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Abstract

We examine the effect of asymmetric information on the evolution of corporate investment and financing

using an empirically testable dynamic structural model. We do so by embedding a privately informed

manager in a neoclassical investment framework with costly default. When private information is bad,

the manager overinvests (relative to first-best), has negative leverage, and uses dividend cuts or equity

flotations to fill any financing gaps. When private information is good, debt provides a positive signal.

However, in many states the good type issues equity despite having access to default-free debt. In

addition, the good type may overinvest. These predictions contradict the pecking-order folk wisdom.

The effects in our model are absent from static models which fail to account for the fact that asymmetric

information raises the value of future cash inflows from investment and the shadow cost of cash outflows

associated with debt service. Consistent with empirical observation, the simulated firm exhibits mean-

reverting leverage and a negative leverage-lagged cash flow relationship. When we mimic traditional

reduced-form regressions, coefficient values are inconsistent with what is commonly imputed to pecking-

order theory. In addition, “market-timing” proxies are insignificant despite the fact that managers want

to exploit mispricing. These results call into question standard reduced-form regressions used to test the

significance of informational asymmetry for investment and financing behavior.

1 Introduction

As argued by Myers (1984), the two leading theories of corporate financial behavior are the trade-off and

pecking-order theories. The former posits that firms choose their financial mix by equating tax benefits of

debt with bankruptcy costs at the margin. The latter posits that asymmetric information causes firms to

follow a simple rule of thumb for financing: internal funds should be used first, followed by debt, followed
∗The authors are from U.C. Berkeley, Texas A&M, and UCLA, respectively. Hennessy thanks UCLA for providing a

stimulating research environment. As simulation results are preliminary please do not quote or cite without permission. We
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by external equity. Given the prominence of these theories, it comes as little surprise that a voluminous

empirical literature has emerged comparing their ability to explain the stylized facts. For examples, see

Shyam-Sunder and Myers (1999) and Fama and French (2002).

In this paper, we ask two fundamental questions related to the validity and meaning of empirical tests of the

pecking-order hypotheses. In an economy with asymmetric information, will firms act in the way that Myers

and Majluf (1984) and Myers (1984) predict? Relatedly, will firms optimizing under asymmetric information

generate regression coefficients that are consistent with those predicted by advocates of the pecking-order?

In order to address these questions, we develop a dynamic structural model embedding a privately

informed manager in a neoclassical investment framework with costly default. The model is rich in that it

endogenizes investment, debt, savings, equity flotations, dividends, and share repurchases. In addition to

providing clear empirical predictions, our model also fills a conspicuous void in the literature. There is a long

line of dynamic structural models of the trade-off theory. However, we are unaware of any dynamic structural

models that capture the type of ex ante informational asymmetries emphasized by Myers and Majluf (1984),

Leland and Pyle (1977) and Ross (1977). This state of affairs has not gone without notice. For example,

after presenting his variant of dynamic trade-off theory, Ross (2005) argues that “The introduction of the

issues raised by the presence of asymmetric information in the determination of the capital structure and

the integration of these issues into the intertemporal neoclassical model are a major challenge.”

Some background will be useful in framing the results of our analysis. Empirical tests of the pecking-

order have focused on the following predictions, based upon the arguments contained in the seminal paper

by Myers and Majluf (1984): (P1) debt is always preferred to equity; (P2) firms use debt in order to fill

any financing gaps; (P3) firms only issue equity when the costs of distress become acute; (P4) dividends are

sticky and do not adjust in order to fill financing gaps; (P5) asymmetric information induces firms to invest

less than they would in an economy with symmetric information; (P6) leverage is declining in lagged profits;

and (P7) firms hoard cash in order to avoid distortions associated with asymmetric information.

We begin with a standard neoclassical investment framework where the firm is endowed with a stochastic

concave profit function. Each period, the firm is run by a single-period manager who observes a profit

shock before outside investors. Following Myers and Majluf (1984), the manager works in the interest of

risk-neutral insider-shareholders who do not buy or sell shares in the event of equity flotations or share

repurchases. Under these assumptions, equity flotations represent a negative signal and share repurchases

represent a positive signal, since they respectively serve to decrease and increase the percentage ownership of

insiders. The manager is free to save and can borrow using a standard single-period debt contract. Financing

needs are endogenous as the manager also chooses dividends and investment in the interest of insiders.

Although the manager works for a single-period, he is forward-looking and recognizes that his decisions

affect net worth and equity value in the subsequent period. Thus, the endogenous evolution of net worth

and the exogenous evolution of the firm’s “type” represent the underlying source of dynamics. In the model,

there is an infinite sequence of signaling games played between a privately informed manager and uninformed
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investors. We characterize the least-cost separating (perfect Bayesian) equilibria for each level of net worth.

The equilibria of the games are properly capitalized into the equity value function by exploiting recursive

features of the model.

Our main finding is that firms will exhibit violations of pecking-order predictions P1-P5, whereas P6 and

P7 do emerge as equilibrium phenomena in our asymmetric information economy. In equilibrium, when

private information is bad, the manager overinvests, has negative leverage, and uses dividend reductions

or new equity issues in order to fill any financing gap. When private information is good, debt provides a

positive signal. However, in many states the good type issues equity despite having access to default-free

debt. In addition, the good type may overinvest.

As one would expect, the regression coefficients generated by a simulated panel of firms are inconsistent

with those commonly imputed to pecking-order theory. In particular, in our simulated panel, where each type

is assumed to be equally probable, debt issuance only fills 44% of the financing gap, with the remainder of

the gap filled by endogenous reductions in dividends or flotations of new equity. This contradicts predictions

P1-P4. The simulated model does support P6 and P7 in that firms often hoard cash and exhibit a negative

leverage-lagged cash flow relationship. Also consistent with empirical observation, the simulated firms exhibit

mean-reverting leverage ratios behavior often attributed to trade-off theory cum transactions costs.

Our model is also related to the market-timing story of Baker and Wurgler (2002). In particular, the

manager in our model has market-timing preferences in that he would like to issue overvalued securities and

repurchase undervalued equity in order to transfer gains to insider-shareholders. Using simulated data, we

run regressions similar to those reported by Baker and Wurgler. In simulated data, the coefficient on their

market-timing variable (external finance weighted average q) is insignificant. In a rational securities market,

managers with market-timing preferences do not generate significant market-timing coefficients.

It is worthwhile to contrast the results of our model with those emerging from static models and to

pinpoint the cause of differences. A key insight provided in this paper is that static models of financing

under asymmetric information are likely to overstate the case for debt and to overstate the reduction in

investment because they effectively assume that the market imperfection vanishes once the first (and only)

period is over. This procedure effectively imposes the restriction that the shadow value of a dollar of future

internal funds (net worth) is simply a dollar. However, in a world with asymmetric information, managers

recognize that future internal funds are worth more than a dollar if they allow the firm to avoid adverse

selection costs. This consideration encourages firms to invest more than the full-information first-best,

since current investment generates future internal funds. The same consideration encourages saving and

discourages debt.

Effectively, asymmetric information introduces concavity (pseudo-risk-aversion) into the value function

of the manager, despite the fact that he is risk-neutral. Intuitively, internal funds are especially valuable in

low net worth states when the firm is concerned that the flotation of large blocks of securities will send a

negative signal. Considerations of efficiency demand that the investor insure the pseudo-risk-averse manager
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by lowering the firm’s debt commitment. However, this endogenous risk-aversion also causes the investor to

view debt finance as a positive signal. Thus, there is a trade-off between efficient risk-sharing and information

revelation.

The other point emphasized by our model is that the literature tends to focus too heavily on predictions

regarding firm behavior when private information is good. If one is taking a theory to the data, it must

be recognized that private information can be bad as well as good. With this in mind, we note that in

the least-cost separating equilibrium, there is no sense in imposing costs on the low type. Therefore, when

private information is bad, the firm will be allowed to issue equity on fair terms in order to build up its cash

buffer-stock. In addition to precautionary motives, this fact explains why the simulated firms in our model

issue less debt than predicted by the pecking-order.

At this point we provide a summary of closely related papers. Our model is most closely related to

that of Lucas and McDonald (1990) who analyze optimal investment timing in a dynamic economy where

the manager receives information one-step-ahead of the market. Our model is more general in that it

analyzes optimal financial structure, while Lucas and McDonald assume the firm is constrained to finance

with external equity. Gomes (2001), Cooley and Quadrini (2001) and Hennessy and Whited (2006) present

dynamic models of financing and investment with reduced-form costs of external equity. Although reduced-

form costs of external equity have been motivated by appealing to asymmetric information, our model shows

that the two approaches are not isomorphic. For example, in our model the firm can costlessly raise equity

on fair terms when it realizes a low profit shock. When the profit shock is high, the firm signals its type by

issuing less equity, issuing more debt, and investing more. Such cross-sectional predictions do not emerge

from models with reduced-form costs of equity.

In the interest of clarity, we note that a number of recent papers have made progress in characterizing

optimal contracts in dynamic settings when there is asymmetric information ex post regarding true cash flows.

For examples, see DeMarzo and Fishman (2003) and Biais et al. (2006). Our model differs fundamentally

from these papers in that the timing of informational asymmetry is different. Our model is in the spirit

of Myers and Majluf (1984) in that the manager enjoys superior information ex ante, while cash flow is

observable ex post. The alternative models are in the spirit of Bolton and Scharfstein (1990), where the

manager privately observes end-of-period cash flows.

The pecking-order hypotheses have been formally assessed in a number of single-period models. The

interested reader is referred to Tirole (2006) for a comprehensive survey of this literature. Noe (1988)

shows that if the manager has no uncertainty regarding terminal cash flow, then debt is the unique source of

external funds in a pooling equilibrium that satisfies standard refinements. Nachman and Noe (1994) identify

necessary and sufficient conditions for debt to be the unique source of financing in a pooling equilibrium.

