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Abstract

This paper examines the intertemporal relation between downside risk and expected stock returns.

Value at risk (VaR), expected shortfall, and tail risk are used as measures of downside risk to de-

termine the existence and significance of a risk-return tradeoff for several stock market indices.

We find a positive and significant relation between downside risk and the portfolio returns on the

NYSE/AMEX/Nasdaq stocks. This result also holds for the NYSE/AMEX, NYSE, Nasdaq, and

S&P 500 index portfolios. Moreover, VaR remains to be a superior measure of risk even when it is

compared to the traditional risk measures which have significant predictive power for market returns.

These results are robust across different measures of downside risk, loss probability levels, and after

controlling for macroeconomic variables associated with business cycle fluctuations.
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Introduction

The conditional mean and variance of return on the market portfolio play a central role in Merton’s

(1973) intertemporal capital asset pricing model (ICAPM). Although theoretical models suggest a

positive relation between risk and return for the aggregate stock market, the existing empirical liter-

ature fails to agree on the intertemporal relation between expected return and volatility. There is a

long literature that has tried to identify the existence of such a tradeoff between risk and return, but

the results are far from being conclusive.1

This paper examines the intertemporal relation between downside risk and expected return on

the market. Value at risk, expected shortfall, and tail risk are used as measures of downside risk

to determine the existence and significance of a risk-return tradeoff for several stock market indices.

There are several reasons why we consider downside risk in determining the existence of a positive

risk-return tradeoff.

First, there is a long literature about safety-first investors who minimize the chance of disaster (or

the probability of failure). The portfolio choice of a safety-first investor is to maximize expected return

subject to a downside risk constraint. Roy’s (1952), Baumol’s (1963), Levy and Sarnat’s (1972) and

Arzac and Bawa’s (1977) safety-first investor uses a downside risk measure which is a function of VaR.

Roy (1952) indicates that most investors are principally concerned with avoiding a possible disaster

and that the principle of safety plays a crucial role in the decision-making process. Roy (1952, p.432)

states that:

“Decisions taken in practice are less concerned with whether a little more of this or of

that will yield the largest net increase in satisfaction than with avoiding known rocks of

uncertain position or with deploying forces so that, if there is an ambush round the next

corner, total disaster is avoided. If economic survival is always taken for granted, the rules

of behavior applicable in an uncertain and ruthless world cannot be covered.”

Thus, the idea of a disaster exists and a risk averse safety-first investor will seek to reduce as far

as is possible the chance of such a catastrophe occurring.

Second, we believe optimal portfolio selection under limited downside risk to be a practical problem.

Even if agents are endowed with standard concave utility functions such that to a first-order approxi-
1See Ghysels, Santa-Clara and Valkanov (2004) and the references therein.
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mation they would be mean-variance optimizers, practical circumstances often impose constraints that

elicit asymmetric treatment of upside potential and downside risk.

Third, commercial banks, investment banks, insurance companies, and nonfinancial firms hold

portfolios of assets that may include stocks, bonds, currencies, and derivatives. Each institution needs

to quantify the amount of risk its portfolio may incur in the course of a day, week, month, or year.

For example, a bank needs to assess its potential losses in order to put aside enough capital to cover

them. Similarly, a company needs to track the value of its assets and any cash flows resulting from

losses on its portfolio. In addition, credit-rating and regulatory agencies must be able to assess likely

losses on portfolios as well, since they need to set capital requirements and issue credit ratings. These

institutions can judge the likelihood and magnitude of potential losses on their portfolios using value

at risk. Regulatory concerns require commercial banks to report a single number, the so-called VaR,

which measures the maximum loss on their trading portfolio if the lowest 1% quantile return would

materialize. Capital adequacy is judged on the basis of the size of this expected loss. Likewise,

pension funds are often required by law to structure their investment portfolio such that the risk of

underfunding is kept low, e.g., equity investment may be capped.

Fourth, there is a wealth of experimental evidence for loss aversion (see Markowitz (1952b) and

Kahneman et al. (1990)). Other evidence is provided through consumption behavior. As Deaton

(1991) shows, consumption responds asymmetrically to good and bad states. Similarly, within the

mean-variance setup there is a range of returns such that consumption is too low for survival. Over

this range, modeling risk by the expectation of squared or absolute returns (i.e., conditional variance

or standard deviation) may not be useful. An alternative way may be to collapse all returns below

the survival threshold as being equally risky.

Fifth, asset returns have been modeled in continuous time as diffusions by Black and Scholes

(1973), as pure jump processes by Cox and Ross (1976), and as jump-diffusions by Merton (1976).

The rationale usually given for describing asset returns as jump-diffusions is that diffusions capture

frequent small moves, while jumps capture rare large moves. Carr, Geman, Madan, and Yor (2002)

develop a continuous time model that allows for both diffusions and for jumps of both finite and

infinite activity. They find that market index returns tend to be pure jump processes of infinite

activity and finite variation, and thus the index return processes appear to have effectively diversified

away any diffusion risk. They indicate that the jump components account for significant skewness

levels that may statistically be either positive or negative but that risk-neutrally are negative. They
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report significantly greater skewness and kurtosis in the risk-neutral process than in the statistical

process.2 The results presented in Carr et al. suggest that extreme movements in stock returns can

be interpreted as signal whereas the frequent small fluctuations can be viewed as noise which may not

have power to explain time-series variation in excess market returns.

Finally, the mean-variance analysis developed by Markowitz (1952a, 1959) critically relies on two

assumptions: either the investors have a quadratic utility or the asset returns are jointly normally

distributed (see Levy and Markowitz (1979), Chamberlain (1983) and Berk (1997)). Both assumptions

are not required, just one or the other: (1) If an investor has quadratic preferences, she cares only

about the mean and variance of returns; and the skewness and kurtosis of returns have no effect

on expected utility, i.e., she will not care, for example, about extreme losses. (2) Mean-variance

optimization can be justified if the asset returns are jointly normally distributed since the mean

and variance will completely describe the distribution. However, the empirical distribution of stock

returns is typically skewed, peaked around the mode, and has fat-tails, implying that extreme events

occur much more frequently than predicted by the normal distribution (see Post and Vliet (2004a)).

Therefore, the traditional measures of market risk (e.g., variance or standard deviation) cannot be

used to approximate the maximum likely loss that a firm can expect to lose under normal or highly

volatile periods.3

Although the mean-variance criterion has been basis for many academic papers and has had signif-

icant impact on the academic and non-academic financial community, it is still subject to theoretical

and empirical criticism (see, e.g., Post and Vliet (2004b) and Ang, Chen and Xing (2005)). Arditti

(1967), Levy (1969), Arditti and Levy (1975) and Kraus and Litzenberger (1976) extend the standard

portfolio theory to incorporate the effect of skewness on valuation. They present a three-moment model

with unconditional skewness. Harvey and Siddique (2000) present an asset-pricing model with con-

ditional co-skewness, where risk-averse investors prefer positively skewed assets to negatively skewed

assets. Their results imply preference for positive skewness: investors should prefer stocks that are

right-skewed to stocks that are left-skewed. Assets that decrease a portfolio’s skewness (i.e., that

make the portfolio returns more left-skewed) are less desirable and should command higher expected
2This implies that the significance of skewness and kurtosis of stock returns found in empirical distributions is not

only a time-series statistical property, but it exists in risk-neutral distributions as well.
3Longin (2000) and Bali (2003) find that VaR provides good predictions of catastrophic market risks, and performs

surprisingly well in capturing both the rate of occurrence and the extent of extreme events in financial markets. However,
the traditional measures of market risk such as the conditional variance and standard deviation yield an inaccurate
characterization of extreme movements in financial markets.
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returns. Similarly, assets that increase a portfolio’s skewness should have lower expected returns.

Dittmar (2002) extends the three-moment asset-pricing model using the restriction of decreasing ab-

solute prudence (see Pratt and Zeckhauser (1987) and Kimball (1993)). He examines the co-kurtosis

coefficient, and argues that investors with decreasing absolute prudence dislike co-kurtosis. His find-

ings suggest preference for lower kurtosis. Investors are averse to kurtosis, and prefer stocks with lower

probability mass in the tails of the distribution to stocks with higher probability mass in the tails of

the distribution. Assets that increase a portfolio’s kurtosis (i.e, that make the portfolio returns more

leptokurtic) are less desirable and should command higher expected returns. Similarly, assets that

decrease a portfolio’s kurtosis should have lower expected returns.

Since the magnitude of VaR becomes larger for negatively skewed and thicker-tailed asset distri-

butions, the findings of the three-moment and four-moment asset-pricing models indicate a positive

relation between value at risk and expected stock returns, i.e, the more a market index can potentially

fall in value the higher should be the expected return.

We consider VaR as a reliable measure of downside market risk and investigate the presence and

significance of a positive risk-return tradeoff over the sample period of July 1962 to December 2002.

We find a positive and significant relation between VaR and the value-weighted and equal-weighted

portfolio returns on the NYSE/AMEX/Nasdaq stocks. This result also holds for the NYSE/AMEX,

NYSE, Nasdaq, and S&P 500 index portfolios.

Ghysels, Santa-Clara, and Valkanov (2004) have recently shown that the choice of window size

(from 1 month to 6 months) in the estimation of realized variance has tremendous impact on the

significance of risk-return tradeoff. When they compute the realized variance as the sum of squared

daily returns over the past one month, they find no evidence of a significant link between realized

variance and future market returns. However, they report a significantly positive relation between the

excess market return and the realized variance obtained from the past 3 to 6 months of daily data. In

this paper, confirming their findings, we also obtain a significantly positive relation between the excess

market return and the realized variance for window sizes larger than 1 month. Finally, we compare the

relative performance of various VaR and realized variance measures computed over different horizons

in predictive regressions. VaR remains to be a superior measure of risk even when it is compared to

the traditional risk measures which have significant predictive power for market returns. These results

are robust across different loss probability levels and after controlling for macroeconomic variables

associated with business cycle fluctuations.
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As an alternative measure of downside risk, we also consider expected shortfall and tail risk, which

measure the mean and variance of losses beyond some value at risk level, respectively. We show that

the strong positive relation between downside risk and excess market return is robust across different

left-tail risk measures. Furthermore, to accommodate skewness and leptokurtosis in the empirical

return distribution and more accurately identify the conditional mean of index returns, we model the

time-series variation in monthly returns using the skewed t distribution. The parameter estimates

from the maximum likelihood methodology based on the skewed t density reiterate the central finding

of the paper that there exists a positive and significant relation between downside risk and expected

returns.

