, Λ) (10)

for all t ∈ [0, τ), PΛ–almost surely. Condition (10) states that the manager’s continuation
utility must always stay large enough to absorb a variation −Ht(Γ, Λ)dNt while remaining
non-negative.

3.2. Derivation of the Optimal Contract under Maximal Risk Prevention

In this subsection, we characterize the optimal contract that induces maximal risk prevention
from the manager, that is Λt = λ for all t ∈ [0, τ). This contract can be described with the
help of two state variables: the size of the firm, resulting from past downsizing decisions, and
the continuation utility of the manager, reflecting future transfer decisions. We first provide a
heuristic derivation of the insurance company’s value function. Next, we construct a contract
that generates this value for the insurance company and incites the manager to always take
the high effort decision. This delivers the desired optimal contract.

A Heuristic Derivation. In this heuristic derivation, we proceed in three steps.12 First,
we present the dynamics of the two state variables, that is, the size of the firm Xt, and the
manager’s continuation utility Wt− , both evaluated before the realization of uncertainty at
date t. Next, we discuss the dynamics of the insurance company’s value function F (Xt,Wt−).
Last, we describe the main features of the resulting contract.

Consider first the manager’s continuation utility. From (8), under maximal prevention
effort, Wt− evolves as

dWt− = (ρWt− + λHt)dt−HtdNt − dLt (11)

at any date t prior to liquidation. Now consider the evolution of the size of the firm. Since the
project has a positive net present value, it is suboptimal to downsize the firm, except after
an accident, to improve the incentives of the manager. Correspondingly, a size adjustment
should take place at date t only if an accident occurs at this date. That is:

dXt = (Xt+ −Xt)dNt, (12)

11W0−(Γ, Λ) is defined by (1). Note that while the process W (Γ, Λ) is FN–adapted, the process W·−(Γ, Λ) =
{Wt−(Γ, Λ)}t≥0 is FN–predictable.

12For notational convenience, we drop the arguments Γ and Λ in what follows.
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where Xt+ = lims↓t Xs ∈ [0, Xt] stands for the size of the firm just after the date t adjustment.
We now restate the constraints facing the insurance company. First, it must incite the

manager to exert a high prevention effort at date t. By Proposition 1, this requires Ht ≥ Xtb,
or equivalently, letting ht = Ht/Xt,

ht ≥ b. (13)

Next, some downsizing may be necessary. To see why, consider the situation at the outset of
date t, when the size of the firm is Xt and the continuation utility of the manager is W−

t . If
an accident occurs at date t, the manager’s continuation utility must be reduced from W−

t to
Wt = W−

t −Xtht. At this point, the question arises whether the occurrence of this accident
implies that the firm should be downsized. Since a high prevention effort is still required
from the manager, Proposition 1 implies that, if a new accident occurred, Wt would have to
be reduced further by at least Xt+b. This would be consistent with limited liability only if
W−

t −Xtht ≥ Xt+b, or equivalently, letting wt = Wt−/Xt and xt = Xt+/Xt,

wt − ht

b
≥ xt. (14)

Hence, downsizing is necessary, that is xt < 1, only when the continuation utility of the
manager is relatively low, so that (wt − ht)/b < 1. The last constraint facing the insurance
company is that transfers to the manager at date t should be non-negative. Assuming that
transfers are absolutely continuous with respect to time and that no transfer takes place after
an accident, that is dLt = lt1{dNt=0}dt, this amounts to

lt ≥ 0. (15)

We are now in a position to characterize the evolution of the value function F (Xt, Wt−) of
the insurance company. Since it discounts the future at rate r, the expected instantaneous
change in its value function must be

rF (Xt,Wt−)dt.

This must be equal to the sum of the expected instantaneous cash-flow it receives and of the
expected change in its continuation value. The former is equal to the expected net cash-flow
from the firm, minus the expected transfer to the manager,

[Xt(µ− λC)− lt]dt + o(dt).

To compute the change in the insurance company’s continuation value, we use the dynamics
(11) of the manager’s continuation utility along with the change of variable formula for
processes of bounded variations, which is the counterpart of Itô’s formula for these processes.
This yields the following expected change in the insurance company’s continuation value:

(ρWt− + λXtht − lt)FW (Xt,Wt−)dt− λdt[F (Wt− , Xt)− F (Wt− −Xtht, Xtxt)] + o(dt).

The first term arises because of the drift of Wt− , while the second term reflects the possibility
of jumps due to accidents. Putting these terms together, we obtain that the value function
of the insurance company satisfies the Hamilton–Jacobi–Bellman equation

rF (Xt,Wt−) = (µ− λC)Xt + max {−lt + (ρWt− + λXtht − lt)FW (Xt,Wt−)

(16)

−λ[F (Wt− , Xt)− F (Wt− −Xtht, Xtxt)]},
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where the maximization in (16) is over the set of controls (ht, xt, lt) that satisfy constraints
(13) to (15).

To get more insight into the structure of the solution, we impose further restrictions on
the value function F , which will be checked to be without loss of generality in the verification
theorem below. First, because of constant returns to scale, it is natural to require F to be
homogenous of degree 1,

F (ξ, ω) = ξF

(
1,

ω

ξ

)
≡ ξf

(
ω

ξ

)

for all (ξ, ω) ∈ R++ × R+. Intuitively, f maps the size-adjusted expected discounted utility
of the manager into the size-adjusted expected discounted profit of the insurance company.
Second, we require f to be globally concave, and linear over [0, b],

f(w) =
f(b)

b
w

for all w ∈ [0, b].
We can now derive several features of the optimal controls in (16). Optimizing with

respect to lt ≥ 0 and using the homogeneity of F yields

f ′(wt) = FW (Xt,Wt−) ≥ −1, (17)

with equality only if lt > 0. Intuitively, the left-hand side of (17) is the decrease in the
expected profit of the insurance company due to an increase in the manager’s rent, while
the right-hand side is the cost to the insurance company of an immediate transfer to the
manager. It is optimal to delay transfers as long as they are more costly than rent promises,
that is, as long as the inequality in (17) is strict. The concavity of f implies that this is the
case when wt is below a given threshold. The optimal contract thus satisfies the following
property.

Property 1. Transfers to the manager take place only if wt is at or above a threshold wm.

Suppose that wt is below the threshold wm. Then, using the homogeneity of F , one can
rewrite (16) as follows:

rf(wt) = µ− λC + max
{

(ρwt + λht)f ′(wt)− λ

[
f(wt)− xtf

(
wt − ht

xt

)]}
, (18)

where the maximization in (18) is over the set of controls (ht, xt) that satisfy (13) and (14).
Since f is concave and vanishes at 0, the mapping xt 7→ xtf((wt − ht)/xt) is non-decreasing.
It is thus optimal to let xt be as high as possible in (18), reflecting that downsizing is costly
since the project is profitable. Using (14) along with the fact that xt ≤ 1 then leads to the
second property of the optimal contract.

Property 2. The optimal downsizing policy is given by

xt = min
{

wt − ht

b
, 1

}
. (19)

This property of the optimal contract reflects that downsizing is imposed only as the
last resort, in order to maintain the consistency between the limited liability constraint and
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the incentive compatibility constraint. Using the linearity of f over [0, b],13 one can then
substitute (19) into (18) to obtain

rf(wt) = µ− λC + max {(ρwt + λht)f ′(wt)− λ[f(wt)− f(wt − ht)]}. (20)

The concavity of f then implies that it is optimal to let ht be as low as possible in (20), which
according to (13) leads to the third property of the optimal contract.

Property 3. The sensitivity of the manager’s continuation utility to accidents is given by

ht = b. (21)

Because the expected discounted profit of the insurance company is a concave function
of the manager’s utility, it is optimal to reduce the manager’s exposure to risk by letting ht

equal the minimal value b consistent with a high prevention effort at date t.
To summarize this heuristic derivation, our candidate for the insurance company’s size-

adjusted value function is the solution to




f(w) = f(b)w/b if w ∈ [0, b],

rf(w) = µ− λC + (ρw + λb)f ′(w)− λ[f(w)− f(w − b)] if w ∈ (b, wm],

f(w) = wm − w + f(wm) if w ∈ (wm,∞),

(22)

for some transfer threshold wm yet to be determined. The remainder of this subsection is
organized as follows. We first show that (22) has a maximal solution in a space of suitably
regular functions. Next, we argue that this maximal solution provides an upper bound for the
insurance company’s expected discounted profit when it incites the manager to the maximal
prevention effort and gives her at least her required expected discounted utility. Last, we
show that this maximal solution can indeed be attained through an incentive compatible
contract, so that it indeed coincides with the insurance company’s optimal value function.

