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Abstract

This paper develops a search-theoretic model of the cross-sectional distribu-

tion of asset returns, abstracting from risk premia and focusing exclusively

on liquidity. I derive a float-adjusted return model (FARM), explaining

the pricing of liquidity with a simple linear formula: In equilibrium, the

liquidity spread of an asset is proportional to the inverse of its free float,

the portion of its market capitalization available for sale. This suggests

that the free float is an appropriate measure of liquidity, consistent with

the linear specifications commonly estimated in the empirical literature.

The qualitative predictions of the model corroborate much of the empiri-

cal evidence.
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1 Introduction

Why do different assets earn different expected returns? One fundamental reason

is that they may bear different risks. Many empirical studies, however, suggest

that risk characteristics cannot explain all variation in expected returns. After

controlling for risk premia, expected returns appear to be positively related to

bid-ask spreads, and negatively related to turnover and dollar trading volume.

These patterns suggest that returns are related to liquidity, broadly defined as the

ease of buying and selling. Liquidity is reflected in small trading costs, measured

for instance by the bid-ask spread, and associated with the opportunity to buy

or sell large quantities in a short time, at a similar price. These properties may

be proxied by turnover or trading volume.

This paper provides a dynamic asset pricing model in which cross-sectional

variation in asset returns is exclusively due to liquidity differences. Its first objec-

tive is to explain the pricing of liquidity differences and to suggest an appropriate

measure of liquidity. Its second objective is to reproduce some of the qualitative

relationships documented by the empirical literature.

In our model, investors cannot trade instantly in multilateral Walrasian mar-

ket. Instead, trade is bilateral: investors have to search for each others, meet in

pairs, and bargain over prices. In this environment, a more liquid asset is defined

as one with smaller trading delays: buyers and sellers of that asset are more likely

to be found in a short time. This search framework applies most directly to over-

the-counter markets such as the Treasury market, the corporate-bond market, or

markets for financial derivatives. More generally, it applies to trades that are not

arranged in a centralized market, such as block trades in the New York Stock

Exchange (NYSE) upstairs market. Lastly, the search friction is likely to have an

impact on asset prices even in markets where security dealers provide immediacy

to outside investors. First, the search friction determines investors’ outside op-

tion when they trade with dealers. Second, dealers might have to search for end

investors in order to unload their inventories, and would charge the associated

search cost to their customers. Third, in some markets, such as the corporate-

bond market, dealers typically act as a brokers and search for counterparties on
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the behalves of their customers.

In the present model, many different assets are traded. Investors allocate

their fixed budgets of search efforts to the various assets. They recognize that

the value of searching for a particular asset is related to the likelihood of finding

a counterparty for that asset in a short time. The first-order condition of the

associated search optimization problem is key to the model’s implications, as it

reflects how the likelihood of finding an asset is priced in equilibrium. Specifically,

in equilibrium, investors are indifferent between searching for alternative traded

assets, under natural technical conditions. This indifference property gives rise

to a distribution of “liquidity premia.” Namely, an asset that is easier to find is

sold at a higher price.

The first contribution of this paper is to derive a float-adjusted return model,

or FARM, explaining the pricing of liquidity differences with the following linear

formula

Rk − RL =
φ̄

φk

(RM − RL) . (1)

On the left-hand side of (1), Rk denotes the return of asset k, one of the many

assets traded in the steady-state equilibrium, and RL denotes the return of an

appropriately defined ‘perfectly liquid’ asset. On the right-hand side of (1), φk

denotes the free float of asset k, defined as the portion of the market capitalization

available for sale; φ̄ denotes the market average free float; and, lastly, RM is the

float-weighted market return. In words, the FARM (1) states that, in steady

state, the liquidity spread Rk − RL of asset k is proportional to the inverse of

its (relative) free float. The constant of proportionality is the liquidity spread

RM − RL of the float-weighted market return.

Many empirical studies of liquidity spreads estimate linear models. They

control for risk with some factor model, and measure an asset liquidity by its

bid-ask spread, its trading volume, or its turnover. The FARM (1) suggests that,

with such a linear specification, liquidity could also be measured by the free float.

In traditional Walrasian asset-pricing models with liquidity effects, such as

those of Amihud and Mendelson [1986], Constantinides [1986], Heaton and Lucas

[1996], Vayanos [1998], and Huang [2003], assets can be bought and sold instantly,
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but differ by an exogenously given transaction cost. A more liquid asset is defined

as one with a smaller transaction cost. In these models, cross-sectional variation

in asset returns is explained by exogenously specified differences in transaction

costs. A second contribution of this paper is to explain cross-sectional variation

in asset returns without relying on an exogenously specified cross-sectional vari-

ation in transaction costs. Although, in the model proposed here, the search

technology is the same for all assets, heterogeneous bid-ask spreads arise endoge-

nously. Cross-sectional variation in asset returns is explained by the distribution

of ownership.

This paper extends the one-asset model of Duffie, Gârleanu and Pedersen

[2005] by allowing investors to trade many assets. The present cross-sectional

analysis could not have been conducted in the one-asset model, which examines

the impact of liquidity on asset prices only by comparative statics. For instance,

in the one-asset model, an increase in the quantity of shareholders results in

a positive shift of the supply curve, and thus decreases the price of the asset.

In the multiple-assets model, one can keep the total quantity of shareholders

constant, and study an equilibrium in which some assets have more shareholders

than others. This isolates a liquidity effect: An asset with more shareholders is

easier to find, and has a higher price.

Search-theoretic approaches to liquidity have been explored in the monetary

literature, following Kiyotaki and Wright [1989]. Most notably, Wallace [2000]

focuses on the relative liquidity of intrinsically worthless assets (currency) and

assets earning a positive dividend (bonds). The model presented here has no room

for currency, and focuses on assets with relatively homogeneous characteristics.

This paper is closely related to the independent work of Vayanos and Wang

[2003]. In order to study liquidity difference between on-the-run and off-the-

run bonds, they provide a two-asset extension of Duffie, Gârleanu and Pedersen

[2005]. They analyze the impact of investor heterogeneity on the concentration

of liquidity across markets, and focus most of their analysis on welfare. In the

present paper, by contrast, I analyze the impact of asset heterogeneity, and focus

most of the analysis on pricing and measurement. In particular, I show that the
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FARM (1) holds in an equilibrium with arbitrarily many assets.

2 Trading Many Assets

This section presents the basic model, in which investors cannot buy and sell

assets instantly. Rather, they allocate search resources to asset-specific “trad-

ing specialists,” who search for counterparties. When two investors meet, they

bargain over the terms of trade. (The specialists could bargain on their behalves.)

2.1 The Economic Environment

This subsection describes the model setup.

Information and Preferences

Time is treated continuously, and runs forever. A probability space (Ω,F , P ) is

fixed, as well as a filtration {Ft, t ≥ 0} satisfying the usual conditions (Protter

[1990]). There are many assets k ∈ {1, . . . , K} in positive supply. Asset k has a

measure sk ∈ (0, 1) of shares outstanding, and every share of an asset pays the

same dividend rate δ > 0.

The economy is populated by a unit-mass continuum of infinitely-lived and

risk-neutral investors who discount the future at the constant rate r > 0. An

investor enjoys the consumption of a non-storable numéraire good called “cash,”

with a marginal utility normalized to 1. In order to make side payments, investors

are endowed with a technology that instantly produces cash, at unit marginal

cost.1

An investor has either a high-valuation or a low-valuation for holding assets.