The paper is organized as follows. Section I presents a framework that relates value at risk to

expected returns. Section II presents alternative measures of market risk, and describes our investi-

gation of the risk-return tradeoff. Section III presents the descriptive statistics of the data. Section

IV discusses the empirical results from time-series regressions. Section V runs a battery of robustness

checks. Section VI concludes the paper.

I Economic Framework

The standard theory of portfolio choice determines the optimum asset mix by maximizing (1) the

expected risk premium per unit of risk in a mean-variance framework or (2) the expected value of

a utility function approximated by the expected return and variance of the portfolio. In both cases,

market risk of the portfolio is defined in terms of the variance (or standard deviation) of the portfolio’s

returns. Modeling portfolio risk with the traditional volatility measures implies that investors are

concerned only about the average variation (and co-variation) of individual stock returns, and they

are not allowed to treat the negative and positive tails of the return distribution separately.

In what follows, we consider an investor who allocates her portfolio in order to maximize the

expected utility of end-of-period wealth U(W ). We assume that the distribution of returns on the

investor’s portfolio of risky assets is nonsymmetrical and fat-tailed. The expected value of end-of-

period wealth can be written as W =
nP
i=1
qiRi + qfRf , where Ri is unity plus the expected rate of

return on the i th risky asset, Rf is unity plus the rate of return on the riskless asset, qi is the fraction

of wealth allocated to the ith risky asset, and qf is the fraction of wealth allocated to the riskless

asset. Since our objective is to measure the effect of higher moments on the standard asset pricing
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models, we now approximate the expected utility by a Taylor series expansion around the expected

wealth. For this purpose, the utility function is expressed in terms of the wealth distribution, so that

E [U(W )] =
R
U(W )f(W )dW , where f(W ) is the probability density function of the end-of-period

wealth, that depends on the multivariate distribution of returns and on the vector of weights q. We

now consider the infinite-order Taylor series expansion of the utility function

U(W ) =
∞X
k=0

U (k)(W )(W −W )k
k!

(1)

whereW = E(W ) denotes the expected end-of-period wealth. Under rather mild conditions (see Loistl

(1976)), the expected utility is given by:

E [U(W )] = E

" ∞X
k=0

U (k)(W )(W −W )k
k!

#
=

∞X
k=0

U (k)(W )

k!
E
h
(W −W )k

i
. (2)

Therefore, the expected utility depends on all central moments of the distribution of the end-of-period

wealth.

It should be noticed that the approximation of the expected utility by a Taylor series expansion

is related to the investor’s preference (or aversion) towards all moments of the distribution, that are

directly given by derivatives of the utility function. Scott and Horvath (1980) indicate that, under the

assumptions of positive marginal utility, decreasing absolute risk aversion at all wealth levels together

with strict consistency for moment preferences, one has U (k)(W ) > 0, ∀W if k is odd and U (k)(W ) > 0,

∀W if k is even. Further discussion on the conditions that yield such moment preferences or aversion

can be found in Pratt and Zeckhauser (1987), Kimball (1993), and Dittmar (2002). Focusing on terms

up to the fourth one, we obtain:

E [U(W )] = U(W ) + U (1)(W )E
£
(W −W )¤+ 1

2
U (2)(W )E

£
(W −W )2¤ (3)

+
1

3!
U (3)(W )E

£
(W −W )3¤+ 1

4!
U (4)(W )E

£
(W −W )4¤+O(W 4),

where O(W 4) is the Taylor remainder. We define the expected return, variance, skewness, and kurtosis

of the end-of-period return, Rp, as

µp = E [Rp] =W (4)

σ2p = E
£
(Rp − µp)2

¤
= E

£
(W −W )2¤ (5)

s3p = E
£
(Rp − µp)3

¤
= E

£
(W −W )3¤ (6)

k4p = E
£
(Rp − µp)4

¤
= E

£
(W −W )4¤ . (7)
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Hence, the expected utility is simply approximated by the following preference function:

E [U(W )] ≈ U(W ) + 1
2
U (2)(W )σ2p +

1

3!
U (3)(W )s3p +

1

4!
U (4)(W )k4p. (8)

Under conditions established by Scott and Horvath (1980), the expected utility depends positively on

expected returns and skewness and negatively on variance and kurtosis (Also see Berkelaar, Kouwen-

berg, and Post (2004)). Based on the CARA and CRRA utility functions, we now show that an

increase in VaR reduces the expected utility of wealth.

We first consider the CARA (Constant Absolute Risk Aversion) utility function. The CARA utility

function is defined by: U(W ) = − exp(−θW ), where θ measures the investor’s constant absolute risk
aversion. The approximation for the expected utility is given by

E [U(W )] ≈ − exp(−θW )
·
1 +

θ2

2
σ2p −

θ3

3!
s3p +

θ4

4!
k4p

¸
. (9)

Equation (9) indicates aversion to variance and kurtosis and preference for (positive) skewness since
∂E[U(W )]

∂σ2p
= − exp(−θW )θ22 < 0, ∂E[U(W )]

∂s3p
= exp(−θW )θ33! > 0, and ∂E[U(W )]

∂k4p
= − exp(−θW )θ44! < 0.

These results imply aversion to value at risk (VaR), ∂E[U(W )]
∂V aRp

< 0, since VaR for long positions

(defined by the left tail of the return distribution) increases with variance and kurtosis and decreases

with positive skewness.

Similar results are obtained from the CRRA (Constant Relative Risk Aversion) utility function

given by: U(W ) = W1−θ
1−θ , (θ > 0, θ 6= 1). Since θ > 0, the expected utility of wealth decreases with

variance and kurtosis, whereas it increases with positive skewness, i.e., ∂E[U(W )]
∂σ2p

= −θ
2W

−(1+θ)
< 0,

∂E[U(W )]
∂s3p

= −θ(1+θ)
3! W

−(2+θ)
> 0, and ∂E[U(W )]

∂k4p
= −θ(1+θ)(2+θ)

4! W
−(3+θ)

< 0.

Since ∂V aRp
∂σ2p

> 0,
∂V aRp
∂s3p

< 0, and ∂V aRp
∂k4p

> 0 investors dislike VaR, i.e., an increase in VaR reduces

the expected utility of wealth, ∂E[U(W )]
∂V aRp

< 0.

In summary, since VaR is a function of higher-order moments of the return distribution (variance,

skewness, and kurtosis) in a certain way, investors have an aversion to VaR. Consequently, there is an

implied positive relation between VaR of a portfolio and the portfolio’s expected return.
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II Measuring Risk-Return Relationship

A Alternative Risk Measures

Realized variance: Following French et al. (1987) and Ghysels et al. (2004), we calculate the

variance of a market portfolio using various window sizes of return data:

σ2k,t =

DkX
d=1

r2k,d + 2

DkX
d=2

rk,d · rk,d−1 (10)

where σ2k,t is the variance of index returns, Dk is the number of trading days over the past k months
4,

and rk,d is the portfolio’s return on day d which resides within k months. The second term on the right

hand side adjusts for the autocorrelation in daily returns using the approach of French et al. (1987).

Note that the realized variance measure given in equation (10) is not, strictly speaking, a variance

measure since daily returns are not demeaned before taking the expectation. However, as pointed out

by French et al. (1987) and Goyal and Santa-Clara (2003), the impact of subtracting the means is

trivial for short holding periods.

Nonparametric Value-at-Risk: VaR determines how much the value of a portfolio could decline

over a given period of time with a given probability as a result of changes in market rates. For example,

if the given period of time is one day and the given probability is 1%, the VaR measure would be an

estimate of the decline in the portfolio value that could occur with a 1% probability over the next

trading day. In other words, if the VaRmeasure is accurate, losses greater than the VaRmeasure should

occur less than 1% of the time. In this paper, we use different confidence levels to check the robustness

of VaR measures as an explanatory variable for the expected return on the market. The estimation is

based on the lower tail of the actual empirical distribution. We use 100 daily returns to estimate the

1% VaR level from the empirical distribution. The 1% VaR is defined as the minimum index return

observed during the last 100 days as of the end of month t.5 It should be noted that the original

VaR measures are multiplied by —1 before running our regressions. The original maximum likely loss

values are negative since they are obtained from the left tail of the distribution, but the downside risk

measure, VaRt, used in our regressions is defined as —1×the maximum likely loss. Therefore, the slope
coefficients turn out to be positive, which gives the central result of the paper that there is a positive

4As in Ghysels, Santa-Clara and Valkanov (2004), we use 1 month to 6 months of past daily data to compute the
rolling window variance estimates.

5We also use the past one month to six months of daily returns to estimate alternative VaR measures from the
empirical distribution.
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and statistically significant relation between VaR and the excess return on the market, i.e, the more

a market index can potentially fall in value the higher should be the expected return.

Parametric Value-at-Risk: In continuous time diffusion models, (log)-stock price movements

are described by the following stochastic differential equation,

d lnPt = µdt+ σdWt (11)

where Wt is a standard Wiener process with zero mean and variance of dt, µ and σ are the drift and

diffusion parameters of the geometric Brownian motion, respectively. In discrete time, equation (11)

yields a return process:

lnPt+∆ − lnPt = Rt = µ∆t+ σz
√
∆t (12)

where ∆t is the length of time interval in which the discrete time data are recorded and ∆Wt = z
√
∆t

is the Wiener process with zero mean and variance of ∆t since z is a random variable drawn from the

standard normal density, i.e., E(z) = 0 and E(z2) = 1.

