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Abstract 

We examine how investor sentiment affects the cross-section of stock returns. Theory predicts 
that a broad wave of sentiment will disproportionately affect stocks whose valuations are highly 
subjective and are difficult to arbitrage. We test this prediction by studying how the cross-section 
of subsequent stock returns varies with proxies for beginning-of-period investor sentiment. When 
sentiment is low, subsequent returns are relatively high on smaller stocks, high volatility stocks, 
unprofitable stocks, non-dividend-paying stocks, extreme-growth stocks, and distressed stocks, 
consistent with an initial underpricing of these stocks. When sentiment is high, on the other hand, 
these patterns attenuate or fully reverse. The results are consistent with theoretical predictions 
and are unlikely to reflect an alternative explanation based on compensation for systematic risks.  
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I. Introduction 

Classical finance theory gives no role to investor sentiment. Investors are rational and 

diversify to optimize the statistical properties of their portfolios. Competition among them leads 

to an equilibrium in which prices equal the rationally discounted value of expected cash flows, 

and in which the cross-section of expected returns depends on the cross-section of systematic 

risks.1 Even if some investors are irrational, classical theory argues, their demands will be offset 

by arbitrageurs and similar conclusions for prices will obtain.  

In this paper, we present evidence that suggests investor sentiment has strong effects on 

the cross-section of stock prices. We start with some simple theoretical predictions. A mispricing 

is the outcome of both an uninformed demand shock and a binding arbitrage constraint. A broad-

based wave of sentiment is then predicted to have cross-sectional effects, as opposed to raising or 

lowering all prices by the same amount, when either sentiment-based demands or arbitrage 

constraints vary across stocks. In practice, these two channels lead to quite similar predictions. 

Stocks that are likely to be most sensitive to sentiment-driven demand – stocks whose valuations 

are highly subjective – also tend to be the riskiest and costliest to arbitrage. Concretely, theory 

suggests two separate channels through which the stocks of newer, smaller, highly volatile firms, 

firms in distress or with extreme growth potential, and firms without dividends are predicted to 

be relatively more affected by investor sentiment.  

To investigate this prediction empirically, and to get a more tangible sense of the 

intrinsically elusive concept of investor sentiment, we begin with a brief summary of rises and 

falls in U.S. market sentiment from 1961 through the recent Internet bubble. This summary is 

                                                 
1 See Gomes, Kogan, and Zhang (2003) for a recent model in this tradition.  



 2 

based on anecdotal accounts and thus is only suggestive, but it appears broadly consistent with 

our theoretical predictions, and suggests more formal empirical tests are warranted. 

Our main empirical approach is as follows. Because cross-sectional patterns of sentiment-

driven mispricing would be difficult to identify directly, we look for the hypothesized patterns in 

subsequent stock returns that appear when one conditions on proxies for beginning-of-period 

investor sentiment. Conditional cross-sectional patterns in subsequent returns may represent the 

initial patterns of mispricing correcting themselves over time. For example, relatively low future 

returns on young firms when sentiment was high suggest that young firms were overvalued ex 

ante. As usual, there is a joint hypothesis problem. By using this approach, we must also 

consider the possibility that any such patterns are compensation for systematic risks.  

The first step is to gather proxies for investor sentiment to use as time series conditioning 

variables. We use a number of proxies suggested by recent work, and we also construct a novel 

composite index based on their first principal component. To further reduce the likelihood that 

these proxies are connected to systematic risks, we orthogonalize each of them to a wide range of 

macroeconomic conditions. The resulting sentiment proxies are highly correlated and visibly line 

up with anecdotal accounts of past bubbles.  

We then examine whether the cross-section of stock returns varies with beginning-of-

period sentiment in the predicted manner. We use monthly stock returns between 1963 and 2001. 

Our first method is to sort firm-month observations according to the level of sentiment, first, and 

then the decile rank of a given firm characteristic, second. We find that when sentiment is low, 

small stocks earn particularly high subsequent returns, but when sentiment is high, there is no 

size effect at all. Conditional patterns are even sharper when sorting on other characteristics. 

When sentiment is low subsequent returns are higher on young stocks than older stocks, high-
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return volatility than low-return volatility stocks, unprofitable stocks than profitable ones, and 

nonpayers than dividend payers. When sentiment is high, these patterns completely reverse. In 

other words, several characteristics that were not known to have (and do not have) any 

unconditional predictive power actually reveal sign-flip patterns, in the predicted directions, 

when one conditions on sentiment.  

The sorts also reveal a U-shaped pattern involving growth firms and distressed firms. 

Note that when stocks are sorted into deciles by sales growth, book-to-market, or external 

financing activity, growth and distressed firms lie at opposing extremes, with more stable firms 

in the middle deciles. We find that when sentiment is low, returns are high on both extreme-

growth and distressed stocks, relative to middle deciles. But when beginning-of-period sentiment 

is high, this U shape flips upside down, and the extreme deciles earn relatively low subsequent 

returns. This pattern is again consistent with our predictions, because extreme-growth and 

distressed firms have highly subjective valuations and also tend to be harder to arbitrage than 

more typical firms. Both effects suggest a greater sensitivity to sentiment. Again, note that these 

conditional U patterns, like the conditional monotonic patterns described above, are averaged 

away in unconditional studies. 

We confirm the statistical significance of these patterns with two regression approaches, 

and then turn to the alternative explanation that they reflect compensation for systematic risks. 

As a start, our sentiment proxies are orthogonal to contemporaneous macroeconomic conditions. 

In addition, other aspects of the results cast doubt on this explanation. The systematic risk 

explanation requires either time variation in rational, market-wide risk premia or time variation 

in the cross-sectional pattern of risk, or beta loadings. We directly test the second possibility and 

find no link between the patterns in predictability and patterns in betas with market returns or 
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consumption growth. If risk is not changing over time, then the first possibility requires not just 

time-variation in risk premia but changes in sign, such that in half of our sample period (when 

sentiment proxies are low), old, less volatile, profitable, dividend-paying firms require a risk 

premium over young, highly volatile, unprofitable, nonpayers. Such a pattern is at best 

counterintuitive. Finally, we uncover some conditional patterns in returns around firms’ earnings 

announcements, which suggest that a component of the results can be attributed to expectational 

errors. For these reasons, compensation for systematic risk is an unlikely explanation.  

The evidence presented here challenges the classical view of the cross-section of stock 

prices and carries significant implications, some of which we mention in the conclusion. Here we 

note that the paper builds on several recent themes in asset pricing. Campbell and Cochrane 

(2000), Wachter (2000), Lettau and Ludvigson (2001), and Menzly, Santos, and Veronesi (2002) 

consider the cross-sectional effects of conditional systematic risks, as we condition on sentiment. 

Daniel and Titman (1997) test a characteristics-based model for the cross-section of expected 

returns. Our specification extends this idea and offers a specific, conditional motivation. Shleifer 

(2000) surveys early work on sentiment and limited arbitrage, the two key ingredients here. 

Barberis and Shleifer (2003), Barberis, Shleifer, and Wurgler (2003), and Peng and Xiong (2002) 

discuss models of category-level trading, and Fama and French (1993) document strong 

comovement of stocks of similar sizes and book-to-market ratios. Sentiment-driven demand 

shocks for categories of stocks with similar characteristics are central to our results. Finally, our 

results complement and build on earlier work on the time-series effects of sentiment (Kothari and 

Shanken (1997), Neal and Wheatley (1998), Shiller (1981, 2000), and Baker and Wurgler 

(2000)) and relationships among sentiment, initial public offerings, and small stock returns (Lee, 

Shleifer, and Thaler (1991), Swaminathan (1996), and Neal and Wheatley (1998)).  
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Section II discusses relevant theory. Section III provides a qualitative history of recent 

speculative episodes. Section IV describes the empirical hypotheses and the data, and the main 

empirical tests are contained in Section V. Section VI concludes.  

 

II. Theoretical effects of sentiment on the cross-section 

A mispricing is the result of an uninformed demand shock and a limit on arbitrage. This 

observation suggests that there are two distinct channels through which investor sentiment, as 

defined more precisely below, might affect the cross-section of stock prices. In the first channel, 

sentimental demand shocks vary in the cross-section, while limits on arbitrage are held constant. 

In the second, the difficulty of arbitrage varies across stocks but sentiment is generic. We discuss 

the two channels in turn.  

A. Cross-sectional variation in sentiment  

One possible definition of investor sentiment is the propensity to speculate. Under this 

definition, sentiment drives the relative demand for speculative investments, and so causes cross-

sectional effects even if arbitrage forces are the same across stocks.  

What makes certain stocks more vulnerable to broad shifts in the propensity to speculate? 

Perhaps the main factor is the subjectivity of their valuations. For instance, consider a canonical 

young, unprofitable, extreme-growth potential stock. The lack of an earnings history combined 

with the presence of apparently unlimited growth opportunities allows unsophisticated investors 

to defend, with equal plausibility, a wide spectrum of valuations, from much too low to much too 

high, as suits their sentiment. In a bubble period, when the propensity to speculate is apparently 

high, this profile of characteristics also allows investment bankers or, worse, swindlers, to further 

argue for the high end of valuations. By contrast, the value of a firm with a long earnings history 
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and stable dividends is much less subjective, and so its stock is likely to be less affected by 

fluctuations in the propensity to speculate. 

 This suggests how variation in the propensity to speculate may generally affect the cross-

section, but not how sentimental investors actually choose individual stocks. We suggest that 

they may simply demand stocks that have the bundle of salient characteristics that is compatible 

with their sentiment.2 That is, those with a low propensity to speculate may demand profitable, 

dividend-paying stocks not because profitability and dividends are correlated with some 

unobservable firm property that defines safety, but precisely because the salient characteristics 

“profitability” and “dividends” are used to infer safety.3 Likewise, the salient characteristics “no 

earnings,” “young age,” and “no dividends” may mark the stock as speculative. This investment 

process seems more realistic than that of Markowitz (1959), in which investors view individual 

securities in terms of their statistical properties. 

B. Cross-sectional variation in arbitrage 

Investor sentiment might also be reasonably defined as optimism or pessimism about 

stocks in general. Indiscriminate waves of sentiment still affect the cross-section, however, if 

arbitrage forces are relatively weaker in a subset of stocks.  

Theoretical and empirical research suggests that arbitrage tends to be particularly risky 

and costly for young, small, unprofitable extreme-growth or distressed stocks. Their high 
                                                 
2 The idea that investors view securities as a vector of salient characteristics borrows from Lancaster (1966, 1971), 
who views consumer demand theory from the perspective that the utility of a consumer good (e.g, oranges) derives 
from more primitive characteristics (fiber and vitamin C). 
3 The implications of categorization for finance have recently been explored by Baker and Wurgler (2003), Barberis 
and Shleifer (2003), Barberis, Shleifer, and Wurgler (2003), Greenwood and Sosner (2003), and Peng and Xiong 
(2002). Note that if investors infer category membership from salient characteristics (some psychologists propose 
that category membership is determined by the presence of defining or characteristic features, e.g. Smith, Shoben, 
and Rips (1974)), then sentiment-driven demand will be directly connected to characteristics even if sentimental 
investors undertake an intervening process of categorization and trade entirely at the category level. It is also 
empirically convenient to boil key investment categories down into vectors of stable and measurable characteristics: 
one can use the same empirical framework to study such episodes as the late-1960’s growth stocks bubble and the 
Internet bubble. 
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idiosyncratic risk makes relative-value arbitrage especially risky (Wurgler and Zhuravskaya 

(2002)). They tend to be more costly to trade (Amihud and Mendelsohn (1986)) and particularly 

expensive, sometimes impossible, to sell short (D’Avolio (2002), Geczy, Musto, and Reed 

(2002), Jones and Lamont (2002), Duffie, Pedersen, and Garleanu (2003), Lamont and Thaler 

(2003), and Mitchell, Pulvino, and Stafford (2002)). Further, their lower liquidity also exposes 

would-be arbitrageurs to predatory attacks (Brunnermeier and Pedersen (2003)).  