The Maximal Solution. Three objects have to be jointly determined in problem (22).
First, the slope f(b)/b of the function f over the interval [0, b). Second, the function f itself
over [b, wm]. Third, the threshold wm above which the slope of f is equal to −1. To link
these three objects, we impose that f be continuous over R+ and continuously differentiable
over (b,∞), which implies in particular that

f ′(wm) = −1

as long as wm > b. Under this restriction, the choice of the slope of f over [0, b) determines
the value taken by the threshold wm. Our goal is to show that there exists some choice of the
slope of f over [0, b) that makes f maximal among the solutions to (22) that are continuous
over R+ and continuously differentiable over (b,∞). To see this, fix some α ≥ −1 and consider
the unique continuous solution φα to





φα(w) = αw if w ∈ [0, b],

rφα(w) = µ− λC + (ρw + λb)φ′α(w)− λ[φα(w)− φα(w − b)] if w ∈ (b,∞).
(23)

13Instead of assuming that f is linear over [0, b], one could have first defined f over [b,∞) only with f(b)/b ≥
f ′(b), and argue that when xt = (wt − ht)/b, the term xtf((wt − ht)/xt) in (18) becomes f(b)(wt − ht)/b,
which we can then rewrite as f(wt − ht) by conventionally letting f be linear over [0, b].
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One then has the following result.

Proposition 2. If µ− λC ≥ (ρ− r)b(2 + r/λ), then:

(i) φα1 ≥ φα2 if and only if α1 ≥ α2.

(ii) There exists a maximum value of α, αm, such that φ′α(w) = −1 has a solution.

(iii) The solution wm to φ′αm
(w) = −1 is unique, and strictly greater than b.

(iv) The function φαm is concave over [0, wm], and strictly so over [b, wm].

According to Lemma 2, three cases can occur. If α ∈ [−1, αm), the equation φ′α(w) = −1
has at least one solution, but φ′α is below −1 over some range. If α ∈ (αm,∞), the equation
φ′α(w) = −1 has no solution, and φ′α is always strictly above −1. Finally, if α = αm, the
equation φ′α(w) = −1 has a unique solution wm, and φ′αm is always greater than or equal to
−1. One then define f as

f(w) =





φαm(w) if w ∈ [0, wm],

wm − w + f(wm) if w ∈ (wm,∞).
(24)

The function f defined by (24) is the maximal solution to (22) whose derivative at wm is
precisely equal to −1.

The assumption µ− λC ≥ (ρ− r)b(2 + r/λ) is required for the value function associated
with the optimal contract to be continuously differentiable over (b,∞). We shall maintain
this assumption in the remainder of the paper. Whenever it fails to hold, the optimal value
function is piecewise linear. This somewhat degenerate case corresponds to the range of
parameters studied in Proposition 5 of Biais, Mariotti, Plantin and Rochet (2004).

An Upper Bound for the Insurance Company’s Profits. The second step of our argument
consists in showing that the maximal solution f to (22) given by (24) provides an upper bound
for the insurance company’s expected profit from any incentive compatible contract that
incites the manager to exert the maximal prevention effort in every contingency. Specifically,
define F (ξ, ω) = ξf(ω/ξ) for all (ξ, ω) ∈ R++ × R+ as in the heuristic derivation of the
optimal contract. The following result holds.

Proposition 3. For any contract Γ = (X, L, τ) that induces the maximal prevention effort

from the manager, that is, Λt = λ for all t ∈ [0, τ), and delivers her an initial expected

discounted utility W0− given initial firm size X0, one has

F (X0,W0−) ≥ EΛ

[∫ τ

0
e−rt[Xt(µdt− CdNt)− dLt]

]
. (25)

That is, the insurance company’s expected discounted profit at date 0 is at most F (X0,W0−).

In line with the heuristic derivation of Properties 1 to 3 of the optimal contract, the proof
of this result relies in an essential way on the homogeneity of F and on the concavity of
f . It should be noted that no restriction is made on contracts in Proposition 3, besides the
fact that they induce the manager to take the maximal prevention effort. In particular, these
contracts can exhibit arbitrarily complex history dependence, and can be contingent on other
variables than the size of the firm and the continuation utility of the manager.
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The Verification Theorem. We are now in a position to derive the optimal contract that
induces maximal risk prevention from the manager. Along standard lines in optimal control
theory, we provide a verification theorem. That is, we show that the upper bound for the
insurance company’s expected discounted profit derived in Proposition 3 can effectively be
attained by an incentive compatible contract. One has the following result.

Proposition 4. The optimal contract that induces the maximal prevention effort from the

manager, that is, Λt = λ for all t ∈ [0, τ), and delivers her an initial expected discounted

utility W0− given initial firm size X0, entails expected discounted profit F (X0,W0−) for the

insurance company. The optimal contract involves two state variables, the size of the firm

and the manager’s continuation utility, which evolves as

dWt− = (ρWt− + Xtλb)dt−XtbdNt − dLt (26)

for all t ∈ [0, τ), and Wt− = 0 for all t > τ . For each t ≥ 0, the manager’s continuation

utility after the realization of uncertainty at date t is Wt = lims↓t Ws− . The optimal contract

Γ = (X,L, τ) can be described as follows:

(i) The size of the firm is given by

Xt =
∞∑

n=0

ξn1{t∈(τn,τn+1]} (27)

for all t ∈ (0, τ), where τ0 = 0, ξ0 = X0, and

τn+1 = inf{t > τn |Wt < ξnb}, (28)

ξn+1 =
Wτn+1

b
(29)

for all n ≥ 0.

(ii) Transfers are given by

Lt = max{W0− −X0w
m, 0}+

∫ t

0
Xs(ρwm + λb)1{Ws=Xswm} ds (30)

for all t ∈ [0, τ).

(iii) Liquidation occurs with probability zero on the equilibrium path,

τ = inf{t ≥ 0 |Wt = 0} = ∞, (31)

PΛ–almost surely.

In the long run, the size of the firm and the continuation utility of the manager tend to 0,

lim
t→∞Xt = lim

t→∞Wt− = 0, (32)

PΛ–almost surely.

This result shows that the optimal contract that induces the maximal prevention effort is
only contingent on the size of the firm and on the continuation utility of the manager. The
features of the optimal contract confirm the heuristic derivation of Properties 1 to 3. Let us
examine each of these properties in turn, starting from the last one.
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P3. According to (26), the sensitivity of the manager’s continuation utility to accidents is
equal to b in size-adjusted terms, as prescribed by Property 3.

P2. Consider next the evolution of the size of the firm, which is described in equations (27)
to (29). Size adjustments take place at dates τ1, τ2, ..., and they successively lower
the size of the firm by from ξ0 to ξ1, from ξ1 to ξ2, .... It follows from (26) to (28)
that the firm is downsized at date τn+1 if and only if an accident at this date lowers
the manager’s continuation utility by Xτn+1b, and brings it at a level Wτn+1 which
lies itself below Xτn+1b. Letting wt = Wt−/Xt, and taking advantage of the fact that
Wτn+1 = Xτn+1(wτn+1 − b) and Xτn+1 = ξn, (29) then yields a downsizing factor

xτn+1 =
ξn+1

ξn
=

wτn+1 − b

b
< 1,

as prescribed by Property 2. By construction, if W0− > 0, one has wt > b and thus
Xt > 0 for all t ≥ 0, PΛ–almost surely. To maintain incentive compatibility in the
presence of ever recurring accidents, the size of the firm and the continuation utility of
the manager must eventually tend to 0, as shown by (32).