When he has a high valuation and holds asset k ∈ {1, . . . , K}, he enjoys the (per

unit) utility flow δ. With a low valuation, he enjoys a utility flow δ − x, for some

1In other words, negative consumption of cash is allowed. Appendix B shows that, equiva-
lently, one could assume that investors borrow and save cash in some “bank account,” at the
exogenously given interest rate r̄ = r, and subject to an appropriate Transversality Condition.
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holding cost x > 0.2 Investors switch randomly, and pair-wise independently,

from a low valuation to a high valuation with intensity3 γu, and from a high

valuation to a low valuation with intensity γd.

An investor is permitted to hold either zero or one share of some asset,4 and

can choose which asset to hold. We let s ≡ (s1, s2, . . . , sK) denote the distribution

of ownership. We also assume that

K
∑

k=1

sk ≡ S <
γu

γu + γd

, (2)

which means that the total supply S of assets is less than the steady-state mea-

sure of high-valuation investors.5 Given that investors can hold at most one unit

of some asset, equation (2) implies that, in a multilateral Walrasian market, the

“marginal investor” has a high valuation. Therefore, in a Walrasian market, all

assets have the same equilibrium price δ/r.

Investor Types

An investor’s type is made up of her marginal utility (high h, or low ℓ), and her

ownership status, for each asset type k ∈ {1, . . . , K} (owner ok, or nonowner n).

2Duffie, Gârleanu and Pedersen [2005] provide a formal model of the holding cost. They
assume that risk-averse investors receive some non-tradable endowment stream which is some-
times highly correlated with the traded asset. In a first-order Taylor expansion of an investor’s
continuation utility, x represents the cost of holding an asset when it has a high correlation
with the endowment.

One could also view the holding cost as the intensity of an investor’s need for cash, when he
is borrowing constrained and cannot borrow against the full value of his asset holding. Suppose
that, if the asset is worth pk, an investor can only borrow pk − h, for some “haircut” h. If the
shadow value of relaxing the borrowing constraint is φ, then the holding cost is x = φh.

3For instance, if the investor’s valuation is low, the distribution of the next switching time
to high is exponential with parameter γu. The successive switching times are independent.

4Because he has linear utility over dividend, an investor finds it optimal to hold either the
minimum quantity of zero share, or the maximum quantity of one share. Normalizing the
maximum holding to be one share is without loss of generality, in the following sense: the
results would remain unchanged if one assumes a maximum holding of N shares, and redefine
the dividend rate to be δ/N .

5An application of the Law of Large Numbers implies that the steady-state measure of high-
valuation investors is equal to the stationary probability γu/(γd +γu) of being in a state of high
valuation.
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Hence, the set of investor types is

I = {hn, ℓn, ho1, . . . , hoK, ℓo1, . . . , ℓoK}. (3)

For each i ∈ I, µi denotes the fraction of investors of type i, and, given the

asset fundamentals and the trading environment (to be defined), Vi denotes the

continuation utility of an investor of type i. A precise definition of Vi is provided

in Appendix B.

Random Matching

At any point in time, each investor is endowed with a mass ν̄ of “trading special-

ists” who search for specific trading counterparties, in a sense that is now to be

described. A trading specialist of type (i, j) ∈ I2 works for an investor of type

i, and specializes in contacting specialists working for investors of type j. Thus,

contacts that could result in a trade occur only between specialists of types (i, j)

and (j, i).

An investor of type i maintains on her “trading staff” a quantity νij of spe-

cialists of type (i, j), subject to the resource constraint
∑

j∈I νij ≤ ν̄. Thus, the

mass of specialists of type (i, j) in the entire specialist population is µiνij. A

given specialist makes contacts with other specialists, pair-wise independently at

Poisson arrival times with intensity Λ > 0. Because scaling ν̄ and Λ up and

down, respectively, by the same factor has no effect, one can assume without

loss of generality that ν̄ = 1. Contacts are also pair-wise independent with the

investor’s valuation processes. Given a contact, because of the random-matching

assumption, the probability that the contact is made with a specialist of type

(i, j) is µiνij. That is, conditional on making a contact, all trading specialists in

the entire specialist population are “equally likely” to be contacted. Adapting

the usual random-matching assumption that the Law of Large Numbers applies

(see, for instance, Diamond [1982]), contacts between specialists of types (i, j)
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and (j, i), for i 6= j, occur continually at a total (almost sure) rate of

µiνijΛµjνji + µjνjiΛµiνij = 2Λµiνijµjνji. (4)

The first term on the left-hand side of (4) is the total rate of contacts made by

all specialists of type (i, j), and received by specialists of type (j, i). Specifically,

each specialist of the mass µiνij of specialists of type (i, j) makes contacts at rate

Λ, and such contacts are received by some specialist of type (j, i) with probability

µjνji. Similarly, the second term is the total rate of contact made by specialists

of type (j, i) and received by specialists of type (i, j).

For each investor of type i, λij ≡ Λνij is the intensity of contacts with some

other specialists, made by the mass νij of specialists of type (i, j). Thus, one

can view an investor of type i as endowed with a budget Λ > 0 of search effort,

allocating some intensity λij to the search for investors of type j, subject to the

ressource constraint
∑

j∈I λij ≤ Λ. With this new notation, adopted for the

remainder of the paper, the total (almost sure) rate of contact between investors

of types i and j is

2µiµj

λijλji

Λ
. (5)

An investor maintaining trading specialists can be viewed as an investment

firm with separate units that trade specific securities. A typical unit trades

securities of a specific industry, such as “telecom” or “entertainment,” or trades

securities with a specific payoff structure, such as fixed-income or derivatives.

Specialization in trading reflects the costs of collecting and processing information

regarding the supply and demand of assets, as well as the fundamentals of the

underlying cash flows.

2.2 Equilibrium

This subsection presents an analysis of the decisions of investors: whether or not

to trade in a given encounter, and how to allocate search intensity across types of
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trading encounters. Then, it describes the dynamics of the distribution of types.

Lastly, it defines an equilibrium.

Trade Among Investors

Trade between investors of types i and j occurs at a strictly positive rate if (a)

the gain from trade from such a pair is strictly positive,6 and (b) these two types

of investors maintain trading specialists who are searching for each other, that is,

if λijλji > 0.

In equilibrium, the gains from trade will be strictly positive when a low-

valuation owner (one of type ℓok) contacts a high-valuation non-owner (of type

hn). The ℓok investor will sell her asset to the hn investor, in exchange for some

cash payment pk.
7 The price arises in a simple Nash-bargaining game, as follows.

The total surplus of such a transaction is

(Vhok − Vhn) − (Vℓok − Vℓn) ≡ ∆Vhk − ∆Vℓk. (6)

We study those equilibria in which the ℓok agent receives a fixed fraction q ∈ (0, 1)

of the total surplus. This implies that the price of asset k is, in an equilibrium,

pk = q∆Vhk + (1 − q)∆Vℓk. (7)

The gains from trade can also be positive between a low-valuation owner ℓok

and a high-valuation owner hoj. These two investors may swap assets, and one

investor may simultaneously transfer cash to the other. The total surplus of a

swap between a ℓok agent and a hoj agent is Vℓoj − Vℓok + Vhok − Vhoj.