Note that, in practice, it is generally true that the same stocks that are the hardest to 

arbitrage are also most vulnerable to sentiment. While for expositional purposes we outline 

these two channels separately, they are likely to have overlapping effects. And while this makes 

the channels themselves difficult to distinguish empirically, it makes it easier to derive robust 

empirical predictions for the cross-sectional effects of sentiment, broadly defined. Indeed, the 

two channels may even amplify each other. For example, the fact that investors can convince 

themselves of an especially wide range of valuations in certain regions of the cross-section is a 

noise-trader risk that further deters short-horizon arbitrageurs (De Long, Shleifer, Summers, and 

Waldmann (1990) and Shleifer and Vishny (1997)).4 

 

III. An anecdotal history of investor sentiment, 1961-2002 

 In this section we offer a brief summary of U.S. stock market bubbles between 1961 to 

2002, matching the period of our own data. The reader eager to see results may skip this section, 

but it will prove useful for three reasons. First, despite great interest in the effects of investor 

sentiment, the literature does not appear to contain even the most basic qualitative comparative 

                                                 
4 We do not incorporate the equilibrium prediction of DeLong, Shleifer, Summers, and Waldmann (1990), namely 
that securities with more exposure to sentiment have higher unconditional expected returns. Elton, Gruber, and 
Busse (1998) argue that expected returns are not higher on stocks that have higher sensitivities to the closed-end 
fund discount, a proxy for investor sentiment.  
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description of recent speculative episodes. Second, a knowledge of the rough timing of these 

episodes will help us make a preliminary judgment about the accuracy of the quantitative proxies 

for sentiment we develop later. Third, the discussion sheds some initial, albeit anecdotal light on 

the plausibility of our theoretical predictions.  

Our brief history of sentiment is distilled from several secondary sources. Kindleberger 

(2001) draws general lessons from bubbles and crashes over the past few hundred years, while 

Brown (1991), Dreman (1979), Malkiel (1990, 1999), Shiller (2000), and Siegel (1998) focus 

more specifically on recent U.S. stock market episodes. We take each of these accounts with a 

grain of salt, and emphasize only those themes that appear repeatedly.  

We start in 1961, a year in which Malkiel (1990) and Brown (1991) note a high demand 

for small, young, growth stocks. Dreman (1979, p. 70) confirms their account. Malkiel writes of 

a “new-issue mania” that was concentrated on new “tronics” firms. “… The tronics boom came 

back to earth in 1962. The tailspin started early in the year and exploded in a horrendous selling 

wave … Growth stocks took the brunt of the decline, falling much further than the general 

market” (p. 54 - 57).  

The next bubble develops in 1967 and 1968. Brown writes that “scores of franchisers, 

computer firms, and mobile home manufactures seemed to promise overnight wealth. … [while] 

quality was pretty much forgotten” (p. 90). Malkiel and Dreman also note this pattern – a focus 

on firms with strong earnings growth or potential, and an avoidance of “the major industrial 

giants, ‘buggywhip companies,’ as they were sometimes contemptuously called” (Dreman 1979, 

p. 74-75). Another characteristic viewed as out of favor was dividends. According to the New 

York Times, “during the speculative market of the late 1960’s many brokers told customers that it 

didn’t matter whether a company paid a dividend – just so long as its stock kept going up” 
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(9/13/1976).  But “after 1968, as it became clear that capital losses were possible, investors came 

to value dividends” (10/7/1999).  

 Anecdotal accounts invariably describe the early 1970’s as a bear market, with sentiment 

at a low level. However, a set of old, large, stable, consistently profitable stocks known as the 

“nifty fifty” enjoyed notably high valuations. Brown, Malkiel, and Siegel (1998) each highlight 

this episode. Siegel writes, “All of these stocks had proven growth records, continual increases in 

dividends … and high market capitalization” (p. 106). Note that this speculative episode is a 

mirror image of those described above (and below). They center on small, young, unprofitable 

growth stocks in periods of high sentiment, while the nifty fifty episode appears to be a bubble in 

a set of firms with an opposite set of characteristics (old, large, and continuous earnings and 

dividend growth) and happens in a period of low sentiment.  

The late 1970’s through mid-1980’s are described as a period of generally high sentiment 

that saw a series of speculative episodes. Dreman describes a bubble in gambling issues in 1977 

and 78. Ritter (1984) studies the hot issue market of 1980, finding greater initial returns on IPOs 

of natural resource start-ups than on larger, mature, profitable offerings. Of 1983, Malkiel (p. 74-

75) writes that “the high-technology new-issue boom of the first half of 1983 was an almost 

perfect replica of the 1960’s episodes … The bubble appears to have burst early in the second 

half of 1983 … the carnage in the small company and new-issue markets was truly catastrophic.” 

Brown confirms this account. Of the mid-1980’s, Malkiel writes that “What electronics was to 

the 1960’s, biotechnology became to the 1980’s. … new issues of biotech companies were 

eagerly gobbled up. … having positive sales and earnings was actually considered a drawback” 

(p. 77-79). But by 1987 and 1988, “market sentiment had changed from an acceptance of an 
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exciting story … to a desire to stay closer to earth with low-multiple stocks that actually pay 

dividends” (p. 79). 

 The late-1990’s bubble in technology stocks will be familiar to the reader. By all 

accounts, sentiment was broadly high before the bubble began to burst in 2000. The bubble is 

analyzed in more detail by Cochrane (2002) and Ofek and Richardson (2002a,b). Malkiel draws 

parallels to episodes in the 1960’s, 1970’s, and 1980’s, and Shiller (2000) compares the Internet 

to the late 1920’s. As in earlier speculative episodes that occurred in high sentiment periods, 

demand for dividend payers seems to have been low (New York Times, 1/6/1998). Ljungqvist 

and Wilhelm (2003) find that 80% of 1999 and 2000 IPOs had negative earnings per share and 

that the median age of 1999 IPOs was 4 years. This compares to an average age of over 9 years 

just prior to the emergence of the bubble, and to an average age of over 12 years by 2001 and 

2002 (Ritter, 2003). 

 These anecdotal accounts suggest that there may be some regularities in how the cross-

section depends on investor sentiment. One pattern seems to be that canonical extreme-growth 

stocks are especially prone to bubbles, and subsequent crashes, consistent with the observation 

that they tend to appeal to speculators and optimists and at the same time are hard to arbitrage. 

The “nifty fifty” bubble is an exception to this pattern. However, anecdotal accounts suggest that 

this bubble appears in a period of broadly low sentiment, so it might still be reconciled with the 

main cross-sectional prediction that an increase in sentiment will increase the relative price of 

stocks that are most subjective to value and hardest to arbitrage. We turn to more formal tests of 

this prediction.   
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IV. Empirical approach and data 

A. Empirical approach 

 Theory and historical anecdote both suggest that sentiment may cause systematic patterns 

of mispricing. Because mispricing is hard to identify directly, however, we will look for 

systematic patterns of correction of mispricings in the form of conditional patterns in cross-

sectional return predictability. For example, if returns on young and unprofitable firms tend to be 

relatively low, conditional on a high estimate of beginning-of-period sentiment, it may reflect the 

effects of a correction of a bubble in growth stocks. 

Specifically, we organize our empirical work around the following model: 

 [ ] 11211 '' −−− ++= ittitit TaRE xbxb  (1) 

where i indexes firms or securities, t is time, x is a vector of firm or security characteristics, and 

T is a time series conditioning variable that proxies for investor sentiment. The null hypothesis is 

that b2 is zero or, more precisely, that any nonzero effect is due to rational compensation for 

bearing systematic risk. The alternative is that b2 is nonzero and reflects the correction of 

mispricings. We refer to Eq. (1) as a “conditional characteristics model,” as it adds conditional 

effects to the specification of Daniel and Titman (1997).  

We use Eq. (1) as an organizing framework to test for conditional characteristics effects, 

not as a structural model. We will sort stocks by x and T and tabulate the subsequent returns in 

each bin, and we will run predictive regressions. Either way, the basic strategy is to use 

sentiment proxies as conditioning variables, and then see whether the manner in which 

characteristics spread future returns depends on the conditioning variable. This will help us to 

answer the first-order question of whether sentiment, broadly defined, has cross-sectional effects. 

We will also address the question of whether any conditional characteristics effects reflect 
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mispricing or compensation for systematic risk. We will leave interesting but subtler questions, 

such as the extent to which rejections of the null are due to cross-sectional variation in sentiment 

or constraints on arbitrage, to future research. 

B. Characteristics and returns 

The firm-level data is from the merged CRSP-Compustat database. The sample includes 

all common stock (share codes 10 and 11) of nonfinancial firms (excluding SIC code 6) between 

1962 through 2001. Following Fama and French (1992), we match accounting data for fiscal 

year-ends in calendar year t-1 to (monthly) returns from July t through June t+1, and also use 

their variable definitions where possible.  

Table 1 shows summary statistics. Panel A summarizes returns variables. Following 

common practice, momentum MOM is defined as the cumulative raw return for the eleven-

month period between 12 and two months prior to the observation return. (Note we will examine 

momentum as a control or robustness variable, not as a firm characteristic in itself.)  

The remaining panels summarize the firm and security characteristics that we consider. 

The previous sections’ discussions point us directly to several variables. To that list, we add a 

few more characteristics that, by introspection, seem likely to be salient to investors. Overall, we 

group characteristics roughly, as pertaining most directly to firm size and age, profitability, 

dividends, growth opportunities, and distress.  

Panel B summarizes size and age characteristics. Market equity ME from June of year t, 

measured as price times shares outstanding from CRSP, is matched to monthly returns from July 

of year t through June of year t+1. Age is the number of years since the firm’s first appearance on 

CRSP, measured to the nearest month.5 Sigma is the standard deviation of monthly returns over 

                                                 
5 Barry and Brown (1984) use the more accurate term “period of listing.”  
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the twelve months ending in June of year t. If there are at least nine returns to estimate it, Sigma 

is then matched to monthly returns from July of year t through June of year t+1. 

Panel C summarizes profitability characteristics. The return on equity E+/BE is positive 

for profitable firms and zero for unprofitable firms. Earnings (E) is income before extraordinary 

items (Item 18) plus income statement deferred taxes (Item 50) minus preferred dividends (Item 

19), if earnings are positive; book equity (BE) is shareholders equity (Item 60) plus balance sheet 

deferred taxes (Item 35). E>0 is a dummy variable for profitable firms.  

