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1 Introduction

The last few years have been fruitful in reconciling asset pricing observations
with the consumption based framework. The progress came first with en-
dowment economy models but more recently some production models have
also been able to match important asset pricing moments. This paper sets
out to show that several previously unexplored frictions can also do the
job, as well as make inroads at explaining high volume and certain portfolio
choice behavior.

The first step of such an exercise is to replicate the standard asset pricing
moments. I find that contracting the wage prior to the shock’s realization,
as opposed to setting it to the marginal product of labor once the shock is
realized, will go a long way towards matching the equity premium. This is
because the fixed wage guarantees a certain amount of income so the agent
can afford to take more risk on the residual. This type of contracting is in
line with many real world wage contracts.

While it is important to get the asset pricing moments, I would like
to explore relationships between agent heterogeneity and asset pricing. In
order to make agents heterogeneous I introduce an idiosyncratic labor shock,
as in Krussell and Smith (1998); this shock is uninsurable and as a result
each agent’s wealth distribution matters. As Krussell and Smith point out,
most agents are pretty good at self insurance, this is even more so in my
model because agents have access to two assets instead of just a bond as
in their paper. As a result, all but the poorest agents have a very similar
propensity to save.

When the propensity to save is similar for both rich and poor agents,
heterogeneity cannot have a significant effect on the aggregate. This is
because total investment and total output will be the same regardless of
the wealth distribution. I also find that volume of trade is almost non-
existent; the portfolio choice of agents is similar for agents of differing wealth.
However in the real world, both saving propensities and portfolio choice of
the rich are quite different to those of the poor.

To get such heterogeneity within the model I add another friction. All
agents are free to invest in the risk free asset, however agents must pay a
cost if they choose to participate in the equity market. While I give no
specific reasons for this cost, it is meant to be a combination of transac-
tion, informational, and any other potential costs of participation. The cost
causes poor agents to invest in the bond only, while the richer agents invest
in stocks as well as bonds. Since rich agents now face higher average re-
turns, the wealth distribution becomes more spread out than in the no costs
case. The saving propensity is now significantly higher for the rich, which
magnifies the spread in the wealth distribution. Finally, the trading volume
is now quite high as agents need to readjust their positions as their wealth
changes.
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Because the aggregate wealth distribution is now a state variable this
problem is quite difficult computationally. I follow the computational strat-
egy of Krussell and Smith (1998) and Zhang (2005) however in both of those
models the first moment of the distribution was a sufficient state variable to
describe the distribution. Here the shape of the distribution matters, and
as such this problem is more complex; to my knowledge this is the first time
such a problem has been solved in this literature.

Here will be literature review of asset pricing in RBC models, costs of
investment, portfolio choice, general equilibrium.

2 The Model

I study a version of the real business cycle model, first studied by Ramsey
(1928) and used extensively in macroeconomics. In what follows I will set up
and solve the stationary problem. In the appendix I show that the solution of
the problem with a deterministic growth rate is just a simple transformation
of the stationary problem. For the results I transform everything to the
growth problem.

2.1 Agents

All agents are ex-ante identical and maximize the expected present value
of utility. Much of recent asset pricing research has focused on alternative
utility formulations to explain various empirical findings. Here I would like
to isolate the effects of the frictions I introduce, thus agents are power utility
maximizers. The only aspect that differentiates one agent from another is
the amount of wealth each holds.

The agents are not infinitely lived, but rather have a probability of dying
each period. This probability does not depend on the agent’s age and there is
no bequest motive. Because agents are expected utility maximizers, for the
purpose of optimization the probability of death is combined with the actual
time discount factor to form an adjusted time discount factor. Each period
the same number of agents are born as died so the total number remains the
same. Each newborn agent receives the average wealth of deceased agents,
thus the total wealth in the economy is conserved.