A limitation of the Nachman and Noe framework is that it prohibits share repurchases and holds fixed the

scale of investment. This is not without loss of generality. For example, Constantinides and Grundy (1990)

and Miranda (2006) consider settings with variable project scale and show that share repurchases allow the
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firm to costlessly overcome adverse selection provided default is costless. DeMarzo and Duffie (1999) derive

sufficient conditions for debt to be an optimal separating contract.

Our model is in the spirit of the signaling literature in corporate finance, which was pioneered by Ross

(1977) and Leland and Pyle (1977). Although the source of deadweight loss is different, the least-cost

separating equilibrium in our model has a clear analog with that constructed in the single-period model of

Ambarish, John and Williams (1987). In our model, investment scale and debt are used as signals. Their

model uses investment scale and taxable dividends as signals. In our model, overinvestment serves as a

positive signal since asymmetric information concerns the profitability of investment, rather than internal

resources (net worth). This contrasts with the model of Miller and Rock (1985) where firms with a high

private observation of net worth signal this fact by underinvesting. Ambarish, John and Williams (1987)

were the first to show that the signal content of real investment hinges upon whether the informational

asymmetry concerns net worth or growth options.

The remainder of this paper is organized as follows. Section 2 presents assumptions on technology and

describes the structure of the signaling game. Section 3 characterizes the least-cost separating equilibrium.

In section 4, we use simulated model data to evaluate the empirical implications of informational asymmetry.

2 Economic Environment

2.1 Technology and Timing

Time is discrete and the firm’s horizon is infinite. There is a risk-free asset paying a constant rate of interest

r > 0. All agents are risk-neutral and share a common discount factor β ≡ (1 + r)−1. Capital (k) decays

exponentially at rate δ ∈ [0, 1]. The following two assumptions describe the production technology and timing

of information revelation.

Assumption 1. Operating profits are θεkα where α ∈ (0, 1). The shock θ takes values in the set {θL, θH}
with 0 ≤ θL < θH and follows a first-order Markov process with πij denoting the probability of θi conditional

on lagged type θj . The shock θ is persistent with 1 > πHH ≥ πHL > 0. The idiosyncratic shock ε is

independently and identically distributed in the set of positive real numbers <+. The density function

f : [ε,∞) → [0, 1] is continuous and differentiable.

Assumption 2. At the start of each period, the current θ is privately observed by the manager. Financing

and investment is then determined. At the end of the period, ε is revealed simultaneously to the manager

and the investor. Realized output is observable, allowing the investor to infer θ at the end of the period.

Under the stated timing assumptions, the manager is “one-step-ahead” of the market. This approximates

the environment facing managers. Managers know they observe some information about the firm prior to the

market, but they also understand that such information will eventually become public. The model captures
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this economic reality in a tractable manner. The stated timing assumptions are similar to those adopted by

Lucas and McDonald (1990), who also impute to the manager one-step-ahead knowledge.

The firm can raise external funds by borrowing or issuing additional shares of equity. The borrowing

technology consists of a one-period debt contract, analogous to those featured in the models of Cooley and

Quadrini (2001) and Hennessy and Whited (2006). The face value of debt for the type i firm is denoted bi.

After observing this period’s idiosyncratic shock ε, but prior to the revelation of next period’s θ, the manager

decides whether to default. If the firm delivers the promised debt payment, shareholders retain ownership. In

the event of default, the now symmetrically-informed lender (per Assumption 2) renegotiates with the firm.

The lender has full ex post bargaining power and extracts all bilateral surplus by demanding a payment that

leaves the firm indifferent between continuing or not. This set of assumptions allows us to derive endogenous

default thresholds, analogous to those obtained from smooth-pasting conditions in continuous-time models.

Although the manager makes his default decision prior to observing next period’s θ, the persistence of θ

implies that a manager with type θH exhibits a greater willingness to pay the firm’s debt.

The variable w denotes realized net worth, which is the sum of capital net of depreciation plus operating

profits less debt service.

w ≡ (1− δ)k + θεkα − b. (1)

There are two state variables in the model: the firm’s lagged type (exogenous) and its revised net worth (w̃)

which is endogenous. Revised net worth is equal to realized net worth if the firm does not default. If the

firm defaults, the lender extracts a payment equal to the maximum amount consistent with limited liability.

This leaves a defaulting firm with a type-contingent minimal level of net worth. The set of possible values

of revised net worth is denoted W̃j , where j indexes the manager’s type at the time the debt contract was

signed.

Suppose that we are at the start of period t, but that the manager has not yet observed θ for period t.

The total market value of shareholder’s equity, conditional upon having drawn type j in the prior period

(t − 1) is denoted vj : W̃j → <+. The default threshold (for net worth) for a firm that is of type j at the

time of loan inception is denoted wd
j . The limited liability (endogenous default) condition can be stated as

vj(wd
j ) = 0. (2)

It is easily verified that vj is strictly increasing in our model. Thus, equation (2) determines a unique default

threshold for each borrower type. Further, the option value inherent in the firm implies that wd
j < 0 for

j ∈ {L,H}. Intuitively, the ability to exploit future positive NPV projects ensures that firms are willing to

continue even when net worth is negative. Below, we will speak of -wd
j as representing the “going-concern”

value of the firm.

In the special case where the shock θ is i.i.d., the analysis simplifies since there is no need to keep track
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of the lagged type as a state variable. In particular,

θ i.i.d. ⇒ vH = vL ≡ v ⇒ wd
H = wd

L ≡ wd. (3)

In our model, the true θ will be revealed to the investor each period in a separating equilibrium. However,

to establish separation, it will be necessary to consider the payoffs to type-i that receives the allocation of

type-j where j does not necessarily equal i. Consider first incentives to default on the debt obligation. Let

εd
ij denote the critical value of ε such that type-i would default given that it has received the capital stock

and debt obligation of type-j. Now recall that the firm always has the option to default at the end of the

period and walk out of the renegotiation with net worth wd
i . Therefore, the manager will find it optimal to

default for any realization of ε such that realized net worth falls below wd
i . It follows that

(1− δ)kj + θiε
d
ijk

α
j − bj ≡ wd

i ⇒ εd
ij ≡

bj − (1− δ)kj + wd
i

θikα
j

. (4)

Of course, εd
ij ≤ ε implies there is zero probability of default for type-i that has received the allocation of

type-j.

Myers (1984) states that “the modified pecking order story recognizes both asymmetric information and

costs of financial distress.” The existence of default costs is supported by the empirical studies of Weiss (1990)

and Andrade and Kaplan (1998), for example. To account for default costs, we assume that a fraction (φ)

of going-concern value is spent on legal fees in the event of post-default renegotiations between the firm and

the lender.

We now compute the value of lender recoveries in the event of default. Recall that in the event of default

the lender demands a revised payment from the firm, call it br
i 6= bi, that leaves the firm with revised net

worth equal to wd
i . Therefore, we compute br

i using

(1− δ)ki + θiεk
α
i − br

i = wd
i ⇒ br

i = (1− δ)ki + θiεk
α
i − wd

i . (5)

Recall that −wd
i > 0 represents the going-concern value of the firm. Thus, equation (5) tell us that the

lender seizes the firm’s physical assets, all operating profits, and the going-concern value. This leaves equity

with a continuation value of zero, consistent with the absolute priority rule. The lender’s net recovery in the

event of default is computed as:

br
i + φwd

i = (1− δ)ki + θiεk
α
i − (1− φ)wd

i . (6)

In the model, the firm is also allowed to save (b < 0). Myers and Majluf (1984) and Myers (1984) argue

that firms should attempt to maintain financial slack in order to reduce deadweight losses associated with

obtaining external funds under asymmetric information. Shyam-Sunder and Myers (1999) argue that “tax or

7



other costs of holding excess funds” serve as a counterweight to precautionary saving incentives. To account

for such costs in a tractable manner, we assume the firm incurs an up-front cost of γb2/2 on deposits into

a corporate savings account that offers a gross yield r. This specification of costs of internal funds can be

viewed as representing “influence costs.” For example, firms with excess cash holdings may be vulnerable to

higher compensation demands by employees or suppliers. We opt for this specification rather than tax costs

in order to distinguish our model from models based on standard trade-off theory. Below, the variable χ is

an indicator function for b < 0.

Assumption 3 summarizes the firm’s borrowing/savings technology.

Assumption 3. Default is endogenous. In the event of default, the lender has all ex post bargaining power.

The deadweight default cost for a firm of type-i is a fraction (φ) of going-concern value (−wd
i ). The gross

yield on corporate saving is r, with the firm incurring a cost of γb2/2 up-front on saving deposits.

In the interest of brevity, let Ωij denote the expected discounted end-of-period value of shareholders’

equity for a type-i that has taken the type-j allocation. We have:

Ωij ≡ β

∫ ∞

εd
ij

vi[(1− δ)kj + θiεk
α
j − bj ]f(ε)dε. (7)

Also, let ρi denote the market price of the debt issued by type i in equilibrium.

ρi ≡ β

[
bi

∫ ∞

εd
ii

f(ε)dε +
∫ εd

ii

ε

[(1− δ)ki + θiεk
α
i − (1− φ)wd

i ]f(ε)dε

]
. (8)

2.2 Managerial Objectives

Each period, the firm is run in the interest of a set of single-period insider-shareholders. For simplicity, we

label the insider-shareholders as “the manager.” As described in the next assumption, managerial objectives

are identical to those assumed by Constantinides and Grundy (1990).

Assumption 4. Each period, the firm is run by a risk-neutral insider-manager who holds a fraction of

outstanding shares. The manager does not buy additional shares in the event of an equity flotation and does

not tender shares in the event of a share repurchase.

The assumption of risk-neutrality rules out risk exposure as a source of credible signaling, in contrast to

the model of Leland and Pyle (1977), for example. The manager holds m shares of stock. The total current

number of shares outstanding at the start of the period, inclusive of manager shares, is c > m. The number

of new shares issued is denoted n, with n < 0 implying that the firm is conducting a share repurchase. We

define the variable s as s ≡ n/(c + n). Shares are issued and repurchased ex dividend.