P1. Consider finally the transfer decisions, which are summarized by (30). For each t > 0,
transfers take place at date t if and only if Wt = Xtw

m, and they are constructed in
such a way that the manager’s continuation utility stays constant at the level Xtw

m

until an accident occurs. Thus, in line with Property 1, transfers to the manager take
place if only if her size-adjusted utility wt before the realization of uncertainty at date
t is at the threshold wm, and no accident occurs at date t. By construction, wt ≤ wm

for all t ∈ (0, τ). If w0 > wm, or equivalently W0− > X0w
m, a lump-sum transfer

W0−−X0w
m is immediately distributed to the manager, after which the above transfer

policy is implemented.

It should be noted that liquidation plays virtually no role in the optimal incentive contract,
as reflected by (31). Indeed, apart from exceptional circumstances, wt = Wt−/Xt always
remains strictly greater than b. As a result of this, Wt, which is in the worst case equal
to Wt− − Xtb if an accident occurs at date t, always remains strictly positive.14 This is in
sharp contrast with the Brownian models studied by DeMarzo and Sannikov (2006), and
Biais, Mariotti, Plantin and Rochet (2007), in which the optimal contract relies crucially
on liquidation and involves no downsizing. Admittedly, even in the context of our Poisson
model, an alternative way to provide incentives to the manager in case of bad performance
would be to allow for randomly liquidating the firm, as is customary in discrete-time models
(see for instance DeMarzo and Fishman (2003), or Clementi and Hopenhayn (2006)). But
in contrast with what happens in Brownian models, liquidation would then necessarily have
to be both stochastic (as it would depend on the realization of a lottery at each potential
liquidation date) and unpredictable (as it would take place only after an accident occurs).
Modelling liquidation in this way would allow to achieve essentially the same outcome as
under downsizing. This would however be both less tractable analytically, and less conducive
to a realistic implementation of the optimal contract.

14Exceptions arise only with probability 0, for instance if W0− = X0b and an accident occurs at date 0, or
if multiple accidents occurs at the same date.
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3.3. Optimality of Maximal Risk Prevention

To Be Completed.

4. Implementation

In this section, we exhibit insurance and financial instruments that can be used to implement
the abstract optimal contract derived in Section 3. We show that these instruments are
budget balanced, that is, that the net cash revenue generated by the firm is equal to the
use of funds at each point in time. This implementation gives rise to the same production
and distribution decisions as in the optimal contract, on and off the equilibrium path, which
implies that it is incentive compatible. Finally, we derive several predictions regarding the
pricing of bonds issued by the firm as part of the implementation.

4.1. Insurance and Financial Contracts

There are three aspects to the relation between the insurance company and the manager.
First, the insurance company is liable in case of damages. Next, incentives must be provided
to the manager so that she exerts the maximal prevention effort. Last, as the manager is more
impatient than the insurance company, she would like borrow from it to finance consumption.
While the first two features revolve around insurance issues, the third one is about finance.
Correspondingly, the implementation we propose combines insurance and financial aspects.

Cash Reserves. A realistic feature of our implementation is that the firm must hold cash
reserves. This parallels the corporate finance model of Biais, Mariotti, Plantin and Rochet
(2007). These reserves are deposited on a bank account and earn interest at rate r. At any
point in time, changes in this account’s balance reflect the operating cash-flows of the firm,
the transfers to the insurance company and to the manager, and the earned interest income.
Cash reserves will thus be affected by the performance of the firm and the occurrence of
accidents. In our implementation, the accumulated cash reserves held by the firm will be set
equal to Wt− at the outset of any date t, and to Wt after the realization of uncertainty at
date t.15 It is convenient to interpret the ratio of cash reserves to the size of the firm as the
liquidity ratio of the firm. The manager’s compensation schedule as well as the downsizing
policy of the firm are directly contingent on this measure of the firm’s liquidity.

Insurance Contract. In line with clauses observed in practice, the insurance contract
on which our implementation relies involves both a deductible and a bonus-penalty system.
When an accident occurs at date t, the insurance company is liable for the entire size of
the damage, XtC, minus a deductible, paid by the firm out of its cash reserves. To provide
appropriate incentives to the manager, the deductible is set equal to Xtb. In each period, the
firm pays an insurance premium to the insurance company, which combines an actuarially
fair component with an incentive component. Since accidents occur with an intensity λ under
maximal prevention effort, the actuarially fair premium is given by

λXt(C − b)dt

15This differs from Biais, Mariotti, Plantin and Rochet (2007), in which cash reserves are typically a multiple
of the manager’s continuation utility, reflecting the magnitude of the moral hazard problem. The key difference
lies in the fact that they insist that financiers hold securities, defined as claims with limited liability, while we
make the insurance company liable for the social costs generated by the firm’s activity.
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during the infinitesimal time interval [t, t + dt). During the same time interval, the incentive
component of the insurance premium is given by

−(ρ− r)Wt−dt.

This component works as a bonus-penalty system in that it adjusts the premium paid by
the firm according to its sinistrality. As long as no accident occurs, Wt− increases up to
the threshold Xtw

m. This lowers the insurance premium, corresponding to a bonus. By
contrast, when an accident occurs, Wt− is lowered by Xtb. This raises the insurance premium,
corresponding to a penalty.

Corporate Bond. To fund its initial cash reserves W0− , the firm issues a corporate bond
at date 0, which is acquired by the insurance company. This bond first pays a constant coupon
X0(µ − λb) per unit of time. If the firm subsequently incurs a large number of accidents,
it must be downsized, which can be interpreted as a form of financial distress. When such
events happen, the coupon is also downsized. Hence, in general, the coupon on the bond is
given by

Xt(µ− λC)dt

during the infinitesimal time interval [t, t + dt). Thus, while the size-adjusted coupon is
constant and equal to µ−λC per unit of time, the bond is exposed to the risk of downsizing.
Thus credit risk arises endogenously in our model as a result of accidents and moral hazard.
This risk is reflected in the bond price, as we will see below.

Managerial Compensation. If a sufficiently long period of time elapses without accidents
occurring, the manager is compensated with cash transfers. The latter take place after the
realization of uncertainty at date t if the liquidity ratio Wt/Xt of the firm is equal to the
contractually specified threshold wm. This requires in particular that no accident occurred
in period t. Transfers to the manager are then drawn from the cash reserves of the firm so
as to maintain these cash reserves constant. Whenever Wt/Xt = wm, the transfers to the
manager are thus given by

Xt(ρwm + λb)dt

during the infinitesimal time interval [t, t + dt). As long as no accident occurs, cash reserves
then stay constant at the level Wt = Xtw

m. As soon as an accident occurs, the firm must
pay the deductible Xtb, which reduces its cash reserves and its liquidity ratio. As a result
of this, the firm reverts to the regime in which the manager receives no immediate cash
compensation.

Downsizing Covenant. The bond and the insurance contract include a covenant. The
latter stipulates that, if an accident at date t brings the liquidity ratio Wt/Xt of the firm
below b, the firm is immediately downsized by a factor

xt =
Wt

bXt
.

This lowers the size of the firm to Xt+ = xtXt = Wt/b. Downsizing does not alter the level
Wt of the cash reserves, but it brings the liquidity ratio back to

Wt

Xt+
= b.
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Since the firm thereafter operates on a smaller scale, the size of the damage in case an other
accident occurs is also reduced. Correspondingly, the deductible is lowered to

Xt+b = Wt.

The intuition is that, immediately after being downsized, the firm has just enough cash
reserves to pay the deductible in case of an other accident, without violating the limited
liability constraint.

4.2. Budget Balance

At any date t, the cash-flow statement of the firm is

Cash inflows Cash outflows

Operating cash-flow Xtµdt Coupon Xt(µ− λC)dt
Interest income rWt−dt Insurance premium λXt(C − b)dt− (ρ− r)Wt−dt

Deductible XtbdNt

Cash hoarding or wages

Table 1. Cash-flow statement of the firm.