Upon entering a period the agent chooses whether to enter into a venture
or not. Agents who do not enter into a venture can invest their money in
the risk free asset as well as earn labor income. Agents who do enter into a
venture (the stockholders) can also invest in the risk free asset and earn labor
income. However additionally they can earn a return (the equity return) on
the wealth committed to the venture. Agents must pay a fixed cost F to
enter into a venture. Each agent’s wage is the aggregate wage multiplied by
an idiosyncratic labor shock.
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Let be W i
t be agent i’s individual wealth, wi

t+1 be his wage, St be the
vector of all relevant state variables, Zt+1 be the vector of realizations of all
aggregate random variables (these are the ZS

t+1 and ZA
t+1 described in the

technology section) and Zi
t+1 be the realization of the agent’s idiosyncratic

labor shock. The agent’s choice variables are consumption Ci
t , and the ratio

of wealth to invest in the risk free asset αi
t. At the start of the period each

agent solves:

V (W i
t , St) = max

Ci
t ,α

i
t

E
∞∑

i=1

βt (C
i
t)

1−θ

1− θ
s.t.

W i
t+1 = (αi

tR
f
t+1 + (1− αi

t)R
e
t+1)(W

i
t − Ci

t) + wi
t+1L− F1α<1 (1a)

wt+1 = W(St, Zt+1) (average wage) (1b)

wi
t+1 = wt+1Z

i
t+1 (individual wage) (1c)

Rf
t = Rf (St) (risk free rate) (1d)

Re
t+1 = Re(St, Zt + 1) (equity return) (1e)

St+1 = Γ(St, Zt+1) (law of motion for state variables), (1f)

where W, Rf , Re, and Γ are functions taken by the agent as being given.
Given such functions, this problem can be solved independently of the pro-
duction side. These functions will be determined in equilibrium. Equation
(1a) is the wealth accumulation equation, (1b)-(1e) define the agent’s beliefs
about the wage and asset processes, and (1f) is the agent’s belief about the
law of motion of the state variables.

The definition of the state variables is crucial for the computational strat-
egy, however, a key point is that from the point of view of the agent, the
identity of the state variables does not matter. The agent can think of S as
a set of numbers from one to NS , and as long as the observed law of motion
for these numbers is the same as Γ, it makes no difference to the agent what
these numbers actually represent. From the problem solvers point of view S
will consist of the aggregate productivity state, and the shape of the wealth
distribution.

[Figure 1: Timeline of Events Within a Period]

2.2 Firms

Output in this economy is specified by a Cobb-Douglas technology where
capital depreciates at a rate δ. Given physical capital Kt, labor L (which is
fixed throughout this paper), and the productivity shock ZS

t+1, output Yt is
determined by

Yt = ZS
t+1K

ψ
t L1−ψ.
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The aggregate productivity shock ZS
t+1 follows an ARMA(1,1) process.

This means that the conditional mean of the productivity shock ZA
t is AR(1).

The idea is that the economy can be in a good or bad state, represented
by ZA, but production may turn out to be low even in the good state, or
high even in the bad state. This setup, rather than the standard AR(1)
technology shock, is helpful in allowing the volatility of returns to stay high,
while keeping the volatility of the risk free rate low.

There is a large number of competitive firms (or ventures). Because
the production function is homogenous of degree one, the scale of the firms
does not matter. In the first case, the firms first observe the shock, and
then choose how much labor to rent. After output is realized, the original
investors keep everything left over after wages are paid. The firm maximizes
stockholder value:

πt+1 = ZS
t+1K

ψ
t L1−ψ + (1− δ)Kt − wtL. (2a)

Because firms are competitive, they pay the marginal product of labor as
wages. The leftover goes to the stock holders and due to homogeneity, their
return on capital is equal to the marginal product of capital. The wages and
returns are:

wt+1 = ZS
t+1(1− ψ)

(
Kt

L

)ψ

, (3a)

Re
t+1 = ZS

t+1ψ

(
Kt

L

)ψ−1

+ (1− ψ). (4a)

I will call this case the MPL (marginal product of labor) case.
Throughout most of the paper the set up for wages is slightly different.

Firms must decide on the wage at the beginning of the period, before the
shock is observed. I will call this case the EMPL (expected marginal product
of labor) case. This change is more in line with the way wages are determined
in the real world. Employees typically know their hourly wage or their
annual salary for the near future (although productivity can change the
total payout by affecting hours worked or bonuses). Having a guaranteed
salary also provides workers with a safety net, thus they are more willing
to take risks with the rest of their wealth, thus allowing a higher equity
premium.