We guess (and verify later) that, in equilibrium, an ℓok investor will not

maintain trading specialists who search for swaps with hoj investors, but only

trading specialists who search for an outright sale with hn investors. In other

words, the net utility of searching for a swap is, in the equilibrium we analyze,

strictly less than the net utility of searching for an outright sale, a condition that

6An arbitrarily small transaction cost rules out trade when the gain is zero.
7A cash payment payments is a lump of consumption good, instantly produced at unit

marginal cost.
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can be written:

µhoj(Vℓoj − Vℓok + Vhok − Vhoj) < µhn(∆Vhk − ∆Vℓk), (8)

for all (k, j) ∈ {1, . . . , K}2. We verify condition (8) in the proof of Proposition 3.

Under condition (8), an ℓok investor allocates all of her search intensity Λ

to the search for hn investors. On the other hand, an hn investor allocates in-

tensities, denoted λ1, . . . , λK , to simultaneous searches for investors of respective

types ℓo1, . . . , ℓoK. These allocations of search intensity are illustrated in Figure

1.

Definition 1 A search-intensity allocation is some λ ∈ R
K
+ with

∑K

k=1 λk ≤ Λ.

hn

ℓo1

ℓok

ℓoK

...

...

λ1

λk

λK

Λ

Λ

Λ

Figure 1: Allocating Search Intensity

An hn investor searches ℓok investors with intensity λk, for all
k ∈ {1, . . . ,K}. An ℓok investor, on the other-hand, searches hn
investors with intensity Λ.

Investors’ Problem

This paragraph characterizes the equilibrium continuation utilities Vi, i ∈ I.

As shown in Appendix B by an optimality verification argument, the Bellman
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equation for the continuation utility of a buyer hn is

rVhn = max
λ̃1,...,λ̃K

{

γd(Vℓn − Vhn) + 2
K
∑

k=1

λ̃kµℓok (Vhok − Vhn − pk)

}

, (9)

subject to
∑K

k=1 λ̃k ≤ Λ and λ̃k ≥ 0, for all k ∈ {1, . . . , K}. Tilde notation ( ˜ ) is

used to distinguish the search intensity λk that will prevail in equilibrium for all

investors of type hn from the intensity λ̃k that is to be chosen by an individual

investor of type hn, taking others’ search intensities as given. The Bellman

equation (9) breaks up the “flow” continuation utility rVhn into two terms. The

first term, γd(Vℓn − Vhn), is the expected flow utility of a transition from a high

to a low valuation because, with intensity γd, a hn investor makes a transition

to the ℓn type. The second term is the expected flow utility of searching for

alternative assets. Namely, with intensity 2λ̃kµℓok, an hn investor finds asset k,

buys it at price pk and makes a transition to type hok. Similarly, other investors’

continuation utilities solve the following system of Bellman equations

rVhok = δ + γd(Vℓok − Vhok) (10)

rVℓok = δ − x + γu(Vhok − Vℓok) + 2λkµhn(Vℓn − Vℓok + pk) (11)

rVℓn = γu(Vhn − Vℓn), (12)

for all k ∈ {1, . . . , K}.

Steady-state distribution of Types

We now provide the equations characterizing the steady-state distribution of in-

vestors’ types. First, of course, all assets are being held and the mass of investors

is equal to one:

sk = µℓok + µhok (13)

1 =
K
∑

k=1

(µℓok + µhok) + µhn + µℓn. (14)
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Second, in a steady state, the inflow and outflow of investors in each type is zero.

For example, for the high-valuation non-owner hn, we have

γuµℓn = γdµhn + 2
K
∑

k=1

λkµhnµℓok. (15)

The left-hand side is the flow of ℓn investors who switch from a low valuation

to a high valuation, transiting to the hn type. The first term on the right-hand

side, γdµhn, is the flow of hn investors who switch to a low valuation. The second

term is the flow of hn investors who meet sellers of some asset k ∈ {1, . . . , K}

and buy an asset. Similarly, for the low-valuation owner ℓok

γdµhok = γuµℓok + 2λkµhnµℓok. (16)

for k ∈ {1, . . . , K}. Lastly, similar calculations (see Appendix A) show that the

inflow-outflow equations for investors of types ℓn and hok are the same as (15)

and (16). We can now define:

Definition 2 A steady-state symmetric equilibrium is a collection p = (p1, . . . , pK)

of prices, a collection V = (Vhn, Vhok, Vℓok, Vℓn)1≤k≤K of continuation utilities, a

distribution µ = (µhn, µhok, µℓok, µℓn)1≤k≤K of types, and a search-intensity allo-

cation λ ≫ 0, such that

(i) Steady-State: Given λ, µ solves the system (13)-(16).

(ii) Optimality: Given λ, µ, and p, V and (λ̃1, . . . , λ̃K) = λ solve the system

(9)-(12) of Bellman equations. The no-swap condition (8) holds for all

(k, j) ∈ {1, . . . , K}2.

(iii) Pricing: the prices satisfy equation (7), for all k ∈ {1, . . . , K}.

Here, symmetry means that all hn investors choose the same search intensity

allocation λ. Also, this definition restricts attention to equilibria having two

specific properties: there are no swap and all assets are searched, that is λ ≫ 0.8

8There are other types of equilibria. For instance, because of the random-matching spec-
ification, investors of type i and j meet only if i searches for j and j searches for i. Hence,
there could be a coordination failure. For example, there is an equilibrium in which no investor
search: namely, given that no other investor searches, not searching is optimal.
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In particular, since (9) is a linear program, λ ≫ 0 implies that hn investors are

indifferent between searching for any two assets. Hence, the first-order condition

of the hn investor’s problem, (9), is

µℓok(Vhok − Vhn − pk) = µℓoj(Vhoj − Vhn − pj) (17)

⇐⇒ µℓok(1 − q)(∆Vhk − ∆Vℓk) = µℓoj(1 − q)(∆Vhj − ∆Vℓj), (18)

for all (k, j) ∈ {1, . . . , K}2, and where (18) follows from substituting (7) into (17).

This first-order condition reflects “search indifference,” meaning that the marginal

utility of spending an additional unit of search intensity on a given asset is equated

across assets. This marginal utility is decomposed as follows: Conditional on

establishing a contact, a seller of asset k is found with probability µℓok. Then,

the buyer receives a fraction 1 − q of the transaction surplus ∆Vhk − ∆Vℓk.

The total transaction surplus may be interpreted as a bid-ask spread, in the

following sense. Suppose that the seller’s bargaining power is a random vari-

able with support [0, 1] and mean q, independently distributed across encounters.

Then, the maximum buying price (the ask) is ∆Vhk and the minimum selling price

price (the bid) is ∆Vℓk. The average price of asset k is pk = q∆Vhk +(1− q)∆Vℓk.

Following this interpretation, condition (18) means that an asset that is easier to

find (with a larger µℓok) has a narrower bid-ask spread. This suggests a negative

relationship between liquidity and bid-ask spread.

2.3 Existence and Uniqueness

This section provides technical conditions under which an equilibrium exists and

is unique. It first analyzes the steady-state distribution of types. Second, in order

to prove the existence of an equilibrium, it studies the indifference conditions (18).

First, the study of (13)-(16) presented in Appendix A shows the following

proposition.

Proposition 1 Given a search intensity allocation λ, the system (13)-(16) has

a unique solution µ = (µhn, µhok, µℓn, µℓok)1≤k≤K ∈ [0, 1]2K+2.
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The Bellman equations can be simplified as follows. First, one defines the net

utility of searching for asset k,

Wk ≡ µℓok(1 − q)(∆Vhk − ∆Vℓk), (19)

for all k ∈ {1, . . . , K}. Clearly, the “search indifference” marginal conditions (18)

can be written as

Wk = W, (20)

for all k ∈ {1, . . . , K}, and for some positive constant W to be determined.