On the left-hand side if Table 1 are the cash-flows generated by the firm, which consist of
operating cash-flows and interest earned on cash reserves. The different uses of these cash-
flows are displayed on the right-hand side of Table 1. While the coupon and the insurance
premium are continuously paid to the insurance company, the deductible is paid only in case
an accident occurs. The last item can be interpreted as follows. (i) When Wt− < wm and no
accident occurs, it accounts for the cash hoarded by the firm and added to its cash reserves,
(ρWt− + Xtλb)dt. (ii) When an accident occurs, it accounts for the change in cash reserves
due to the payment of the deductible, −Xtb. (iii) When Wt− = Xtw

m and no accident occurs,
it accounts for the wages paid to the manager, Xt(ρwm + λb)dt.

Similarly, the cash-flow statement of the insurance company is

Cash inflows Cash outflows

Coupon Xt(µ− λC)dt Insurance liability Xt(C − b)dNt

Insurance premium λXt(C − b)dt− (ρ− r)Wt−dt Profits

Table 2. Cash-flow statement of the insurance company.

In case an accident occurs, the insurance company must cover the social cost, net of the
deductible. Its profits are therefore −Xt(C − b). When no accident occurs, the profit of the
insurance company amounts to [Xt(µ− λb)− (ρ− r)Wt− ]dt.

At date 0, the insurance company receives the bonds and commits to the insurance
contract. It also transfers an initial amount of cash W0− to the firm. The latter hoards
this as cash reserves. Throughout its history, the firm will use accumulated cash reserves to
pay coupons, insurance premia, deductibles and transfers to the manager. Thus the present
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value of the insurance company’s profits is16

EΛ

[∫ ∞

0
e−rt{[Xt(µ− λb)− (ρ− r)Wt− ]dt−Xt(C − b)dNt}

]

= EΛ

[∫ ∞

0
e−rt[Xt(µdt− CdNt)− dLt]

]
+ EΛ

[∫ ∞

0
e−rt[dLt − (ρ− r)Wt−dt]

]

= F (X0, W0−)− EΛ

[∫ ∞

0
e−rtd(e−rtWt−)

]

= F (X0, W0−) + W0− ,

This identity states that the rent of the insurance company, F (X0,W0−), is equal to the
present value of its profits, minus the initial payment it makes to the firm.

The value of the bonds received by the insurance company exceeds the initial amount
of cash it pays to the firm. The difference is equal to the sum of two terms. The first
one is equal to the insurance company’s initial rent. The second term reflects the payments
that the insurance company receives and makes as a result of the insurance contract. By
construction, the actuarially fair component of the insurance premium is on average equal
to the net liabilities of the insurance company. By contrast, the incentive component of the
insurance premium involves an expected discounted cost to the insurance company

−EΛ

[∫ ∞

0
e−rt(ρ− r)Wt− dt

]
.

4.3. Incentive Compatibility

We now check that this implementation gives rise to the same decisions as the optimal con-
tract. First, the dynamics of the cash reserves and of the liquidity ratio in the implementation
exactly mirror those of the promised continuation utility and the size-adjusted utility of the
manager in the optimal contract. Next, the downsizing covenant ensures that downsizing
decisions in the implementation and in the optimal contract are identical. Therefore, the
real decisions arising in the implementation in response to the evolution of the liquidity ratio
exactly parallel those requested in the optimal contract. Finally, the compensation package
proposed in the implementation leads to the same transfers to the manager as in the optimal
contract. As a result of this, the financial and insurance contracts we described are incentive
compatible, and they implement the optimal allocation.

16The first equality follows from the fact that the process MΛ is an FN–martingale under PΛ, the second
equality from Proposition 4 along with the change of variable formula for processes of bounded variations and
the dynamics of the manager’s continuation utility, and the third equality from (32).
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Appendix A: The Stochastic Environment

In this Appendix, we provide a precise description of the stochastic environment. Let (Ω,F ,P) be a
complete probability space over which is defined a Poisson process N = {Nt}t≥0 of intensity λ. We
denote by FN = {FN

t }t≥0 the filtration generated by N , suitably augmented by the P–null sets. This
filtration satisfies the usual conditions (Dellacherie and Meyer (1978, Chapter IV, Definition 48)). The
process M = {Mt}t≥0 defined by

Mt = Nt − λt

for all t ≥ 0, is an FN–martingale under P. As in the text, let Λ = {Λt}t≥0 be an FN–predictable
process with values in {λ, λ+∆λ}, and denote by ZΛ = {ZΛ

t }t≥0 the unique solution to the stochastic
differential equation

dZΛ
t = ZΛ

t−

(
Λt

λ
− 1

)
dMt

for all t ≥ 0, where ZΛ
0− = 0. By the exponential formula for Stieltjes–Lebesgue calculus (Brémaud

(1981, Appendix A4, Theorem T4)), one has

ZΛ
t =

( ∞∏
n=1

ΛTn

λ
1{Tn≤t}

)
exp

(∫ t

0

(λ− Λs) ds

)

for all t ≥ 0, where (Tn)∞n=1 is the sequence of dates at which the process N jumps. From Brémaud
(1981, Chapter VI, Theorem T2), ZΛ is a non-negative FN–local martingale under P. Moreover
E[ZΛ

t ] = 1 for all t ≥ 0. A standard extension argument implies that there exists a unique probability
measure PΛ over (Ω,F) that is defined by the Radon-Nikodym derivatives

dPΛ

dP |FN
t

= ZΛ
t

for all t ≥ 0. It then follows from Brémaud (1981, Chapter VI, Theorem T3) that the process MΛ

defined by (6) is an FN–martingale under PΛ.

Appendix B: The Incentive Compatibility Constraint

Proof of Lemma 1. The process U(Γ, Λ) defined by (5) is a non-negative FN–martingale under PΛ,
of the form Ut(Γ,Λ) = EΛ[Uτ (Γ,Λ) |FN

t ] for all t ≥ 0, where Uτ (Γ,Λ) is integrable by (3). Since the
filtration FN satisfies the usual conditions, U(Γ,Λ) admits a right-continuous modification with left-
hand limits (Dellacherie and Meyer (1982, Chapter VI, Theorem 4)). The predictable representation
(7) then follows directly from Brémaud (1981, Chapter III, Theorems T9 and T17). ¥

Proof of Proposition 1. Following Sannikov (2003, Lemma 2), consider the manager’s lifetime expected
utility, evaluated conditionally upon the information available at some date t, when she acts according
to Λ′ until date t and then reverts to Λ:

U ′
t =

∫ t∧τ

0

e−ρs(dLs + 1{Λ′s=λ+∆λ}XsBds) + e−ρtWt(Γ, Λ). (B.1)

First, we show that if U ′ = {U ′
t}t≥0 is an FN–submartingale under PΛ′ that is not a martingale, then

Λ is suboptimal for the manager. Indeed, in that case there exists some t ≥ 0 such that

U0−(Γ, Λ) = U ′
0− < EΛ′ [U ′

t ],
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so that by (B.1) the manager is strictly better off acting according to Λ′ until date t and then reverting
to Λ. The claim follows.

Next, we show that if U ′ is a FN–supermartingale under PΛ′ , then Λ is at least as good as Λ′ for
the manager. From (5) and (B.1) along with the fact that U(Γ, Λ′) is a PΛ′–martingale, one has

EΛ′ [U ′
t ] = U0−(Γ,Λ′) + EΛ′

[
1{t<τ}

∫ τ

t

e−ρs(1{Λs=λ+∆λ} − 1{Λ′s=λ+∆λ})XsB ds

]
,

so that the mapping t 7→ EΛ′ [U ′
t ] is right-continuous. Since the filtration FN satisfies the usual

conditions, U ′ admits a right-continuous modification with left-hand limits (Dellacherie and Meyer
(1982, Chapter VI, Theorem 4)). Moreover, since U ′ is non-negative, it admits 0 as a last element.
Hence, by the optional sampling theorem (Dellacherie and Meyer (1982, Chapter VI, Theorem 10)),

U ′
0− ≥ EΛ′ [U ′

τ ] = U0−(Γ,Λ′),

from which the claim follows as U ′
0− = U0−(Γ, Λ) by (B.1).