After paying out wages, the firm returns everything else to the stockhold-
ers, but this time firm’s problem is now to maximize expected stockholder
value:

πt+1 = E[Mt+1(ZS
t+1K

ψ
t L1−ψ + (1− δ)Kt − wtL)] (2b)

where Mt+1 is the discount factor determined in equilibrium from the marginal
rate of substitution of the stockholders. Firms take Mt+1 as given. Wages
are now:

wt =
E[ZS

t+1Mt+1]
E[Mt+1]

(1− ψ)
(

Kt

L

)ψ

. (3b)
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Note that the only difference from the original formulation for wages is that

Zt+1 is replaced by
E[ZS

t+1Mt+1]

E[Mt+1]
. If the shock is negatively correlated with the

marginal rate of substitution (that is if the shock is high when consumption
growth is high), wages are lower than the average wage in the variable wage
case. The return to investors is now the total payout to investors, divided
by total capital invested:

Re
t+1 =

(
ZS

t+1 − (1− ψ)
E[ZS

t+1Mt+1]
E[Mt+1]

)(
Kt

L

)ψ−1

+ (1− δ). (4b)

This return is equal to the expected marginal product of capital plus the
non-zero profit that comes after the shock is realized. In the variable wage
case, the variability of output was split between returns and wages, now the
variability of output is absorbed fully by returns.

2.3 Timing

The agent enters a period knowing St as well as his wealth, and then decides
how much to consume and invest given that his return on investment and
his wages are random and depend on the shock. This timing is unorthodox
in two ways. First of all, capital and labor must be committed prior to
the realization of the shock. Boldrin, Christiano, Fisher (1999) call this
the Time-to-Plan assumption and find that it alone has little effect on the
standard model.

The other unusual feature is the timing of consumption. Typically in
RBC models agents consume after production and the capital accumulation
equation is

Kt+1 = (1− δ)Kt + f(Kt, L)− Ct)

where investment is f(Kt, L)− Ct. Here agents make the consumption and
portfolio choice simultaneously and the accumulation equation is

Kt+1 = (1− δ)(Kt − Ct) + f(Kt − Ct, L).

This timing is more in line with the portfolio choice literature. Investment
is now defined as f(Kt, L) − Ct. I believe that both of these deviations
from the traditional RBC timing scheme bring this model closer to reality
in terms of financial investing.

2.4 Equilibrium

An equilibrium is defined by decision rule functions α(W i
t , St) and C(W i

t , St)
and aggregate quantity functions Γ(St, Zt+1), Rf (St), Re(St, Zt+1), and
W(St, Zt+1) such that for any St:
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(i) α(W i
t , St), C(W i

t , St) solve agent’s maximization problem given Γ(St, Zt+1),
Rf (St), Re(St, Zt+1), W(St, Zt+1).

(ii)Re(St, Zt+1) is given by (3) with Kt =
∫

(1−α(W i
t , St))(W i

t−C(W i
t , St))di,

(iii)
∫

α(W i
t , St))(W i

t − C(W i
t , St))di = 0,

(iv) St+1 = Γ(St, Zt+1).

Condition (i) requires that all choices made by agents are optimal. Con-
dition (iii) is the market clearing condition, it states that the bond is in zero
net supply on the aggregate; together with condition (ii) this implies that
all aggregate capital that is not consumed is used in production. Condition
(iv) ensures rational behavior, if it holds the economy behaves exactly as the
agents expect it should; it will be made more explicit in the computational
section.

In the EMPL case there is a need for an additional function Φ(St, Zt+1),

which in equilibrium must equal to
ZS

t+1MRSt+1

E[MRSt+1]
where MRSt+1 is the marginal

rate of substitutions for stockholders. This is because at the time wages are
determined consumption is a random variable. To set wages firms must
have beliefs about the realization of this variable and these beliefs must be
rational.

3 Computational Strategy

Before solving for equilibrium I must be more specific about the state vari-
ables. The first state variable is the productivity, ZA

t , which was defined
in the Firms section. ZA

t is just a random variable whose process is exter-
nal to the economy. The other state variable is the distribution of wealth
across agents. Were we to have infinite computing resources, the distribu-
tion of wealth across agents would completely describe the current state of
the economy (assuming no additional history dependence) since it carries
information on how much wealth each individual has.