Panel D summarizes dividend characteristics. Dividends to equity D/BE is dividends per 

share at the ex date (Item 26) times Compustat shares outstanding (Item 25) divided by book 

equity. D>0 is a dummy for positive dividends per share by the ex date. The recent decline in the 

percentage of firms that pay dividends noted by Fama and French (2001) is apparent. As they 

point out, this is partly attributable to the increasing proportion of unprofitable firms.  

Panel E summarizes characteristics that may be indictors of growth opportunities, 

distress, or both. The elements of book-to-market equity BE/ME are defined above. External 

finance activity EF/A is defined as the change in assets (Item 6) minus the change in retained 

earnings (Item 36) divided by assets. Sales growth (GS) is the change in net sales (Item 12) 

divided by prior-year net sales. We measure and report sales growth GS/10 as the decile of the 

firm’s sales growth in the prior year relative to NYSE firms’ decile breakpoints.  

It is important to bear in mind that the variables in Panel E, in particular, capture multiple 

effects. For instance, book-to-market wears at least three distinct hats: extremely high values are 

likely to indicate distress; extremely low values are likely to indicate high growth opportunities; 

and, as a scaled-price variable, book-to-market also serves as a generic valuation indicator, 

varying with mispricing or rational expected returns. The sales growth and external finance 
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variables wear at least two hats: extremely low values (which are negative) are likely to indicate 

distress; extremely high values are likely to indicate high growth opportunities. To the extent that 

market timing motives are important to external finance, that variable also serves as a generic 

misvaluation indicator. 

In Panels C, D, and E, the accounting data for fiscal years ending in calendar year t-1 are 

matched to monthly returns from July of year t through June of year t+1. To reduce the influence 

of outliers and data errors, all of the explanatory variables are Winsorized each year at their 0.5 

and 99.5 percentiles.  

C. Investor sentiment 

 Prior work suggests a number of proxies for sentiment to use as time-series conditioning 

variables. We use six – the average closed-end fund discount, NYSE share turnover, the number 

and average first-day returns on IPOs, the equity share in new issues, and the dividend premium 

– as well as a composite sentiment index that is based on the first principal component of these 

proxies. Our sentiment proxies are measured annually from 1962 through 2001.  

To isolate the sentiment component of the proxies from business cycle components, we 

orthogonalize each proxy with respect to several macroeconomic variables. Specifically, we 

regress each of the raw proxies on growth in the industrial production index (Federal Reserve 

Statistical Release G.17), growth in consumer durables, nondurables, and services (all from BEA 

National Income Accounts Table 2.10), and a dummy variable for NBER recessions. We take the 

residuals from these regressions as a cleaner proxy that is independent of major business cycle 

effects. All of our results are based on these cleaned proxies. 

Table 2 summarizes the raw proxies in Panel A and the cleaned versions in Panel B. 

Figure 1 plots both versions. The closed-end fund discount CEFD is the average difference 
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between the NAV of closed-end stock fund shares and their market prices. Prior work suggests 

that the discount is inversely related to sentiment. Zweig (1973) uses the discount to forecast 

reversion in Dow Jones stocks, and Lee, Shleifer, and Thaler (1991) argue that sentiment 

explains several features of the discount. We take the value-weighted average discount on 

closed-end stock funds for 1962 through 1993 from Neal and Wheatley (1998), for 1994 through 

1998 from CDA/Wiesenberger, and for 1999 through 2001 from turn-of-the-year issues of the 

Wall Street Journal.  

NYSE share turnover is based on the ratio of reported share volume to average shares 

listed from the NYSE Fact Book. Baker and Stein (2002) suggest that turnover, and more 

generally liquidity, can serve as a sentiment index. In a market with short-sales constraints, 

irrational investors participate and thus add liquidity only when they are optimistic, and hence 

high liquidity tends to coincide with overvaluation. Consistent with this interpretation, Jones 

(2001) finds that high turnover forecasts low market returns. Turnover displays an exponential 

positive trend over our period, however, and the May 1975 elimination of fixed commissions 

have a visible effect. As a partial solution, the raw turnover ratio TURN is detrended by the five-

year moving average (specifically, the log of the ratio is detrended by its moving average). This 

helps the variable to identify sharp changes in turnover, but it will clearly still pick up the sharp 

changes caused by market structure.  

The IPO market is often viewed as sensitive to sentiment, and high first-day returns on 

IPOs may also be a measure of investor enthusiasm. The low returns on IPOs are consistent with 

successful market timing (Stigler (1964), Ritter (1991)). We take the number of IPOs NIPO and 

the average first-day returns RIPO in a given year from Jay Ritter’s website, which updates the 

sample in Ibbotson, Sindelar, and Ritter (1994). Of course, there are many non-sentiment reasons 
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for why IPO volume and so-called underpricing vary over time, but they do not have direct 

implications for cross-sectional return predictability.  

The share of equity issues in total equity and debt issues is another measure of financing 

activity that may capture an aspect of sentiment. Baker and Wurgler (2000) find that when the 

equity share is in its bottom (top) historical quartile, the next year’s equal-weighted market 

return averages 27% (-8%), and argue that part of this predictability reflects market timing by 

firms made possible by sentiment-driven mispricing. The equity share is defined as gross equity 

issuance divided by gross equity plus gross long-term debt issuance using data from the Federal 

Reserve Bulletin.6 

The dividend premium PD-ND is the log ratio of the average market-to-book ratios of 

payers and nonpayers. Baker and Wurgler (2002) motivate the dividend premium as a proxy for 

relative investor demand for dividend payers. Because Fama and French (2001) find that payers 

are larger, more profitable, and have weaker growth opportunities, the dividend premium may 

also pick up investor demand for this correlated bundle of characteristics. 

Intuitively, to detect the hypothesized cross-sectional patterns in predictability, we want 

to condition on turning points in investor sentiment. But the sentiment proxies themselves have 

certain lead-lag relationships, raising the possibility that different variables may reflect the same 

sentiment factor at different times. For instance, Ibbotson and Jaffe (1975), Lowry and Schwert 

(2002), and Benveniste, Wilhelm, Ljungqvist, and Yu (2003) find that IPO volume lags the first-

day returns on IPOs. One interpretation of this fact is that sentiment is in part behind the high 

first-day returns, and this attracts additional IPO volume with a lag. More generally, proxies that 

                                                 
6 While they both reflect equity issues, the number of IPOs and the equity share have important differences. The 
equity share includes seasoned offerings, is known to predict market returns, and scales by total external finance to 
isolate the composition of finance from the level. On the other hand, the IPO variables may better reflect demand for 
certain IPO-like regions of the cross-section that theory and history suggest are most sensitive to sentiment. 
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involve firm supply responses (S and NIPO) are likely to lag proxies that are based on investor 

demand or investor behavior (RIPO, PD-ND, TURN, and CEFD).  

We also form a novel composite index SENTIMENT in order to capture the common 

factor in the six proxies, and to help us identify their best relative timing. The procedure is as 

follows. We start by estimating the first principal component of the six proxies and their lags. 

This gives us a first-stage index with twelve loadings, one for each of the current and lagged 

proxies. We then compute the correlation between the first-stage index and the current and 

lagged values of each of the proxies. Finally, we construct SENTIMENT as the first principal 

component of the correlation matrix of six variables – each proxy’s lead or lag, whichever has 

the higher correlation with the first-stage index.  

This procedure leads to a final, more parsimonious index: 

SENTIMENTt   = ttt NIPOTURNCEFD 414.0402.0358.0 1 ++− −  

 NDD
ttt PSRIPO −
−− −++ 11. 431.0371.04640    (2) 

where for Eq. (2) each of the six components was first cleaned of macroeconomic conditions and 

standardized. The first principal component explains 53% of the (standardized) sample variance, 

and only the first eigenvalue is above 1.00, so we conclude that one factor captures the common 

variation. The correlation between the twelve-term first-stage index and the SENTIMENT index 

is 0.96, suggesting that little information is lost in dropping six terms.  

Certain aspects of this index are intuitively appealing. First, each individual sentiment 

proxy enters with the expected sign. Second, all but one of the proxies enter with the expected 

timing – with the exception of CEFD, price and investor behavior variables lead firm supply 

variables. We will make use of this pattern in the subsequent analysis, i.e. we will condition on 

the first predetermined value of CEFD, NIPO, S, and SENTIMENT, and the lag of that value for 
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TURN, RIPO, and PD-ND. Third, the index irons out some extreme observations. The dividend 

premium and the first-day IPO returns reached unprecedented levels in 1999. For these to work 

as individual predictors over the whole sample, these levels must be matched exactly to extreme 

future returns. 

Figure 1 shows that the sentiment proxies line up well with anecdotal accounts of 

sentiment. Most proxies point to low sentiment in the first few years of the sample, which follow 

the 1961 crash in growth stocks – the closed-end fund discount and dividend premium are high, 

while turnover and equity issuance-related variables are low. Each variable identifies a spike in 

sentiment in 1968 and 1969, again matching anecdotal accounts. Sentiment then tails off until, 

by the mid-1970’s, it is low by most measures (recall that for turnover this is confounded by the 

deregulation). The late 1970’s through mid-1980’s sees generally rising sentiment, and according 

to the composite index, sentiment has not dropped below a medium level since 1980. At the end 

of 1999, near the peak of the Internet bubble, sentiment is again high by most proxies.  

This correspondence with anecdotal accounts is encouraging. It confirms, to the extent 

possible, that the proxies capture the intended variation. Also notable is that cleaning the proxies 

of macro conditions has little effect on their time-series properties. Indeed, Table 2 suggests that 

the cleaned proxies are equally if not more correlated with each other than are the raw proxies, 

suggesting that investor sentiment can be distinguished from macroeconomic conditions. Again, 

we consider only the cleaned proxies in our subsequent empirical work, in order to isolate the 

effect of sentiment from macroeconomic conditions. 
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V. Empirical tests 

A. Sorts 

Table 3 looks for conditional characteristics effects in a simple, nonparametric way. We 

place each monthly return observation into a bin according to the decile rank that a characteristic 

takes at the beginning of that month, and then according to the level of a sentiment proxy from 

the end of the previous calendar year. We compute the average monthly return for that bin and 

look for patterns. We report sorts on CEFD in Table 3a and SENTIMENT in Table 3b. As 

discussed above, we condition returns from calendar year t on the December of year t-1 values of 

CEFD and SENTIMENT. Also, to keep the meaning of the deciles relatively constant over time, 

we define them based on NYSE firms. The tradeoff is that there is not a uniform distribution of 

firms across bins in a given month.  

For brevity, we omit sorts on the five other sentiment proxies. They give similar results, 

available upon request, and they are broken out separately in all subsequent tables because they 

fit more compactly. But it is worth showing results for CEFD alongside the overall index, 

however, because CEFD is perhaps our cleanest “general” indicator of investor sentiment – it is 

not mechanically connected to sentiment for any one segment of the cross-section. In contrast, 

the volume of IPOs and the dividend premium could in principle be driven by a concentrated 

demand for firms with IPO characteristics or dividends, respectively. By comparing the results 

for CEFD to the results for other sentiment proxies, or the composite index, we can more clearly 

document a general sentiment effect.  