The critical step in calculating VaR measures is the estimation of the threshold point defining what

variation in returns Rt is considered to be extreme. Let Φ be the probability that Rt is less than the

threshold Γ. That is,

Pr(Rt < Γ) = Pr

µ
z < a =

Γ− µ∆t
σ
√
∆t

¶
= Φ (13)

where Pr(.) is the underlying probability distribution. In the traditional VaR models with the as-

sumption of normality we have Φ = 1%, a = −2.326,

ΓNormal = µ∆t− 2.326σ
√
∆t. (14)

However, there is substantial empirical evidence showing that the distribution of financial returns

is typically skewed to the left, is peaked around the mean (leptokurtic) and has fat tails. The fat

tails and negative skewness suggest that extreme outcomes happen much more frequently than would

be predicted by the normal distribution, and the negative returns of a given magnitude have higher

probabilities than positive returns of the same magnitude. This also suggests that the normality

assumption can produce VaR numbers that are inappropriate measures of the true risk faced by

individual firms. To account for skewness and excess kurtosis in the data, we use the skewed t

distribution of Hansen (1994) that accounts for the non-normality of returns and relatively infrequent

events.
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Hansen (1994) introduces a generalization of the Student t distribution where asymmetries may

occur, while maintaining the assumption of a zero mean and unit variance. The skewed t density

that provides a flexible tool for modeling the empirical distribution of stock market returns exhibiting

skewness and leptokurtosis is given by equation (15):

f(zt;µ,σ, υ,λ) =


bc

µ
1 + 1

v−2
³
bzt+a
1−λ

´2¶−υ+1
2

if zt < −ab

bc

µ
1 + 1

v−2
³
bzt+a
1+λ

´2¶−υ+1
2

if zt > −ab
(15)

where zt =
Rt−µ
σ is the standardized market return, the constants a, b, and c are given by

a = 4λc

µ
v − 2
v − 1

¶
, b2 = 1 + 3λ2 − a2, c = Γ

¡
v+1
2

¢p
π(v − 2)Γ ¡v2¢ (16)

Hansen shows that this density is defined for 2 < v < ∞ and −1 < λ < 1. This density has a single

mode at −a/b, which is of opposite sign with the parameter λ. Thus, if λ > 0, the mode of the density
is to the left of zero and the variable is skewed to the right, and vice versa when λ < 0. Furthermore,

if λ = 0, Hansen’s distribution reduces to the standardized t distribution. If λ = 0 and v = ∞, it
reduces to a normal density.6

A parametric approach to calculating VaR is based on the lower tail of the skewed t distribution.

Specifically, we estimate the parameters of the skewed t density (µ, σ, v, λ) using 100 daily returns

and then find the one percentile of the estimated distribution. Assuming that Rt ∼ fv,λ(z) follows a

skewed t (ST) density, parametric VaR is the solution to:

ΓST (Φ)Z
−∞

fv,λ(z)dz = Φ (17)

where ΓST (Φ) is the VaR threshold based on the skewed t density with a loss probability of Φ. Equation

(17) indicates that value at risk can be calculated by integrating the area under the probability density

function of the skewed t distribution.
6The parameters of the skewed t density are estimated by maximizing the log-likelihood function of Rt with respect

to the parameters µ, σ, v, and λ:

LogL = n ln b+ n lnΓ

µ
v + 1

2

¶
− n

2
lnπ − n lnΓ(v − 2)− n lnΓ

³v
2

´
− n lnσ −

µ
v + 1

2

¶ nX
t=1

ln

µ
1 +

d2t
(v − 2)

¶
where dt = bzt+a

(1−λs) and s is a sign dummy taking the value of 1 if bzt + a < 0 and s=-1 otherwise.
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B Time-Series Regressions

We investigate the intertemporal relation between downside risk and excess market return at the

monthly frequency. The downside risk-return relationship we analyze in the paper takes the following

form:

Rt+1 = α+ βEt(V aRt+1) + εt+1, (18)

where Rt+1 is the monthly excess return of the market portfolio, Et(V aRt+1) is the conditional value

at risk of the market portfolio obtained from the daily index returns, and εt+1 is the residual term.

We use various measures of the lagged realized VaR as a proxy for the expected conditional downside

risk for the current period.7 The slope coefficient β in equation (18) is expected be positive and

statistically significant.

We also test the usual form of the risk-return tradeoff by examining whether the relation between

the conditional variance and the expected excess return is positive. We use the following discrete-time

specification of Merton (1980):

Rt+1 = α+ γEt(σ
2
t+1) + εt+1, (19)

where the coefficients α and γ according to Merton’s ICAPM, should be zero and equal to the relative

risk aversion coefficient, respectively. Positive values of γ imply the existence of a risk-return tradeoff,

indicating that the expected returns are higher as the risk level for the market increases. Following

Ghysels, Santa-Clara and Valkanov (2004), we use various measures of the lagged realized variance as

a proxy for Et(σ2t+1).

Campbell (1987) and Scruggs (1998) point out that the approximate relationship in equation (19)

may be misspecified if the hedging term in ICAPM is important. To make sure that our results from

estimating equations (18) and (19) are not due to model misspecification, we added to the regressions

a set of control variables that have been used in the literature to capture the state variables that

determine changes in the investment opportunity set. Specifically, we use a set of macroeconomic

variables proxying for business cycle fluctuations, the lagged excess return and a dummy variable for

October 1987 crash.
7As discussed later in the paper, we conduct robustness checks where VaR measures that conditionally change over

time are used in regressions. The results from the lagged realized VaR and from the conditional forecasts of VaR are
found to be similar.
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III Data

To capture the U.S. stock market returns, we use the monthly returns on the NYSE/AMEX/Nasdaq

index. As a robustness check we also repeat our analysis for NYSE/AMEX, NYSE, Nasdaq, and S&P

500 indices. These index returns are available from July 1962 to December 2002, except for the Nasdaq

sample that covers the period from January 1973 to December 2002. In predictive regressions, we use

the excess market return defined as the difference between the index return and the risk free rate. We

use the one-month Treasury bill return as the risk free rate, which is available on Kenneth French’s

online data library.

Panel A of Table 1 provides descriptive statistics for the value-weighted index returns. Panel A

shows that the average monthly return is in the range of 0.94% for the NYSE/AMEX/Nasdaq and

0.99% for the Nasdaq, which correspond to annualized returns of 11.28% and 11.88%, respectively.

The unconditional standard deviations of monthly returns are in the range of 4.3% for the NYSE

and 6.7% for the Nasdaq index. The skewness and kurtosis statistics are reported for testing the

distributional assumption of normality. The skewness statistics for monthly returns are negative and

significant at the 1% level. The kurtosis statistics are greater than three and statistically significant

at the 1% level. Furthermore, the Jarque-Bera statistics strongly reject the distributional assumption

of normality.8

Panel B shows summary statistics for value at risk computed using rolling window estimation over

various months denoted by k. VaR is defined as -1 times the minimum NYSE/AMEX/Nasdaq index

return observed during the last k months of daily data as of the end of each month t. Furthermore,

each month is assumed to have 21 trading days. For example, value at risk for the past 4 months is

computed as the lowest return observed during the last 84 days. Observe that the distributions of

various VaRs are skewed to the right and have fatter tails than the normal distribution. Moreover,

the first-order autoregressive coefficients are high indicating persistency in VaR measures.

A series of papers argue that the stock market can be predicted by macroeconomic variables associ-

ated with business cycle fluctuations. The commonly chosen variables include default spread (DEFt),

term spread (TERMt), dividend price ratio (DPt), and the detrended riskless rate (RRELt). We
8Jarque-Bera, JB = n[(S2/6) + (K − 3)2/24], is a formal test statistic for testing whether the returns are normally

distributed, where n denotes the number of observations, S is skewness and K is kurtosis. The test statistic distributed
as Chi-square with two degrees of freedom measures the difference of the skewness and kurtosis of the series with those
from the normal distribution.
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investigate how incorporating these variables into the predictive regressions affects the intertemporal

relation between downside risk and expected stock returns. We define DEFt as the difference between

the yields on BAA- and AAA-rated corporate bonds, TERMt as the difference between the yields

on the 10-year Treasury bond and the three-month Treasury bill. RRELt is defined as the difference

between 3-month T-bill rate and its 12-month backward moving average.9

IV Empirical Results

A Downside Risk and Expected Returns

In Table II, we present the first set of empirical results from the time-series regressions of the value-

weighted excess market return of NYSE/AMEX/Nasdaq index on nonparametric and parametric value

at risk (VaRt and VaR
p
t ). At this stage, our downside risk measure is 1% VaR computed using the

returns observed over the past 100 days. The dependent variable is the one-month ahead value-

weighted excess market return, Rt+1. The independent variables are the 1% VaR, a dummy variable

that takes the value of one in October 1987 and zero otherwise, the lagged excess market return, Rt,

and the macroeconomic variables. For each parameter estimate we present the Newey-West (1987)

adjusted t-statistic in parenthesis.