Now, for each t ≥ 0,

U ′
t = Ut(Γ, Λ) +

∫ t∧τ

0

e−ρs(1{Λ′s=λ+∆λ} − 1{Λs=λ+∆λ})XsB ds

= U0(Γ, Λ)−
∫ t∧τ

0

e−ρsHs(Γ, Λ) dMΛ
s +

∫ t∧τ

0

e−ρs(1{Λ′s=λ+∆λ} − 1{Λs=λ+∆λ})XsB ds

= U0(Γ, Λ)−
∫ t∧τ

0

e−ρsHs(Γ, Λ) dMΛ′
s −

∫ t∧τ

0

e−ρsHs(Γ,Λ)(Λ′s − Λs) ds

+
∫ t∧τ

0

e−ρs(1{Λ′s=λ+∆λ} − 1{Λs=λ+∆λ})XsB ds

= U0(Γ, Λ)−
∫ t∧τ

0

e−ρsHs(Γ, Λ) dMΛ′
s

+
∫ t∧τ

0

e−ρs∆λ(1{Λ′s=λ+∆λ} − 1{Λs=λ+∆λ})[Xsb−Hs(Γ, Λ)] ds,

where the first equality follows from (5) and (B.1), the second from (7), the third from (6), and
the fourth from a straightforward computation. Since H(Γ, Λ) is FN–predictable and MΛ′ is an
FN–martingale under PΛ′ , the drift of U ′ has the same sign as

(1{Λ′t=λ+∆λ} − 1{Λt=λ+∆λ})[Xtb−Ht(Γ, Λ)]

for all t ∈ [0, τ). If (9) holds for the effort process Λ, then this drift remains non-positive for all
t ∈ [0, τ) and all choices of Λ′t ∈ {λ, λ + ∆λ}. This implies that for any effort process Λ′, U ′ is an
FN–supermartingale under PΛ′ , and thus that Λ is at least as good as Λ′ for the manager. If (9)
does not hold for the effort process Λ, then choose Λ′ such that for all t ∈ [0, τ), Λ′t = λ if and
only if Ht(Γ, Λ) ≥ Xtb. Then the drift of U ′ is everywhere non-negative and strictly positive on a
set of PΛ′–positive measure. As a result of this, U ′ is an FN–submartingale under PΛ′ that is not a
martingale, and thus Λ is suboptimal for the manager. This concludes the proof. ¥

Appendix C: The Value Function

Proof of Proposition 2. In this Appendix, we shall work with the size-adjusted value social value
function, v, instead of the size-adjusted value of the insurance company, f . These two functions are
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related by v(w) = f(w) + w for all w ≥ 0, so that the system (22) can be rewritten in terms of v as




v(w) = v(b)w/b if w ∈ [0, b],

rv(w) = µ− λC − (ρ− r)w + v′(w)(ρw + λb)− λ[v(w)− v(w − b)] if w ∈ (b, wm],

v(w) = v(wm) if w ∈ (wm,∞).

(C.1)

We assume throughout that µ− λC ≥ (ρ− r)b, and that µ− λC ≥ (ρ− r)b(2 + r/λ) in Lemmas C.3
to C.7 below. Let U be the space of continuous functions over R+ that are continuously differentiable
over (b,∞), and consider the following linear first-order differential operator with delay:

Lu(w) = (ρw + λb)u′(w)− λ[u(w)− u(w − b)]− ru(w), (C.2)

for all u ∈ U and w > b. Define two auxiliary functions u1 and u2 in U that solve




u1(w) = 0 if w ∈ [0, b],

Lu1(w) = (ρ− r)w − µ + λC if w ∈ (b,∞),
(C.3)

and 



u2(w) = w if w ∈ [0, b],

Lu2(w) = 0 if w ∈ (b,∞).
(C.4)

Given their initial conditions over the interval [0, b], the solutions to (C.3) and (C.4) are recursively
constructed over the intervals (b, 2b], (2b, 3b], and so on. Repeated applications of the Cauchy-Lipschitz
theorem ensure that (C.3) and (C.4) both have a unique continuous solution. Neither u1 and u2 are
differentiable at b. Indeed, using the operator L and the definitions of u1 and u2, it is straightforward
to verify that

u′1+(b) =
(ρ− r)b− µ + λC

(ρ + λ)b
< 0 = u′1−(b), (C.5)

u′2+(b) =
r + λ

ρ + λ
< 1 = u′2−(b). (C.6)

However, the continuity of u1 and u2 ensures that they are both continuously differentiable over
(b,∞). This implies in turn that they are twice continuously differentiable over (b,∞) \ {2b}, thrice
continuously differentiable over (b,∞) \ {2b, 3b}, and so on. One has the following results.

Lemma C.1. lim infw→∞ u′1(w) ≥ 1.

Proof. We first show that lim infw→∞ u′1(w) 6= −∞. Otherwise, there exists an increasing divergent
sequence (wn)n≥0 in (2b,∞) such that limn→∞ u′1(wn) = −∞ and wn = arg minw∈[0,wn]{u′1+(w)}.
For each n ≥ 0, one can find some w̃n ∈ (wn − b, wn) such that

(ρwn + λb)u′1(wn) = λ[u1(wn)− u1(wn − b)] + ru1(wn) + (ρ− r)wn − µ + λC

= λbu′1(w̃n) + ru1(wn) + (ρ− r)wn − µ + λC,

where the first equality follows from (C.2) and (C.3) and the second from the mean value theorem.
This may be conveniently rewritten as

u′1(w̃n) =
wn

λb

[
ρu′1(wn)− r

wn
u1(wn)

]
+

µ− λC

λb
+ u′1(wn)− (ρ− r)wn

λb
. (C.7)
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Since u1(0) = 0, one has u1(wn) ≥ wnu′1(wn) by construction of the sequence (wn)n≥0. Moreover,
u′1(wn) < 0 for n large enough. It then follows from (C.7) that for any such n,

u′1(w̃n) ≤ (ρ− r)wnu′1(wn)
λb

+
µ− λC

λb
.

Therefore, since u′1(wn) < 0,
u′1(w̃n)
u′1(wn)

≥ (ρ− r)wn

λb
+

µ− λC

λbu′1(wn)
,

so that the ratio u′1(w̃n)/u′1(wn) goes to ∞ as n goes to ∞. Using again the fact that u′1(wn) < 0 for
n large enough, one obtains that eventually u′1(w̃n) < u′1(wn), which, since w̃n < wn, contradicts the
fact that wn = arg minw∈[0,wn]{u′1+(w)}. Thus lim infw→∞ u′1(w) is a finite number, that we denote
l. We now show that necessarily l ≥ 1. Consider an increasing divergent sequence (wn)n≥0 in (2b,∞)
such that limn→∞ u′1(wn) = l. There exists a constant C1 such that u1(wn) ≥ lwn + C1 for all n ≥ 0.
Constructing w̃n ∈ (wn − b, wn) as in (C.7), it follows that

ρu′1(wn) + λb
u′1(wn)

wn
≥ λb

u′1(w̃n)
wn

+ rl +
rC1 − µ + λC

wn
+ ρ− r

for all n ≥ 0. Letting n go to ∞, one obtains that

(ρ− r)(l − 1) ≥ λb lim sup
n→∞

u′1(w̃n)
wn

.

If l < 1, this implies that lim supn→∞ u′1(w̃n) = −∞, which in turn contradicts the fact that
lim infw→∞ u′1(w) = l is a finite number. Hence l ≥ 1, and the result follows. ¤

Lemma C.2. u′2(w) > 0 for all w ∈ (b,∞).