Our manager-based modeling framework is used solely for descriptive clarity. More generally, the same

equilibrium would be obtained in an economy where managers maximize the value of the claims held by

a set of dominant “current shareholders” (e.g. institutional investors) that will neither buy nor sell shares
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during the current period. It is worth noting that Myers and Majluf (1984) also adopt the assumption that

the manager works in the interest of “passive” shareholders who do not alter their stakes even as the firm

alters the number of shares outstanding.1

Dividends are denoted d and are constrained to be nonnegative. Absent such a constraint, the firm could

avoid the costs associated with informational asymmetries by having shareholders inject their own funds

directly. Under the stated assumptions, the manager receives a fraction m/c of total dividends and holds an

equity stake of m/(c + n) at the end of the period. Therefore, if the manager draws θi at the start of the

period, he will choose policies to maximize

(
m

c

)
d +

(
m

c + n

)
β

∫ ∞

εd

vi[(1− δ)k + θiεk
α − b]f(ε)dε. (9)

It will be convenient to think of the manager as choosing between alternative “allocations.” An allocation

is simply a vector a ≡ (b, d, k, s). Suppose now that the manager draws θi at the start of the period. Using

the definition of s, the objective function for the privately informed manager (9) simplifies, with the type-i

manager choosing the allocation that maximizes2

d + (1− s)β
∫ ∞

εd

vi[(1− δ)k + θiεk
α − b]f(ε)dε. (10)

At this point it is worth noting that the vector a contains all variables relevant to the informed manager’s

payoff function. Of course, investor beliefs will affect the set of feasible allocations.

Assume the type-i manager reveals the firm’s true type by choosing a separating allocation (bi, di, ki, si).

If the firm issues new shares (n > 0), the equity flotation is worth

si

[
β

∫ ∞

εd
ii

vi[(1− δ)ki + θiεk
α
i − bi]f(ε)dε

]
. (11)

It is perhaps less obvious to see that the expression in (11) also represents the cash outflow from a share

repurchase, in which case n and s are both negative. To demonstrate this claim, consider a simple example.

Note first that the bracketed term in (11) is the expected discounted value of shareholder’s equity at the

end of the period. Suppose this amount is equal to 100. Suppose also that c = 50 and n = −10. After the

share repurchase, each remaining share will be worth 100/(50− 10) = 2.5. Therefore, in order to induce ten

shareholders to tender, the firm must pay 25(= 10 ∗ 2.5). Now note that si ∗ 100 = −(10/40) ∗ 100 = −25.

By construction, each outsider shareholder is indifferent between tendering or not at the margin.
1See page 189 of Myers and Majluf (1984) for a discussion of this assumption.
2We have dropped a multiplicative term (m/c) since it is irrelevant for incentive compatibility.
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2.3 The Signaling Game

Although our model is dynamic, in that there is an infinite sequence of state-contingent signaling games,

each period’s insider-manager is properly viewed as playing a one-shot signaling game. In each signaling

game, the manager moves first, offering an allocation a to the investor. The investor then updates his beliefs

and either accepts or rejects the allocation. If the investor accepts the offer, the allocation is implemented.

If the offer is rejected, the firm is then constrained to finance with internal funds, with b = s = 0.

Each manager is forward-looking by construction. In particular, the value functions (vL, vH) entering the

manager’s payoff function (10) will be constructed to correctly capitalize the outcome of all signaling games

played by future managers. The equilibrium concept in each round’s signaling game is perfect Bayesian

equilibrium (PBE). A PBE imposes the following requirements: the manager makes an optimal offer given

the investor’s beliefs; the investor’s beliefs must be obtained through Bayesian updating when possible; and

the investor accepts an offer only if his expected profits are weakly positive given his beliefs. We focus

attention on the least-cost separating PBE in pure strategies. In a separating PBE, the investor perfectly

identifies the firm’s type upon observing the manager’s offer. The focus on separating equilibria is motivated

by the empirical focus of this paper. One of the main appeals of the asymmetric information paradigm in

corporate finance is its ability to explain announcement effects associated with security issuances.3 A model

focused on pooling equilibria cannot explain these announcement effects, but one focused on separating

equilibria can.4

We begin by defining a broad set of technologically feasible allocations A:

A ≡ {(b, d, k, s) : d ≥ 0, k ≥ 0, s ≤ 1}.

To derive the least-cost separating equilibrium we begin by solving Program L.5

PROGRAM L: max
a∈A

dL + (1− sL)β
∫ ∞

εd
LL

vL[(1− δ)kL + θLεkα
L − bL]f(ε)dε

subject to the following budget constraint

BCL : dL + kL + χγb2
L/2− w̃ ≤

β

[
sL

∫ ∞

εd
LL

vL[(1− δ)kL + θLεkα
L − bL]f(ε)dε + b

∫ ∞

εd
LL

f(ε)dε +
∫ εd

LL

ε

[(1− δ)kL + θLεkα
L − (1− φ)wd

L]f(ε)dε

]
.

3For example, Asquith and Mullins (1986) document a negative relation between the size of equity issues and share prices.
Vermaelen (1981) documents a positive reaction to share repurchases.

4Alternatively, one can view our model as solving for the Rothschild-Stiglitz-Wilson allocation discussed by Maskin and
Tirole (1992) or the low-information-intensity-optimum of Tirole (2006). Our separating equilibria are the unique PBE of the
Tirole security issuance game provided that the probability of the low type is sufficiently high.

5This program is solved for net worth levels sufficiently high such that the low type can satisfy BCL. The low type gets a
zero payoff if net worth is sufficiently low such that BCL cannot be met.
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Letting the solution to Program L be denoted a∗L ≡ (b∗L, d∗L, k∗L, s∗L), we next solve Program H.

PROGRAM H: max
a∈A

dH + (1− sH)β
∫ ∞

εd
HH

vH [(1− δ)kH + θHεkα
H − bH ]f(ε)dε

subject to the budget constraint

BCH : dH + kH + χγb2
H/2− w̃ ≤

β

[
sH

∫ ∞

εd
HH

vH [(1− δ)kH + θHεkα
H − bH ]f(ε)dε + b

∫ ∞

εd
HH

f(ε)dε +
∫ εd

HH

ε

[(1− δ)kH + θHεkα
H − (1− φ)wd

H ]f(ε)dε

]

and a no-mimic constraint

NMLH : d∗L + (1− s∗L)β
∫ ∞

εd
LL

vL[(1− δ)k∗L + θLε(k∗L)α − b∗L]f(ε)dε ≥

dH + (1− sH)β
∫ ∞

εd
LH

vL[(1− δ)kH + θLεkα
H − bH ]f(ε)dε.

Notice that in solving Program L we did not impose a no-mimic constraint. Lemma 1 shows this is

without loss of generality.6

Lemma 1. Assume that a∗H and a∗L solve Program H and Program L respectively, and that s∗L ≥ 0. Then

d∗H+(1−s∗H)β
∫ ∞

εd
HH

vH [(1−δ)k∗H+θHε(k∗H)α−b∗H ]f(ε)dε ≥ d∗L+(1−s∗L)β
∫ ∞

εd
HL

vH [(1−δ)k∗L+θHε(k∗L)α−b∗L]f(ε)dε.

Proof. See Appendix A.

Let θ̂(a) denote the firm type inferred by the investor conditional upon receiving an arbitrary offer a. A

PBE in which the firm receives the type-contingent allocations (a∗L, a∗H) can be supported by the following

investor beliefs.

θ̂(a∗H) = θH , (12)

θ̂(a∗L) = θL,

θ̂(a) ∈ arg min
θ∈{θL,θH}

s

∫ ∞

εd
θθ

vθ[(1− δ)k + θεkα − b]f(ε)dε +

b

∫ ∞

εd
θθ

f(ε)dε +
∫ εd

θθ

ε

[(1− δ)k + θεkα − (1− φ)wd
θ ]f(ε)dε,

∀a /∈ {a∗L, a∗H}.

On the equilibrium path, the beliefs in (12) are consistent with Bayes’ rule. Off the equilibrium path, the

investor imposes “worst-case” beliefs in the sense of Brennan and Kraus (1987). In particular, the investor
6In solving Program L, we may confine attention to sL ≥ 0 without loss of generality. To see this, note that a share

repurchase by the low type can be replaced with a dividend without affecting the value of the objective function.
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attaches the lowest possible valuation to any package of securities not issued in equilibrium. If the firm were

to issue shares and/or debt, a worst-case belief imputes type θL. As another example, if the firm were to

repurchase shares (and issue no debt), then a worst-case belief imputes type θH .

We now verify that the solutions to Programs L and H in conjunction with beliefs (12) constitute a

PBE. First note that the beliefs are consistent with Bayes’ rule on the equilibrium path. Second, note that

any offer a0 /∈ {a∗L, a∗H} that would be acceptable to the investor necessarily satisfies both BCL and BCH ,

because the beliefs minimize the value of the package of securities.

We now verify that each type will choose to make his type-specific offer. Consider first the low type’s

incentive to offer some allocation a0 /∈ {a∗L, a∗H} that would be acceptable to the investor given the beliefs

in (12). Since a0 is acceptable, it must satisfy BCL. Thus, a0 was in the feasible set for Program L and the

low type must prefer a∗L to a0. This same argument shows that the low type will not make an offer that is

rejected, since such an allocation is equivalent to getting zero outside funding, and zero outside funding is

always acceptable to the investor. Therefore, the low type prefers the offer a∗L to all other allocations other

than a∗H . Finally, NMLH ensures the low type prefers a∗L to a∗H .

Consider next the high type’s incentive to offer some allocation a0 6= a∗H that would be accepted by the

investor given the beliefs in (12). Note that the allocation a0 was in the feasible set when we solved Program

H. To see this, note that BCH is necessarily satisfied, since the offer is acceptable even with worst-case

beliefs. Since a0 also satisfies BCL, we know a0 was in the feasible set for Program L. The optimality of a∗L

in Program L implies that NMLH would be satisfied if the high type were to offer a0. The optimality of a∗H

for Program H implies the high type prefers a∗H to a0. This same argument shows that the high type will

not make an offer that is rejected, since such an allocation is equivalent to zero outside funding, and zero

outside funding is always acceptable to the investor.