Given computational limitations it is necessary to come up with some
discrete sufficient statistic for the wealth distribution. Krussell and Smith
(1999) summarize the wealth distribution by its mean alone (which they
discretize on a grid) and find that this is sufficient in their economy. I find
that in the economy described above, the mean alone is not sufficient. For
example, if the risk free rate must be a function of the mean alone, it is
impossible for the markets to clear.

Suppose typical wealth distributions in this economy were all close to
Gaussian. Since a Gaussian is completely described by its mean and stan-
dard deviation, I could index all shapes by those two variables. This would
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give me a description of the state that I need. The distributions in this econ-
omy, however, turn out to be quite complex. For example, often they are
bimodal. I found no simple and natural way to approximate the observed
wealth distributions by known parametrized probability density functions.

I find that I can achieve equilibrium with acceptable numerical accuracy
by parametrizing the wealth distribution with two discrete variables. The
first, not surprisingly is the mean. The second is the shape (by shape I
mean the probability density function of the demeaned distribution). These
shapes do not come from any known distribution but rather directly from
simulating the economy. They are simply indexed by a number and unlike
with the other state variables, I cannot interpolate between different shapes.
Thus, the aggregate state consists of three variables: St = [ZA

t , Π1
t ,Π

1
t ] and

the individual state is Si
t = [Zi

t , Z
A
t ,Π1

t , Π
2
t ] where Π1

t is the mean of the
aggregate wealth distribution and Π2

t is its shape. It is important that this
discrete collection of shapes is diverse enough to be a good approximation
for all the possible wealth distributions.

To solve the agent’s problem I will use value function iteration; for any
set of inputs W,Rf ,Re, and Γ this is fairly straight forward and compu-
tationally fast. To solve for equilibrium functions I will resolve the agent’s
problem many times until I find equilibrium. This is done in two steps, in
the first step I take as input an initial set of wealth distribution shapes and
solve for the other equilibrium quantities assuming these shapes are the true
shapes in this economy. In the second step I simulate the economy to find
the resultant shapes, then I use these shapes and resolve for the equilibrium
quantities.

[Figure 2: Diagram of numerical solution algorithm]

More specifically, in the first step, given functionsW,Rf ,Re, Γ and some
initial shapes for Π2

t , I solve the agent’s problem for the policy functions
C(W i

t , St) and α(W i
t , St). Then, given policy functions and shapes, I solve

for the resultant aggregate quantities W,Re, and the law of motion Γ. In
each state I check the aggregate bond demand, if the bond demand is positive
(negative), I decrease (increase) Rf , in that state to make bonds less (more)
attractive. Given these four functions I resolve the agent’s problem. This
continues until the excess bond demand in each state is zero.

If the wealth distribution shapes match all possible actual wealth dis-
tributions, this solution is an equilibrium. However, this is generally not
the case thus the next step is to get better matching distributional shapes.
Given the initial shapes, the policy functions C(W i

t , St), α(W i
t , St) and the

aggregate quantity functions W,Re,Rf I simulate the economy. Since the
actual shapes are not the same as the shapes in Π2

t , the agent determines
the current state using the ÃL2 measure. Every 500th year I take a snapshot
of the simulation and keep the current wealth distribution as one of the new
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shapes. Finally, with a new set of shapes I return to step one.
The problem is solved when at the end of the simulation two equilibrium

criteria are met. First of all, excess bond demand must be small in each
time period; this means that given each agent’s expectations and optimizing
behavior, markets clear. Second of all, the agent’s expectations must be
correct; that is when Γ predicts transition from one shape to another, next
period’s shape in indeed closest to the one predicted. Since neither of these
two conditions hold exactly, this solution is an approximate equilibrium
rather than a true equilibrium. The appendix provides statistics on these
two measures.

It may be natural to ask why a measure of how close the discrete shapes
are to the actual is not among the solution criteria. While I provide statis-
tics on this in the appendix, the reason it is not part of the definition of
equilibrium is that this measure is unimportant to the agent. As long as
his rational expectations are confirmed, that is, as long as Γ is correct, the
agent does not care what Π stands for. Along the same lines, Krusell and
Smith note that while they only use the first moment of the wealth distribu-
tion to solve for their approximate equilibrium, the higher moments display
significant variation.