The first rows of Table 3 show the effect of size conditional on sentiment. They reveal 

that the cross-sectional size effect of Banz (1981) exists in low-sentiment conditions only, i.e. 

when CEFD is positive or SENTIMENT is negative (a final reminder that here, and in all 
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subsequent tables, the sentiment proxies are net of macroeconomic effects). Specifically, Table 

3b shows that when SENTIMENT is negative, returns average 2.37 percent per month for the 

bottom ME decile and 0.87 for the top decile. A similar pattern is apparent when conditioning on 

CEFD; a link between the size effect and closed-end fund discounts was previously noted by 

Swaminathan (1996). This pattern helps make sense of some long-known results. Namely, the 

size effect was known to be largely a January effect (Keim (1983), Blume and Stambaugh 

(1983)), and the January effect, in turn, was known to be stronger after a period of low returns 

(Reinganum (1983)), which is when sentiment is likely to be low.  

As an aside, note that the average returns across the first two rows of Table 3 show that 

subsequent returns tend to be higher across the board when sentiment is low. This is consistent 

with prior results that the equity share and turnover, for example, forecast market returns. More 

generally, it supports our premise that sentiment has broad effects, and so the existence of richer 

patterns within the cross-section should not be entirely surprising.  

The conditional cross-sectional effect of Age is especially striking. It seems that investors 

tend to demand young stocks when SENTIMENT is positive and old stocks when sentiment is 

negative. This is suggested by the conditional difference in returns between decile 10 and decile 

1 stocks. When SENTIMENT is pessimistic, top-decile Age firms return 0.55 percent less than 

bottom-decile Age firms, but return 0.73 percent more when SENTIMENT is optimistic. This is 

intriguing because Age shows no unconditional effect at all.7 The strong conditional effects will 

simply average out across high and low sentiment periods.  

The next rows indicate that the cross-sectional effect of return volatility is conditional on 

sentiment in the hypothesized manner. In particular, high Sigma stocks appear to be out of favor 

                                                 
7 This conclusion is in seeming contrast to Barry and Brown (1984)’s evidence of an unconditional negative period-
of-listing effect, but their sample excludes stocks listed for fewer than 61months.  
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when SENTIMENT is low – they earn returns of 2.29 percent per month. However, just as with 

Age, the cross-sectional effect of Sigma fully reverses in low sentiment conditions. 

The next rows examine profitability and dividends. For investors, perhaps the simplest 

and most salient comparison is between profitable and unprofitable (E<0) firms and payers and 

nonpayers (D=0). These contrasts are summarized in the extreme right columns, where we 

average returns across profitable firms and compare them to unprofitable firms, and do the same 

for dividends. These characteristics again display conditional sign-flip patterns. Table 3b shows 

that when SENTIMENT is positive, monthly returns are 0.33 percent higher on profitable than 

unprofitable firms and 0.43 percent higher on payers than nonpayers. When it is negative, 

however, returns are 0.92 percent per month lower on profitable firms and 0.81 percent lower on 

payers. Importantly, the left column shows that these patterns are driven mostly by conditional 

variation in the returns of unprofitable and nonpaying firms. As discussed above, because these 

firms tend to be more subjective to value and harder to arbitrage, theory predicts that they will be 

more sensitive to swings in sentiment.  

The remaining variables – book-to-market, external finance, and sales growth – also 

display intriguing patterns. Most simply, running across rows, one can see that each of them has 

some unconditional explanatory power. Expected returns are generally higher for high BE/ME 

stocks, low EF/A stocks, and low GS decile stocks. The EF/A result is reminiscent of Loughran 

and Ritter (1995) and Spiess and Affleck-Graves (1995, 1999), while the GS result is suggested 

in Lakonishok, Shleifer, and Vishny (1994).  

But a closer look reveals an intriguing conditional pattern in these variables: Each sort 

displays an inverted U-shaped difference in average returns, conditional on sentiment. Consider 

the GS variable in Table 3b. When SENTIMENT is high, there is an inverted U-shaped pattern 
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across GS, as summarized in the 5-1 and 10-5 decile contrasts, but when sentiment changes sign, 

this actually flips to an upward U. As a result, the difference across sentiment regimes makes a 

pronounced inverse U. Similar conditional U patterns appear in EF/A and BE/ME.  

This pattern suggests that investors demand both high growth and distressed firms when 

they are optimistic, or their speculative propensity is high, and avoid extremes when they are 

pessimistic, or their propensity to speculate is low. That sentiment has special implications for 

distressed firms was not suggested in our anecdotal history, but is consistent with theoretical 

predictions – both rapidly growing firms and those teetering on the brink are hardest to value and 

have especially high idiosyncratic risk. They are therefore expected to be more sensitive to 

sentiment than the “stable” firms in the middle deciles of these sorts. 

B. Predictive regressions for individual stocks 

 We turn to cross-sectional predictive regressions. We run monthly cross-sectional 

predictive regressions and then study how the coefficients change with investor sentiment. 

Compared to the sorts, this approach allows us to conduct formal inference, to determine which 

characteristics have conditional predictive ability that is distinct from well-known unconditional 

effects, and to present results for each of our sentiment proxies in a compact fashion.  

 As a baseline, we estimate the unconditional predictive ability of each characteristic. 

Each month, we run a cross-sectional univariate predictive regression: 

itittit XbaR ε++= −1 , (3) 

where X is a given characteristic. For earnings and dividends characteristics, we simply consider 

the profitability and payer dummies, because the sorts suggest that these capture the main effects.  

Figure 2 reports the time series of the coefficients from these rolling regressions, and 

Panel A of Table 4 reports the average monthly coefficient and t-statistics based on the standard 
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deviation of the coefficients, as in Fama and MacBeth (1973). They confirm prior results that 

size, book-to-market, external finance, and sales growth have unconditional predictive power.  

 Panel B runs multivariate cross-sectional regressions to distinguish novel unconditional 

effects from the well-known effects of size, book-to-market, and momentum: 

( ) ( ) itittittittittit MOMmMEBEhMEsXbaR ε+++++= −−−− 1111 loglog , (4) 

where X denotes the characteristic of interest. (There is no X when we consider size and book-to-

market themselves.) Age is modestly significant, sales growth loses some of its unconditional 

effect, and external finance retains a strong independent effect. 

The key question is whether and how these coefficients change with investor sentiment. 

Are the fluctuations in Figure 2 connected to, or anticipated by, those in Figure 1? In Table 5, we 

address this question by regressing the monthly regression coefficients on sentiment proxies. The 

first several columns regress coefficients obtained from (3) on each of the proxies, while the last 

column regresses coefficients obtained from (4) on the composite index:8 

ttt dSENTIMENTcb ε++= −1
ˆ . (5) 

The sentiment proxies are all standardized. Standard errors are bootstrapped to correct for the 

bias induced if the autocorrelated sentiment proxies have innovations that are correlated with 

innovations in the coefficients, as in Stambaugh (1999).   

The results basically confirm the sorts. As sentiment increases (lower CEFDt-1 or PD-ND
t-2 

or higher TURN t-2, NIPO t-1, RIPO t-2, S t-1, or SENTIMENT t-1), expected returns tend to decrease 

on small firms, young firms, firms with volatile returns, unprofitable firms, and non-dividend-

paying firms. In all cases the results are in the expected direction, and those using IPO volume as 

the sentiment proxy are particularly strong. While these effects clearly overlap to some extent, 

                                                 
8 Intuitively, in terms of Eq. (1), this procedure is regressing estimates of (b1+ b2Tt-1) on sentiment proxies Tt-1. 
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the last column shows that the connection between the cross-sectional effect of these variables 

and SENTIMENT can often be distinguished from arbitrarily time-varying effects of size, book-

to-market, and momentum.  

We give an example to illustrate the magnitude of the effects. In the second-to-last 

columns of Table 5, the 0.1 coefficient of SENTIMENT on ME means that a two-SD increase in 

the sentiment index raises the size coefficient by 0.2 percentage points per month. Table 4 shows 

that such a change would bring the conditional size effect from negative to zero, and this is in 

turn consistent with the Table 3b result that there is no size effect in high sentiment periods.  

Like the sorts, the regressions show that the cross-sectional effects of book-to-market, 

external finance, and sales growth do not have a strong monotonic relationship with sentiment. 

To capture their U-shaped conditional effects, we re-run (3) and (4) for these characteristics but 

limit the regression sample to observations that fall within the top or bottom seven deciles of 

these variables.9 The idea is to look at one side of the U at a time. For instance, the GS (1-7) row 

examines how the cross-sectional effect of sales growth varies with sentiment among firms in the 

lower range of sales growth, where a marginal increase predominantly reflects a move away 

from distress, not a move toward extreme growth. The GS (4-10) row examines the cross-

sectional effect of sales growth in a range where the main effect of a marginal increase is an 

move toward extreme growth, not a move away from distress. Effectively, we view GS (1-7) and 

GS (4-10) as separate characteristics with different meanings.  

Figure 2 plots the cross-sectional coefficients from these regressions. The plots show 

clearly that these characteristics have different cross-sectional effects in the bottom and top of 

their ranges. The last several rows of Table 5 indicate that this method successfully captures the 

                                                 
9 The decision of how many deciles to cut out is obviously somewhat arbitrary. The choice of three follows Fama 
and French (1993), who identify the top three BE/ME deciles with value and the bottom three with growth.  
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U-shaped conditional effects in book-to-market, external finance, and sales growth. As we found 

in the sorts, future returns on stocks with characteristics of either extreme growth or distress are 

negatively related to sentiment proxies. Some calculations will confirm that the size of the 

effects implied here are similar to those suggested in the sorts.  

C. Predictive regressions for long-short portfolios 

 A third way to look for conditional characteristics effects is to use sentiment to forecast 

portfolios that are long on stocks with high values of a characteristic and short on stocks with 

low values. We have just seen that the average payer, for example, earns higher returns than the 

average nonpayer when sentiment is high, so sentiment must forecast a long-short portfolio 

formed on dividend payment. But it is useful to examine explicitly whether sentiment affects 

portfolios like SMB and HML, for example, because they are often used to proxy for systematic 

risks. In addition, the portfolio method is less parametric than the regressions for individual 

stocks. To the extent that it delivers similar results, then, it indicates that the results are not 

driven by changes in the cross-sectional distribution of firm characteristics.  

The first several columns of Table 6 use individual sentiment proxies to predict long-

short portfolios:10 

itttLowXtHighX dSENTIMENTcRR
itit

ε++=− −== 1,, .  (6) 

The dependent variable is the monthly return on a long-short portfolio, such as SMB, and the 

monthly returns from January through December of t are regressed on the lagged sentiment 

proxies. The last column again attempts to separates novel comovement effects from well-known 

effects using a multivariate prediction: 

                                                 
10 In terms of Eq. (1), this regresses (b1∆X + b2Tt-1∆X) on sentiment proxies Tt-1, where ∆X is the difference between 
“high” and “low” levels of a characteristic.  
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ittt

ttttLowXtHighX

mUMDhHML

sSMBRMKTdSENTIMENTcRR
itit

ε

β

+++

+++=− −== 1,,
. (7) 

Obviously, we must exclude SMB and HML from the right side when those are the portfolios 

being forecast. RMRF is the excess return of the value-weighted market over the risk-free rate. 

UMD is the return on high-momentum stocks, where momentum is measured over the period 

from 12 months prior through 2 months prior, minus the return on low-momentum stocks. As 

described in Fama and French (1993), SMB is the return on portfolios of small and big ME stocks 

that is separate from returns on HML, and HML is constructed to isolate the difference between 

high- and low-BE/ME portfolios.11  

 For profitability and dividend payment, the coefficients estimated from the portfolio 

approach are identical to those estimated from the individual stock approach by construction. 