Panel A of Table II uses the nonparametric VaR. The first regression shows that the coefficient

on VaRt is positive and 1.92 standard deviations away from zero. When the lagged return and the

dummy is added to the regression, the coefficient estimate of VaRt gets higher and its t-statistic

becomes 2.91. Note that the coefficient estimate of the lagged return is not significant. This is not

surprising given the low autocorrelation in the value-weighted index returns. The dummy variable, on

the other hand, controls for the October 1987 crash. The coefficient on dummy variable is negative

and highly significant indicating that there would be a specification error if we have not used it as a

right hand side variable.10 ,11

9The time series data on monthly three-month T-bill rates, 10-year Treasury bond yields, and BAA- and AAA-rated
corporate bond yields are available from the Federal Reserve statistics release website. We obtain the dividend price
ratio from Robert Shiller’s website: http://aida.econ.yale.edu/~shiller/. The data are available from January 1871 to
June 2002. When analyzing the role of the dividend price ratio, we use the common sample from July 1962 to June 2002.
10To check whether our results are driven by extreme return or VaR realizations, we also exclude the observations lower

(higher) than 1 percentile (99 percentile) of the return and VaR distributions and re-run our time-series regressions. The
t-statistics of the estimated coefficients on VaR with the new sample turn out to be even higher. Thus, we conclude that
the main findings of this paper are not driven by outliers.
11We also repeat our analysis by eliminating the month of October 1987. Since the qualitative results turn out to be

very similar to those reported in our tables, we do not present them here. They are available upon request.
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We further investigate the relation between downside risk and expected returns after controlling

for macroeconomic variables known to forecast the stock market. As shown by Merton (1973), and

subsequently pointed out by Campbell (1987) and Scruggs (1998), equation (19) omits the hedging

component that captures the investor’s motive to hedge for future investment opportunities. Thus, we

include macroeconomic variables that have been shown in the literature to capture state variables that

determine the investment opportunity set. We control for term premia TERMt and default premia

DEFt both of which are shown to covary with business conditions. We also control for the detrended

riskless rate RRELt and dividend price ratio DPt, which are used to forecast market returns. The

last regression in Panel A shows that even after using the macroeconomic control variables, VaRt

has a positive and significant coefficient indicating that there is a robust and significantly positive

relationship between downside risk and expected returns. On the other hand, the R2 values are small,

in the range of 0.58% to 3.28%, but they are consistent with the earlier research (e.g., Goyal and

Santa-Clara (2003), Ghysels et al. (2004) and Bali et al. (2005)).12

Panel B of Table II shows the parameter estimates from regressions of the value-weighted CRSP

index return on the lagged VaR which is calculated parametrically based on the lower tail of the skewed

t distribution, VaRpt . The magnitude and statistical significance of the slope coefficient turn out to be

very similar to our findings in Panel A. Although there is marginal significance at the univariate level,

after controlling for the autocorrelation in market returns and macroeconomic variables, VaRpt has a

coefficient of 0.310 with a t-statistic of 2.67. Furthermore, as will be discussed in the next subsection,

even the univariate regression shows strong statistical significance once the skewed t distribution is

assumed to govern the error process.13

B Maximum Likelihood Estimation Using the Skewed t Distribution

To examine the intertemporal relation between downside risk and expected returns, following most of

the previous studies, we have so far used the ordinary least square (OLS) estimation where the sta-

tistical significance of estimated coefficients is established using the Newey-West adjusted t-statistics.

This estimation procedure implicitly assumes that the monthly returns on stock market indices follow
12See Appendix for parameter estimates obtained by using returns of other indices.
13At an earlier stage of the study, we have repeated our analyses for the equal-weighted indices. Stocks with smaller

market capitalization are weighted more heavily in the equal-weighted index than in the value-weighted index. We find
VaR to be even more powerful in forecasting the future equal-weighted returns because the return distribution of small
stocks exhibits higher peaks, fatter tails and more outliers on the left or right tail than the distribution of bigger stocks.
We report conservative results in our tables. The findings from the equal-weighted indices are available upon request.
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a normal distribution. However, the residuals from the time-series regressions are found to be non-

Gaussian: the empirical distribution of εt+1 exhibits skewness and excess kurtosis, and the fat-tail

property is more dominant than skewness in the sample. This implies that the estimated conditional

mean, α + βV aRt, of equation (18) based on the normal distribution may not reflect the true value

and thus the magnitude and statistical significance of the slope coefficient, β, may not be accurate.

To accommodate skewness and leptokurtosis in the empirical return distribution and more accu-

rately identify the conditional mean of index returns, we model the time-series variation in monthly

returns using the skewed t distribution of Hansen (1994) given in equation (15). Then, we estimate the

intertemporal relation between VaR and excess market return using the maximum likelihood method-

ology described in Section II.A. The maximum likelihood estimation of the risk-return tradeoff yields

the intercept (α) and the slope coefficient (β) in the conditional mean equation as well as the standard

deviation (σ), skewness (λ), and tail-thickness (v) parameters of the skewed t density.

Panel A of Table III presents the maximum likelihood parameter estimates and the asymptotic

t-statistics when the nonparametric value at risk is used to explain the excess return on the CRSP

value-weighted index. With or without the lagged return and dummy variable, the slope coefficient

is found to be in the range of 0.25 to 0.27 and highly significant. Specifically, the asymptotic t-

statistics obtained from the maximum likelihood estimation are in the range of 2.49 to 2.59. When

macroeconomic control variables are added to the regression, the coefficient estimate of VaR slightly

decreases to 0.23, but still significant with a t-statistic of 2.14.14

Panel B of Table III presents the maximum likelihood parameter estimates and the asymptotic

t-statistics when the parametric VaR is used as a measure of downside risk. Again, we find similar

set of results. VaR has a positive and significant coefficient in all three regressions. The coefficient

estimates range between 0.239 to 0.279, where the t-statistics are in the range of 2.16 to 2.27. Overall,

we conclude that the parametric VaR is as good as the nonparametric VaR in terms of predicting the

excess market return.

The parameter estimates in Table III reiterate the central result of the paper that the more a

market index can potentially fall in value the higher should be the expected return. Furthermore,

A notable point in Table III is that the estimated coefficient on dummy variable is not significant,

indicating that the October 1987 crash is captured properly by the skewed fat-tailed distribution.
14Also note that the skewness (λ) parameter is estimated to be negative and highly significant, and the tail-thickness

(v) parameter is finite (i.e., 1
v
6= 0) and highly significant, confirming our projections of a non-normal return distribution.

16



Another notable point is that the magnitude of the coefficient estimates on VaR presented in Table

III, is very robust and it is close to the parameter estimates reported in the last two rows of Panels

A-B of Table II. These results indicate that the OLS estimation of the risk-return tradeoff actually

yields similar results to the maximum likelihood estimation with skewed t density when the October

1987 crash dummy is included in OLS regressions.

C Various Measures of Realized Variance

As mentioned earlier, theoretical models suggest a positive relation between conditional mean and

variance of returns for the aggregate stock market. One of the most commonly used estimator of the

conditional variance is the sum of squared daily returns over the previous month (see French, Schwert,

and Stambaugh (1987)). Although this measure of market variance have been used extensively in tests

of risk-return tradeoff, there is no evidence of a positive and significant relation between this measure

of conditional variance and expected returns.

Recently Ghysels, Santa-Clara and Valkanov (2004) present new and interesting evidence regarding

the risk-return tradeoff. Like French, Schwert, and Stambaugh (1987), they use the rolling window

approach and use the sum of squared daily return as a proxy for the monthly conditional variance.

Additionally, they argue that since the realized variance is very persistent, it ought to be a good proxy

for the conditional variance. On the other hand, they rightfully point out that it is not clear why

the researchers should confine themselves to using data from the last one month only to estimate

the conditional variance. Therefore, they use larger window size (from 1 month to 6 months) when

they sum the past squared returns to acquire the conditional variance measure. Interestingly, this

choice has a tremendous impact on the significance of risk-return tradeoff. Ghysels, Santa-Clara and

Valkanov (2004) report that the variance measures which are computed by using the daily returns

over the previous 3 to 6 months significantly forecast the market return. These findings are striking

because they also confirm the findings of Ghysels et al. on MIDAS (Mixed Data Sampling) estimator

of variance which is also found to be a statistically significant predictor of market returns. Since

MIDAS is a weighted average of past squared returns, its forecasting power is effectively driven by

the strength of rolling window estimates of market variance computed using the past 3 to 6 months

of daily data. Thus, Ghysels, Santa-Clara and Valkanov interpret their rolling window approach as a

robustness check of the MIDAS regressions since it is such a simple estimator of conditional variance

with no parameters to estimate as in MIDAS.
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These recent findings are important for us because we would like to compare our measure of

downside risk with the traditional risk measures which are shown to have a statistically significant

predictive power for the expected market returns. Thus, in the light of these recent findings, we have

to focus on realized variance that is computed using larger than 1-month window size. Simply because

the realized variance in the previous month is not a significant predictor of expected returns.

In Table IV, using our sample from 1962 to 2002, we reexamine the findings of Ghysels, Santa-Clara

and Valkanov (2004) on the rolling window estimates. We assume that each month has 21 trading

days and compute the realized variance as the sum of squared daily returns on the value weighted

NYSE/AMEX/Nasdaq index plus an adjustment term for the first-order serial correlation in daily

returns. We generate different variance measures for horizons of 1 month to 6 months (i.e., past 21

days to 126 days). Panel A of Table IV present parameter estimates from time-series regressions.

The first column shows the number of months used in the estimation of the conditional variance

proxy. Similar to the very early literature, we find that the realized variance in the previous month

has no forecasting power, but starting from month 2 going through month 6, realized variance is

a significant forecaster of market returns. Indeed at 4-month horizon, the variance has a positive

coefficient estimate of 0.538 with a t-statistic of 2.78. In Panel B we find similar evidence when

we control for the macroeconomic variables. Although at 6-month horizon the variance loses its

significance, the t-statistics range from 1.92 to 2.85 for all the other horizons.15 Thus, we conclude

that both the significance levels and patterns are very similar to the findings of Ghysels, Santa-Clara

and Valkanov (2004), such that the 1-month variance estimator is not significant in regressions, whereas

the rolling window variance estimators computed using larger window sizes turn out to be significant

in tests of risk-return tradeoff.16

D Value at Risk versus Realized Variance

We have so far used the 1% VaR as a measure of downside risk. In this section, we first generate

alternative measures of VaR based on the past 1 month to 6 months of daily returns, and then

investigate the predictive power of these alternative VaR measures in forecasting future market returns.
15Similar to the findings of Ghysels et al., we find that as the window size increases beyond 6 months (not shown in the

table), the magnitude and statistical significance of the slope coefficient decrease. This suggests that there is an optimal
window size to estimate the risk-return tradeoff if one would like to use the lagged realized variance as a proxy for the
current conditional variance.
16Note that our coefficient estimates are not exactly comparable to those of Ghysels, Santa-Clara and Valkanov (2004)

simply because we do not convert our variance measures to monthly figures before we use them as RHS variables.
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Finally, we compare the relative performance of various VaR and realized variance measures computed

over different horizons in predictive regressions.