In the EMPL case in addition to everything above I must also determine
the function Φ. This function is determined after the simulation (step 2)
but before the value function iteration using the old policy functions and the
new set of shapes simply by calculating ZS

t+1MRSt+1 and MRSt+1 for each
possible state and realization of ZS

t+1. It is then used to determine wages
during the next iteration. In the appendix I provide statistics for how close
Φ is to the value it is supposed to take.

4 Results

4.1 Parameters

Some of the parameters are conventional and I take their values from the
literature. In particular, depreciation is 10%, capital’s share is .36, lifespan
is 40 years (this is the amount of time an individual earns wages and ac-
cumulates capital), and the economy grows at 2% annually. The duration
of recessions and expansion is set to match NBER data. There is some
evidence that individual wages are more variable during bad times. In the
cases the shock exists its volatility is 40% in bad times and 20% in good
times, this is in line with various estimates I have found in the literature.
I will explore how varying the other parameters affect the output. These
parameters are risk aversion (θ), time preference (β), cost of investing (F),
and the variability of the productivity shock.

The main focus of this paper is the wealth distribution and the parameter
which matters most for this is F. Thus, the general approach is to vary F
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and use the other parameters to match asset pricing moments for this choice
of F. The moments are the unconditional risk free rate, equity premium, and
volatility of returns (approximately 1%, 6%, and 16% respectively). Once
these moments are matched I will study other interesting aspects of the
model.

Because solving the model for each set of parameters takes approximately
8 hours, SMM is infeasible here. I match the moments by eyeballing how
they are affected by changing the parameters. Of course this does not guar-
antee that these parameters are the unique ones to match these moments.

4.2 Consumption and Asset Pricing

Table 1 shows the effect of different specifications of the model on risk aver-
sion. The first row is the MPL case and it exhibits the familiar equity
premium puzzle in a slightly different setting. Typically, since real world
consumption is not very volatile, one needs a very high risk aversion to
match the equity premium. Here I could not match all the moments while
keeping the volatility of consumption low, thus consumption is volatile and
risk aversion is low.

Because this is a production economy, there is a strong link between
returns, output, and consumption. The difficulty with keeping the volatility
of consumption low is the need for a large shock to keep returns volatile (it is
always possible to reduce volatility of consumption by increasing risk aver-
sion, but the precautionary savings effect causes returns to be too low). This
problem is common to all such models, for example Jermann (1997) needs
both habit formation and capital adjustment costs to get high volatility of
returns with low volatility of output and consumption.

The problem is partially resolved by having wages be preset at the start
of the period. The reason can be seen from equations 4a and 4b: in the
MPL case the shock to production is split between returns and wages, now
returns take on the whole shock because wages must be fixed within the
period. This allows for a much smaller production shock. In addition to
lower volatility of wages, this has also decreased the volatility of the risk
free rate. These results are in row two of Table 1.

Moving down the rows in Table 1, it can be seen that the other frictions
allow for a decrease in risk aversion while keeping the asset pricing moments
constant. Adding idiosyncratic wage volatility reduces theta from 12 to 10;
this is because equity is more desirable as it becomes a way to diversify away
from the uninsurable wage shock.

Increasing the cost to investing also decreases risk aversion. When there
is a cost to investing in equity the poorer agents choose to invest in bonds
only, this increases bond demand. Since markets must clear equity must be
made more attractive and the equity premium must increase relative to the
no cost case. Since we are keeping the equity premium fixed, conversely risk
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aversion must decrease.

[Table 1: Unconditional Moments]

The correlation between consumption and the realized equity premium
is very high, although it does decrease somewhat for non-stock holders as
the cost to investing increases. This correlation is so high because of the
wealth effect: when stocks do well, aggregate capital rises. This is good for
stockholders because they are richer, but it also means higher future wages
for everyone, including those who did not benefit from the capital gains
directly.