Substituting (20) into equation (9), combining the Bellman equations (9) through

(11), and using the pricing equation (7) one finds that

rWk = (1 − q)µℓokx − (γu + γd + 2λkqµhn) Wk − 2Λ(1 − q)µℓokW, (21)

for all k ∈ {1, . . . , K}. Replacing µhok = sk − µℓok in equation (16), we find that

2λkµhn =
γdsk

µℓok

− (γd + γu). (22)

Substituting (22) into (21), using (20) and rearranging gives

γdskq

(1 − q)x

1

µ2
ℓok

+
r + (1 − q)(γd + γu)

(1 − q)x

1

µℓok

+
2Λ

x
=

1

W
. (23)

This quadratic equation allows one to write µℓok = mk(W ), for some W < x/(2Λ),

and for some continuous and increasing function mk( · ).

Now, the steady-state measure of high-valuation investors is equal to the sta-

tionary probability of being in a state of high valuation9

µhn +
K
∑

k=1

µhok =
γu

γu + γd

. (24)

Combining (24) with (13) shows

µhn =
γu

γu + γd

− S +
K
∑

k=1

µℓok. (25)

9This can also be shown by summing equation (16) over k ∈ {1, . . . ,K}, subtracting equation
(15) and using (14).
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Substituting (25) into (22) gives

2λk

(

γu

γu + γd

− S +
K
∑

k=1

mk(W )

)

=
γdsk

mk(W )
− (γd + γu), (26)

which shows that
∑K

k=1 λk = Λ only if

2Λ

(

γu

γu + γd

− S +
K
∑

k=1

mk(W )

)

−
K
∑

k=1

(

γdsk

mk(W )
− (γd + γu)

)

= 0. (27)

The left-hand side of (27) is strictly increasing in W because mk( · ) is strictly

increasing for each k. Hence, (27) uniquely characterizes a candidate equilibrium

W . Once W is found, the other equilibrium objects are uniquely characterized:

the search intensity allocation λ by (26), the distribution µ of types by (13)-(16),

the continuation utilities V by (9)-(11), and the prices p by (7). This implies

Proposition 2 (Uniqueness.) There is at most one equilibrium.

In order to show existence, one first analyzes the case of identical asset charac-

teristics, for the distribution ŝ = (S/K, . . . , S/K) of ownership. One shows the

existence of a symmetric equilibrium with λ̂k = Λ/K, following Duffie, Gârleanu

and Pedersen [2005]. Then, one applies the Implicit Function Theorem to equa-

tion (27), showing existence in a neighborhood of this symmetric equilibrium.

Proposition 3 (Existence.) Let ŝ = (S/K, . . . , S/K). Then, there is a neigh-

borhood N ⊂ R
K
+ of ŝ, such that, for all s ∈ N , there is an equilibrium.

Proof. If the assets have identical characteristics, it is natural to guess that there is a

symmetric equilibrium, with µ̂ℓok = µ̂ℓo/K and λ̂k = Λ/K. The equilibrium equations

are those of Duffie, Gârleanu and Pedersen [2005], with “λ” there being replaced here

by “Λ/K.” Their results imply that investors’ values are strictly positive, and that

there are strictly positive gains from trade between investors of types hn and ℓok.

Furthermore, since assets have identical characteristics, there is no gain from swapping

assets. Thus, ℓok investors strictly prefer searching for an outright sale with an hn
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investor to searching for a swap with an hoj investor, for all j ∈ {1, . . . , K}. Since the

left-hand side of (27) is strictly increasing in W , the Implicit Function Theorem (see

Taylor and Mann [1983], chapter 12) can be applied: This provides a neighborhood

N ⊂ R
K
+ of ŝ, such that, for all s ∈ N , there exists a candidate equilibrium W = h(s),

for some continuous function h( · ). The other candidate equilibrium objects (V, µ, λ)

are easily expressed as continuous functions of W and thus as continuous functions of

s. The search-indifference marginal conditions (20) are satisfied by construction. The

no swap condition (8) as well as all other relevant inequalities hold by continuity. �

The proof shows in particular that, if assets characteristics are sufficiently

homogeneous, ℓok investors are not searching for swaps. This follows from the

fact that the net utility of swapping two assets with nearly identical characteristics

is close to zero, and turns out to be strictly less than the net utility of searching

for an outright sale.

Does there always exist an equilibrium in which all assets are traded? The

following proposition provides a partial answer, in a two-asset economy. Specifi-

cally, I show that if the assets have sufficiently different supplies, there cannot be

an equilibrium in which both are traded, in the following sense.

Proposition 4 (Non-Existence of an equilibrium with λ ≫ 0.) Let K = 2,

and s = (s1, S − s1), for some S ∈ (0, 1) and s1 ∈ (0, S). There is a ε > 0 such

that, for any s1 < ε, an equilibrium with λ ≫ 0 cannot exist.

Proof. Let’s consider a two-asset economy with s1 = ε > 0 and s2 = S − ε > 0. One

shows that, if ε is small enough, there is no candidate equilibrium in which λ ≫ 0.

If such an equilibrium exists, then both assets would satisfy (23). For Asset 1, since

µℓo1 ≤ s1 = ε, (23) would imply that the candidate W goes to zero as ε goes to zero.

In turn, for Asset 2, (23) would imply that µℓo2 goes to zero as ε goes to zero, but

then s2/µℓo2 = (S − ε)/µℓo2 goes to infinity as ε goes to zero. Therefore, equation (27)

cannot hold. �

Existence in Proposition 3, and non-existence in Proposition 4, are proved by

studying how the left-hand side of (27) depends on s. When asset characteristics
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are sufficiently similar, the equation has a solution. Alternatively, when the

quantity of shareholders of an asset is sufficiently small relative to quantities of

shareholders of other assets, (27) has no solution.

An equilibrium may fail to exist because, when s1 is small, the probability

of finding a seller is even smaller. An investor is willing to search for this asset

only if she is compensated by a sufficiently low price. If s1 is small enough, the

appropriate compensation results in a negative price, and thus cannot be the

basis of an equilibrium.

3 The Pricing of Liquidity Differences

This section analyzes the pricing implications of the model. It first discusses the

pricing of liquidity. Then, it derives the float-adjusted return model or FARM,

which states that, in equilibrium, the liquidity spread of an asset is proportional

to the inverse of its free float. Lastly, it relates the cross-sectional variation in

asset returns to the exogenous distributions s = (s1, . . . , sK) of ownership.

3.1 Cross-sectional Prices

The pricing equation (7) can be written

pk = ∆Vhk − (1 − q)(∆Vhk − ∆Vℓk). (28)

The first term on the right-hand side, ∆Vhk, is the reservation value of a hn

investor. The second term is the discount obtained by a hn investor with bar-

gaining power 1 − q. Subtracting the Bellman equations (9) from (10) gives an

expression for the reservation value ∆Vhk which, when substituted in (28), gives

rpk = δ − 2ΛW − γd(∆Vhk − ∆Vℓk) − r(1 − q)(∆Vhk − ∆Vℓk). (29)

This equation breaks the price of asset k into four components. The first, δ, is the

flow value of dividend payments. The second component, 2ΛW , is the flow value

of searching for an asset. An hn investor obtains this discount because he has the

option of not buying asset k and continuing his search. The third component,

γd(∆Vhk −∆Vℓk), is the instantaneous cost of switching to the low valuation, and
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not being able to sell the asset instantly. The last component is the bargaining

discount.