The other results are similar (the sign for predicting SMB is expected to be the opposite of the 

earlier ME sign). SMB is significantly related to sentiment in some specifications, while there is 

again an U-shaped conditional effect in HML and especially in the long-short portfolios formed 

on external finance and sales growth. We separate extreme growth opportunities effects from 

distress effects by constructing High, Medium, and Low portfolios based on the top three, middle 

four, and bottom three NYSE decile breakpoints, respectively. Using sentiment to forecast the 

High-Medium portfolio for sales growth, for example, is then analogous to using it to predict the 

cross-sectional effect of GS (4-10).  

D. Systematic risk 

 At face value, the conditional characteristics effects seem unlikely to be compensation for 

systematic risk. Among other considerations, the sentiment proxies have been orthogonalized to 

                                                 
11 These portfolios are taken from Ken French’s website and are described there. 
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macroeconomic conditions; the patterns match theoretical predictions about where the effects of 

sentiment should be most pronounced; and the patterns line up with anecdotal accounts of 

bubbles and crashes. Intuitively, the systematic risk explanation requires that older, profitable, 

dividend-paying firms are (when sentiment is high, i.e. in half of the sample) actually require 

higher returns than younger, unprofitable, nonpaying firms, and are recognized as such by the 

marginal investor. While this seems counterintuitive, we can consider, and largely rule out, this 

alternative explanation more rigorously.  

Systematic risk explanations come in two basic flavors. One is that the systematic risks 

(beta loadings) of stocks with certain characteristics vary with the sentiment proxies, despite our 

effort to isolate them from macro conditions. Table 7 investigates this directly. It asks whether 

sentiment coincides with time-variation in market betas in a way that could at least qualitatively 

reconcile the earlier results with a conditional CAPM. Specifically, we predict returns on the 

characteristics portfolios: 

 ( ) itttttLowXtHighX RMRFfSENTIMENTedSENTIMENTcRR
itit

εβ ++++=− −−== 11,, . (8) 

The time-varying betas story predicts that the composite coefficient βf, reported in Table 7, is of 

the same sign as the estimates of d in Table 6. However, it turns out that when the coefficient βf 

is statistically significant, it is the wrong sign in a majority of cases. We find similar results when 

we replace RMRF by aggregate consumption growth. A table is available upon request. 

The second systematic risk story keeps stocks’ betas fixed, but allows the risk premium 

to vary with sentiment, which means that the difference in required returns between the high- and 

low-beta stocks varies in proportion. However, this story runs into trouble with the simple fact 

that the predicted effect of several characteristics does not just vary in magnitude over time, but 
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in direction. This discussion, and the results of the next exercise, leads us to conclude that the 

results do not reflect compensation for classical systematic risks.  

E. Predictive regressions for earnings announcement returns 

Our last test is whether there are conditional characteristics effects in the returns around 

earnings announcements. La Porta, Lakonishok, Shleifer, and Vishny (1997) find that low book-

to-market stocks have lower average returns at earnings announcements than high book-to-

market stocks, suggesting systematic errors in earnings expectations. Likewise, if errors in 

earnings expectations account for some of our results, we might expect that the average earnings 

announcement return on small, young, volatile, unprofitable, nonpaying, extreme growth and/or 

distress stocks would tend to be inversely related to sentiment.  

This methodology, while appealing, has only limited power to detect how expectational 

errors affect our results. The essence of our results appears to be the correlated correction of 

mispricing, but a firm’s announcement event return picks up the expectational corrections that 

occur only to it alone and within its own announcement window. Malkiel (1999) illustrates the 

problem: “The music slowed drastically for the conglomerates on January 19, 1968. On that day, 

the granddaddy of the conglomerates, Litton Industries, announced that earnings for the second 

quarter of that year would be substantially less than forecast. … the announcement was greeted 

with disbelief and shock. In the selling wave that followed, conglomerate stocks declined by 

roughly 40 percent …” (p. 67). So, while a study of announcement event returns will capture the 

corrective effect of Litton Industries’ announcement on its own stock, it will pick up none of its 

broader effects, which are important to our main results. Nevertheless, an analysis of earnings 

announcements may provide a lower bound on the effect that sentiment-driven expectational 

errors have on our results. 
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We gather quarterly earnings announcement dates from the merged CRSP-Compustat 

file. The sample represents approximately 75% of the firm-quarters analyzed in the main tables, 

so coverage is fairly complete. But, these quarterly earnings announcement dates are available 

only beginning in January 1971, so we are missing the substantial time series variation in 

sentiment over the 1960s. For each firm-quarter observation, we compute the cumulative 

abnormal return over the value-weighted market index over trading days [-1, +1] around the 

report date. We then construct a quarterly series of average announcement effects for each 

characteristic decile, and attempt to predict it with the composite sentiment index: 

itttDecileX dSENTIMENTcCAR
it

ε++= −= 1, . (9) 

Table 8 reports the coefficient estimates for each characteristic decile.  

The patterns in Table 8 need to be compared to those in Table 3b. In Table 8, 12 of the 82 

coefficients are significant at the 5% level. In Table 3b, on the other hand, 10 of the 82 estimated 

effects are very large in the sense that sentiment is associated with an conditional difference in 

monthly returns of over 1.50 percentage points. The intersection of these tables’ “strong results” 

is six cells, and the signs agree in all cases. In addition, four of the five cells that are strong in 

Table 3b but not significant in Table 8 have matching signs; in the opposite direction, five of the 

six significant results in Table 8 that are not associated with very large effects in Table 3b are at 

least of the same sign. One anomaly is the significantly negative coefficient on the oldest firms, 

but perhaps one anomaly is to be expected by chance in so many implicit comparisons.  

Overall, this suggests that some portion of the conditional characteristics effects probably 

reflects the correction of conditional errors in earnings expectations. But as noted above, this test 

is not powerful, and provides only a lower bound on the contribution of expectational errors.  
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VI. Conclusion 

 In classical finance theory, “investor sentiment” plays no role on the cross-section of 

stock prices, returns, or expected returns. This paper takes issue with the classical view. It 

marshals theoretical considerations, historical accounts of speculative episodes, and most 

importantly a set of novel empirical findings, in support of the view that investor sentiment, 

broadly defined, has significant cross-sectional effects. 

 To summarize, the main empirical finding is that the cross-section of future stock returns 

is conditional upon beginning-of-period proxies for investor sentiment. The patterns are rich, but 

straightforward to interpret and consistent with simple theoretical predictions. Specifically, when 

sentiment appears to be high, stocks that are likely to be relatively attractive to optimists and 

speculators and at the same time unattractive candidates for arbitrage – young stocks, small 

stocks, unprofitable stocks, non-dividend paying stocks, high-volatility stocks, extreme-growth 

stocks, and distressed stocks – experience low future returns relative to other stocks. Conditional 

on low sentiment, on the other hand, these cross-sectional patterns attenuate or reverse. Several 

aspects of the results cast doubt on the hypothesis that they reflect rational compensation for 

systematic risk. Rather, they match simple theoretical predictions and line up well with historical 

accounts of bubbles and crashes.  

The conclusion that sentiment has broad cross-sectional effects obviously carries with it a 

number of significant implications for financial economics. Here we discuss just one example. 

An old question is whether firms that pay dividends endure higher costs of equity, as predicted 

by Brennan (1970), or whether dividends are irrelevant. Black and Scholes (1974), Miller and 

Scholes (1982), and Christie and Huang (1984), among others, show that the cross-sectional 

effect of the dividend yield on (pre-tax) returns is not reliably positive, and in fact quite unstable. 
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This is commonly interpreted as rejecting the tax hypothesis and supporting the classical 

irrelevance view. Our results, however, suggest that both views may be incorrect. While the 

cross-sectional effect of dividends is indeed unstable, its sign is predictable by sentiment. These 

facts fit better with the catering theory of Baker and Wurgler (2002), in which dividends are 

indeed relevant to current valuations, but with a time-varying sign.  

The results suggest several avenues for future work. In corporate finance, a better 

understanding of sentiment seems likely to shed light on time-series patterns in security issuance 

and the supply of firm characteristics that seem to be conditionally relevant to share price. For 

asset pricing, the results indicate that descriptively accurate models of expected returns need to 

better incorporate sentiment. The best way to do this is unclear; the conditional characteristics 

specification may offer a starting point. More generally, the paper has had little to say about how 

and why sentiment forms, only arguing that it is a very real force that has cross-sectional effects. 

An interesting open question is whether there are necessary macroeconomic preconditions for 

sentiment to bloom.  
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Figure 1. Investor Sentiment. The first panel shows the year-end, value-weighted average discount on closed-end 
mutual funds. The data on prices and net asset values (NAVs) come from Neal and Wheatley (1998) for 1962 
through 1993; CDA/Wiesenberger for 1994 through 1998; and turn-of-the-year issues of the Wall Street Journal for 
1999 and 2000. The second panel shows detrended log turnover. Turnover is the ratio of reported share volume to 
average shares listed from the NYSE Fact Book. We detrend using the past five-year average. The third panel shows 
the annual number of initial public offerings. The fourth panel shows the average annual first-day returns of initial 
public offerings. Both series come from Jay Ritter, updating data analyzed in Ibbotson, Sindelar, and Ritter (1994). 
The fifth panel shows gross annual equity issuance divided by gross annual equity plus debt issuance from Baker 
and Wurgler (2000). We adjust the series for the one-time change in the share from 1983 to 1984. The sixth panel 
shows the year-end log ratio of the value-weighted average market-to-book ratios of payers and nonpayers from 
Baker and Wurgler (2003). The dashed line is raw data. We regress each measure on the growth in industrial 
production, the growth in durable, nondurable and services consumption, the growth in employment and a flag for 
NBER recessions. The solid line is the residuals from this regression. The final panel presents a first principal 
component index of the six orthogonalized measures. In the index, turnover, the average annual first-day return, and 
the dividend premium are lagged one year relative to the other three measures. 
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Figure 2. Average Annual Coefficients. Average annual coefficients from monthly univariate regressions of returns on firm characteristics X. 

ititttit eXbaR ++= −1  

The firm characteristics are size, age, total risk, indicator variables for profitable firms and dividend payers, book-to-market ratio, external finance over assets, 
and sales growth decile. Size is the log of market equity. Market equity (ME) is price times shares outstanding from CRSP. Age is the number of years since the 
firm’s first appearance on CRSP. Total risk is the annual standard deviation in monthly returns from CRSP. Earnings (E) is defined as income before 
extraordinary items (Item 18) plus income statement deferred taxes (Item 50) minus preferred dividends (Item 19). The book-to-market ratio is the log of the ratio 
of book equity to market equity. Book equity (BE) is defined as shareholders equity (Item 60) plus balance sheet deferred taxes (Item 35). External finance (EF) 
is equal to the change in assets (Item 6) less the change in retained earnings (Item 36). When the change in retained earnings is not available we use net income 
(Item 172) less common dividends (Item 21) instead. Sales growth decile is formed using NYSE breakpoints for sales growth. Sales growth is the percentage 
change in net sales (Item 12). For the last three characteristics, we analyze the top (solid) and bottom (dashed) seven deciles separately. 
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Table 1. Summary Statistics, 1963-2001. Panel A summarizes the returns variables. Returns are measured monthly. Momentum (MOM) is defined as the 
cumulative return for the eleven-month period between 12 and two months prior to t. Panel B summarizes the size, age, and risk characteristics. Size is the log of 
market equity. Market equity (ME) is price times shares outstanding from CRSP in the June prior to t. Age is the number of years between the firm’s first 
appearance on CRSP and t. Total risk (σ) is the annual standard deviation in monthly returns from CRSP for the 12 months ending in the June prior to t. Panel C 
summarizes profitability variables. The earnings-price ratio is defined for firms with positive earnings. Earnings (E) is defined as income before extraordinary 
items (Item 18) plus income statement deferred taxes (Item 50) minus preferred dividends (Item 19). Book equity (BE) is defined as shareholders equity (Item 
60) plus balance sheet deferred taxes (Item 35). Panel D reports dividend variables. Dividends (D) are equal to dividends per share at the ex date (Item 26) times 
shares outstanding (Item 25). Panel E reports variables used as proxies for growth opportunities and distress. The book-to-market ratio is the log of the ratio of 
book equity to market equity. External finance (EF) is equal to the change in assets (Item 6) less the change in retained earnings (Item 36). When the change in 
retained earnings is not available we use net income (Item 172) less common dividends (Item 21) instead. Sales growth decile is formed using NYSE breakpoints 
for sales growth. Sales growth is the percentage change in net sales (Item 12). In Panels C through E, accounting data from the fiscal year ending in t-1 are 
matched to monthly returns from July of year t through June of year t+1. All variables are Winsorized at 99.5 and 0.5 percent.  