Proof. One has u′2+(b) = (r +λ)/(ρ+λ) > 0. Now suppose that u′2 vanishes over (b,∞) and let w̃ > b

be the first point at which it does so. Then, using (C.2) and (C.4), one obtains that

−λ[u2(w̃)− u2(w̃ − b)]− ru2(w̃) = 0,

which is impossible as u2 is strictly increasing and strictly positive over (0, w̃]. Hence the result. ¤

Consider now the ratio −u′1+(w)/u′2+(w), which is a continuous function of w over [b,∞). This
quantity is strictly positive at w = b, and ultimately becomes strictly negative as w gets large enough
by Lemmas C.1 and C.2. Thus −u′1+/u′2+ has a maximum over [b,∞). We denote by wm the smallest
point at which this maximum is reached over [b,∞). The function u defined by

u(w) = u1(w)− u′1+(wm)
u′2+(wm)

u2(w) (C.8)

for all w ∈ R+ then satisfies u′+(wm) = 0, and is non-decreasing as u′+ ≥ 0 over R+. By (C.3), (C.4)
and (C.8), one has u(b)/b = −u′1+(wm)/u′2+(wm), and u satisfies





u(w) = u(b)w/b if w ∈ [0, b],

Lu(w) = (ρ− r)w − µ + λC if w ∈ (b,∞).
(C.9)

Note that since u2 is strictly positive over R++, u can alternatively be characterized as the highest
function of the form u1 + βu2 whose right derivative vanishes over [b,∞). Such functions form an
increasing family ordered by their slope β at 0, and they satisfy the analogue of (C.9) with β instead
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of u(b)/b. This immediately implies the statement in Proposition 2(i). For β > u(b)/b, the right
derivative of u1 + βu2 is always strictly positive, while it takes strictly negative values for β < u(b)/b.
Letting αm = u(b)/b − 1 and φαm(w) = u(w) − w for all w ≥ 0, one obtains that φ′αm+(wm) = −1,
and that the equation φ′α(w) = −1 admits no solution for any α > αm. To derive Proposition 2(ii), we
need only to check that φαm is actually differentiable at wm, which results from the following lemma.

Lemma C.3. If µ− λC > (ρ− r)b(2 + r/λ), then u′′+(b) < 0 and wm > b.

Proof. We first prove that
u(b)

b
≥ µ− λC − (ρ− r)b

(r + λ)b
. (C.10)

Indeed, substituting the explicit values (C.5) and (C.6) for u′1+(b) and u′2+(b) in the expression for
u′+(b) yields

u′+(b) = u′1+(b) +
u(b)

b
u′2+(b) =

(ρ− r)b− µ + λC + (r + λ)u(b)
(ρ + λ)b

, (C.11)

and (C.10) follows from the fact that u′+ ≥ 0 over R+ and thus in particular u′+(b) ≥ 0. We next
prove that u′′+(b) < 0. Differentiating (C.9) to the right of any w ≥ b leads to

(ρw + λb)u′′+(w) = λ[u′+(w)− u′+(w − b)]− (ρ− r)[u′+(w)− 1].

Applying this formula at b and using (C.10) and (C.11), one then obtains that

(ρ + λ)bu′′+(b) = λ

[
u′+(b)− u(b)

b

]
− (ρ− r)[u′+(b)− 1]

=
(λ− ρ + r)[(ρ− r)b− µ + λC] + (r − ρ)(r + 2λ)u(b)

(ρ + λ)b
+ ρ− r

≤ λ[(ρ− r)b− µ + λC]
(r + λ)b

+ ρ− r,

which is strictly negative under the assumption of the lemma. Hence the claim. We finally prove
that wm > b. A sufficient condition is that the right derivative of −u′1+/u′2+ at b be strictly positive.
Differentiating (C.3) and (C.4) to the right of b leads to

(ρ + λ)bu′′1+(b) = (λ− ρ + r)u′1+(b) + ρ− r, (C.12)

(ρ + λ)bu′′2+(b) = (λ− ρ + r)u′2+(b)− λ. (C.13)

Substituting the explicit values (C.5) and (C.6) for u′1+(b) and u′2+(b) in (C.12) and (C.13) yields

−u′′1+(b)u′2+(b) + u′′2+(b)u′1+(b) = − (ρ− r)u′2+(b) + λu′1+(b)
(ρ + λ)b

=
λ

b2(ρ + λ)2
[
µ− λC − (ρ− r)b

(
2 +

r

λ

)]
,

which is strictly positive under the assumption of the lemma. This implies the result. ¤

Under the assumption of Lemma C.3, u is differentiable at wm and wm is the smallest point
at which u′ vanishes, and at which φαm equals −1. We now show that u is concave over [0, wm],
and strictly so over [b, wm]. Differentiating (C.9) to the right of 2b and using the inequalities (C.5)
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and (C.6), one can verify that u′′+(2b) > u′′−(2b). Since u is twice continuously differentiable over
(b,∞) \ {2b}, u′′+ is upper semicontinuous over [b,∞), and hence the set {w ≥ b | u′′+(w) ≥ 0} is
closed. Denote by wc its smallest element. Since u is non-decreasing and u′(wm) = 0, one must have
u′′+(wm) ≥ 0, and thus wm ≥ wc. By Lemma C.3, wc > b and u′′+ < 0 over (b, wc), so that u is strictly
concave over [b, wc]. Moreover, along with the inequalities (C.5) and (C.6), the representation (C.8)
implies that u′+(b) < u′−(b). Thus, as u is linear over [0, b], it is globally concave over [0, wc]. In order
to derive similar properties of u on the interval [0, wm], we now prove that wc actually coincides with
wm. One first has the following result.

Lemma C.4. If µ− λC > (ρ− r)b(2 + r/λ), then wc ≥ 2b.

Proof. Suppose by way of contradiction that wc ∈ (b, 2b). Since u is twice continuously differentiable
over (b, 2b), u′′(wc) = 0 and u′′ < 0 over (b, wc). We consider three cases in turn.

Case 1. Suppose first that λ ≤ ρ − r. Then, since wc − b < b and u′′(wc) = 0, differentiating
(C.9) at wc yields

λ

[
u′(wc)− u(b)

b

]
− (ρ− r)[u′(wc)− 1] = 0,

which implies that λu(b)/b− ρ + r = (λ− ρ + r)u′(wc) ≤ 0. By (C.10), it follows that

λ[µ− λC − (ρ− r)b]
b(r + λ)

≤ ρ− r,

or equivalently µ− λC ≤ (ρ− r)b(2 + r/λ), which contradicts the assumption of the lemma.

Case 2. Suppose next that λ ≥ 2ρ− r. Differentiating (C.9) twice over (b, 2b) yields

(ρw + λb)u′′′(w) = λ[u′′(w)− u′′(w − b)]− (2ρ− r)u′′(w) = (λ− 2ρ + r)u′′(w)

for all w ∈ (b, 2b), where the second inequality follows from the fact that u is linear over (0, b).
Since λ ≥ 2ρ − r and u′′ < 0 over (b, wc), one has u′′′ ≤ 0 over this interval. This implies that
u′′(wc) ≤ u′′+(b), which is impossible since u′′(wc) = 0 by construction and u′′+(b) < 0 by Lemma C.3.

Case 3. Suppose finally that ρ − r < λ < 2ρ − r. Differentiating (C.9) twice as in Case 2 and
using the fact that λ − 2ρ + r < 0 shows that u′′′ and u′′ have opposite signs over (b, 2b). It follows
that u′′′ > 0 and hence u′′ > u′′+(b) over (b, wc). Using again the fact that λ− 2ρ + r < 0, one obtains
that

u′′′(w) =
(λ− 2ρ + r)u′′(w)

ρw + λb
<

(λ− 2ρ + r)u′′+(b)
ρw + λb

for all w ∈ (b, wc). One then has

u′′(wc) = u′′+(b) +
∫ wc

b

(λ− 2ρ + r)u′′(w)
ρw + λb

dw <

[
1 +

∫ wc

b

λ− 2ρ + r

ρw + λb
dw

]
u′′+(b) ≡ C2u

′′
+(b).

Since u′′(wc) = 0 and u′′+(b) < 0, one obtains a contradiction if C2 > 0. Note that

∫ wc

b

1
ρw + λb

dw <

∫ 2b

b

1
ρw + λb

dw <
1

ρ + λ
.

Since ρ− r < λ < 2ρ− r, this implies that

C2 > 1 +
λ− 2ρ + r

ρ + λ
> 0,
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and the result follows. ¤

The following lemma then implies that u is concave over [0, wm], and strictly so over [b, wm].

Lemma C.5. If µ− λC > (ρ− r)b(2 + r/λ), then wc = wm.