It is instructive to compare the price pk of the asset in this dynamic bargaining

market with its price δ/r in a multilateral Walrasian market, where all assets can

be bought and sold instantly. In the Walrasian case, all discounts in (29) are

equal to zero. First, because the net utility of buying an asset is equal to zero,

the flow value of searching for an alternative asset is also equal to zero. Second,

because the asset can be sold instantly, the cost of switching to a low valuation

is equal to zero. Third, because sellers can find alternative buyers instantly, the

buyer’s bargaining discount is equal to zero.

3.2 A Float Adjusted Return Model

The price pL of a hypothetical ‘perfectly liquid’ asset, named asset L, is defined

by

rpL ≡ δ − 2ΛW. (30)

This price makes an hn investor indifferent between (i) searching for some asset

k ∈ {1, . . . , K} and (ii) buying asset L instantly, stopping search, and having the

option to sell the asset instantly at price pL.

Asset L is called ‘perfectly liquid’ because it can be bought and sold instantly.

Its price includes the discount 2ΛW because hn investors must be compensated

from stopping search when they buy it. Since asset L can be sold instantly at

price pL, however, the cost of switching to the low-marginal-utility state is equal

to zero.10 Subtracting equation (30) from equation (28) and rearranging, one

finds

r(pL − pk) = (γd + r(1 − q))(∆Vhk − ∆Vℓk). (31)

Together with the search-indifference condition (18), (31) implies that

pkµℓok

(

δ

pk

−
δ

pL

)

=
δ

rpL

(γd + r(1 − q))W, (32)

10In the present model, the supply of asset L is zero and (30) should be viewed as a definition.
One can solve for an equilibrium in which asset L is in positive supply, and show that its
equilibrium price is pL, under natural technical conditions.
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where W is the net utility of searching for alternative assets. The returns of

assets k and L are respectively denoted by Rk ≡ δ/pk and RL ≡ δ/pL. The free

float of asset k is φk ≡ pkµℓok. This is the portion of its market capitalization

available for sale. With these notations, (32) can be written

φk(Rk − RL) = M, (33)

for some positive constant M which does not depend on k. Equation (33) states

that, in equilibrium, the liquidity spread Rk − RL of asset k is proportional

to the inverse of its free float φk. A convenient expression for the constant of

proportionality is obtained by summing equations (33) over k. The result is

summarized in

Proposition 5 (Float Adjusted Return Model, FARM.) In equilibrium, an

asset liquidity spread is proportional to the inverse of its free float. Namely, for

all k ∈ {1, . . . , K},

Rk − RL =
φ̄

φk

(RM − RL) , (34)

where Rk ≡ δ/pk and RL ≡ δ/pL are the returns of assets k and L, φk ≡ pkµℓok is

the free float of asset k, φ̄ ≡ 1/K
∑K

k=1 φk is the average free float in the market,

and RM is the float-weighted market return

RM ≡

K
∑

k=1

φk
∑K

j=1 φj

Rk. (35)

When studying the impact of liquidity on cross-sectional returns, many re-

searchers estimate linear models. For example, if they study stock returns, they

would first control for risk with a factor model such as Sharpe [1964]’s CAPM, or

the three-factor model of Fama and French [1993]. Then, they test the statisti-

cal significance of additional independent variables that proxy for liquidity, such

as bid-ask spread, trading volume, or turnover (Amihud and Mendelson [1986],

Brennan and Subrahmanyam [1996], or Brennan, Chordia and Subrahmanyam

[1998]). The FARM (34) suggests that liquidity could also be measured by the

free float.
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The FARM (34) is a deterministic relationship between returns and float.

In a simple stochastic extension of this model, one can let the cumulative div-

idend rate of asset k ∈ {1, . . . , K} solve the stochastic differential equation

dDkt = δ dt + σkdBkt, where (σ1, . . . , σK) ∈ R
K
+ and (B1t, . . . , BKt) is a standard

Brownian motion. Because our investors are risk-neutral and dividend shocks

are independent over time, this stochastic model is essentially equivalent to the

present deterministic one. The FARM (34) would also hold, with Rk being the

expected return of asset k.11

The FARM (34) also holds when holding costs x are heterogenous across as-

sets. It no longer holds, however, when the dividend rates δ are heterogenous: the

relationship between return and float would not be (inversely) linear. Numerical

calculations (not reported here) suggests that the relationship remains decreasing.

Some evidence on float and liquidity

Some evidence suggest that, in an empirical application, the float might be a good

measure of liquidity. First, some stock-index producers such as MSCI, NYSE, or

Dow Jones have started to publish free float-weighted stock market indexes. They

argue that, because indexes aim at being replicated by money managers, stocks

included in them should be weighted not only according to their relative size, but

also according to their liquidity and their “investability,” measured by their free

float.12

Second, researchers have documented that recently issued treasury bonds,

(or “on-the-run” bonds) are more liquid than older ones (or “off-the-run”) (see,

among others, Amihud and Mendelson [1991], Warga [1992], and Krishnamurthy

[2003]). A common explanation of the inferior liquidity of older bonds is their

11Then, the realized return over a holding period [T1, T2] is Rk(T2 − T1) + σk/pk

∫

T2

T1

dBkt.
12Measuring float in practice is a delicate issue because one has to decide which shares are

available for investment, and which ones are not. In our model, for example, the only shares
of asset k available for investment at price pk are the one held by low-valuation investors. One
might argue that the correct definition of float is the total number of share sk, because they
are available for investment at any price greater than ∆Vhk (moreover, a larger sk also results
in higher liquidity.) However, no investor in our model is willing to pay such a high price for
this asset.
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free float. For instance, Amihud and Mendelson [1991] argue that, because older

bonds have been traded for a longer time, a larger part of their supply is “locked

away” in investors portfolio (such as insurance companies) who are not standing

ready to sell.

Lastly, Chan, Chan and Fong [2004] study the impact of a reduction in free

float on asset liquidity. In August 1998, the Hong Kong monetary authority

opposed a speculative attack by aggressively buying the 33 stocks of the Hang

Seng 33 Index (HSI 33). The monetary authority absorbed about 7.3% of HSI

33 market capitalization and held these stocks for a long time period, resulting

in a reduction in the free float of these stocks. The authors show that, relative

to some control group with no free-float reduction, the HSI stocks experienced a

decrease in liquidity.

3.3 Explaining Cross-Sectional Returns

In the previous subsection, cross-sectional variation in asset returns was explained

by cross-sectional variation in free float, which is an endogenous variable. The

present subsection takes a step back and explains the cross-sectional variation

in asset returns by an exogenous variable, the distribution s = (s1, . . . , sK) of

ownership.13

Here, the cross-sectional variation in asset returns is not explained by an ex-

ogenously specified cross-sectional variation in transaction costs, in contrast with

the Walrasian models of Amihud and Mendelson [1986], Constantinides [1986],

Vayanos [1998], and Huang [2003]. In this model, because of search frictions,

investors cannot find buyers and sellers of specific assets instantly, and because

investors are impatient, the likelihoods of finding those buyers and sellers in a

short time are reflected in prices. One may view cross-sectional variation in

the likelihood of finding buyers and sellers as the natural counterpart of cross-

sectional variation in transaction costs. This cross-sectional variation is not,

13The same solution method can be applied to assets which are heterogenous in other dimen-
sions. For example, one could consider cross-sectional variations in dividends, holding costs, and
make asset heterogenous in terms of search costs. These extensions of our model are available
upon request.
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however, exogenously specified. Rather, it arises endogenously and is explained

by the distribution of ownership.