In Table V, we present the estimates of risk-return tradeoff using the rolling window estimators of

VaR. The first column in each panel of Table V shows the number of months used to compute VaR. As

before, we assume that each month has 21 trading days. Therefore, at 1-month horizon, VaR is defined

as the minimum daily return observed during the past 21 days, hence it corresponds to 4.76% VaR.

At 2-month horizon, VaR is defined as the minimum daily return observed during the past 42 days,

hence it can be viewed as 2.38% VaR. Similarly, at 5-month horizon, VaR is defined as the minimum

daily return observed during the past 105 days, hence it is 0.95% VaR measure etc.

Panel A of Table V shows that VaR has a positive and statistically significant coefficient estimate

at every horizon. Similar to our findings for variance estimators, statistical significance varies with

the window used to estimate VaR. When VaR is computed using the past 1 month of daily data, the

t-statistic of VaR is 1.98, whereas it goes up to 4.12 at 4-month horizon. Although not presented in

the paper to save space, the statistical significance of the coefficient of VaR survives up to 9 months.

Another interesting point in Panel A of Table V is that, not only VaR is significant at all horizons

(which is not the case for rolling window estimators of variance), but also the t-statistics and R-squares

from these regressions are much higher than the corresponding statistics in Panel A of Table IV. For

example, at 4-month horizon, VaR together with the lagged return and dummy variable explains 2.55%

of the monthly return variation whereas this ratio is only 1.82% when we use variance as the risk proxy.

In Panel B of Table V, we use additional control variables and find similar evidence. Although the

significance and explanatory power of VaR vary with the window size, VaR is significant at all horizons

and the control variables do not affect our main findings.

We have so far shown that there is a significant relation between VaR and expected stock returns.

However, our ultimate goal is to compare the predictive power of VaR with the predictive power of

traditional risk proxies which are shown to forecast market returns. In Panel A of Table VI, for

horizons 1 month to 6 months, we compute VaR and variance measures and use them in the same

regressions. For example, at 2-month horizon, we compute VaR as the minimum return observed

during the past 42 days and we compute the variance as the sum of squared daily returns during the

past 42 days plus the autocorrelation adjustment term. We further include the control variables to run

a full specification. Observe that, at all horizons, VaR measure has a positive and significant coefficient

estimate. Statistical significance decreases slightly, but the t-statistics are still in the range of 2.05 and
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3.30 when the past 1 month to 4 months of daily returns are used in estimations. On the other hand,

the rolling window estimate of variance is not significant at any horizon. Therefore, measuring variance

by using longer than 1-month window size has a substantial effect on the risk-return tradeoff, but that

impact is fully captured by VaR. We conclude that VaR is not only a good measure of downside risk

which is related to expected returns, it also captures information about expected returns which cannot

be explained by the traditional measure of market risk, realized variance, even if it is computed by

using a larger number of observations.

It is important to note that the findings in Table IV suggest that there is an optimal window size

to estimate the risk-return tradeoff if one would like to use the lagged realized variance as a proxy

for the current conditional variance. Based on this evidence, Ghysels, Santa-Clara, and Valkanov

(2004) develop a new volatility estimator, MIDAS, which is a weighted average of rolling window

variance estimators. Specifically, MIDAS estimator is defined as MIDASt = 22
260P
d=1

wdr
2
t−d, where

wd =
exp(k1d+k2d2)

260P
i=1

exp(k1i+k2i2)

and k1 and k2 are parameters in the weight function. Since MIDAS estimator

is simply a weighted average of past squared daily returns, we expect a significant relation between

MIDAS and expected returns in the light of our findings in Table IV.

In Panel B of Table VI, we first generate the MIDAS estimator using our sample from 1962 to

2002 and test its performance in predicting excess market returns. Observe that the coefficient on

MIDAS is highly significant with a t-statistic of 2.68. This t-statistic compares well with the findings

of Ghysels, Santa-Clara, and Valkanov (2004) who report a t-statistic of 2.64 for the MIDAS estimator

during the period 1946 to 2000. Our next goal is compare the predictive power of our VaR estimate

with the predictive power of MIDAS. Since MIDAS is a weighted average of rolling window variance

estimators, we generate a weighted average VaR measure. Specifically, we form an equal weighted

VaR measure (VaRew), calculated by equally weighting six value at risk measures computed by using

windows of 1 month to 6 months. The second row of Panel B reports results using this equal weighted

measure. As expected VaRew is highly significant with a t-statistic of 3.47. Finally, the third row

of Panel B compares the predictive powers. Although MIDAS estimator is highly significant when

used alone, our VaR measure is superior in the tests of risk-return tradeoff, such that VaRew has a t-

statistic of 2.03 whereas MIDAS is insignificant. This result is not surprising given that VaR measures

over various horizons win convincingly against rolling window estimates of variance that drives the

forecasting power of MIDAS.
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V Robustness Checks

A Conditional Value at Risk

As mentioned earlier, we approximate the conditional value at risk by the lagged VaR, i.e., Et(V aRt+1) =

V aRt, to test the intertemporal relation between downside risk and excess market return as shown in

equation (18). Similar approximations are used in the literature when the realized variance is used

as a proxy for the conditional variance, simply because the realized variance is very persistent. Our

approximation is also justified by the fact that the VaR is highly persistent. For example, as mentioned

before, the VaR obtained from the past 5 months of daily data, which roughly corresponds to a 1%

VaR, has a first-order autocorrelation, AR(1), coefficient of 0.82 (see Panel B of Table I). However,

the measures of VaR are supposed to be changing conditionally over time, hence we have to use more

accurate conditional measures of downside risk. In this section, we use two different methods to obtain

conditional time-varying VaR.

The first method generates conditional VaR based on the conditional mean and conditional stan-

dard deviation of market returns along with the skewness and tail-thickness parameters of a skewed

fat-tailed density. In this framework, we assume that the discrete time version of the geometric

Brownian motion governing financial price movements is:

Rt = ln(Pt+∆t)− ln(Pt) = µ∗∆t+ zσ∗
√
∆t, (20)

where Pt is the price level at time t, Rt is the log-return from time t to t+∆t, ∆t is the length of time

interval between two successive prices, µ∗ and σ∗ are the annualized mean and standard deviation of

Rt, and ∆Wt = z
√
∆t is a discrete approximation of the Wiener process. In the case of time-varying

mean and variance, equation (20) can be modified to reflect these dependencies as:

Rt = µ
∗
t∆t+ zσ

∗
t

√
∆t, (21)

where µ∗t and σ∗t are annualized measures of conditional mean and conditional standard deviation of

Rt. For simplicity, equation (21) can be rewritten as Rt = µt+zσt, where µt = µ
∗
t∆t and σt = σ∗t

√
∆t

are, respectively, the conditional mean and conditional standard deviation of returns. Note that the

standardized return z = Rt−µt
σt

preserves the properties of zero mean and unit variance.
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The conditional VaR threshold for Rt at a given coverage probability Φ, denoted by θt, is obtained

from the solution of the following cumulative distribution of returns,

Pr(Rt ≤ θt | Ωt−1) =
θtZ

−∞
f(Rt | Ωt−1)dRt = Φ, (22)

where Pr(.) denotes the probability and f(Rt | Ωt−1) is the conditional probability density function
for Rt. The above probability function can be written in terms of the standardized returns as follows:

Pr(Rt ≤ θt | Ωt−1) = Pr
µ
Rt − µt

σt
≤ θt − µt

σt
| Ωt−1

¶
= Pr

µ
z ≤ a = θt − µt

σt

¶
=

aZ
−∞

f(z)dz = Φ,

(23)

where the density f(z) and the threshold a with the coverage probability Φ do not depend on the

information set Ωt−1. The latter is a by-product of the assumption that the series of standardized

returns z is identically and independently distributed. The latter assumption is consistent with empir-

ical evidence related to the GARCH models for stock returns (see, e.g., Bollerslev, Chou, and Kroner

(1992) and Bollerslev, Engle, and Nelson (1994)).

Given the probability density function of standardized returns f(z), the threshold a can be easily

obtained from the solution of the equation
aR

−∞
f(z)dz = Φ. That is, by finding the numerical value of

a that equalizes the area under f(z) to the coverage probability Φ. For the skewed t density given in

equation (15), the value of a is a function of the skewness and tail-thickness parameters (λ and υ).

Given the estimated threshold a, the conditional (time-varying) VaR for the returns can be com-

puted using the equation

θt = µt|t−1 + aσt|t−1, (24)

where the values of µt|t−1 and σt|t−1 are based on some GARCH specification with time-varying

conditional mean and standard deviation. Equation (24) originally proposed by Bali and Theodossiou

(2004) can be used to compute the conditional VaR thresholds for excess market returns.17

Earlier empirical analyses are based on a sound statistical theory, but do not yield VaR measures

that reflect the current mean-volatility background. In light of the fact that serial correlation and

conditional heteroscedasticity are present in most financial data, unconditional VaR models cannot

provide an accurate characterization of the actual VaR thresholds. In this section, we extend the

unconditional VaR approach by taking into account the dynamic behavior of the conditional mean
17The conditonal VaR has so far not been used in the tests of risk-return tradeoff. However, the econometric approach

to estimate conditional VaR is originally developed by Engle and Manganelli (2004) and Bali and Theodossiou (2004).
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and volatility of financial returns. More specifically, we use the following ARMA(1,1)-GARCH(1,1)

specification with the skewed t density:

Rt = α0 + α1Rt−1 + α2εt−1 + εt, εt = ztσt|t−1 (25)

E(ε2t | Ωt−1) = σ2t|t−1 = β0 + β1ε
2
t−1 + β1σ

2
t−1, (26)

where Rt is the return for period t, zt is a random variable drawn from the skew t distribution,bµt|t−1 = bα0 + bα1Rt−1 + bα2εt−1 is the conditional mean, and bσt|t−1 = qbσ2t|t−1 is the conditional
standard deviation of returns based on the information set up to time t− 1. The conditional VaR is
computed by substituting bµt|t−1, bσt|t−1, and a into V aRt|t−1 = bµt|t−1 + abσt|t−1, where a is obtained
from the estimated skewed t distribution.