 

 Full Sample Subsample Means 

 N Mean SD Min Max 1960s 1970s 1980s 1990s 2000-1 

 Panel A. Returns 

Rt (%) 1,398,495 1.38 18.69 -98.13 2400.00 1.06 1.59 1.24 1.45 1.20 

MOM t-1 (%) 1,398,495 13.44 60.31 -85.99 359.42 21.40 12.50 14.85 12.10 12.02 

 Panel B. Size and Age 

MEt-1 ($M) 1,398,495 576 2,153 1 21,623 392 238 373 807 1,412 

Aget (Years) 1,398,495 13.72 13.91 0.03 69.17 16.02 12.96 13.84 13.70 14.14 

σ t-1 (%) 1,375,961 14.21 8.92 0.00 62.39 9.40 12.58 13.68 14.77 21.59 

 Panel C. Profitability 

E+/BEt-1 (%) 1,398,495 10.62 10.31 0.00 67.14 12.13 12.09 11.29 9.27 9.09 

E>0t-1 1,398,495 0.76 0.42 0.00 1.00 0.95 0.91 0.77 0.68 0.63 

 Panel D. Dividend Policy 

D/BEt-1 (%) 1,398,495 1.97 2.96 0.00 17.61 4.43 2.72 1.98 1.36 1.05 

D>0t-1 1,398,495 0.45 0.50 0.00 1.00 0.78 0.65 0.48 0.30 0.24 

 Panel E. Growth Opportunities and Distress 

BE/MEt-1 1,398,495 0.93 0.86 0.02 5.78 0.70 1.35 0.92 0.72 0.81 

EF/At-1 (%) 1,365,152 11.69 24.98 -69.17 131.18 7.11 6.34 10.71 14.76 19.13 

GSt-1 (Decile) 1,349,505 5.93 3.19 1.00 10.00 5.65 5.66 5.97 6.12 5.90 



Table 2. Investor Sentiment. Means, standard deviations, and correlations for measures of investor sentiment. The first measure (CEFD) is the year-end, value-
weighted average discount on closed-end mutual funds. The data on prices and net asset values (NAVs) come from Neal and Wheatley (1998) for 1962 through 
1993; CDA/Wiesenberger for 1994 through 1998; and turn-of-the-year issues of the Wall Street Journal for 1999 and 2000. The second measure (TURN) is 
detrended log turnover. Turnover is the ratio of reported share volume to average shares listed from the NYSE Fact Book. We detrend using the past five-year 
average. The third measure (NIPO) is the annual number of initial public offerings. The fourth measure (RIPO) is the average annual first-day returns of initial 
public offerings. Both IPO series come from Jay Ritter, updating data analyzed in Ibbotson, Sindelar, and Ritter (1994). The fifth measure (S) is gross annual 
equity issuance divided by gross annual equity plus debt issuance from Baker and Wurgler (2000). The sixth measure (PD-ND) is the year-end log ratio of the 
value-weighted average market-to-book ratios of payers and nonpayers from Baker and Wurgler (2003). Turnover, the average annual first-day return, and the 
dividend premium are lagged one year relative to the other three measures. In the first panel, we present raw data. In the second panel, we regress each measure 
on the growth in industrial production, the growth in durable, nondurable and services consumption, the growth in employment and a flag for NBER recessions. 
The adjusted measures are the residuals from these regressions. SENTIMENT is the first principal component of the six orthogonalized measures. a, b, and c 
denote statistical significance at 1%, 5%, and 10%. 

 

     Correlations 

 Mean SD Min Max SENTIMENT CEFD TURN NIPO RIPO S PD-ND 

 Panel A. Raw data 

CEFDt 8.83 8.11 -10.41 23.70 -0.59a 1.00      

TURNt-1 5.21 7.94 -11.60 18.66 0.66a -0.30c 1.00     

NIPOt 358.41 262.76 9.00 953.00 0.65a -0.57a 0.38b 1.00    

RIPOt-1 16.94 14.93 -1.67 69.53 0.83a -0.41b 0.50a 0.35b 1.00   

St 19.53 8.34 7.83 43.00 0.39b 0.01 0.30c 0.16 0.26 1.00  

Pt-1
D-ND 0.20 18.67 -33.17 36.06 -0.79a 0.53a -0.50a -0.56a -0.58a -0.12 1.00 

 Panel B. Controlling for macroeconomic conditions 

CEFDt 0.00 6.15 -18.33 9.16 -0.60a 1.00      

TURNt-1 0.00 6.73 -11.31 11.45 0.70a -0.29c 1.00     

NIPOt 0.00 226.30 -435.98 484.15 0.72a -0.46a 0.39b 1.00    

RIPOt-1 0.00 14.31 -23.55 46.54 0.87a -0.45a 0.53a 0.44a 1.00   

St 0.00 6.15 -12.17 14.29 0.63a -0.40b 0.32b 0.50a 0.47a 1.00  

Pt-1
D-ND 0.00 16.89 -43.20 35.96 -0.81a 0.28c -0.60a -0.46a -0.68a -0.28c 1.00 



Table 3a. Two-way Sorts: Closed-End Fund Discount and Firm Characteristics. For each month, we form ten portfolios according to the NYSE breakpoints 
of firm size (ME), age, total risk, earnings-book ratio for profitable firms (E/BE), dividend-book ratio for dividend payers (D/BE), book-to-market ratio 
(BE/ME), external finance over assets (EF/A), and sales growth (GS). We also calculate portfolio returns for unprofitable firms and nonpayers. We then report 
average portfolio returns over months where CEFD (orthogonalized to macroeconomic conditions) is positive, negative, and the difference between the two 
averages.  

 

 CEFDt-1 Decile Overall 

  ≤0 1 2 3 4 5 6 7 8 9 10 10-1 10-5 5-1 
>0-
≤0 

ME Positive   2.39 1.93 1.81 1.80 1.83 1.63 1.62 1.50 1.38 1.31 -1.08 -0.52 -0.57  

 Negative  0.46 0.21 0.36 0.24 0.54 0.34 0.45 0.55 0.47 0.38 -0.08 -0.16 0.08  

 Difference  1.93 1.73 1.46 1.56 1.29 1.30 1.17 0.95 0.91 0.93 -1.00 -0.35 -0.65  

Age Positive   1.95 1.99 2.06 1.94 2.03 1.98 1.57 1.67 1.63 1.48 -0.48 -0.55 0.08  

 Negative   -0.24 0.48 0.67 0.46 0.64 0.64 0.65 0.66 0.58 0.72 0.96 0.08 0.88  

 Difference  2.20 1.51 1.39 1.47 1.40 1.34 0.91 1.01 1.05 0.76 -1.44 -0.64 -0.80  

σ Positive   1.35 1.51 1.52 1.68 1.82 1.92 1.91 2.08 2.17 2.37 1.01 0.54 0.47  

 Negative   0.84 0.84 0.78 0.66 0.69 0.52 0.49 0.39 0.41 0.07 -0.77 -0.62 -0.15  

 Difference  0.51 0.67 0.74 1.02 1.13 1.40 1.42 1.69 1.76 2.29 1.78 1.16 0.62  

E/BE Positive  2.48 2.21 2.08 2.10 1.92 1.79 1.95 1.90 1.88 1.77 1.87 -0.34 0.08 -0.42 -0.62 

 Negative  0.24 0.53 0.65 0.89 0.53 0.48 0.49 0.38 0.50 0.48 0.36 -0.17 -0.11 -0.06 0.23 

 Difference 2.24 1.68 1.44 1.21 1.39 1.31 1.46 1.52 1.38 1.29 1.51 -0.17 0.20 -0.36 -0.85 

D/BE Positive  2.35 2.07 1.91 1.92 1.77 1.72 1.59 1.52 1.46 1.44 1.37 -0.70 -0.34 -0.35 -0.63 

 Negative  0.12 0.60 0.52 0.72 0.47 0.61 0.67 0.77 0.70 0.72 0.81 0.21 0.20 0.01 0.53 

 Difference 2.23 1.47 1.39 1.19 1.30 1.11 0.92 0.75 0.75 0.71 0.56 -0.91 -0.54 -0.36 -1.16 

BE/ME Positive   1.47 1.71 1.77 1.86 1.86 1.93 2.12 2.11 2.33 2.58 1.10 0.72 0.39  

 Negative   -0.26 0.09 0.35 0.38 0.57 0.67 0.67 0.76 0.89 0.94 1.21 0.37 0.83  

 Difference  1.74 1.62 1.42 1.49 1.29 1.26 1.45 1.35 1.44 1.64 -0.10 0.34 -0.44  

EF/A Positive   2.52 2.19 2.08 1.98 1.83 1.88 1.88 1.79 1.92 1.66 -0.86 -0.17 -0.69  

 Negative   0.76 0.75 0.85 0.77 0.73 0.62 0.39 0.38 0.25 -0.47 -1.23 -1.20 -0.03  

 Difference  1.76 1.44 1.23 1.21 1.10 1.26 1.49 1.42 1.67 2.12 0.37 1.02 -0.66  

GS Positive   2.36 2.04 1.97 1.79 1.82 1.88 1.99 2.08 1.90 1.81 -0.56 -0.01 -0.54  

 Negative   0.66 0.60 0.58 0.65 0.62 0.66 0.68 0.56 0.35 -0.42 -1.09 -1.05 -0.04  

 Difference  1.70 1.44 1.38 1.14 1.20 1.21 1.31 1.52 1.55 2.23 0.53 1.04 -0.50  



Table 3b. Two-way Sorts: Sentiment Index and Firm Characteristics. For each month, we form ten portfolios according to the NYSE breakpoints of firm 
size (ME), age, total risk, earnings-book ratio for profitable firms (E/BE), dividend-book ratio for dividend payers (D/BE), book-to-market ratio (BE/ME), 
external finance over assets (EF/A), and sales growth (GS). We also calculate portfolio returns for unprofitable firms and nonpayers. We then report average 
portfolio returns over months where SENTIMENT (orthogonalized to macroeconomic conditions) is positive, negative, and the difference between the two 
averages.  