The following three equations are used. The main equation is the asset pricing

equation (28), written as

pk =
δ

r
−

2ΛW

r
−

(

1 +
γd

(1 − q)r

)

W

µℓok

. (36)

The right-hand side is increasing in µℓok. In other words, an asset that is easier

to find (has larger µℓok) is sold at a higher price. The second equation (23) is of

the form

Ask

1

µ2
ℓok

+ B
1

µℓok

+ C =
1

W
, (37)

for some positive constants A, B, and C, which do not depend on k. The third

equation is easily derived from (22), and relates λk to the distribution of types

and sk:

µℓok

sk

=
γd

γd + γu + 2λkµhn

. (38)

The quantity λkµhn has several interpretations. First, it represents the demand

side of the market. The larger is λk, the more search occurs for asset k, and

the easier it is to sell this asset. It is natural to ask whether an asset that is

easier to sell is also easier to find. That is, can one view λkµhn as an increasing

function of µℓok? Equation (38) shows that the answer depends on the quantity

sk of shareholders, and is thus indeterminate at this stage of the analysis.

Second, λkµhn is negatively related to the mean holding period of asset k. The

holding period of a hok investor is some stopping time τh, decomposed as follows.

The investor holds the asset k until she switches to a state of low valuation at some

time t+τd, where τd is an exponentially distributed stopping time with parameter

γd. Then, she either meets a buyer or switches back to a high valuation at some

time t + τd + min{τb, τu}, where τb and τu are exponentially distributed stopping
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times with respective parameters 2λkµhn and γu. If she switches back to a high

valuation utility, then her mean holding period is some stopping time τ̃h. Hence,

τh = τd + I{τu<τb}(τu + τ̃h) + I{τb≤τu}τb = τd + min{τu, τb} + I{τu<τb}τ̃h. (39)

In a steady-state equilibrium, τ̃h and τh are identically distributed. Furthermore,

all the above stopping times are pairwise independent. Taking expectations of

both sides of (39), and using the fact that τh and τ̃h are identically distributed,

one finds that

E(τh) =
1

γd

+
1

γu + 2λkµhn

+
γu

γu + 2λkµhn

E(τh).

and therefore

E(τh) =
1

γd

+
1

2λkµhn

(

1 +
γu

γd

)

. (40)

This shows that the mean holding period E(τh) is a decreasing function of λkµℓn.

Equation (37) has the form

F (sk, µℓok) =
1

W
, (41)

for some function F ( · , · ) that is increasing in sk and decreasing in µℓok. This

implies that µellok is increasing in sk. In other words, an asset with more share-

holders is easier to find, is sold at a higher price, and has a lower return Rk = d/pk.

In order to derive a relationship between the quantity sk of shareholders and the

mean holding period (40), one writes equation (37) as

G

(

sk,
µℓok

sk

)

=
1

W
, (42)

for some function G( · , · ) that is decreasing in sk and decreasing in µℓok/sk. This

implies that µℓok/sk is a decreasing function of sk. From (38), it follows that λkµhn

is an increasing function of sk. In other words, an asset with more shareholders

has a shorter mean holding period. Lastly, since the total rate of contact between

buyers and sellers of asset k is 2λkµhnµℓok, an asset with more shareholders also

has a larger trading volume. The above discussion is summarized in
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Proposition 6 In equilibrium, sk > sj implies that µℓok > µℓoj, λk > λj, pk > pj,

Rk < Rj, and ∆Vhk − ∆Vℓk < ∆Vhj − ∆Vℓj.

In words, an asset with more shareholders is easier to find, easier to sell, has a

higher price, a lower return, and a narrower bid-ask spread. This implies in turn

that it also has a larger trading volume, a larger turnover, and a shorter mean

holding period.

In contrast with Proposition 6, the one-asset model of Duffie, Gârleanu and

Pedersen [2005] implies that an asset with a larger quantity of shareholders has

a lower price. Indeed, an increase in the quantity of shareholders results in

a positive shift of the supply curve, and hence lowers the price of the asset.

Similarly, in our model, a larger sk represents a larger supply. However, a larger

sk also endogenously results in a larger demand, represented by a larger search

intensity λk. Proposition 6 shows that the “demand shift” dominates, meaning

that an asset with larger sk has a higher price.

This model generates a positive relationship between returns and holding

periods with ex-ante identical investors, because returns and holding periods are

both negatively related to a common exogenous “liquidity” factor, the quantity of

shareholders. By contrast Amihud and Mendelson [1986] take the holding period

itself to be an exogenous parameter. A positive relationship between returns

and holding periods also arises endogenously in general equilibrium models with

transaction costs, such as those of Vayanos and Villa [1999] or Huang [2003], but

for a different reason. In these models, assets can be bought and sold instantly,

and an investor chooses to hold assets with larger transaction costs for a longer

period. These assets, in equilibrium, have higher expected returns. In the present

model, an asset cannot be bought and sold instantly, and an asset with a higher

return is harder to sell, and thus has a longer mean holding period.

3.4 An illustrative numerical example

There is much empirical evidence on the relationship between traditional liquidity

proxies and risk-adjusted expected returns. For example, after controlling for risk,

expected return appear to be positively related to bid-ask spread, and negatively
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Table 1: Parameter Values used in the Numerical Example.

Parameters Value or Distribution

Contact Intensity Λ 62, 500

Intensity of Switch to High γd 1
Intensity of Switch to Low γu 7/3
Discount Rate r 5%
Number of Assets K 100
Fraction of Shareholders sk ∼ Uniform([0.0042, 0.0078])
Holding cost x 5
Dividend Rate δ 1
Bargaining Power q 1/2

related to trading volume and turnover. This subsection presents a numerical

example suggesting that our model’s qualitative predictions are consistent with

these empirical evidence.

An equilibrium of the model is computed for a randomly generated economy

of K = 100 asset types.14 The ownerships sk are drawn independently from a

uniform distributions on some interval [s, s]. The dividend rate δ is set to 1 and

the holding cost x to 5. The bargaining power parameter is set to 1/2. The

equilibrium return Rk = δ/pk is plotted against various measures of liquidity

used in the empirical literature, which have direct counterparts in the theoretical

model. The relative bid-ask spread is 1−∆Vℓk/∆Vhk. The dollar trading volume

is pkλkµℓokµhn. The turnover is λkµℓokµhn/sk. The market capitalization is pksk.

The values of the exogenous parameters are as in Table 1.

The unit of time is one year. Assuming that the stock market opens 250

days a year and that there are 10 trading hours per day, Λ = 62500 means that

an investor establishes a contact with some other investor every 2.5 minutes, on

average. The discount rate r is 5%. Given the chosen uniform distribution for

sk, the expected aggregate supply of assets, E
(

∑K

k=1 sk

)

, is 0.6. An investor

switches to a low valuation on average once a year, which implies an annual

turnover slightly below 100

14One first solves (27) for W . This can be done quickly since equation (23), characterizing
mk(W ), is quadratic. Once W is found, the remaining equilibrium objects are easily computed
using the various equations derived during the existence proof.
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Figure 2 displays the results of the computations. Returns and relative bid-ask

spreads are positively related. In contrast with the theoretical results of Amihud

and Mendelson [1986], the relationship is almost linear and not concave. Consis-

tently with the empirical evidence, returns are negatively related to turnover and

trading volume. The holding period is positively related to returns.
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Figure 2: Cross-sectional variation in returns, explained by “liquidity proxies.”