After obtaining the conditional VaR measure based on the above mentioned methodology, we use

it as a right hand side variable in Panel A of Table VII. Observe that in the univariate regression it

has a t statistic of 1.98, and when we control for the crash month, the t-statistic goes up to 3.51. Even

after controlling for the macroeconomic variables, the t-statistic is 3.22. These significance levels are

even higher than those we obtain when using the realized VaR as a proxy for the conditional downside

risk. Hence, we conclude that there is a significantly positive relation between VaR measures that

conditionally change over time and the expected market returns.

Our second measure of conditional variance is obtained from a simpler method. We consider the

following regression:

V aRt+1 = λ+ δV aRt + φHt + ζt, (27)

where Ht denotes a vector that consists of the lagged macroeconomic variables, i.e., RRELt, TERMt,

DEFt, and DPt.18 Therefore, assuming that investors’ information set as of time t consists of the

lagged VaR and a set of macroeconomic variables, we estimate the conditional VaR as the explained

portion of the regression shown in equation (27), i.e., Et(V aRt+1) = bλ+bδV aRt+ bφHt. After running
this first stage regression, we use the explained part in our second stage regressions designed to test

risk-return tradeoff.

Panel B of Table VII presents results from the time-series regressions of the one-month-ahead

value-weighted excess market return, Rt+1, on the conditional VaR, Et(V aRt+1), obtained from various

horizons from 1 month to 6 months, dummy variable, lagged excess market return, and macroeconomic
18We test the statistical significance of the first-order serial correlation in alternative measures of VaR obtained from

the past 1 month to 6 months of daily data. The monthly VaR measures are found to be highly persistent (as shown in
Panel B Table I), which justify our use of the lagged VaR in equation (27).
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variables. The results indicate that, similar to our findings in Panel A, there exists a significant relation

between expected returns and conditional VaR at every horizon.

B Alternative Measures of Downside Risk

VaR provides information about the left tail of the empirical return distribution, however it is not the

only measure of downside risk. If downside risk is an important determinant of expected returns, we

expect other proxies of downside risk to perform well in predictive regressions too. In this section, we

conduct an empirical analysis of the various left-tail risk measures.

An important example for a risk measure of this kind is Expected Shortfall originally proposed

by Artzner et al. (1999). Expected Shortfall (ES) is defined as the conditional expectation of loss

given that the loss is beyond the VaR level. That is, when the distributions of losses are continuous,

expected shortfall at the 100(1—Φ) percent confidence level is defined by

ESΦ(Rt) = E [Rt|Rt ≤ V aRΦ(Rt)] . (28)

Equation (28) can be viewed as a mathematical transcription of the concept “average loss in the worst

100Φ% cases”.

In addition to expected shortfall that measures the mean of losses larger than VaR, we also compute

the variance of losses larger than VaR, and call it tail risk (TR)

TRΦ(Rt) = E
h
(Rt −E (Rt|Rt ≤ V aRΦ(Rt))

2 |Rt ≤ V aRΦ(Rt)
i
. (29)

We consider the 2.5% and 5% tail risk (TR2.5%t and TR5%t ) and the 2.5% and 5% expected shortfall

(ES2.5%t and ES5%t ) as alternative proxies for downside risk. In our empirical analysis we define the

2.5% (5%) tail risk as the sum of squared deviations of the lowest 2.5 percentile (5 percentile) of

the NYSE/AMEX/Nasdaq index returns from the mean of index returns during the last 100 days.

Similarly, we define the 2.5% (5%) expected shortfall as the average of the lowest 2.5 percentile (5

percentile) of the NYSE/AMEX/Nasdaq index returns observed during the last 100 days as of the end

of month t.

Table VIII presents results from the regressions of the value-weighted index return on the lagged

tail risk and expected shortfall measures. Panel A and B report results for TR2.5%t and TR5%t . Both

TR2.5%t and TR5%t have positive coefficient estimates and their t-statistics are around 2.3. In Panels

C and D, we show results for expected shortfall measures, ES2.5%t and ES5%t . The results are similar
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to those reported in Panels A and B. When we control for the lagged return, dummy variable and

macroeconomic variables, ES2.5%t and ES5%t have positive and significant coefficient estimates. Over-

all, the parameter estimates in Table VIII indicate that alternative measures of left-tail risk measures

predict the one-month-ahead market returns almost as well as VaR.

VI Conclusion

We examine the intertemporal relation between downside risk and expected stock returns. We use

value at risk as a measure of downside risk and find a positive and significant relation between value

at risk and expected return on the market. Moreover, we generate alternative measures of VaR based

on the past 1 month to 6 months of daily data, and show that there is a significantly positive relation

between VaR and expected market return for all horizons considered in the paper. Finally, we test the

relative performance of various VaR and realized variance measures computed over different horizons in

predictive regressions. The results indicate that VaR wins convincingly even when it is compared to the

conditional variance proxies which have significant predictive power for market returns. These findings

are robust across different measures of market return, loss probability levels, and after controlling for

macroeconomic variables associated with business cycle fluctuations.

If downside risk is an important determinant of expected returns, we expect other proxies of

downside risk to perform well in predictive regressions too. Therefore, we use expected shortfall and

tail risk, both of which inform us about the left tail of the return distribution, as alternative measures

of downside risk. We show that, regardless of the left-tail measure we use, our qualitative results from

predictive regressions do not change.

The results provide strong evidence that there exists a positive and significant relation between

downside risk and expected returns, implying that the more a market index can potentially fall in

value the higher should be the expected return. Our findings also suggest that rare large moves in the

market or relatively infrequent return observations can be interpreted as signal whereas the frequent

small fluctuations can be viewed as noise which do not have power to explain time-series variation in

excess market returns.
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Table I. Descriptive Statistics

Panel A shows summary statistics for the monthly return on the value-weighted NYSE/AMEX/Nasdaq, NYSE/AMEX,
NYSE, Nasdaq, and S&P 500 index. Panel B shows summary statistics for Value at Risk (VaRt) computed using rolling
window estimation over various months (k). VaRt is defined as -1 times the minimum NYSE/AMEX/Nasdaq index
return observed during the last k months as of the end of each month t. Each month is assumed to have 21 trading
days. We report the mean, median, standard deviation, maximum, minimum, skewness, kurtosis, and Jarque-Bera
statistics. We report the first-order autoreggressive coefficients for VaR measures. Statistics in Panel B are computed
after eliminating the month of October 1987.

Panel A. Monthly Index Returns
NYSE/AMEX/Nasdaq NYSE/AMEX NYSE Nasdaq SP500

Obs 486 486 486 360 486
Mean 0.0094 0.0095 0.0095 0.0099 0.0096
Median 0.012 0.011 0.011 0.013 0.011
Std. Dev. 0.045 0.043 0.043 0.067 0.044
Maximum 0.166 0.165 0.168 0.220 0.170
Minimum -0.225 -0.218 -0.216 -0.271 -0.216
Skewness -0.451 -0.369 -0.345 -0.471 -0.317
Kurtosis 4.907 5.077 5.050 4.628 4.793

Jarque-Bera 90.092 98.394 94.709 53.092 73.239

Panel B. Value at Risk over Various Horizons
k 1 2 3 4 5 6

Obs 483 483 481 481 480 478
Mean 0.015 0.018 0.021 0.023 0.025 0.026
Median 0.013 0.015 0.017 0.019 0.020 0.022
Std. Dev. 0.009 0.012 0.015 0.017 0.018 0.020
Maximum 0.066 0.171 0.171 0.171 0.171 0.171
Minimum 0.002 0.004 0.005 0.005 0.008 0.008
Skewness 2.084 4.999 5.131 5.028 4.793 4.594
Kurtosis 10.220 52.412 47.158 41.801 36.314 32.412
AR(1) 0.36 0.48 0.70 0.77 0.82 0.86
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Table II. Parametric and Nonparametric Value at Risk

This table presents results from the time-series regressions of the value-weighted excess market return on nonparametric
and parametric value at risk (VaR and VaR

p
t ). VaRt is defined as the minimum index return observed during the last

100 days as of the end of month t. VaRpt is the parametric value at risk calculated based on the lower tail of the
skewed t distribution. The original VaRs are multiplied by —1 before running our regressions. Value-weighted excess
return, Rt, is defined as the return on the value-weighted NYSE/AMEX/Nasdaq index minus the one-month Treasury
bill rate. A dummy takes the value of one in October 1987 and zero otherwise. DEFt is the default spread calculated
as the difference between the yields on BAA- and AAA-rated corporate bonds. TERMt is the term spread calculated
as the difference between the yields on the 10-year Treasury bond and the three-month Treasury bill. RRELt is the
stochastically detrended riskless rate defined as the three-month Treasury bill rate minus its 12-month backward moving
average. DPt is the dividend yield on S&P 500 index. In each regression, the dependent variable is the one-month-ahead
excess market return, Rt+1. In each regression, the first row gives the estimated coefficients. The second row gives the
Newey-West adjusted t-statistics in parentheses. The R2 values are reported in the last column.