The final step in the construction will be to define the equity value function recursively, using

vj(w) ≡ πHj

[
d∗H + (1− s∗H)β

∫ ∞

εd
HH

vH [(1− δ)k∗H + θHε(k∗H)α − b∗H ]f(ε)dε

]
(13)

+(1− πHj)

[
d∗L + (1− s∗L)β

∫ ∞

εd
LL

vL[(1− δ)k∗L + θLε(k∗L)α − b∗L]f(ε)dε

]
.

Although above we have dropped w as an argument in the optimal allocation vectors, it is worth stressing

at this point that the allocations (a∗L, a∗H)(w) are wealth-contingent.
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3 Equilibrium

The full-information first-best investment policy solves

kFB
i ∈ arg max

k
β

∫ ∞

ε

[(1− δ)k + θiεk
α]f(ε)dε− k

⇒ kFB
i =

[
αθiE(ε)
r + δ

]1/(1−α)

. (14)

The following remark provides a description of the full-information economy. This provides a useful

benchmark for assessing the relative allocative efficiency of the economy where managers have private

information.

Remark. If the profit shock θi is public information, default is costly (φ > 0), and corporate saving is costly

(γ > 0), then the firm implements first-best investment (kFB
i ) using a combination of equity and default-free

debt. There will be no corporate saving (bi ≥ 0).

Although they do not emphasize the point, one of the key premises of Myers and Majluf (1984) and

Myers (1984) is the existence of costs of default. The critical role of this assumption is illustrated in the

following subsection, which shows that the firm can implement first-best investment with costless signaling

through debt issuance provided that default is costless. Essentially, when default is costless, the firm relies

entirely upon debt to signal good information.

3.1 The Possibility of Costless Separation

Constantinides and Grundy (1990) adopt the assumption that default is costless. In their static model, they

show that a firm with variable investment scale can costlessly implement the first-best investment policy

even if the set of financing instruments is limited to equity and standard debt. In their model, the issuance

of any security is a negative signal. However, equity is more sensitive to the manager’s private information

than debt. First-best is achieved with the firm issuing debt in excess of the amount needed to fund the

investment. The excess funds are then used to finance a share repurchase. Effectively, the negative signal

content of the debt flotation is just compensated by the positive signal provided by the share repurchase. Of

course, the probability of default is likely to be high under such a separating policy. However, this has no

effect on total firm value under their adopted assumption of costless default.

Consider now our dynamic model. Let pFB
i denote the net present value of investment for a firm that

implements the first-best investment policy:

pFB
i ≡ β[(1− δ)kFB

i + θiE(ε)(kFB
i )α]− kFB

i . (15)

For a firm that can implement the full-information first-best each period using fairly-priced external financing

(with no deadweight losses), the type-contingent going-concern value of the firm (-wd∗
L ,−wd∗

H ) can be found
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as the solution to the following system

−wd∗
H = πHH [pFB

H − βwd∗
H ] + (1− πHH)[pFB

L − βwd∗
L ] (16)

−wd∗
L = πHL[pFB

H − βwd∗
H ] + (1− πHL)[pFB

L − βwd∗
L ].

Assumption 1 guarantees that the solution to the above system satisfies

wd∗
H ≤ wd∗

L . (17)

Finally, we note that if a firm can implement first-best investment using fairly-priced external financing with

zero default cost then equity value is linear in internal resources, with

vi(w̃) = vFB
i (w̃) ≡ w̃ − wd∗

i .

This brings us to Proposition 1, which provides weak conditions on primitives such that the firm

implements first-best provided that φ = 0.

Proposition 1. If the idiosyncratic shock ε is bounded above by ε and there are no costs of default, the firm

achieves the full-information first-best valuation vFB
i implementing first-best investment kFB

i for i ∈ {L,H}.
If w̃ < kFB

H , the low type sets bL = 0 and the high type sets bH = (1−δ)kFB
H +θLε(kFB

H )α−wd∗
L . If w̃ ≥ kFB

H ,

both firms finance investment using internal funds exclusively.

Proof. Fix ki = kFB
i and choose si to satisfy BCi. The proposed set of financing policies clearly solves

Programs L and H ignoring the NMLH constraint and we need only verify it is satisfied. Suppose first

w̃ < kFB
H . Consider the above policies and set dL = max{0, w̃− kFB

L } and dH = 0. But note that NMLH is

slack since

dL + (1− sL)ΩLL ≥ (1− sH)ΩLH = 0.

Suppose next that w̃ ≥ kFB
H . Then NMLH is satisfied with si = bi = 0 and di = max{0, w̃ − kFB

i }. To

see this, note that each type is financing with internal funds in this case so the low type must be better off

choosing kFB
L .¥

The proof of Proposition 1 is worthy of further discussion since it runs parallel to Proposition 4 from

Constantinides and Grundy (1990). Under the policies specified in our proposition, the high type is able

to costlessly separate from the low type by raising the face value of its debt sufficiently high such that an

imposter low type would default regardless of the realized value of ε. Of course, such a high debt payment

increases the likelihood of default by the high type. However, the assumption that φ = 0 ensures this is of

no consequence. Of course, this method of separation becomes suspect once one introduces costs of default,

which is one of the stated premises of Myers and Majluf (1984) and Myers (1984).
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The following result shows that φ = 0 is not a necessary condition for costless separation of types in

our model, although the proposition does suggest that costless separation with φ > 0 requires fairly strong

restrictions on the underlying production technology.

Proposition 2. If capital has a use-life of one period ( δ = 1) and the low type cannot use the capital

productively ( θL = 0), then the firm achieves full-information first-best valuation vFB
i implementing first-

best investment kFB
i for i ∈ {L,H} using only external equity to fill any financing gap.

Proof. Fix ki = kFB
i ; bi = 0; sL = 0; dL = w̃; dH = max{0, w̃ − kFB

H }, with sH determined according to

BCH . Clearly, this set of policies solves Programs L and H ignoring the NMLH constraint. Depending on

the firm’s net worth, the NMLH constraints are

w̃ ≤ kFB
H : w̃ − wd∗

L ≥ −(1− sH)wd∗
L

w̃ > kFB
H : w̃ − wd∗

L ≥ w̃ − kFB
H − wd∗

L .

Both constraints are satisfied.¥

As a limiting case, Proposition 2 is of some interest for the analysis that follows. Under the stated

assumptions, the low type places a value of zero on any physical capital. Therefore, the low type has no

interest in raising funds through an equity issuance, despite the fact that it would seem to benefit from

issuing overvalued equity. However, the money raised in the equity issuance is of no value to the low type

since the funds go to unproductive capital.

We turn our attention in the next subsection to the nature of equilibrium when the firm cannot achieve

the full-information first-best valuation.

3.2 Low Type Policies

In this subsection and the next, it is assumed that φ > 0 which is necessary to preclude the non-distorting

equilibrium described in Proposition 1. In order to express the optimality conditions compactly, we define

some additional variables. It will be convenient to compute the marginal effect of b on the expected discounted

end-of-period value of shareholders’ equity for a high-type (low-type) that has taken the high-type allocation.

We have

ΩHH
b ≡ −β

∫ ∞

εd
HH

v′H [(1− δ)kH + θHεkα
H − bH ]f(ε)dε (18)

ΩLH
b ≡ −β

∫ ∞

εd
LH

v′L[(1− δ)kH + θLεkα
H − bH ]f(ε)dε.
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Similarly, we may compute the marginal effect of k on the expected discounted end-of-period value of

shareholders’ equity for a high-type (low-type) that has taken the high-type allocation as follows:

ΩHH
k ≡ β

∫ ∞

εd
HH

v′H [(1− δ)kH + θHεkα
H − bH ][1− δ + αθHεkα−1

H ]f(ε)dε (19)

ΩLH
k ≡ β

∫ ∞

εd
LH

v′L[(1− δ)kH + θLεkα
H − bH ][1− δ + αθLεkα−1

H ]f(ε)dε.

We will also need to introduce the indicator function Φ denoting a firm whose equity will be worth zero if

the low type is realized in the subsequent period. Of course, equity value hinges upon net worth, so we shall

write Φ(w). Similarly, we shall let µ denote the multiplier on the NMLH constraint and write it as µ(w) to

emphasize that this multiplier is also contingent upon the net worth.

In order to interpret the optimality conditions in this model, it will be useful to have a sense of the

magnitude of the shadow value of internal resources. This is the subject of Lemma 2.

Lemma 2. The shadow value of internal resources on the equilibrium path is

v′L(w) = 1 + πHLµ(w)(ΩHH − ΩLH)/ΩHH (20)

v′H(w) = πHH [1 + µ(w)(ΩHH − ΩLH)/ΩHH ] + (1− πHH)[1− Φ(w)]. (21)

Proof. See Appendix A.

In order to provide some intuition for Lemma 2 we must foreshadow some results that follow. We begin

first with a discussion of equation (20), which quantifies the shadow value of internal funds for a firm with

lagged type θL. On the equilibrium path, a firm with lagged type θL will always have strictly positive equity

value in the subsequent period regardless of ε and regardless of the observed type. This is because the low

type saves (bL ≤ 0) implying that it will enter the subsequent period with w > 0 regardless of the ε shock.

If the realized type in the subsequent period is θL, a dollar of internal funds is just worth a dollar, as the

firm essentially obtains financing on fair terms. However, if the realized type in the subsequent period is θH ,

a dollar of internal funds will be worth more than a dollar if it allows the firm to avoid costs associated with

asymmetric information. These effects are clearly illustrated in (21) as v′L > 1 when the NMLH constraint

binds.