 

 SENTIMENTt-1 Decile Overall 

  ≤0 1 2 3 4 5 6 7 8 9 10 10-1 10-5 5-1 
>0-
≤0 

ME Positive   0.92 0.84 0.82 0.82 0.97 0.87 1.10 1.03 1.01 1.00 0.08 0.02 0.05  

 Negative   2.37 1.67 1.67 1.55 1.67 1.37 1.20 1.22 1.02 0.87 -1.50 -0.80 -0.70  

 Difference  -1.45 -0.84 -0.85 -0.73 -0.69 -0.51 -0.10 -0.19 -0.01 0.13 1.58 0.82 0.75  

Age Positive   0.36 0.99 1.10 1.05 1.30 1.31 1.05 1.16 1.07 1.09 0.73 -0.21 0.94  

 Negative   1.81 1.81 1.92 1.65 1.65 1.58 1.36 1.37 1.37 1.26 -0.55 -0.39 -0.16  

 Difference  -1.46 -0.83 -0.82 -0.60 -0.35 -0.28 -0.32 -0.21 -0.31 -0.17 1.28 0.18 1.10  

σ Positive   1.25 1.27 1.11 1.13 1.18 1.07 1.03 1.01 0.91 0.66 -0.60 -0.53 -0.07  

 Negative   1.03 1.20 1.34 1.41 1.57 1.67 1.67 1.81 2.05 2.29 1.26 0.73 0.54  

 Difference  0.23 0.07 -0.24 -0.28 -0.38 -0.60 -0.64 -0.79 -1.14 -1.64 -1.86 -1.26 -0.61  

E/BE Positive  0.65 0.76 1.00 0.92 0.95 0.96 0.94 0.96 1.04 1.06 0.96 0.20 0.00 0.20 0.33 

 Negative  2.59 2.37 2.05 2.36 1.81 1.59 1.81 1.64 1.64 1.44 1.59 -0.78 0.01 -0.78 -0.92 

 Difference -1.94 -1.61 -1.05 -1.44 -0.87 -0.63 -0.87 -0.68 -0.60 -0.38 -0.63 0.98 -0.01 0.98 1.25 

D/BE Positive  0.66 1.03 1.03 1.21 0.98 1.11 1.07 1.15 1.14 1.12 1.05 0.02 -0.06 0.09 0.43 

 Negative  2.31 1.97 1.69 1.68 1.52 1.44 1.38 1.29 1.17 1.18 1.25 -0.72 -0.19 -0.52 -0.81 

 Difference -1.64 -0.94 -0.66 -0.46 -0.54 -0.33 -0.32 -0.13 -0.03 -0.07 -0.20 0.74 0.13 0.61 1.24 

BE/ME Positive   0.27 0.78 0.96 1.00 1.11 1.21 1.19 1.22 1.35 1.40 1.13 0.29 0.85  

 Negative   1.32 1.37 1.47 1.55 1.59 1.66 1.91 1.95 2.19 2.48 1.16 0.89 0.27  

 Difference  -1.06 -0.59 -0.51 -0.54 -0.48 -0.45 -0.72 -0.73 -0.84 -1.08 -0.03 -0.61 0.58  

EF/A Positive   1.29 1.19 1.36 1.27 1.24 1.22 1.11 0.93 0.82 0.17 -1.12 -1.07 -0.05  

 Negative   2.38 2.06 1.82 1.73 1.55 1.53 1.46 1.54 1.71 1.49 -0.89 -0.06 -0.83  

 Difference  -1.10 -0.86 -0.47 -0.46 -0.32 -0.31 -0.35 -0.61 -0.89 -1.32 -0.23 -1.01 0.78  

GS Positive   1.04 1.19 1.23 1.15 1.21 1.19 1.23 1.16 0.94 0.22 -0.82 -1.00 0.18  

 Negative   2.37 1.75 1.60 1.53 1.47 1.60 1.71 1.80 1.64 1.66 -0.71 0.19 -0.90  

 Difference  -1.34 -0.56 -0.36 -0.37 -0.26 -0.41 -0.47 -0.64 -0.70 -1.44 -0.11 -1.19 1.08  



Table 4. Baseline Regressions, Monthly Returns. Average coefficients and t-statistics from monthly regressions of returns on firm characteristics (X), size 
(log(ME)), book-to-market (log(BE/ME)), and momentum (MOM).  

( ) ( ) itittittittitttit eMOMmMEBEhMEsXbaR +++++= −−−− 1111 loglog  

We only report the average of bt. The firm characteristics are firm size (log(ME)), age (log(Age)), total risk (σ), an indicator variable for profitable firms (E>0) 
and dividend payers (D>0), book-to-market ratio (log(BE/ME)), external finance over assets (EF/A), and sales growth decile (GS). The first panel shows 
univariate results. The second panel includes book-to-market, size, and momentum as control variables. Standard errors are equal to the time series standard 
deviation of bt divided by the number of months. 

  

ME Age σ E>0 D>0 BE/ME EF/A GS/10 

s t(s) b t(b) b t(b) b t(b) b t(b) h t(h) b t(b) b t(b) 

Panel A. Univariate 

-0.17 [-3.3] 0.04 [0.7] 1.45 [1.0] -0.26 [-1.3] -0.17 [-0.8] 0.47 [6.5] -1.64 [-6.7] -0.59 [-4.6] 

Panel B. Controlling for Book-to-Market, Size, and Momentum 

-0.18 [-3.4] 0.10 [2.8]       0.31 [4.4]     

-0.16 [-3.7]   -0.40 [-0.4]     0.34 [5.4]     

-0.16 [-3.3]     -0.05 [-0.4]   0.35 [4.9]     

-0.16 [-3.5]       0.05 [0.4] 0.34 [5.1]     

-0.14 [-2.4]         0.52 [6.6]     

-0.16 [-3.0]         0.26 [3.8] -1.16 [-6.8]   

-0.15 [-2.8]         0.32 [4.4]   -0.26 [-2.7] 



Table 5. Time Series Regressions, Monthly Returns Coefficients. Two-stage regression. In the first stage, we compute coefficients from monthly regressions 
of returns on firm characteristics (X), size (log(ME)), book-to-market (log(BE/ME)), and momentum (MOM).  

( ) ( ) itittittittitttit eMOMmMEBEhMEsXbaR +++++= −−−− 1111 loglog  

The firm characteristics are firm size (log(ME)), age (log(Age)), total risk (σ), an indicator variable for profitable firms (E>0) and dividend payers (D>0), book-
to-market ratio (log(BE/ME)), external finance over assets (EF/A), and sales growth decile (GS). When we analyze growth opportunities, we exclude the top 
(bottom) three deciles for book-to-market ratio (external finance, sales growth). When we analyze distress, we exclude the bottom (top) three deciles for book-to-
market ratio (external finance, sales growth). In the second stage, we regress the monthly coefficients bt on measures of investor sentiment, each standardized to 
have unit variance. 

ttt udSENTIMENTcb ++= −1
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Coefficients are matched to the closed-end fund discount (CEFD), the number of IPOs (NIPO), and the equity share (S) for the calendar year one year before t. 
Coefficeints are matched to detrended log turnover (TURN), the average annual first-day return (RIPO), and the dividend premium (PD-ND) for the calendar year 
two years before t. All sentiment measures are orthogonalized to macroeconomic conditions. The first seven columns show univariate results. The last column 
includes size, book-to-market, and momentum as control variables in the first-stage regression and uses the sentiment index in the second stage. Bootstrap p-
values are in braces. 

 

 

CEFDt-1 TURN t-2 NIPO t-1 RIPO t-2 S t-1 P t-2
D-ND SENTIMENTt-1 

SENTIMENTt-1 

Controlling for 
ME, BE/ME, 
and MOM 

 d p(d) d p(d) d p(d) d p(d) d p(d) d p(d) d p(d) d p(d) 

ME -0.2 [.00] 0.1 [.10] 0.2 [.00] 0.1 [.18] 0.1 [.06] -0.0 [.49] 0.1 [.02] 0.1 [.03] 

Age -0.2 [.01] 0.1 [.14] 0.3 [.00] 0.1 [.13] 0.2 [.01] -0.0 [.59] 0.2 [.01] 0.0 [.51] 

σ 6.7 [.00] -3.6 [.07] -7.5 [.00] -4.8 [.01] -5.0 [.01] 3.0 [.16] -6.4 [.00] -3.5 [.01] 

E>0 -0.7 [.00] 0.5 [.03] 0.9 [.00] 0.5 [.03] 0.5 [.03] -0.4 [.09] 0.7 [.00] 0.4 [.01] 

D>0 -0.8 [.00] 0.5 [.06] 1.0 [.00] 0.4 [.09] 0.6 [.01] -0.3 [.31] 0.7 [.00] 0.4 [.00] 

BE/ME -0.0 [.65] 0.1 [.47] 0.1 [.13] 0.0 [.74] 0.1 [.16] -0.0 [.98] 0.1 [.41] 0.2 [.09] 

EF/A 0.6 [.02] -0.1 [.73] -0.6 [.03] -0.2 [.49] -0.8 [.00] 0.0 [.97] -0.4 [.15] -0.3 [.19] 

GS 0.2 [.15] -0.1 [.51] -0.3 [.05] -0.2 [.31] -0.3 [.07] 0.1 [.67] -0.2 [.15] -0.1 [.44] 

BE/ME (1-7) -0.1 [.29] 0.1 [.17] 0.3 [.01] 0.1 [.31] 0.2 [.09] -0.1 [.41] 0.2 [.09] 0.2 [.05] 

EF/A (4-10) 1.8 [.00] -0.7 [.20] -1.9 [.00] -0.9 [.06] -1.5 [.01] 0.6 [.31] -1.6 [.00] -0.8 [.03] 

GS (4-10) 0.1 [.00] -0.1 [.03] -0.1 [.00] -0.1 [.04] -0.1 [.01] 0.1 [.10] -0.1 [.00] -0.1 [.01] 

BE/ME (4-10) 0.1 [.26] -0.1 [.21] -0.1 [.16] -0.1 [.46] 0.0 [.91] 0.2 [.15] -0.1 [.18] 0.0 [.70] 

EF/A (1-7) -2.1 [.00] 1.1 [.09] 2.4 [.00] 1.4 [.04] 0.7 [.33] -1.4 [.07] 2.0 [.01] 0.9 [.02] 

GS (1-7) -0.1 [.02] 0.1 [.03] 0.1 [.00] 0.0 [.11] 0.0 [.26] -0.0 [.10] 0.1 [.02] 0.0 [.08] 



Table 6. Time Series Regressions, Portfolios. Regressions of long-short portfolio returns on measures of sentiment (S), each standardized to have unit variance, 
the market risk premium (RMRF), the Fama-French factors (HML and SMB), and a momentum factor (UMD). 
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The long-short portfolios are formed based on firm characteristics (X): firm size (ME), age, total risk (σ), profitability (E), dividends (D), book-to-market ratio 
(BE/ME), external finance over assets (EF/A), and sales growth decile (GS). High is defined as a firm in the top three NYSE deciles; low is defined as a firm in 
the bottom three NYSE deciles; medium is defined as a firm in the middle four NYSE deciles. Monthly returns are matched to the closed-end fund discount 
(CEFD), the number of IPOs (NIPO), and the equity share (S) for the calendar year one year before t. Monthly returns are matched to detrended log turnover 
(TURN), the average annual first-day return (RIPO), and the dividend premium (PD-ND) for the calendar year two years before t. All sentiment measures are 
orthogonalized to macroeconomic conditions. The first seven columns show univariate results. The last column includes RMRF, SMB, HML, and UMD as 
control variables. Bootstrap p-values are in braces. 