4 Conclusion

This paper uses a search-theoretic model to study the impact of heterogeneity in

asset liquidity on the cross section and the time series of asset returns. The main

result of the paper is the float-adjusted return model, or FARM: in equilibrium,

the liquidity spread on an asset is proportional to the inverse of its free float.

26



Hence, the free float is a measure of liquidity that is consistent with the linear

specifications used in most empirical studies of the liquidity spread. Although the

search technology is the same for all assets, heterogeneous bid-ask spreads arise

endogenously. Cross-sectional variation in returns is explained by cross-sectional

variation in share ownership.
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A The Distribution of Types

This appendix studies the steady-state distribution of types, as well as the dy-

namics of the distribution of types near that steady-state. For a given search

intensity allocation λ, the distribution

µ(t) = (µhn(t), µhok(t), µℓok(t), µℓn(t))1≤k≤K

of types solves the system of ordinary differential equations (ODE)

µ̇hn = γuµℓn − γdµhn − 2
K
∑

k=1

λkµhnµℓok (43)

µ̇hok = γuµℓok − γdµhok + 2λkµhnµℓok (44)

µ̇ℓn = γdµhn − γuµℓn + 2
K
∑

k=1

λkµhnµℓok (45)

µ̇ℓok = γdµhok − γuµℓok − 2λkµhnµℓok (46)

sk = µℓok + µhok (47)

1 =
K
∑

k=1

(µℓok + µhok) + µhn + µℓn, (48)

where µ̇ = dµ(t)/dt, and time arguments are suppressed. Since equation (47)

implies that the sum of (44) and (46) is zero, one can eliminate (44), the ODE

for µhok. Similarly, since equation (48) implies that the sum of equations (43) to

(46) is zero, one can eliminate (45), the ODE for µℓn, and obtains the equivalent

system

µ̇ℓok = γdsk − (γd + γu)µℓok − 2λkµhnµℓok (49)

µ̇hn = γu(1 − S) − (γd + γu)µhn − 2
K
∑

k=1

λkµhnµℓok (50)

µhok = sk − µℓok (51)

µℓn = 1 − S − µhn, (52)

for k ∈ {1, . . . , K}.
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Proof of Proposition 1 A steady state is a constant distribution µ of types

solving equations (49)-(52). Summing equations (49) over k ∈ {1, . . . , K}, adding

equation (50), and imposing the steady-state condition µ̇ = 0, one finds

µhn = µℓo + y − S, (53)

where µℓo ≡
∑K

k=1 µℓok, and y ≡ γu/(γd + γu) . Replacing this last equation in

(49) gives

µℓok =
γdsk

γd + γu + 2λk (µℓo + y − S)
. (54)

Summing equations (54) over k, one obtains the one equation in one unknown

problem

µℓo −

K
∑

k=1

γdsk

γd + γu + 2λk (µℓo + y − S)
= 0. (55)

The left-hand side of this equation is increasing in µℓo, is negative at µℓo = 0, and

is positive for µℓo large enough; thus, it has a unique solution. Once the solution

µℓo is found, µℓok is uniquely determined by (54), µhn by (53), and finally µhok

and µℓn by (51) and (52). This characterizes a unique candidate steady state.

Since the steady-state fractions sum to one by construction, one only needs to

show that they are positive as follows: The left-hand side of (55) is positive when

evaluated at µℓo = S and 1− y; it is negative when evaluated at S − y. Since the

left-hand side of (55) is increasing, this shows that

S − y < µℓo < min{S, 1 − y}. (56)

Next, s − y < µℓo implies that µhn > 0 and that µℓok < sk. Finally, µℓo < 1 − y

implies that µhn < 1 − S and that 0 < µℓn < 1.
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Local Stability This paragraph establishes that, given λ, the steady-state dis-

tribution of types is a locally stable point of the following ODE

µ̇ℓok = γdsk − (γd + γu)µℓok − 2λkµhnµℓok (57)

µ̇hn = γu(1 − S) − (γd + γu)µhn − 2
K
∑

k=1

λkµhnµℓok, (58)

for all k ∈ {1, . . . , K}. Stacking variables as (µℓo1, . . . , µℓok, µhn)′, the Jacobian of

the ODE at the steady state is

J = −(γd + γu)IK+1 − D, (59)

where D =

[

D11D12

D21D22

]

, D11 = diag (2λkµhn), D12 =
[

2λ1µℓo1 . . . 2λKµℓoK

]′
, D21 =

[

2λ1µhn . . . 2λKµhn

]

, and D22 =
∑K

k=1 2λkµℓok.

Lemma 1 (Local Stability.) The eigenvalues of J have strictly negative real

parts.

Proof. The vector (1, . . . 1)′ is denoted by e. One has, by construction, e′D11 = D21

and e′D12 = D22. An eigenvector of J associated with the eigenvalue ξ ∈ C is denoted
y. It solves

(γd + γu)y1 + D11y1 + D12y2 = −ξy1 (60)

(γd + γu)y2 + D12y1 + D22y2 = −ξy2. (61)

Multiplying equation (60) by e′, and subtracting equation (61) gives

(γd + γu + ξ)
(

e′y1 − y2

)

= 0. (62)

We distinguishes three cases.
Case 1: e′y1 6= y2. From (62), it must be that ξ = −(γd + γu) < 0.

Case 2: e′y1 = y2 = 0. Then (60) simplifies to (γd + γu + D11) y1 = −ξy1. Thus, it
must be that ξ = − (γd + γu + 2λkµhn) < 0, for some k ∈ {1, . . . , K}.

30



Case 3: e′y1 = y2 6= 0. Without loss of generality, one can assume that y2 = 1. Using
(60) one solves explicitly for y1k,

y1k = −
2λkµℓok

ν + γd + γu + 2λkµhn

. (63)

Since the y1k sum to one, it must be that Re
(

∑K
k=1 y1k

)

= 1. Thus, there is one

k ∈ {1, . . . , K} such that Re(y1k) > 0, which is equivalent to Re(1/y1k) > 0 and, from

equation (63), to Re(ξ) < − (γd + γu + 2λkµhn) < 0. �

B The Investor’s Problem

This Appendix formulates and solves the stochastic-control problem faced by an

individual investor in a steady-state equilibrium. We show that our preference

specification is essentially equivalent to assuming that: (i) an investor maximizes

the present discounted value of consumption, and (ii) is allowed to borrow and

lend at a risk-free rate r̄ that is equal to his subjective discount rate r, subject

to an appropriate Transversality Condition. We also verify that the Bellman

equations (9)-(12) are sufficient for optimality.

B.1 The Investor’s Problem

Information Time is continuous and runs forever, and some measurable space

(Ω,G) is fixed. An investor can be of either one of finitely many types i ∈ I, with

an initial type j0 ∈ I. We fix some counting process Nt ∈ N
I , where Nt(i) counts

the number of transition to type i during the time interval [0, t]. The sequence of

transition times is denoted by 0 < T0 < T1 < . . ., and the sequence of successive

types by j0, j1, . . . Hence, the process Nt generates a type process it such that,

for all n ∈ N and t ∈ [Tn, Tn + 1), it = jn. We let {Ft , t ≥ 0} be the internal

history (filtration generated by) the process N .