Consider next equation (21), which quantifies the shadow value of internal funds for a firm with lagged

type θH . In contrast to the low type, the high type may take on debt in order to signal its type (bH > 0). If

the firm then experiences a sufficiently low draw of ε, end-of-period net worth can be negative. If the next

realized type is θL, it may be optimal to shut down.7 This gives rise to a variant of the Myers (1977) debt

overhang problem, in that the possibility of shut-down in bad states causes the firm to place a lower value
7Technically, this occurs when the low type cannot satisfy BCL even if sL = 1 and dL = 0. In contrast, on the non-default

region, equity must have strictly positive value if θH is drawn.
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of internal funds, ceteris paribus. However, equation (21) tells us that the shadow value of internal funds

will still exceed unity if the precautionary motive swamps the overhang effect.

Lemma 2 is of fundamental importance for our dynamic theory of investment and financing under

asymmetric information. In particular, standard one-period models of the firm implicitly force v′ = 1.

This is because a firm that simply vanishes is never forced to confront informational asymmetries after the

initial round of financing is obtained. Hence, in static models, the value of a dollar received at the terminal

date of the firm is simply a dollar. In contrast, in a forward-looking framework, the manager recognizes that

a dollar of internal funds in the future can have precautionary value.

The Lagrangian for Program L is

L = dL + (1− sL)β
∫ ∞

εd
LL

vL[(1− δ)kL + θLεkα
L − bL]f(ε)dε +

λL{w̃ − dL − kL − χγb2
L/2 + βsL

∫ ∞

εd
LL

vL[(1− δ)kL + θLεkα
L − bL]f(ε)dε

+βbL

∫ ∞

εd
LL

f(ε)dε + β

∫ εd
LL

ε

[(1− δ)kL + θLεkα
L − (1− φ)wd

L]f(ε)dε}

+ηLdL + ψL(1− sL).

The first-order conditions for dL and sL are

1− λL + ηL = 0 (22)

(λL − 1)ΩLL − ψL = 0. (23)

From equations (22) and (23) it follows that ηLΩLL = ψL. This brings up two relevant scenarios. Suppose

first that ψL > 0. It follows that ηL > 0 and dL = 0. It follows that the low type is getting a payoff of

zero since sL = 1. If ε has bounded support, the constraint NMLH is then satisfied by having the high type

take on a sufficient amount of debt such that the low type would default in all states. If ε has unbounded

support, ψL(w) > 0 can never occur for w on the continuation region. To see this, note that the proposed

equilibrium would entail the low type getting zero. But then the low type would always opt for the high

type allocation unless sH = 1 and dH = 0. Of course, this implies both types get a payoff of zero which

contradicts being on the continuation region. For the remainder of this subsection we confine attention to

the economically interesting case where ψL = 0.

The first-order condition pinning down bL is

β

[∫ ∞

εd
LL

[v′L((1− δ)kL + θLεkα
L − bL)− 1]f(ε)dε

]
= −χγbL + β

∂εd
LL

∂bL
f(εd

LL)φwd
L. (24)

From Lemma 2 it follows that the left side of (24) is positive, and strictly so provided that NMLH will bind

with positive probability in the subsequent period. It follows that bL must be negative. The optimality

17



condition for kL takes a similar form, with

β

[∫ ∞

ε

[v′L((1− δ)kL + θLεkα
L − bL)][1− δ + αθLεkα−1

L ]f(ε)dε

]
= 1.

The next proposition follows directly from the first-order conditions for the debt and capital of the low

type.

Proposition 3. If the manager observes θL, the firm overinvests relative to first-best with kL > kFB
L if there

is a positive probability of NMLH binding in the subsequent period. The low type engages in precautionary

saving with

bL = −β

γ

[∫ ∞

ε

[v′L((1− δ)kL + θLεkα
L − bL)− 1]f(ε)dε

]
. (25)

Dividends and equity issuance for the low type are contingent upon net worth with

w̃ < kL − βbL + γb2
L/2 ⇒ dL = 0 and sL > 0

w̃ ≥ kL − βbL + γb2
L/2 ⇒ dL = w̃ − (kL − βbL + γb2

L/2) and sL = 0.

The intuition for the low type policies are as follows. The fact that the low type would benefit from

security mispricing causes NMLH to be the key incentive constraint. In order to discourage imitation by

the low type, the least-cost separating equilibrium makes the low type as well off as possible. This is a

standard feature of signaling models. However, in most signaling models, the optimal policy entails giving

the low type the full-information first-best allocation. This does not hold in our dynamic model. In our

model, the low type is given a “second-best” allocation which accounts for the fact that the shadow value of

internal resources exceeds unity. Consequently, the low type overinvests relative to first-best and engages in

precautionary saving despite the fact that such saving entails deadweight losses. It is also worth noting that

both bL and kL are invariant to net worth (w̃). Effectively, the low type satisfies BCL by varying dividends

and equity issuance only. Note, this is the exact opposite of the pecking-order prediction that debt (and only

debt) is used to achieve budget balance.
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3.3 High Type Policies

The Lagrangian for Program H is8

L = dH + (1− sH)β
∫ ∞

εd
HH

vH [(1− δ)kH + θHεkα
H − bH ]f(ε)dε

+λH{w̃ − dH − kH − χγb2
H/2 + βsH

∫ ∞

εd
HH

vH [(1− δ)kH + θHεkα
H − bH ]f(ε)dε

+βbH

∫ ∞

εd
HH

f(ε)dε + β

∫ εd
HH

ε

[(1− δ)kH + θHεkα
H − (1− φ)wd

H ]f(ε)dε}

+µ{d∗L + (1− s∗L)β
∫ ∞

ε

vL[(1− δ)k∗L + θLε(k∗L)α − b∗L]f(ε)dε

−dH − (1− sH)β
∫ ∞

εd
LH

vL[(1− δ)kH + θLεkα
H − bH ]f(ε)dε}

+ηHdH + ψH(1− sH).

The first-order conditions for dH and sH are

1− λH − µ + ηH = 0 (26)

(λH − 1)ΩHH + µΩLH − ψH = 0 (27)

Substituting (26) into (27), we obtain

ηHΩHH = µ(ΩHH − ΩLH) + ψH . (28)

It is straightforward to establish ψH(w) = 0 on the continuation region (w > wd
j ). To see this, suppose to

the contrary that ψH > 0. It follows from (28) that ηH > 0 and dH = 0. Thus, the high type gets a payoff

of zero. However, the low type would then also receive an allocation with a payoff of zero since the NMHL

constraint demands

dH + (1− sH)ΩHH ≥ dL + (1− sL)ΩHL ≥ dL + (1− sL)ΩLL. (29)

But this contradicts vj(w) > 0. Without loss of generality we shall treat ψH = 0 as we solve for optimal

policies on the firm’s continuation region.

Rearranging (28) we obtain

ηH = µ[(ΩHH − ΩLH)/ΩHH ]. (30)

Condition (30) is of fundamental importance. It tells us that whenever NMLH binds, the manager would be

better off if the firm could implement a rights-issue in which shareholders are paid a negative dividend. That
8Note, Program H is solved only if the low type achieves a strictly positive continuation value in Program L. The preceding

subsection discussed the nature of equilibrium for lower net worth levels.
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is, when NMLH binds, the manager would be better off if the firm could avoid turning to outside investors

for funds. The adverse selection problem is manifest in condition (30), with the term in squared brackets

representing the relative difference in true equity values for the two types. From this optimality condition it

also follows that the high type will never pay a dividend when NMLH binds since

µ > 0 ⇒ ηH > 0 ⇒ dH = 0. (31)

The optimality condition pinning down bH is

β

[∫ ∞

εd
HH

[v′H((1− δ)kH + θHεkα
H − bH)− 1]f(ε)dε− ∂εd

HH

∂bH
f(εd

HH)φwd
H

]
+ χγbH (32)

=
(

µΩLH

λH

)
[1− sH ]

[
ΩHH

b

ΩHH
− ΩLH

b

ΩLH

]
.

We now conjecture, and then verify, that the high type will choose bH ≤ 0 if the NMLH constraint is slack

at the current level of net worth. Under the conjecture that bH ≤ 0, there is zero probability of shut-down

regardless of next period’s realized type. It follows from Lemma 2 that v′H ≥ 1 in this case. From (32) it

follows immediately that µ = 0 ⇒ bH ≤ 0. Condition (32) leads directly to a key implication of the model,

that signaling must be a concern if the firm issues a positive amount of debt. This conclusion is stated as

Lemma 3.

Lemma 3. If the manager observes θH and there is a positive probability of NMLH binding in the subsequent

period, then a necessary condition for bH > 0 is that NMLH is binding in the current period.

The optimality condition pinning down kH is

1− β

[∫ ∞

εd
HH

[v′H((1− δ)kH + θHεkα
H − bH)][1− δ + αθHεkα−1

H ]f(ε)dε

]
(33)

−β

[∫ εd
HH

ε

[1− δ + αθHεkα−1
H ]f(ε)dε +

∂εd
HH

∂kH
f(εd

HH)φwd
H

]

=
(

µΩLH

λH

)
[1− sH ]

[
ΩHH

k

ΩHH
− ΩLH

k

ΩLH

]
.

By way of contrast, the optimality condition in a full-information neoclassical economy is

1− β

[∫ ∞

ε

[1− δ + αθHεkα−1
H ]f(ε)dε

]
= 0.

Anticipating the results of our numerical analysis, it is worth noting the appearance of the multiplicative

term v′H in the capital optimality condition (33). If v′H > 1, the desire to avoid adverse selection costs

provides an added incentive for capital accumulation. However, the debt overhang effect in our model may

also cause v′H < 1, thus discouraging capital accumulation.
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From (32) and (33) it also follows that

µ = 0 ⇒ bH = bP
H and kH = kP

H

where

bP
H ≡ −β

γ

[∫ ∞

ε

[v′H((1− δ)kP
H + θHε(kP

H)α − bP
H)− 1]f(ε)dε

]

and

1 = β

[∫ ∞

ε

[v′H((1− δ)kP
H + θHε(kP

H)α − bP
H)][1− δ + αθHε(kP

H)α−1]f(ε)dε

]
.

Proposition 4 spells out some important implications of the above optimality conditions.