Stockholder consumption becomes much more volatile than that of non-
stockholders as the cost rises; stockholder consumption is only slightly more
volatile than non-stockholder when fixed costs are 1.5% per year, but is
nearly three times more volatile when costs rise to 5%. [add info on indi-
vidual vs. aggregate consumption volatility]

In all cases the equity premium is negatively related to the economy’s
capital stock. Regressing start of year capital on the year’s excess returns
shows that a one standard deviation increase in capital predicts approxi-
mately a 3% rise in excess returns. Additionally, as the cost of investing
gets larger, the amount of wealth held by the richest segment of the popu-
lation also becomes significantly negatively correlated with excess returns.

4.3 Heterogeneity of Agents

As the fixed cost is increased, the percent of population investing in equity
decreases; when the cost is 1.6% of total wealth per year, stock market par-
ticipation is 67%, when the cost is raised to 4.9%, only 19% of agents invest
in the stock market. The participation rate is also different in recessions
compared to expansions. Information on market participation is in Table 2.

[Table 2: Stock Market Participation]

The real world wealth distribution is quite skewed to the right and it
is often difficult to reproduce this skew in these types of models. As fixed
costs are raised, the proportion of wealth held by the richest segment rises,
approaching levels qualitatively similar to real world values (Table 3 and
Figure 3). The amount of wealth held by the rich also rises during good
times relative to the average, while the wealth distribution contracts dur-
ing bad times. This is because good times (high capital) follow a series of
positive stock returns, while this causes everyone to be better off, the stock-
holders benefit disproportionately. The converse happens in periods of low
capital (bad times). The dynamics of typical contractions and expansions
are in Figure 4.
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[Figure 3: Lorenz Curves of the Wealth Distribution]

[Table 3: The Wealth Distribution]

The group whose share of wealth grows during expansions is not just the
extremely wealthy, but also the upper middle class. For instance, it is evi-
dent from Table 3 that in case 6 it is those in the top 20% that gain wealth
share during good times; the average fraction of population that invests in
stock is also 20% in case 6.

[Figure 4: Dynamics of the Wealth Distribution]

The reason for such a spread between the rich and poor is twofold. First
of all, stockholders get a significantly higher return on wealth than non-
stockholders (this is even after paying the fixed cost). Second of all, savings
rates differ quite dramatically between the two groups as the cost to investing
rises. Thus, when costs are above 3% of wealth, the poorest half of the
population has a slightly negative propensity to save out of income, while
the richest half saves about half of its income.

Savings propensities for the richest and the poorest halves of the pop-
ulation are presented in Table 4 and a typical consumption policy can be
seen in Figure 5, Panel B. Because of the problem’s timing, agents choose
what portion of wealth to consume and what to save, after that their in-
come (wages and investment income) is realized, thus within this model the
propensity to save out of wealth is the proper one to look at. I also present
the propensity to save out of income, however because savings and income
are not simultaneous, and because income can be very small or even nega-
tive, some of these results are somewhat quirky.

[Table 4: Saving Propensities]

The portfolio choice of agents also differs quite significantly by wealth.
As stated earlier, the poorest agents choose bonds only to avoid paying a
cost. Once an agent is rich enough, his optimal split between stocks and
bonds is independent of wealth. This is not surprising because optimal
portfolio weights are independent for power utility agents facing a standard
portfolio choice problem. To the richest agents the cost is insignificant com-
pared to their wealth, so they behave in a standard way. The intermediate
agents choose a portfolio heavy in stocks compared to choice of the rich,
they are trying to take advantage of the higher returns to recoup the cost
of investing in equity (Figure 5, Panel A).

[Figure 5: Policy Functions]
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4.4 Volume and Heteroscedasticity

Equity returns exhibit significant heteroscedasticity, although the reason for
this is mechanical as can be seen in equations 3a and 3b. The shock ZS

t+1 is
the same magnitude both in good and bad times, but the term it multiplies,
ψ(Kt

L )ψ−1, is large when aggregate capital is low, thus volatility is higher
during bad times. In case 6, while the average annual volatility of returns is
16%, it is when 21% beginning of period capital was in the lowest quartile,
and 10% when in the highest quartile.

As the cost rises trading volume also rises. Turnover is close to zero
when there is no cost to investing; when the cost is 4.9% approximately
10% of all holdings are turned over. Volume is also strongly related to the
volatility of returns, the correlation between volume and the square devi-
ation of the return from its unconditional mean is 25%. Figure 6 shows a
time series for capital, volume, and the average volatility for the next 4 years.