Proof. We first show that u′′ > 0 in an interval (wc, wc + ε) for some ε > 0. Whenever wc = 2b and
u′′+(2b) > 0, this is immediate. Otherwise u′′+(wc) = 0. Differentiating (C.9) twice to the right of wc

then yields

(ρwc + λb)u′′′+ (wc) = λ[u′′+(wc)− u′′+(wc − b)]− (2ρ− r)u′′+(wc) = −λu′′+(wc − b) > 0

where the strict inequality follows from the fact that wc− b ∈ [b, wc) by Lemma C.4, and that u′′+ < 0
over [b, wc). Since u′′+(wc) = 0 and u′′′+ (wc) > 0, u′′ > 0 in an interval (wc, wc + ε) for some ε > 0, as
claimed. Suppose by way of contradiction that wc 6= wm, so that actually wm > wc. Then u′(wc) > 0
as wm is the smallest point at which u′ vanishes. Since u′(wm) = u′(wc)+

∫ wm

wv u′′(w) dw, this implies
that u′′ cannot be non-negative over the whole interval (wc, wm). Let w̄c = inf{w > wc |u′′(w) < 0} ∈
(wc, wm). One has u′′ ≥ 0 over (wc, w̄c) and u′′(w̄c) = 0 since w̄c > wc ≥ 2b by Lemma C.4 and u is
twice continuously differentiable over (2b,∞). We now show that w̄c ≥ wc + b. Note that one must
have u′′′+ (w̄c) ≤ 0, since otherwise u′′ would be strictly positive in an interval (w̄c, w̄c + η) for some
η > 0. Differentiating (C.9) twice to the right of w̄c then yields

0 ≥ (ρw̄c + λb)u′′′+ (w̄c) = λ[u′′(w̄c)− u′′+(w̄c − b)]− (2ρ− r)u′′(w̄c) = −λu′′+(w̄c − b),

and thus u′′+(w̄c − b) ≥ 0. Now, u′′+ < 0 over (b, wc). Since w̄c > 2b and thus w̄c − b > b, it follows
that w̄c − b ≥ wc, which implies the claim. Since u′′ ≥ 0 over (wc, w̄c), u is convex over [w̄c − b, w̄c].
Then, since

0 = (ρw̄c + λb)u′′(w̄c) = λ[u′(w̄c)− u′(w̄c − b)]− (ρ− r)[u′(w̄c)− 1]

by differentiation of (C.9) at w̄c, one obtains that u′(w̄c) ≥ 1. One then has

ρw̄c + λbu′(w̄c) ≤ (ρw̄c + λb)u′(w̄c)

= λ[u(w̄c)− u(w̄c − b)] + ru(w̄c) + (ρ− r)w̄c − µ + λC (C.14)

≤ λbu′(w̄c) + ru(w̄c) + (ρ− r)w̄c − µ + λC,

where the first inequality follows from u′(w̄c) ≥ 1, the second from (C.9) and the third from the
convexity of u over [w̄c − b, w̄c]. As a result of (C.14), u(w̄c) ≥ w̄c + (µ− λC)/r. Since wm > w̄c and
u is non-decreasing, one must have u(w̄m) > (µ− λC)/r. However, writing (C.9) at wm yields

0 = (ρwm + λb)u′(w̄m) = λ[u(wm)− u(wm − b)] + ru(wm) + (ρ− r)wm − µ + λC,

which, since u is non-decreasing, implies that u(w̄m) < (µ − λC)/r. This contradiction establishes
that wc = wm, as claimed. ¤

Finally, similar arguments can be used to show that u′ vanishes only at wm, so that u is strictly
increasing over R+.

Lemma C.6. If µ− λC > (ρ− r)b(2 + r/λ), then u′ > 0 over (b,∞) \ {wm}.
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Proof. Since wc = wm, it follows as in the proof of Lemma C.5 that u′′ > 0 in an interval (wm, wm +ε)
for some ε > 0. Since u′(wm) = 0, one must have u′ > 0 over (wm, wm + ε). Suppose now that
u′(w) = 0 for some w ≥ wm +ε, and let w̄m = inf{w ≥ wm +ε |u′(w) = 0}. Because u is continuously
differentiable over (b,∞), u′(w̄m) = 0 = u′(wm). Since u′′ > 0 over (wm, wm + ε) ⊂ (wm, w̄m), this
implies that u′′ cannot be non-negative over the whole interval (wm, w̄m). Let ¯̄wc = inf{w > wm |
u′′(w) < 0} ∈ (wm, w̄m). One has u′′ ≥ 0 over (wm, ¯̄wc) and u′′( ¯̄wc) = 0 since w̄c > wm = wc ≥ 2b

by Lemmas C.4 and C.5. Proceeding as for w̄c in the proof of Lemma C.5, one can show that
¯̄wc ≥ wm +b, so that u is convex over [ ¯̄wc−b, ¯̄wc], and that u′( ¯̄wc) ≥ 1. One can then deduce similarly
that u( ¯̄wc) ≥ ¯̄wc +(µ−λC)/r, which yields a contradiction as u(w̄m) ≥ u( ¯̄wc) must be strictly smaller
than (µ− λC)/r, just as u(wm). Hence the result. ¤

The statements in Proposition 2(iii) and (iv) then follow from the fact that φαm(w) = u(w) − w

for all w ≥ 0. This completes the proof of Proposition 2. ¥

The value function v that results from the optimal contract can then be defined as

v(w) = min{u(w), u(wm)} (C.15)

for all w ≥ 0. It is linear over [0, b], globally concave and non-decreasing. It is strictly increasing over
[0, wm], flat above wm, and strictly concave over [b, wm]. The corresponding value function f for the
insurance company, defined by f(w) = v(w) − w for all w ≥ 0 or equivalently by (24), is linear over
[0, b] and globally concave. It has a slope −1 above wm, and is strictly concave over [b, wm]. The next
lemma is crucial in establishing the verification theorem.

Lemma C.7. If µ− λC > (ρ− r)b(2 + r/λ), then

Lv(w) ≤ (ρ− r)w − µ + λC

for all w ∈ (b,∞). As a result of this,

(ρw + λb)f ′+(w)− λ[f(w)− f(w − b)]− rf(w) ≤ −µ + λC

for all w ∈ [b,∞).

Proof. For w ∈ [b, wm], the result is a consequence of (C.9) and (C.15), the case w = b following by
continuity. For any w > wm, one has

Lv(w)− (ρ− r)w + µ− λC = −λ[v(wm)− v(w − b)]− rv(wm)− (ρ− r)w + µ− λC,

= λ[v(w − b)− v(wm − b)]− (ρ− r)(w − wm)

≤ [λv′+(wm − b)− ρ + r](w − wm),

where the first equality follows from the fact that v is flat above wm, the second equality from
substituting Lv(wm) = (ρ − r)wm − µ + λC into the second expression, and the inequality from the
concavity of v. By construction, v′+(wm − b) = u′+(wm − b) so that we need only to prove that

λu′+(wm − b)− ρ + r ≤ 0.

Differentiating (C.9) twice to the right of wm and taking advantage from u′(wm) = 0 yields

λu′+(wm − b)− ρ + r = −(ρwm + λb)u′′+(wm),

which is non-positive as u′′+(wm) ≥ 0. Hence the result. ¥
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Appendix D: An Upper Bound for the Insurance Company’s Profits

Proof of Proposition 3. Fix an arbitrary contract Γ = (X,L, τ) that induces the maximal prevention
effort from the manager, Λt = λ for all t ∈ [0, τ), and delivers the manager an expected discounted
utility W0− given initial firm size X0. For simplicity, let us drop the mention of the contract Γ and
of the effort process Λ in the remainder of the proof. The manager’s continuation utility follows a
process W whose dynamics is described by (11). In line with our assumption that X is FN–predictable
while W is FN–adapted, one can assume without loss of generality that X has left-continuous paths,
while W has right-continuous paths. Now, observe that, by construction, the function f is continuously
differentiable over (b,∞), so that the function F is continuously differentiable over {(ξ, ω) ∈ R++×R+ |
ω/ξ > b}. Since f is continuous at b and f ′+(b) is finite, one can continuously extend the derivative of
F to the set {(ξ, ω) ∈ R++×R+ |ω/ξ = b}. As limited liability and incentive compatibility imply that
Wt−/Xt ≥ b for all t ∈ [0, τ), applying the change of variable formula for multidimensional processes
of bounded variations (Dellacherie and Meyer (1982, Chapter VI, Section 92)) yields

e−rT F (XT+ ,WT ) = F (X0, W0−) +
∫ T

0

e−rt[(ρWt− + λHt)FW (Xt,Wt−)− rF (Xt,Wt−)] dt

+
∫ T

0

e−rtFX(Xt,Wt−) dXc
t −

∫ T

0

e−rtFW (Xt, Wt−) dLc
t (D.1)