 

  

CEFDt-1 TURN t-2 NIPO t-1 RIPO t-2 S t-1 P t-2
D-ND SENTIMENTt-1 

SENTIMENTt-1 

Controlling for 
ME, BE/ME, 
and MOM 

  d p(d) d p(d) d p(d) d p(d) d p(d) d p(d) d p(d) d p(d) 

ME SMB 0.4 [.01] -0.2 [.39] -0.6 [.00] -0.1 [.48] -0.3 [.13] 0.1 [.61] -0.3 [.07] -0.2 [.18] 

Age High-Low -0.6 [.02] 0.3 [.19] 0.9 [.00] 0.2 [.25] 0.6 [.01] -0.1 [.57] 0.6 [.02] 0.2 [.09] 

σ High-Low 0.9 [.00] -0.5 [.06] -1.0 [.00] -0.4 [.12] -0.7 [.02] 0.4 [.28] -0.8 [.01] -0.4 [.03] 

E >0 − <0 -0.7 [.00] 0.5 [.05] 0.9 [.00] 0.4 [.07] 0.5 [.03] -0.4 [.09] 0.7 [.00] 0.5 [.02] 

D >0 − =0 -0.8 [.00] 0.5 [.07] 1.0 [.00] 0.4 [.10] 0.6 [.01] -0.3 [.28] 0.7 [.00] 0.4 [.01] 

BE/ME HML -0.1 [.45] 0.1 [.49] 0.2 [.23] 0.2 [.19] 0.2 [.20] 0.0 [.89] 0.2 [.30] 0.1 [.67] 

EF/A High-Low 0.2 [.15] -0.1 [.63] -0.3 [.01] -0.1 [.36] -0.3 [.01] 0.1 [.37] -0.2 [.08] -0.1 [.30] 

GS High-Low 0.1 [.21] -0.0 [.71] -0.2 [.07] -0.1 [.33] -0.2 [.14] 0.0 [.69] -0.2 [.17] -0.1 [.45] 

BE/ME Low-Medium -0.1 [.25] 0.2 [.23] 0.3 [.02] 0.1 [.38] 0.2 [.06] -0.1 [.48] 0.2 [.09] 0.1 [.31] 

EF/A High-Medium 0.4 [.01] -0.2 [.07] -0.5 [.00] -0.2 [.09] -0.4 [.01] 0.2 [.10] -0.4 [.00] -0.2 [.01] 

GS High-Medium 0.4 [.00] -0.3 [.04] -0.5 [.00] -0.3 [.04] -0.3 [.02] 0.2 [.13] -0.4 [.00] -0.2 [.01] 

BE/ME High-Medium 0.1 [.39] -0.1 [.44] -0.1 [.26] -0.0 [.69] 0.0 [.89] 0.1 [.18] -0.1 [.33] -0.1 [.47] 

EF/A Low-Medium -0.2 [.00] 0.2 [.02] 0.2 [.00] 0.1 [.16] 0.1 [.32] -0.1 [.12] 0.2 [.01] 0.2 [.00] 

GS Low-Medium -0.3 [.02] 0.2 [.03] 0.3 [.01] 0.2 [.14] 0.2 [.15] -0.2 [.13] 0.3 [.02] 0.2 [.09] 



Table 7. Conditional Market Betas. Regressions of long-short portfolio returns on the market risk premium (RMRF) and the market risk premium interacted 
with measures of sentiment (S) , each standardized to have unit variance. 
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The long-short portfolios are formed based on firm characteristics (X): firm size (ME), age, total risk (σ), profitability (E), dividends (D), book-to-market ratio 
(BE/ME), external finance over assets (EF/A), and sales growth decile (GS). High is defined as a firm in the top three NYSE deciles; low is defined as a firm in 
the bottom three NYSE deciles; medium is defined as a firm in the middle four NYSE deciles. Monthly returns are matched to the closed-end fund discount 
(CEFD), the number of IPOs (NIPO), and the equity share (S) for the calendar year one year before t. Monthly returns are matched to detrended log turnover 
(TURN), the average annual first-day return (RIPO), and the dividend premium (PD-ND) for the calendar year two years before t. All sentiment measures are 
orthogonalized to macroeconomic conditions. T-statistics are heteroskedasticity robust. 

 

  CEFDt-1 TURN t-2 NIPO t-1 RIPO t-2 S t-1 P t-2
D-ND SENTIMENTt-1 

  βf t(βf) βf t(βf) βf t(βf) βf t(βf) βf t(βf) βf t(βf) βf t(βf) 

ME SMB -0.01 [-0.2] -0.02 [-0.6] -0.03 [-0.8] 0.02 [0.5] -0.01 [-0.3] 0.05 [1.4] -0.02 [-0.5] 

Age High-Low -0.02 [-0.5] -0.13b [-2.9] 0.01 [0.4] -0.13b [-2.7] 0.02 [0.6] 0.15b [3.0] -0.10b [-2.2] 

σ High-Low 0.05 [1.1] 0.10 [2.0] -0.07 [-1.7] 0.10 [1.9] -0.06 [-1.3] -0.07 [-1.4] 0.04 [0.8] 

E >0-<0 0.08 [1.7] 0.09 [1.9] -0.06 [-1.6] 0.05 [0.9] -0.07 [-1.5] -0.04 [-0.7] 0.00 [0.0] 

D >0-<0 -0.02 [-0.5] -0.10b [-2.2] 0.05 [1.2] -0.08 [-1.8] 0.02 [0.6] 0.06 [1.4] -0.05 [-1.0] 

BE/ME HML 0.04 [0.9] -0.12b [-3.0] -0.06 [-1.7] -0.08b [-2.2] -0.07 [-1.9] 0.16a [3.6] -0.12b [-3.2] 

EF/A High-Low 0.00 [0.2] 0.08b [4.1] -0.00 [0.0] 0.10b [4.4] -0.00 [-0.3] -0.14b [-6.8] 0.09b [3.9] 

GS High-Low -0.03 [-0.2] 0.30 [1.3] -0.19 [-1.0] 0.55b [3.3] 0.06 [0.3] -0.84b [-3.8] 0.46b [2.1] 

BE/ME Low-Medium 0.01 [0.2] -0.07b [-2.5] -0.01 [-0.3] -0.09b [-2.8] -0.04 [-1.4] 0.12b [3.4] -0.09b [-2.8] 

EF/A High-Medium 0.01 [0.7] 0.07b [3.0] -0.02 [-1.0] 0.08b [3.2] -0.01 [-0.4] -0.09b [-3.4] 0.06b [2.4] 

GS High-Medium -0.00 [-0.2] 0.07b [3.0] -0.01 [-0.6] 0.08b [3.6] -0.00 [-0.1] -0.10b [-4.1] 0.07b [2.8] 

BE/ME High-Medium 0.03 [1.9] -0.06a [-3.3] -0.05a [-2.6] -0.04a [-3.2] -0.03 [-1.6] 0.10a [4.5] -0.07a [-3.9] 

EF/A Low-Medium -0.01 [-0.8] 0.02 [1.2] 0.02 [1.3] 0.02 [1.3] 0.00 [0.3] -0.05a [-3.5] 0.03 [1.9] 

GS Low-Medium 0.00 [0.0] -0.04 [-1.7] -0.01 [-0.4] -0.03 [-1.7] 0.01 [0.4] 0.01 [0.7] -0.02 [-1.1] 
 

a Statistically significant βf that matches the sign of the return predictability from Tables 5 and 6. 
b Statistically significant βf that does not match the sign of the return predictability from Tables 5 and 6. 



Table 8. Announcement Effects. For each calendar quarter, we form ten portfolios according to the NYSE breakpoints of firm size (ME), age, total risk, 
earnings-book ratio for profitable firms (E/BE), dividend-book ratio for dividend payers (D/BE), book-to-market ratio (BE/ME), external finance over assets 
(EF/A), and sales growth (GS). We also calculate average announcement effects for unprofitable firms and nonpayers. We then regress the average quarterly 
earnings announcement effects for each portfolio on lagged values of the sentiment index.  
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We report b. Quarterly average announcement effects are matched to the sentiment index for the calendar year one year before t. T-statistics are 
heteroskedasticity robust. 

 

 Decile 

 ≤0 1 2 3 4 5 6 7 8 9 10 

ME  -0.20 -0.02 -0.01 -0.11 -0.06 -0.06 -0.01 -0.04 0.00 -0.06 

  [-2.24] [-0.28] [-0.11] [-1.26] [-1.02] [-0.88] [-0.22] [-0.77] [0.04] [-1.09] 

Age  -0.09 0.01 -0.08 -0.10 -0.15 0.00 0.05 -0.05 -0.03 -0.15 

  [-0.84] [0.10] [-1.23] [-1.22] [-2.01] [-0.04] [0.87] [-0.74] [-0.55] [-3.09] 

σ  0.06 0.03 0.01 0.04 -0.07 -0.04 -0.02 -0.02 -0.08 -0.31 

  [0.91] [0.73] [0.25] [0.75] [-1.29] [-0.59] [-0.21] [-0.24] [-1.03] [-3.55] 

E/BE -0.33 -0.23 0.06 0.11 -0.16 -0.13 -0.06 -0.03 0.00 -0.01 0.10 

 [-2.96] [-2.19] [0.83] [0.84] [-1.76] [-1.52] [-0.68] [-0.32] [0.04] [-0.14] [1.47] 

D/BE -0.19 0.00 -0.09 -0.04 -0.02 -0.06 0.00 -0.07 -0.11 0.03 -0.05 

 [-2.26] [-0.02] [-1.32] [-0.64] [-0.33] [-1.01] [-0.08] [-1.20] [-2.07] [0.55] [-0.72] 

BE/ME  -0.10 0.00 0.04 -0.03 -0.06 0.02 -0.11 0.00 -0.13 -0.18 

  [-1.43] [-0.07] [0.54] [-0.45] [-0.90] [0.30] [-1.74] [-0.03] [-1.54] [-1.62] 

EF/A  -0.06 -0.06 0.03 -0.08 0.01 -0.07 -0.15 -0.03 -0.14 -0.06 

  [-0.57] [-0.77] [0.54] [-1.23] [0.11] [-1.12] [-2.65] [-0.50] [-2.02] [-0.70] 

GS  -0.24 -0.05 -0.11 -0.03 -0.03 0.02 -0.07 0.00 -0.06 -0.06 

  [-2.36] [-0.62] [-1.39] [-0.46] [-0.55] [0.34] [-1.21] [0.08] [-0.91] [-0.68] 

 