Proposition 4. If NMLH is ever binding, then ∃ w̃0 at which NMLH switches from binding to nonbinding.

For all w̃ > w̃0, the high type overinvests relative to first-best with kH = kP
H > kFB

H and saves with bH = bP
H .

For w̃ > w̃0, dividends and equity issuance are contingent upon net worth with

w̃ < kP
H − βbP

H + γ(bP
H)2/2 ⇒ dH = 0 and sH > 0

w̃ ≥ kP
H − βbP

H + γ(bP
H)2/2 ⇒ dH = w̃ − kP

H − βbP
H + γ(bP

H)2/2 and sH = 0.

Proof. See Appendix A.

Propositions 3 and 4 show that much of the folk-wisdom regarding the empirical content of asymmetric

information is suspect. First, we note that the propositions show that it is possible for asymmetric

information to induce both types of firms to overinvest relative to first-best. Part of the causal mechanism

behind the model’s prediction of overinvestment is that costs of adverse selection generate a precautionary

motive for undertaking policies that generate future internal funds. This mechanism is the sole source of

the high type’s overinvestment incentive when NMLH is slack. Anticipating results in the next subsection,

signaling potentially provides an additional motive for overinvestment by the high type. We have already

noted that the low type violates the pecking order’s prescription to use debt as the prime source of external

funds. A second point worthy of note is that it is possible for even the high type to exhibit blatant violations

of the pecking-order prescriptions in terms of financing. In particular, when the financing gap is small and

NMLH is nonbinding, Proposition 4 shows that the high type simultaneously issues equity and saves.

Proposition 4 does not discuss optimal policies when NMLH is binding. Discussion of the economic

content of conditions (32) and (33) for µ > 0 will be delayed until the next subsection, which links the

optimality conditions to single-crossing conditions common to the signaling and mechanism design literatures.

3.4 Single-Crossing Conditions

In this subsection we consider lower net worth states such that NMLH is binding, so that separation enters

explicitly into the decision-making process of the high type. In the previous subsection it was established
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that dH = 0 when NMLH binds. Let us now consider the normalized payoff u(b, k, s; θi) to a type-i manager

that takes some arbitrary allocation (b, k, s) such that d = 0

u(b, k, s; θi) ≡ (1− s)β
∫ ∞

εd

vi[(1− δ)k + θiεk
α − b]f(ε)dε. (34)

Next, we compute the total derivative of u, evaluated at the high type allocation. We have

du(bH , kH , sH ; θi) = (1− sH)ΩiH
k ∗ dk + (1− sH)ΩiH

b ∗ db− ΩiH ∗ ds. (35)

Setting the derivative to zero, one obtains the slope of indifference curves evaluated at the high type

allocation. The manager’s willingness to exchange equity ownership for additional capital is determined

by
ds

dk
(bH , kH , sH ; θi) =

(1− sH)ΩiH
k

ΩiH
. (36)

This indifference curve notation allows us to rewrite the optimality condition for the high-type capital stock

(33) as

1− β

[∫ ∞

εd
HH

[v′H((1− δ)kH + θHεkα
H − bH)][1− δ + αθHεkα−1

H ]f(ε)dε

]
(37)

−β

[∫ εd
HH

ε

[1− δ + αθHεkα−1
H ]f(ε)dε +

∂εd
HH

∂kH
f(εd

HH)φwd
H

]

=
(

µΩLH

λH

)[
ds

dk
(bH , kH , sH ; θH)− ds

dk
(bH , kH , sH ; θL)

]
.

Due to diminishing marginal product of capital, the left-side of equation (37) is increasing in kH . Therefore,

the optimality condition tells us that the high-type’s capital stock varies positively with the signal content

of capital investment, as measured by the difference in the slope of the two type’s indifference curves in k-s

space. For example, in Figure 1 the indifference curves are drawn under the assumption that the high type

has a greater willingness to exchange equity for capital. In this case, higher capital investment provides a

positive signal which encourages overinvestment relative to first-best.

Intuition suggests that four factors determine the relative slopes of the types’ indifference curves in k-s

space. First, the high type generates more future cash than a low type for a given level of capital. Second,

persistence in θ implies that a high type has a high probability of being a high type in the subsequent period.

For such a firm, the future internal cash generated by installed capital may be more valuable since internal

funds reduce exposure to adverse selection costs. These first two effects serve to increase the slope of the

high-type indifference curve. However, the low type knows his equity is less valuable than that of the high

type, which increases his willingness to exchange equity for capital. In addition, the low type may place

a higher shadow value on a marginal dollar at the end of the period, since it necessarily realizes lower net

worth when it receives the high-type allocation. The next subsection presents additional analysis of the
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signal content of capital investment under uniformly distributed idiosyncratic (ε) shocks.

The manager’s willingness to exchange equity for debt reductions is determined by

ds

db
(bH , kH , sH ; θi) =

(1− sH)ΩiH
b

ΩiH
. (38)

Using this indifference curve relationship allows us to rewrite the debt optimality condition for the high type

(32) as

β

[∫ ∞

εd
HH

[v′H((1− δ)kH + θHεkα
H − bH)− 1]f(ε)dε− ∂εd

HH

∂bH
f(εd

HH)φwd
H

]
+ χγbH (39)

=
(

µΩLH

λH

)[∣∣∣∣
ds

db
(bH , kH , sH ; θL)

∣∣∣∣−
∣∣∣∣
ds

db
(bH , kH , sH ; θH)

∣∣∣∣
]

.

Equation (39) tells us that the high-type’s borrowing depends upon the signal content of debt, as measured

by the difference in the slope of the indifference curves in b-s space. Recall that when the constraint NMLH

is slack, the high type will choose to save an amount bP
H < 0 such that the left-side of (39) is equal to zero.

Starting at this point, if the firm were to decrease its saving, the left-side of (39) would increase. With this in

mind, consider the indifference curves in Figure 2. In Figure 2, the low type is assumed to be more willing to

exchange equity for a reduction in debt. Therefore, debt provides a positive signal and the high type borrows

more/saves less in order to separate from the low type. An exact treatment of the signal content of debt is

provided in the following two subsections, which makes specific distributional assumptions regarding the ε

shocks. Anticipating, we obtain unambiguous analytical predictions that debt provides a positive signal for

both uniformly and exponentially distributed ε shocks.

Finally, we note that an efficient mix of real and financial signals equates the ratio of “distortion” to

signal content at the margin. In particular, equations (37) and (39) imply that

1− β
[∫∞

εd
HH

(v′H) ∗ [1− δ + αθHεkα−1
H ]f(dε) +

∫ εd
HH

ε
[1− δ + αθHεkα−1

H ]f(dε) + ∂εd
HH

∂k f(εd
HH)φwd

H

]

ds
dk (bH , kH , sH ; θH)− ds

dk (bH , kH , sH ; θL)

=
β

[∫∞
εd

HH
[(v′H)− 1]f(dε)− ∂εd

HH

∂bH
f(εd

HH)φwd
H

]
+ χγbH∣∣ds

db (bH , kH , sH ; θL)
∣∣− ∣∣ds

db (bH , kH , sH ; θH)
∣∣ .

3.5 Example: Uniformly Distributed Idiosyncratic Shocks

This subsection assumes ε is distributed uniformly on the interval [ε, ε], with θ being i.i.d. We define

wij ≡ (1− δ)kj + θiεk
α
j − bj (40)

wij ≡ (1− δ)kj + θiεk
α
j − bj .
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It will also be useful to note that for type-i taking the type-j allocation

dw = θik
α
j dε ⇒ dε =

dw

θikα
j

. (41)

Consider now the signal content of the high-type issuing an amount of debt such that ε< εd
HH < εd

LH < ε.9

Using the change of variable in (41) allows us to rewrite the marginal effect of debt on equity value, presented

in equation (18), as follows

Ωij
b = −β

∫ ε

εd
ij

v′[(1− δ)kj + θiεk
α
j − bj ]

(
1

ε− ε

)
dε (42)

=
−β

wij − wij

∫ wij

wd

v′(w)dw

=
−βv(wij)
wij − wij

.

Applying the same change of variable, it is readily verified that

Ωij =
β

wij − wij

∫ wij

wd

v(w)dw. (43)

It follows that the debt signaling term in (32) can be expressed as

ΩHH
b

ΩHH
− ΩLH

b

ΩLH
=

[wLH − wd]−1v(wLH)

[wLH − wd]−1
∫ wLH

wd v(w)dw
− [wHH − wd]−1v(wHH)

[wHH − wd]−1
∫ wHH

wd v(w)dw
. (44)

From Lemma 2 and Proposition 4 we know v exhibits concavity as the shadow value of internal funds falls

to unity for net worth sufficiently high. When the value function is concave, the numerator of the first term

in (44) exceeds that of the second term. Next, note that the respective denominators are simply the average

value of v, which is strictly larger for the high type. It follows that the difference in (44) is positive, which

implies that marginal increases in debt provide a positive signal under this subsection’s assumptions that

the persistent θ shocks are i.i.d. and the idiosyncratic ε shocks are uniformly distributed.

The mathematical arguments in the preceding paragraph are closely related to the economic intuition

regarding why debt issuance is a positive signal in this setting. First note that we invoked concavity of the

value function (v). Concavity of the value function implies that the low type attaches a higher shadow cost

to a dollar of future debt service, since the low type realizes lower net worth if it mimics the high-type.