Admissible control A control u is made up of a Ft-predictable R
I-valued tran-

sition intensity process π, and of a Ft-adapted, R+-valued consumption process

c. Given π, we fix a probability Pπ such that the counting process N admits

Pπ-intensity π.
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A transition intensity process is admissible if, at each time, πt belongs to

some state-dependent compact set Π(it−) ∈ R
I . The set Π(i) embeds all feasible

transitions of an investor in state i. For example, if i = hn, π(ℓn) = γd for all

π ∈ Π(i). Similarly, π(ℓok) = 0, because an investor can never transit directly

from i to j. Also, π(hok) = 2λkµℓok. Lastly, the set Π(i) also incorporates the

search-intensity budget constraint. For example, for a buyer hn, we must have
∑K

k=1 π(hok)/(2µℓok) ≤ Λ.

When an investor makes a transition from state i to j, he receives a payment

Q(i, j). For example, if i = hn and j = hok, then Q(i, j) = −pk. Conversely, if

i = ℓok and j = ℓn, then Q(i, j) = pk. Hence, the investor’s wealth process solves

the Stochastic Differential Equation (SDE)

dWt = (rWt − ct) dt + D(it) dt +
∑

j∈I

Q(it−, j) dNt(j), (64)

where D(it) is the flow utility enjoyed by the investor from his asset holding.

Namely, D(ℓn) = D(hn) = 0, D(hok) = δ, and D(ℓok) = δ − x, for all k ∈

{1, . . . , K}. We let an investor’s initial wealth be W0. A control u = (π, c) is

admissible if π is admissible and if the wealth process satisfies the Transversality

Condition

lim
T→∞

EPπ

(

WT e−rT
)

= 0. (65)

The set of admissible control is denoted by U .

Lifetime utility The lifetime utility of an investor applying control u ∈ U is

EPπ

[∫ ∞

0

e−rtct dt

]

, (66)

Substituting the budget constraint (64) into the investor’s objective, one finds

that

∫ T

0

e−rtct dt + e−rT WT = W0 +

∫ T

0

e−rt

(

D(it) dt +
∑

j∈I

Q(it−, j) dNt(j)

)

.
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Taking expectations on both sides and using the transversality condition (65),

one finds that the lifetime utility of an investor is equal to W0 + V (π) where

V (π) ≡ EPπ

[

∫ ∞

0

e−rt

(

D(it) dt +
∑

j∈I

Q(it−, j) dNt(j)

)]

.

Because of linear utility, and because the interest rate is equal to the subjective

discount rate, an investors is indifferent regarding the timing of his consumption,

as long as the associated wealth process satisfies the Transversality Condition.

The investor’s problem is

sup
u∈U

{W0 + V (π)} .

B.2 Hamilton-Jacobi-Bellman Equation

We find an optimal control by seeking a collection of continuation utilities J(i),

i ∈ I, solving the system of Hamilton-Jacobi-Bellman (HJB) equations

rJ(i) = max
πi∈Π(i)

{

D(i) +
∑

j∈I

πi(j)

(

J(j) − J(i) + Q(i, j)

)

}

. (67)

Up to some relabelling, this system of HJB is that solved in the text. It is shown

that the maximum is achieved by some continuation utility J∗(i) and transition

intensity π∗
i .

We now verify that the investor’s problem is solved by the control c∗t = rW0 +

rJ∗(j0), and π∗
t = π∗

it
. We first show

Proposition 7 (Sufficiency) The suppremum utility supπ∈U W0+V (π) is bounded

above by W0 + J∗(j0), and this upper bound is achieved by the admissible control

(c∗, π∗).

Proof The proof goes in two steps. First, we show that V (π) ≤ J∗(j0), adapting the
proof of Theorem VII,T1 in Brémaud [1981]. Then we show that the associated wealth
process satisfies the Transversality Condition. For the first part of the proof, let’s
consider any admissible control u. We can write
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J∗(iT )e−rT = J∗(j0) +
∑

0 <Tn ≤T

(

J∗(jn)e−rTn − J∗(jn−1)e
−rTn−1

)

+ J∗(iτT
)(e−rT − e−rτT ), (68)

where τT = sup{Tn, n ≥ 0 : Tn ≤ T}. Equation (68) can be manipulated as follows:

J∗(iT )e−rT = J∗(j0) +
∑

0 <Tn ≤T

J∗(jn−1)(e
−rTn − e−rTn−1) + J∗(iτT

)(e−rT − e−rτT )

+
∑

0<Tn≤T

e−rTn (J∗(jn) − J∗(jn−1))

= J∗(j0) +

∫ T

0

d

dt
(J∗(it)e

−rt) dt +

∫ T

0

∑

j∈I

(

J∗(j) − J∗(it−)
)

e−rt dNt(j)

= J∗(j0) +

∫ T

0



−rJ∗(it) +
∑

j∈I

πt(j)
(

J∗(j) − J∗(it−)
)



 e−rt dt

+

∫ T

0

∑

j∈I

e−rt
(

J∗(j) − J∗(it−)
)(

dNt(j) − πt(j) dt
)

.

Adding
∫ T

0 e−rtD(it) dt +
∫ T

0

∑

j∈I Q(it−, j) dNt(j) to both sides gives

∫ T

0
e−rtD(it) dt +

∫ T

0

∑

j∈I

Q(it−, j) dNt(j) + J∗(iT )e−rT =

J∗(j0) +

∫ T

0
e−rt



−rJ∗(it) + D(it) +
∑

j∈I

πt(j)
[

J∗(j) − J∗(it−) + Q(it−, j)
]



 dt

+

∫ T

0

∑

j∈I

(

J∗(j) − J∗(it−) + Q(it−, j)
)

e−rt
(

dNt(j) − πt(j) dt
)

. (69)

Since
(

J∗(j) − J∗(it−) + Q(it−, j)
)

e−rt is a bounded Ft-predictable process, it follows
by Theorem II, T8 in Brémaud [1981] that the last term on the right-hand side of (69)
is a martingale. Taking expectations on both sides, and using the HJB equation (67),
one finds

EPπ





∫ T

0
e−rtD(it) dt +

∫ T

0

∑

j∈I

Q(it−, j) dNt(j) + J∗(iT )e−rT



 ≤ J∗(j0),

with equality for π = π∗. Letting t go to infinity proves that V (π) ≤ J(j0), with
equality if π = π∗.
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The second step of the proof is to show that the associated wealth process satisfies
the Transversality Condition (65). Replacing c∗t = rW0 + rJ∗(j0) into the budget
constraint (64), multiplying by e−rt, and integrating from t = 0 to t = T , we find

W ∗
T e−rT = W0e

−rT −J∗(j0)(1−e−rT )+

∫ T

0
e−rtD(it) dt+

∫ T

0

∑

j∈I

Q(it−, j) dNt(j).

To show that the Transversality Condition is satisfied, one takes expectations EPπ∗
on

both sides, lets T goes to infinity, and uses the fact that

J∗(j0) = EPπ∗





∫ ∞

0
e−rtD(it) dt +

∫ ∞

0

∑

j∈I

Q(it−, j) dNt(j)



 .

�
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