Panel A. Nonparametric 1% VaR
Constant VaRt Rt dummy RRELt TERMt DEFt DPt R2

0.000 0.177 0.58%
(-0.03) (1.92)

-0.002 0.274 0.029 -0.114 1.98%
(-0.76) (2.91) (0.67) (-6.74)

-0.015 0.296 0.028 -0.111 -0.246 -0.069 -0.002 0.387 3.28%
(-1.88) (2.70) (0.61) (-6.14) (-0.94) (-0.31) (0.00) (1.37)

Panel B. Parametric 1% VaR
Constant VaRpt Rt dummy RRELt TERMt DEFt DPt R2

0.001 0.164 0.37%
(0.27) (1.65)

-0.002 0.286 0.031 -0.112 1.71%
(-0.59) (2.79) (0.71) (-6.51)

-0.014 0.310 0.029 -0.109 -0.261 -0.077 0.058 0.358 3.02%
(-1.81) (2.67) (0.62) (-6.16) (-0.99) (-0.35) (0.08) (1.29)
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Table III. Maximum Likelihood Estimation with Skewed t Distribution

This table presents the maximum likelihood parameter estimates and the asymptotic t-statistics in parentheses based
on the skewed t density. VaRt, VaR

p
t , Rt, dummy and control variables are defined in Table II. In each regression,

the dependent variable is the one-month-ahead excess market return, Rt+1. The maximum likelihood estimation of the
risk-return tradeoff yields the intercept (α) and the slope coefficient (β) in the conditional mean equation as well as the
standard deviation (σ), skewness (λ), and tail-thickness (v) parameters of the skewed t density.

Panel A. Nonparametric 1% VaR
Rt+1 = α+ βV aRt + δRt + ϕdummy +ΩFt + εt+1; εt+1 ∼ skewed t(σ,λ, v)

Constant V aRt Rt dummy RRELt TERM t DEF t DP t σ λ v

0.025 0.267 0.045 -0.204 6.751
(3.13) (2.59) (20.84) (-3.35) (3.28)

0.022 0.254 0.001 -0.247 0.044 -0.179 8.321
(2.58) (2.49) (0.03) (-0.10) (21.41) (-2.73) (2.37)

0.021 0.232 -0.027 -0.244 -0.297 -0.210 0.513 0.136 0.043 -0.216 8.287
(2.03) (2.14) (0.60) (-0.11) (-1.50) (-1.14) (0.86) (0.66) (20.25) (-3.19) (2.27)

Panel B. Parametric 1% VaR
Rt+1 = α+ βV aRpt + δRt + ϕdummy +ΩFt + εt+1; εt+1 ∼ skewed t(σ,λ, v)

Constant V aRpt Rt dummy RRELt TERM t DEF t DP t σ λ v

0.026 0.279 0.045 -0.203 6.794
(3.20) (2.27) (20.94) (-3.33) (3.27)

0.023 0.262 0.003 -0.247 0.044 -0.177 8.418
(2.76) (2.17) (0.08) (-0.03) (21.59) (-2.69) (2.36)

0.022 0.239 -0.027 -0.245 -0.309 -0.218 0.580 0.108 0.043 -0.216 8.393
(2.13) (2.16) (0.61) (-0.09) (-1.55) (-1.18) (0.97) (0.53) (20.44) (-3.20) (2.26)
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Table IV. Various Measures of Realized Variance

This table shows estimates of the risk-return tradeoff with the rolling window estimators of realized variance. Each
month is assumed to be 21 days. For each horizon the realized variance is computed as the sum of the squared daily
returns on the value weighted NYSE/AMEX/Nasdaq index plus an adjustment term for the first-order serial correlation
in daily returns. First column in each panel shows the number of months (k) used to compute the variance. Rt, dummy
and control variables are defined in Table II. In each regression, the dependent variable is the one-month-ahead excess
market return, Rt+1. Panel A presents the parameter estimates without the control variables and Panel B presents the
parameter estimates with the control variables. In each regression, the first row gives the estimated coefficients. The
second row gives the Newey-West adjusted t-statistics in parentheses. The R2 values are reported in the last column.

Panel A. Mean-Variance Tradeoff
k Constant σ2t Rt dummy R2

1 0.004 0.381 0.032 -0.097 0.76%
(1.38) (0.39) (0.73) (-1.54)

2 0.001 0.688 0.038 -0.116 1.28%
(0.60) (1.71) (0.83) (-4.39)

3 0.000 0.643 0.033 -0.114 1.71%
(0.19) (2.67) (0.75) (-5.95)

4 0.000 0.538 0.029 -0.108 1.82%
(-0.01) (2.78) (0.65) (-6.12)

5 0.000 0.367 0.027 -0.097 1.45%
(0.18) (2.08) (0.61) (-5.77)

6 0.000 0.294 0.027 -0.092 1.32%
(0.20) (1.81) (0.62) (-5.63)
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Panel B. Mean-Variance Tradeoff with Macrovariables
k Constant σ2t Rt dummy RRELt TERM t DEF t DP t R2

1 -0.006 0.349 0.027 -0.091 -0.264 -0.081 0.272 0.253 1.93%
(0.83) (0.29) (0.57) (-1.19) (-1.04) (-0.38) (0.36) (0.91)

2 -0.009 0.840 0.037 -0.121 -0.229 -0.039 0.054 0.304 2.62%
(-1.29) (2.18) (0.75) (-5.13) (-0.90) (-0.18) (0.07) (1.09)

3 -0.009 0.683 0.031 -0.112 -0.225 -0.036 -0.048 0.326 2.85%
(-1.34) (2.85) (0.66) (-6.38) (-0.87) (-0.17) (-0.06) (1.16)

4 -0.010 0.558 0.028 -0.104 -0.220 -0.037 0.105 0.343 2.89%
(-1.40) (2.82) (0.60) (-6.46) (-0.85) (-0.17) (-0.14) (1.21)

5 -0.009 0.370 0.026 -0.092 -0.228 -0.042 0.007 0.312 2.54%
(-1.31) (1.92) (0.55) (-5.81) (-0.90) (-0.20) (0.01) (1.09)

6 -0.009 0.285 0.026 -0.087 -0.231 -0.046 0.048 0.304 2.40%
(-1.29) (1.59) (0.55) (-5.59) (-0.91) (-0.22) (0.06) (1.05)
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Table V. Value at Risk at Various Horizons

This table shows estimates of the risk-return tradeoff with the rolling window estimators of Value-at-Risk. Each month is
assumed to be 21 days. First column in each panel shows the number of months (k) used to compute the VaR. For each
horizon the VaR is computed as the lowest daily returns on the value weighted NYSE/AMEX/Nasdaq index. Rt, dummy
and control variables are defined in Table II. In each regression, the dependent variable is the one-month-ahead excess
market return, Rt+1. Panel A presents the parameter estimates without the control variables and Panel B presents the
parameter estimates with the control variables. In each regression, the first row gives the estimated coefficients. The
second row gives the Newey-West adjusted t-statistics in parentheses. The R2 values are reported in the last column.

Panel A. Mean-VaR Tradeoff
k Constant V aRt Rt dummy R2

1 -0.002 0.456 0.068 -0.136 1.42%
(-0.66) (1.98) (1.37) (-4.17)

2 -0.004 0.474 0.054 -0.140 2.35%
(-1.50) (3.99) (1.20) (-7.45)

3 -0.003 0.380 0.038 -0.129 2.27%
(-1.15) (3.66) (0.87) (-7.26)

4 -0.004 0.367 0.033 -0.127 2.55%
(-1.32) (4.12) (0.77) (-7.76)

5 -0.002 0.267 0.029 -0.113 1.91%
(-0.73) (2.93) (0.67) (-6.82)

6 -0.002 0.225 0.030 -0.106 1.71%
(0.55) (2.57) (0.68) (-6.53)

34



Panel B. Mean-VaR Tradeoff with Macrovariables
k Constant V aRt Rt dummy RRELt TERM t DEF t DP t R2

1 -0.016 0.545 0.075 -0.143 -0.228 -0.024 -0.096 0.396 2.73%
(-1.89) (2.06) (1.33) (-4.10) (-0.89) (-0.11) (-0.13) (1.36)

2 -0.018 0.531 0.058 -0.142 -0.231 -0.026 -0.146 0.430 3.76%
(-2.37) (4.04) (1.17) (-7.19) (-0.89) (-0.12) (-0.21) (1.55)

3 -0.016 0.420 0.039 -0.128 -0.246 -0.050 -0.130 0.425 3.65%
(-2.13) (3.63) (0.83) (-6.88) (-0.94) (-0.23) (-0.18) (1.52)

4 -0.017 0.401 0.035 -0.126 -0.235 -0.062 -0.149 0.440 3.91%
(-2.17) (3.74) (0.75) (-6.89) (-0.89) (-0.27) (-0.21) (1.57)

5 -0.015 0.291 0.028 -0.110 -0.247 -0.068 -0.009 0.390 3.23%
(-1.87) (2.69) (0.61) (-6.22) (-0.95) (-0.31) (-0.01) (1.38)

6 -0.014 0.247 0.029 -0.103 -0.249 -0.073 0.042 0.377 3.03%
(-1.80) (2.40) (0.61) (-6.06) (-0.96) (-0.34) (0.06) (1.32)
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Table VI. Comparing VaR with Realized Variance

This table compares the relative performance of rolling window estimates of the VaR and realized variance, and MIDAS
estimator in predicting future market returns. Each month is assumed to be 21 days. First column in each panel
shows the number of months (k) used to compute the VaR and Variance. For each horizon the VaR is computed as
the lowest daily returns on the value weighted NYSE/AMEX/Nasdaq index. Similarly, for each horizon, the realized
variance is computed as the sum of squared daily returns on the value weighted NYSE/AMEX/Nasdaq index plus an
autocorrelation adjustment term. Rt, dummy, and macroeconomic variables are defined in Table II. V aR

ew
t is the

equal-weighted VaR measure. In each regression, the dependent variable is the one-month-ahead excess market return,
Rt+1. In each regression, the first row gives the estimated coefficients. The second row gives the Newey-West adjusted
t-statistics in parentheses. The R2 values are reported in the last column.