Second, the mathematical argument invoked the fact that the low type has lower equity value. Low equity

value increases the low type’s willingness to part with equity in return for debt reductions. Both effects

cause the low type’s b-s indifference curve to have a steeper slope.
9Similar results are obtained if one considers the issuance of safe debt by the high type. Here we confine the analysis to

defaultable debt in the interest of brevity.
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Consider next the signal content of capital accumulation. Using the change of variable in (41), we obtain

ΩHH
k

ΩHH
− ΩLH

k

ΩLH
=

∂wHH

∂kH
∗

∣∣∣∣
ΩHH

b

ΩLH

∣∣∣∣−
∂wLH

∂kH
∗

∣∣∣∣
ΩLH

b

ΩHH

∣∣∣∣ . (45)

Recall that the signal content of capital accumulation depends on the manager’s willingness to trade equity

for capital. In the preceding subsection we argued that capital accumulation tends to have positive signal

content since the high type has a higher marginal product of capital. This effect is captured in equation (45),

with ∂wHH/∂kH > ∂wLH/∂kH increasing the difference between the high-type and low-type indifference

curve slopes. However, it follows from (44) that
∣∣ΩHH

b /ΩHH
∣∣ <

∣∣ΩLH
b /ΩLH

∣∣ , so the sign of the capital

signaling expression (45) is ambiguous. Again, the mathematical argument runs parallel to the economic

intuition. The fact that
∣∣ΩHH

b /ΩHH
∣∣ <

∣∣ΩLH
b /ΩLH

∣∣ was attributed to concavity of v and the fact that the

low type has a lower average value of v. Economically, concavity of v implies that the low type imputes a

higher shadow value to a marginal dollar of future cash, such as that stemming from installed capital. In

addition, the low expectation of v for the low type causes it to exhibit a greater willingness to exchange

equity for capital.

3.6 Example: Exponentially Distributed Idiosyncratic Shocks

This subsection assumes ε is exponentially distributed with f(ε) ≡ ξe−εξ. Under this distributional

assumption, we are able to obtain unambiguous results regarding the signal content of debt even allowing

for correlated θ shocks. This contrasts with the previous subsection, where we needed to assume that θ was

i.i.d. in order to obtain clear results. In the interest of brevity, we confine attention to the signal content of

debt, as the signal content of capital is impossible to sign analytically. We confine attention to the signal

content of defaultable debt, although similar results are obtained when we consider the issuance of safe debt.

We begin by rewriting the expression for the marginal cost of debt (18) as follows

Ωij
b =

−β

θikα
j

∫ ∞

εd
ij

f(ε)
(

∂

∂ε
vi((1− δ)kj + θiεk

α
j − bj)

)
dε. (46)

Using integration by parts it follows that

Ωij
b =

−βξΩij

θikα
j

. (47)

It follows directly that debt issuance is a positive signal, with

ΩHH
b

ΩHH
− ΩLH

b

ΩLH
= ξk−α

H (θ−1
L − θ−1

H ) > 0. (48)
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4 Numerical Simulation

The procedure used to solve the model numerically is presented in Appendix B. The persistent profit shocks

are assumed to be i.i.d. and the idiosyncratic shocks are exponentially distributed. The assumed values

of exogenous parameters are presented in Table 1. Once the model is solved, we use the wealth-contingent

equilibrium policy functions (a∗L, a∗H) to generate a panel data set for simulated firms. In particular, we draw

3000 samples consisting of 300 draws of the two profit shocks. We then use the policy functions generated

by the model to determine shock-contingent policy paths. We drop the first 2970 periods, leaving us with

a panel of 3000 firms with 30 years of data for each firm. The simulated regressions only use 20 years of

data, since the construction of some variables requires the use of lagged data. The simulated panel data set

is similar in size to those commonly used in empirical testing.

Figure 3 plots the equity value function v. Since the θ shocks in the simulation are assumed to be i.i.d.,

there is only one equity value function (vH = vL = v). A couple of points are worth noting. First, v is

concave, which implies that there are precautionary motives for savings and capital accumulation. Second,

note that the firm continues even when realized net worth is negative. This stems from the fact that there

is option value inherent in equity ownership.

Figure 4 plots the capital allocations of each type relative to first-best. This figure casts doubt on the

conventional wisdom that asymmetric information leads to underinvestment. In the least-cost separating

equilibrium, the low type invests roughly 9% more than the first-best level, regardless of realized net worth.

This overinvestment pattern reflects the fact that informational asymmetries create a precautionary motive

for capital accumulation. The high type also invests more than first-best in all states, with the extent of

the distortion decreasing in net worth. The overinvestment of the high type reflects both signaling and

precautionary motives. When net worth is low, the no-mimic constraint binds and the high type overinvests

in order to signal private information. When net worth is sufficiently high, the no-mimic constraint becomes

slack, but the high type still overinvests a bit due to precautionary motives. The high type has a weaker

precautionary motive than the low type, since, ceteris paribus, he will realize higher net worth for any given

realized ε.

Figures 5 and 6 plot the wealth-contingent financing policies for each firm type. Consistent with

Proposition 3, the low type uses dividends and equity issuance as the sole means of achieving budget-balance,

while retaining a wealth-invariant level of savings. When net worth is low, the dividend is set to zero and

the firm issues a large amount of equity. Equity issuance for the low type then declines monotonically in net

worth. The debt of the high type declines monotonically in net worth. Effectively, higher net worth allows

the high type to reduce its need for costly external funds. By way of contrast, the dollar value of equity

issuance is non-monotonic in net worth. The rising part of the equity issuance curve is mechanical. As

shown in Figure 7, the equity stake (sH) sold by the high type stays roughly constant for low-intermediate

net worth. Since the firm’s debt commitment falls with net worth, ΩHH increases, leading to an increase

in s ∗ Ω. Eventually, net worth becomes sufficiently high such that the high type begins cutting sH which
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leads to a reduction in the value of equity flotations. Both types of firms only pay dividends if net worth

is sufficiently high. This prediction is consistent with the empirically observed positive relation between

dividends and firm size.

Figure 8 depicts the evolution of the leverage ratio for an arbitrary simulated firm. Note that the leverage

ratio always hits the same level, roughly -0.22, when the firm realizes a negative productivity shock (θL).

The leverage ratio rises when the firm experiences a positive shock. The leverage ratio in good states varies,

depending upon the firm’s endogenous net worth. For example, the leverage ratio is approximately zero

in year 15 despite the fact that the firm has drawn θH . The leverage ratio exceeds 0.20 in year 25, which

reflects the fact that the firm has drawn θH and has low net worth. Upon seeing a data series like the one

depicted in Figure 8, an advocate of trade-off theory might be tempted to view the firm as being governed by

trade-off theory cum transactions costs, given that the leverage ratio looks to be mean-reverting. However,

this conclusion would clearly be incorrect. In our model, the leverage ratio is mean-reverting. However, this

is caused by endogenous fluctuations in net worth.

Table 2 presents summary statistics for the simulated firm. The leverage ratio is negative on average,

although this property of the model is sensitive to the assumed probability of realizing θH and the cost of cash

retentions (γ). The average leverage ratio increases when we use higher probabilities of θH and higher values

of γ. In this set of simulations, the firm issues defaultable debt infrequently, but issues equity frequently.

Consequently, there are frequent violations of the traditional pecking-order. In particular, roughly 26% of

the simulated firms issue equity despite having access to default-free debt.

Table 3 reports the results of regressions that mimic those commonly found in the literature. In each of

the four regressions, the dependent variable is the book leverage ratio. The first row mimics the specification

in equation number 2 in Shyam-Sunder and Myers (1999). Essentially, this specification tests the pecking-

order prediction that debt is used to fill any financing gaps. In the notation of our model, the financing gap

is equal to desired capital plus dividends minus internal resources (k + d − w). According to the pecking-

order as traditionally specified, the predicted coefficient on the financing gap is one. Inspecting Table 2 we

see that the simulated firms fill only 44% of the financing gap with debt. Although this point estimate is

sensitive to the assumed probability of θH , the point that we want to stress is that there is no theoretical basis

for expecting the coefficient on the financing gap to equal one in an economy with asymmetric information

between managers and investors.

The second row of Table 3 mimics leverage regressions in Rajan and Zingales (1995). Consistent with

empirical observation, and with the prediction of Myers (1984), in our model leverage ratio does indeed

decline in lagged profits. The causal mechanism in our model is as follows. Leverage is invariant to wealth

if the firm draws θL, since the low type is given a second-best cash buffer stock in the least-cost separating

equilibrium. However, conditional upon θH being drawn, the leverage of the firm will decline with net worth.

The third row mimics the specification in equation number 3 in Shyam-Sunder and Myers (1999),

regressing leverage on the difference between lagged leverage and the firm’s “target” where the target is
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computed as the sample average leverage ratio. Consistent with empirical observation, the mean-reversion

coefficient is small but positive. In the simulated data, the mean-reversion coefficient is 0.27. By way of

contrast, Shyam-Sunder and Myers report a mean-reversion coefficient of 0.33.

The last row mimics the market-timing regression of Baker and Wurgler (2002). In simulated data, the

coefficient on their market-timing variable (external finance weighted average q) is actually insignificant. In

a rational economy with Bayesian updating by investors, managers with market-timing preferences do not

generate significant market-timing coefficients. Given the behavioral spin Baker and Wurgler place on their

results, it is likely that they would take exception with the notion that investors do engage in Bayesian

updating. We here note that the well-documented existence of announcement effects is clearly inconsistent

with the notion that investors stubbornly cling to their priors. Therefore, their story must be predicated

upon some notion of misreaction.

5 Conclusions

There is little doubt that the informational asymmetries stressed by Myers and Majluf (1984) play an

important role in corporate finance. As evidence, one may point to the large fees paid to underwriters

in return for performing due diligence. As additional direct evidence, one may note the existence of

announcement effects surrounding changes in corporate financial structure. However, this paper shows

that the types of reduced-form regressions commonly found in the literature are uninformative about the

validity of corporate financing theories predicated on asymmetric information. In particular, it has been

shown that firms operating in an environment with asymmetric information do not necessarily generate the

types of regression coefficients that advocates of the pecking-order predict.

In addition to this critique of econometric practice, the model generates theoretical predictions of

independent interest. We show that concern over future adverse selection costs effectively converts a risk-

neutral manager into a pseudo-risk-averse manager. This risk-aversion weakens the attractiveness of debt

relative to what one obtains in a single-period model where (by construction) the firm only faces adverse

selection once. This same risk-aversion adds to the signal content of debt. The optimal mix of debt and

equity can be viewed as balancing efficient risk-sharing against information revelation. Thus, the results

of our dynamic model have clear linkages with static contracting theory. This insight may prove useful

in subsequent analysis, as recursive techniques can be used to convert dynamic contracting problems into

simpler static problems.
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Appendix A: Proofs

Proof of Lemma 1.