+
∑

t∈[0,T ]

e−rt[F (Xt+ ,Wt)− F (Xt,Wt−)]

for all T ∈ [0, τ), where Xc and Lc stand for the pure continuous parts of X and L. For each t ∈ [0, T ],
one has the following decomposition of the jump in F (Xt,Wt−) at date t:

F (Xt+ ,Wt)− F (Xt,Wt−) = F (Xt+ ,Wt)− F (Xt,Wt)

+F (Xt,Wt− −Ht∆Nt −∆Lt)− F (Xt,Wt−)

= F (Xt+ ,Wt)− F (Xt,Wt) (D.2)

+F (Xt,Wt− −Ht∆Nt −∆Lt)− F (Xt,Wt− −Ht∆Nt)

+F (Xt,Wt− −Ht∆Nt)− F (Xt,Wt−).

To derive (D.2), we have used the fact that Wt = Wt− −Ht∆Nt −∆Lt, where ∆Nt = Nt −Nt− and
∆Lt = Lt − Lt− for all t ∈ [0, T ], with N0− = L0− = 0 by convention. Now fix T ∈ [0, τ) and, as in
Appendix A, let Mt = Nt − λt for all t ≥ 0. Using (D.2) and

∑

t∈[0,T ]

e−rt[F (Xt,Wt− −Ht∆Nt)− F (Xt,Wt−)] =
∫ T

0

e−rt[F (Xt,Wt− −Ht)− F (Xt,Wt−)] dNt,

one can then rewrite (D.1) as

e−rT F (XT+ ,WT ) = F (X0,W0−)+
∫ T

0

e−rt[F (Xt,Wt−−Ht)−F (Xt,Wt−)] dMt+A1+A2+A3, (D.3)
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where A1 is a standard integral with respect to time,

A1 =
∫ T

0

e−rt{(ρWt− + λHt)FW (Xt,Wt−)− λ[F (Xt, Wt−)− F (Xt,Wt− −Ht)]− rF (Xt,Wt−)} dt,

A2 accounts for changes in the size of firm,

A2 =
∫ T

0

e−rtFX(Xt,Wt−) dXc
t +

∑

t∈[0,T ]

e−rt[F (Xt+ ,Wt)− F (Xt,Wt)],

and A3 accounts for changes in cumulative transfers,

A3 = −
∫ T

0

e−rtFW (Xt,Wt−) dLc
t +

∑

t∈[0,T ]

e−rt[F (Xt,Wt− −Ht∆Nt−∆Lt)−F (Xt,Wt− −Ht∆Nt)].

We treat each of these terms in turn.
Consider first A1. For each t ∈ [0, T ], let wt = Wt−/Xt and ht = Ht/Xt. The homogeneity of F

implies that FW (Xt,Wt−) = f(wt) for all t ∈ [0, T ]. Thus

A1 =
∫ T

0

e−rtXt{(ρwt + λht)f ′+(wt)− λ[f(wt)− f(wt − ht)]− rf(wt)} dt

≤
∫ T

0

e−rtXt{(ρwt + λb)f ′+(wt)− λ[f(wt)− f(wt − b)]− rf(wt)} dt (D.4)

≤
∫ t

0

e−rtXt(−µ + λC) dt

where the first and second inequalities respectively follow from the concavity of f and from Lemma C.7,
along with the fact that wt ≥ ht ≥ b for all t ∈ [0, T ] by limited liability and incentive compatibility.

Consider next A2. The homogeneity of F implies that FX(Xt,Wt−) = f(wt) − wtf
′(wt) for all

t ∈ [0, T ]. One can therefore rewrite A2 as

A2 =
∫ T

0

e−rt[f(wt)− wtf
′(wt)] dXc

t +
∑

t∈[0,T ]

e−rtWt

[
Xt+

Wt
f

(
Wt

Xt+

)
− Xt

Wt
f

(
Wt

Xt

)]
≤ 0, (D.5)

where the inequality can be justified as follows. Since f is concave and vanishes at 0, f(w)−wf ′(w) ≥ 0
for all w ≥ 0. Because Xc = {Xc

t }t≥0 is a non-increasing process, this implies that the first term
on the right-hand side of (D.5) is non-positive. The aforementioned properties of f also imply that
f(w)/w is a non-increasing function of w. Since Wt/Xt+ ≥ Wt/Xt for all t ∈ [0, T ], this implies that
the second term on the right-hand side of (D.5) is non-positive. As a result of this, A2 ≤ 0.

Consider finally A3. The homogeneity of F and the concavity of f imply that, for each t ∈ [0, T ],

F (Xt,Wt− −Ht∆Nt −∆Lt) − F (Xt,Wt− −Ht∆Nt)

= Xt

[
f

(
Wt− −Ht∆Nt −∆Lt

Xt

)
− f

(
Wt− −Ht∆Nt

Xt

)]

= −f ′
(

Wt− −Ht∆Nt

Xt

)
∆Lt

≤ ∆Lt,
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where the last inequality follows from f ′ ≥ −1. Using the fact that −FW (Xt,Wt−) = −f ′(wt) ≤ 1 for
all t ∈ [0, T ], along with the definition of A3, one therefore obtains that

A3 ≤
∫ T

0

e−rt dLc
t +

∑

t∈[0,T ]

e−rt∆Lt =
∫ T

0

e−rt dLt. (D.6)

Using (D.3) along with the upper bounds (D.4), (D.5) and (D.6) for A1, A2 and A3, it follows that

F (X0,W0−) ≥ e−rT F (XT+ ,WT ) +
∫ T

0

e−rt[Xt(µ− λC)dt− dLt]

+
∫ T

0

e−rt[F (Xt, Wt− −Ht)− F (Xt,Wt−)] dMt

(D.7)

= e−rT F (XT+ ,WT ) +
∫ T

0

e−rt[Xt(µdt− CdNt)− dLt]

+
∫ T

0

e−rt[F (Xt, Wt−)− F (Xt,Wt− −Ht) + XtC] dMt

Using the fact that the process M = {Mt}t≥0 is an FN–martingale under maximal prevention effort,
and that the process defined by t 7→ e−rt[F (Xt,Wt−)− F (Xt,Wt− −Ht) + XtC] is FN–predictable,
taking expectations in (D.7) yields

F (X0, W0−) ≥ E

[
e−rT∧τF (XT∧τ+ ,WT∧τ ) +

∫ T∧τ

0

e−rt[Xt(µdt− CdNt)− dLt]

]

= E
[∫ τ

0

e−rt[Xt(µdt− CdNt)− dLt]
]

−E
[
1{T<τ}

{∫ τ

T

e−rt[Xt(µdt− CdNt)− dLt]− e−rT F (XT+ ,WT )
}]

= E
[∫ τ

0

e−rt[Xt(µdt− CdNt)− dLt]
]

(D.8)

− e−rTE
[
1{T<τ}

{
E

[∫ τ

T

e−r(t−T )[Xt(µdt− CdNt)− dLt] |FN
T

]
− F (XT+ ,WT )

}]

≥ E
[∫ τ

0

e−rt[Xt(µdt− CdNt)− dLt]
]

− e−rTE
[
1{T<τ}

[
XT (µ− λC)

r
−WT − F (XT+ ,WT )

]]

for all T ∈ R+, where the first equality follows from the fact that Wτ = 0 by (4), and the second
inequality from the fact that ρ > r along with the definition (4) of WT and the monotonicity of X.
Now, observe that for each T ≥ 0, F (XT+ , WT ) + WT = XT+v(WT /XT+), which is non-negative and
bounded above by X0−v(wm). Taking limits as T goes to ∞ in (D.8) then implies (25). ¥

Appendix E: The Verification Theorem

Proof of Proposition 4. To Be Completed.
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