[Figure 6: Capital, Volume, Volatility]

5 Conclusion
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Appendix

A1. Transformation From Growth to Stationary

A2. Numerical Accuracy
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Table 1: Unconditional Moments.
This table reports some unconditional moments for various cases of the model. For each case the

parameters were calibrated to match the risk free rate, equity premium, and volatility of equity

returns seen in the data.

Case θ Wage σ(ZS) Zi F
K

rf σ(rf ) re − rf σ(re) σ(∆c) σ(∆cSH) σ(∆cNH)

1 4.7 MPL .625 N 0 2.3 5.3 5.9 16.0 14.1 14.1 NA

2 12 EMPL .325 N 0 2.1 2.6 6.4 16.3 4.6 4.6 NA

3 10 EMPL .325 Y 0 2.0 2.5 6.3 16.2 4.7 4.7 NA

4 10 EMPL .325 Y 1.6 1.2 2.3 6.5 15.4 4.7 5.2 5.5

5 8 EMPL .325 Y 3.2 1.6 2.4 6.4 15.6 4.6 4.2 7.1

6 6 EMPL .325 Y 4.9 1.7 2.8 6.2 16.4 4.8 4.5 12.3

Table 2: Stock Market Participation.
Unconditional and conditional stock market participation for different cases.

Case F
K

E[PR] σ[PR] E[PR | K is high] E[PR | K is low]

1 0 100 0 100 100
2 0 100 0 100 100
3 0 100 0 100 100
4 1.6 66.6 9.9 64.9 75.5
5 3.2 33.6 5.7 30.2 38.3
6 4.9 19.2 6.2 21.5 19.1

Table 3: The Wealth Distribution.
Percentage of wealth held by the top agents.

Case 1% 5% 10% 20% 30%

Data 30 51 64 79 88
3, all 2 7 13 25 36
6, all 16 34 46 61 70

6, K in top quintile 16 35 49 66 75
6, K in bottom quintile 15 31 41 54 63
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Table 4: Saving Propensity.
Saving propensity out of wealth is defined as Wt−Ct

Wt
. Saving propensity out of income is defined

as It−Ct
It

where It = Waget + (Wt − Ct)Rt+1. Because income may be negative the propensity

to save out of income is poorly defined.

Case Bottom Half, Top Half, Bottom Half, Top Half
Out of Wealth Out of Wealth Out of Income Out of Income

1 85.1 85.1 40.7 40.7
2 80.8 80.8 26.6 26.6
3 77.1 80.6 -25.7 -38.9
4 77.8 85.4 6.7 46.1
5 62.3 85.8 -2.2 52.8
6 51.3 86.4 -.7 53.2
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Figure 1: Timeline of Events Within a Period
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Figure 2: Diagram of Numerical Solution Algorithm
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Figure 3: Lorenz Curves for Wealth Distribution
The y-axis is the percent of total wealth held by the fraction of the population on the x-axis. x
refers to data, ¤ to case 6, and O to case 3.
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Figure 4: Evolution of Distribution Through Time
On the left four consecutive years of negative shocks, on the right four consecutive years of positive
shocks.
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Figure 5: Policy Functions
Typical portfolio policy and consumption policy, both as a function of wealth.
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Figure 6: Capital, Volume, Volatility
Volatility is the average volatility four years forward. All series are normalized to have mean zero
and standard deviation one.
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Figure 7: Approximate equilibrium
The x-axis has the number of distribution shapes. (i) Solid line is the L1 difference between the
actual distribution next period and the distribution predicted by Γ. Dashed line is the difference
between the actual distribution and the one assigned to the current state. (ii) Average ranking of

the distribution predicted by Γ in closenesses to the actual distribution. (iii) σ(BondDemandt
Invt

).

(iv) R2 for ∆ct+1.
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Figure 8: Approximate equilibrium
The x-axis has the number of distribution shapes. All plots are plots of 1-R2. (i) Standard
deviation of bottom 95%. (ii) Skewness of bottom 95%. (iii) Kurtosis of bottom 95%. (iv) Mean
capital of top 5%.
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