Let a∗L denote the solution to Program L. The allocation a∗L was in the feasible set when the type-H program

was solved. To verify, the NMLH constraint would be trivial as the allocation would be type-independent.

Since BCL is satisfied at a∗L we know BCH would be slack. Optimality then demands that the payoff to the

high type must be at least as high as what would he would obtain under a∗L. Therefore:

d∗H + (1− s∗H)ΩHH ≥ d∗L + (1− s∗L)ΩHL.¥

Proof of Lemma 2.

Consider first a firm with lagged type θL. Since w > 0 at the start of the next period (on the equilibrium

path), equity will have positive value even if the next period’s type is also θL. Applying the Envelope

Theorem, the value of internal funds if the low type is realized is λL = 1. The value of a dollar of internal

funds to the high type is given by λH +µ. To see this, it must be noted that the low type’s equilibrium payoff

(which enters the NMLH constraint) can be expressed as w + κ∗. This explains why the shadow value of

internal funds to the high type is not simply λH . Rather, one must account for the fact that higher wealth

adds slack to the NMLH constraint. Taking a probability weighted average of these values yields (20). The

derivation of expression (21) is identical, except that one must account for the fact that a dollar of internal

funds is worth zero if the low type is drawn following a high type and the equity becomes worthless.

Proof of Proposition 4.

We begin by demonstrating

µ(ŵ) = 0 ⇒ µ(w) = 0 ∀ w > ŵ.

From the Envelope Theorem

∂

∂w̃

[
d∗L + (1− s∗L)β

∫ ∞

ε

vL[(1− δ)k∗L + θLε(k∗L)α − b∗L]f(ε)dε

]
= 1.

Next, consider that NMLH demands

dL + (1− sL)β
∫ ∞

εd
LL

vL[(1− δ)kL + θLεkα
L − bL]f(ε)dε ≥ dH + (1− sH)ΩLH . (49)

The left-side has a slope of one in wealth. Suppose now that µ(ŵ) = 0 which implies that the high type

implements (bP
H , kP

H) at ŵ. Now consider the slope of the right-side of NMLH under the conjecture that the

constraint remains nonbinding as w̃ increases. Under the hypothesis that NMLH remains nonbinding, the

high type continues to implement (bP
H , kP

H) which are invariant to w̃. The slope of the right-side of (49) may
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then be computed as
d

dw̃
[dH + (1− sH)ΩLH ] =

∂dH

∂w̃
− ΩLH d

dw̃
sH . (50)

If ∂dH/∂w̃ > 0, it follows from (31) that µ = 0. Suppose instead that ∂dH/∂w̃ ≤ 0. From BCH it follows

that
d

∂w̃
sH =

−1 + ∂dH/∂w̃

ΩHH
. (51)

Substituting (51) into (50) one obtains

∂dH

∂w̃
− dsH

dw̃
∗ ΩLH =

ΩLH

ΩHH
+

∂dH

∂w̃

[
1− ΩLH

ΩHH

]
< 1.

Thus, the left-side of (49) has a steeper slope than the right and the NMLH constraint remains nonbinding

as conjectured. The high-type allocation for µ = 0 follows directly from (32) and (33).¥

Appendix B: Details of Computational Algorithm

The computational procedure is based on value function iteration. The individual steps are as follows. The

idiosyncratic shock ε is implemented by discretizing its domain using N possible values. Each maximization

is implemented by discretizing the domain of the decision variables.

1. Guess “going-concern” values wd
j of the firm.

2. Guess value functions vj of the firm.

3. Solve for the low type allocation aL that maximizes the value of the low type firm subject to its

budget. Pick the policy in the optimal set that minimizes the dividend payout.

4. Solve for the high type allocation aH that maximizes the value of the high type firm subject to its

budget and the incentive constraint that guarantees the low type prefers aL to aH .

5. Compute new value functions v
′
j from

v
′
j = πHj

[
dH + β(1− sH)

N∑
n=1

f(εn)vH [(1− δ)kH + θHεnkα
H − bH ]

]

+ πLj

[
dL + β(1− sL)

N∑
n=1

f(εn)vL[(1− δ)kL + θLεnkα
L − bL]

]
.

6. The functions v
′
j are the new guess for vj . The procedure is then restarted from step 2 until

convergence.

7. Check the option value inherent in the firm by verifying vj(wd
j ) = 0. If these conditions are not

satisfied, update the initial guesses wd
j and restart the procedure from step 1 until convergence.
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Figure 1: Higher capital investment as positive signal

This figure shows the indifference curves drawn under the assumption that the high type has a greater willingness to exchange

equity for capital. In this case, higher capital investment provides a positive signal which encourages overinvestment relative

to first-best.
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Figure 2: Higher debt as positive signal

This figure shows the indifference curves drawn under the assumption that the low type is more willing to exchange equity for

a reduction in debt. Therefore, debt provides a positive signal and the high type borrows more/saves less in order to separate

from the low type.
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Figure 3: Equity value function

The equity value function v is plotted as a function of the realized net worth, w. The productivity shock ε is exponentially

distributed and both productivity shocks are i.i.d. The parameter choices are reported in Table 1.
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Figure 4: Optimal capital allocations

Optimal capital allocations, k∗i , scaled by the first-best allocations, kFB
i , are plotted as a function of the realized net worth, w,

for both high and low values of θ. The productivity shock ε is exponentially distributed and both productivity shocks are i.i.d.

The parameter choices are reported in Table 1.
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Figure 5: Optimal financing policies - high value of θ

Optimal financing policies: debt, ρH , and equity, s∗HΩHH , as well as optimal dividend policy, d∗H , are plotted as functions

of the realized net worth, w, for the case of high value of θ. The productivity shock ε is exponentially distributed and both

productivity shocks are i.i.d. The parameter choices are reported in Table 1.
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Figure 6: Optimal financing policies - low value of θ

Optimal financing policies: debt, ρL, and equity, s∗LΩLL, as well as optimal dividend policy, d∗L, are plotted as functions of the

realized net worth, w, for the case of low value of θ. The productivity shock ε is exponentially distributed and both productivity

shocks are i.i.d. The parameter choices are reported in Table 1.
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Figure 7: Percentage of equity sold to new shareholders

Optimal percentage of equity sold to new shareholders, s∗i , is plotted as a function of the realized net worth, w, for cases of

both high and low values of θ. The productivity shock ε is exponentially distributed and both productivity shocks are i.i.d.

The parameter choices are reported in Table 1.
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Figure 8: Evolution of leverage ratio

Simulated time series of the firm-level leverage ratio defined as a ratio of debt, ρ(t), to total assets, k(t), is shown. This is a

randomly chosen sample from the simulated panel of firms that contains 3,000 firms over 300 time periods, where only the last

thirty time periods are kept for each firm. The productivity shock ε is exponentially distributed and both productivity shocks

are i.i.d. The parameter choices are reported in Table 1.
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Table 1: Parameter Choices
This table reports the values of parameters used in simulation. The profit shock ε is distributed exponentially.

β 1/1.065

α 0.7

δ 0.1

γ 0.05

φ 0.1

ξ 2.0

θH 0.8

θL 0.4

πH 0.5
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Table 2: Summary Statistics from Simulated Firms
This table presents summary statistics from simulated panel of firms. The simulated panel of firms is generated from the model
and contains 3,000 firms over 300 time periods, where only the last thirty time periods are kept for each firm. The productivity
shock ε is exponentially distributed and both productivity shocks are i.i.d. The parameter choices are reported in Table 1. The
first column reports statistics for all firms, while the next two columns report the results for firms with “high” and “low” values
of θ separately. The frequency of the event A > 0, f(A), is defined as

f(A) =

∑N
i=1 χ(Ai > 0)

N
,

where χ(Ai > 0) is an indicator function.

Variable All High Low

Leverage
mean -0.0618 0.1032 -0.2236
median -0.1126 0.0840 -0.2236
std 0.1789 0.1042 0.0000

Investment
mean 0.3258 3.0433 -2.3946
median 0.3247 3.1386 -2.4682
std 3.5922 2.3649 2.3617

Frequency
Equity Issuance
all debt 0.2633 0.2633 0.0000
default-free debt 0.2633 0.2633 0.0000

Dividend Payment 0.7367 0.2368 0.4999

Repurchasing 0.0000 0.0000 0.0000

42



Table 3: Leverage Regressions
This table reports results of several regressions on the simulated data with leverage ratio,

ρ(t)
k(t)

, as the dependent variable. Here

q(t) is the Tobin’s Q defined as q(t) =
v(t)+b(t−1)

k(t−1)
. The financing gap is defined as

d(t)+k(t)−w(t)
k(t)

. Operating profits are defined

as θ(t)ε(t)kα−1(t). EFWAQ(t) is a weighted average of each of the prior ten year’s q ratios, with the weight on any given

lagged q equal to the market value of external finance in that year, ρi(t)(1− χ) + si(t)Ω
ii(t) divided by the total market value

of external finance obtained over the entire ten year lag period. The simulated panel of firms contains 3,000 firms over 300 time

periods, where only the last thirty time periods are kept for each firm. The productivity shock ε is exponentially distributed

and both productivity shocks are i.i.d. The parameter choices are reported in Table 1.

Financing Gap q(t) Lagged Operating Profits E[ ρ
k
]− ρ(t−1)

k(t−1)
EFWAQ(t)

0.4416 - - - -
( 0.0315 ) - - - -

- 0.0299 -0.0071 - -
- ( 0.0131 ) ( 0.0028 ) - -
- - - 0.2683 -
- - - ( 0.0612 ) -
- 0.0267 -0.0816 - -0.0138
- ( 0.0254 ) ( 0.0118 ) - ( 0.0256 )
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