Panel A. Relative Performance of VaR and Variance
k Constant V aRt σ2t Rt dummy RRELt TERM t DEF t DP t R2

1 -0.018 0.926 -2.162 0.088 -0.058 -0.258 -0.069 -0.076 0.432 3.16%
(-2.14) (2.69) (-1.47) (1.59) (-0.81) (-1.01) (-0.33) (-0.10) (1.54)

2 -0.020 0.766 -0.741 0.061 -0.129 -0.252 -0.046 -0.116 0.458 3.96%
(-2.49) (3.30) (-1.23) (1.23) (-6.03) (-0.98) (-0.21) (-0.16) (1.65)

3 -0.018 0.546 -0.329 0.040 -0.125 -0.262 -0.066 -0.094 0.441 3.71%
(-2.10) (2.05) (-0.57) (0.85) (-6.84) (-1.00) (-0.30) (-0.13) (1.57)

4 -0.018 0.571 -0.401 0.037 -0.124 -0.258 -0.090 -0.052 0.454 4.06%
(-2.20) (2.15) (-0.72) (0.79) (-7.21) (-0.98) (-0.41) (-0.07) (1.64)

5 -0.016 0.422 -0.297 0.029 -0.110 -0.271 -0.096 0.103 0.397 3.34%
(-1.92) (1.77) (-0.62) (0.63) (-6.50) (-1.05) (-0.45) (0.14) (1.42)

6 -0.015 0.371 -0.266 0.029 -0.104 -0.274 -0.105 0.187 0.377 3.15%
(-1.86) (1.68) (-0.62) (0.62) (-6.34) (-2.05) (-0.49) (0.24) (1.33)

Panel B. Relative Performance of VaR and MIDAS
k Constant V aRewt MIDASt Rt dummy RRELt TERM t DEF t DP t R2

1 -0.012 2.812 0.035 -0.126 -0.218 -0.025 -0.040 0.371 2.95%
(-1.70) (2.68) (0.72) (-5.58) (-0.84) (-0.12) (-0.05) (1.29)

2 -0.018 0.466 0.044 -0.134 -0.230 -0.041 -0.111 0.430 3.68%
(-2.31) (3.47) (0.92) (-6.65) (-0.88) (-0.18) (-0.15) (1.51)

3 -0.020 0.726 -2.325 0.048 -0.123 -0.242 -0.065 0.003 0.413 3.87%
(-2.34) (2.03) (-0.84) (0.98) (-5.39) (-0.92) (-0.29) (0.01) (1.48)
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Table VII. Conditional VaR

This table presents results from the time-series regressions of the value-weighted excess market return on the conditional
value at riskEt(V aRt+1). In Panel A, conditional VaR is computed by using conditional mean and conditional standard
deviation along with the skewness and tail-thickness parameters of the skewed t density. In Panel B, conditional VaR is
defined as the portion of one-month ahead VaR explained by the lagged VaR and macroeconomic variables. Rt, dummy,
and macroeconomic variables are defined in Table II. In each regression, the dependent variable is the one-month-ahead
excess market return, Rt+1. In each regression, the first row gives the estimated coefficients. The second row gives the
Newey-West adjusted t-statistics in parentheses. The R2 values are reported in the last column.

Panel A. Conditional VaR from Skewed-t GARCH
Constant Et(V aRt+1) Rt dummy RRELt TERM t DEF t DP t R2

-0.001 0.205 0.65%
(-0.18) (1.98)

-0.003 0.332 0.032 -0.122 2.19%
(-1.13) (3.51) (0.74) (-7.27)

-0.016 0.368 0.033 -0.121 -0.245 -0.066 -0.112 0.432 3.56%
(-2.10) (3.22) (0.70) (-6.55) (-0.93) (-0.29) (0.16) (1.53)

Panel B. Conditional VaR from 2-Stage Regression
Months Constant Et(V aRt+1) Rt dummy RRELt TERM t DEF t DP t R2

1 -0.055 2.529 0.075 -0.143 -0.234 0.077 -1.616 1.095 2.73%
(-2.26) (2.06) (1.33) (-4.10) (-0.92) (0.35) (-1.25) (2.07)

2 -0.028 0.927 0.058 -0.142 -0.264 -0.024 -0.503 0.625 3.76%
(-3.23) (4.04) (1.17) (-7.19) (1.02) (-0.11) (-0.67) (2.11)

3 -0.021 0.576 0.039 -0.128 -0.274 -0.058 -0.295 0.518 3.65%
(-2.56) (3.63) (0.83) (-6.88) (-1.04) (-0.26) (-0.41) (1.80)

4 -0.020 0.509 0.035 -0.126 -0.261 -0.065 -0.266 0.509 3.91%
(-2.50) (3.74) (0.75) (-6.89) (-0.99) (-0.29) (-0.37) (1.78)

5 -0.017 0.352 0.028 -0.110 -0.254 -0.075 -0.067 0.430 3.23%
(-2.05) (2.69) (0.61) (-6.22) (-0.97) (-0.34) (-0.09) (1.49)

6 -0.016 0.289 0.029 -0.103 -0.253 -0.077 -0.004 0.408 3.03%
(-1.94) (2.40) (0.61) (-6.06) (-0.97) (-0.35) (0.01) (1.4)
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Table VIII. Alternative Measures of Downside Risk

This table presents results from the time-series regressions of the value-weighted excess market return on the 2.5%
and 5% Tail Risk (TR2.5%t and TR5%t ) and the 2.5% and 5% Expected Shortfall (ES2.5%t and ES5%t ) measures.
2.5% (5%) Tail Risk is computed as the sum of squared deviations of the lowest 2.5 percentile (5 percentile) of the
NYSE/AMEX/Nasdaq index returns from the mean of index returns during the latest 100 days. 2.5% (5%) Expected
Shortfall is computed as the average of the lowest 2.5 percentile (5 percentile) of NYSE/AMEX/Nasdaq index returns
observed during the last 100 days as of the end of month t. Rt, dummy, and macroeconomic variables are defined in
Table II. The second row gives the Newey-West adjusted t-statistics in parentheses. The R2 values are reported in the
last column.

Panel A. 2.5% Tail Risk
Constant TR2.5%t Rt dummy RRELt TERM t DEF t DP t R2

-0.008 1.163 0.024 -0.110 -0.278 -0.119 0.194 0.301 2.77%
(-1.09) (2.30) (0.52) (-5.61) (-1.07) (-0.53) (0.28) (1.11)

Panel B. 5% Tail Risk
Constant TR5%t Rt dummy RRELt TERM t DEF t DP t R2

-0.008 1.053 0.024 -0.107 -0.276 -0.111 0.163 0.311 2.75%
(-1.14) (2.29) (0.52) (-5.71) (-1.06) (-0.50) (0.23) (1.14)

Panel C. 2.5% Expected Shortfall
Constant ES2.5%t Rt dummy RRELt TERM t DEF t DP t R2

-0.016 0.453 0.032 -0.104 -0.249 -0.050 -0.087 0.397 3.03%
(-2.04) (2.56) (0.68) (-6.23) (-0.95) (-0.23) (-0.12) (1.38)

Panel D. 5% Expected Shortfall
Constant ES5%t Rt dummy RRELt TERM t DEF t DP t R2

-0.016 0.524 0.032 -0.096 -0.253 -0.043 -0.102 0.393 2.83%
(-2.05) (2.36) (0.69) (-6.30) (-0.97) (-0.20) (0.13) (1.35)
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APPENDIX

We provide evidence that VaR is an important measure of market risk in predicting returns on
the value-weighted NYSE/AMEX/Nasdaq index. However, the positive relation between VaR and
expected returns on the NYSE/AMEX/Nasdaq index may well be due to the Nasdaq stocks which
tend to be smaller stocks with return distributions that significantly deviate from a normal distribution.
Therefore, here we consider other stock market indices. Panels A to D report results for the value-
weighted NYSE/AMEX, NYSE, Nasdaq, and S&P 500 index portfolios, respectively. For all market
indices, there is a positive and highly significant relation between VaR and excess market return; the
t-statistics vary from 2.33 for S&P 500 to 2.64 for Nasdaq. Moreover, the R2 values vary between
3.11% for NYSE and 4.20% for Nasdaq. The results indicate that the strong positive relation between
VaR and expected return is robust across different stock market indices.

Panel A. NYSE/AMEX
Constant VaRt Rt dummy RRELt TERMt DEFt DPt R2

-0.011 0.263 0.009 -0.117 -0.230 -0.103 0.175 0.284 3.12%
(-1.69) (2.59) (0.18) (-6.47) (-0.89) (-0.49) (0.25) (1.15)

Panel B. NYSE
Constant VaRt Rt dummy RRELt TERMt DEFt DPt R2

-0.011 0.256 0.002 -0.118 -0.228 -0.095 0.195 0.273 3.11%
(-1.66) (2.53) (0.04) (-6.49) (-0.90) (-0.46) (0.29) (1.11)

Panel C. Nasdaq
Constant VaRt Rt dummy RRELt TERMt DEFt DPt R2

-0.039 0.548 0.112 -0.071 -0.193 0.158 -0.447 0.841 4.20%
(-2.23) (2.64) (2.15) (-3.06) (-0.52) (0.46) (-0.40) (1.74)

Panel D. S&P 500
Constant VaRt Rt dummy RRELt TERMt DEFt DPt R2

-0.011 0.248 -0.025 -0.113 -0.226 -0.070 0.147 0.276 3.15%
(-1.47) (2.33) (-0.52) (-6.67) (-0.88) (-0.32) (0.21) (1.00)
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