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ABSTRACT 
 

 In the 20 years following the publication of the 
ARCH model, there has been a vast quantity of research 
uncovering the properties of competing volatility models. 
Wide-ranging applications to financial data have 
discovered important stylized facts and illustrated both the 
strengths and weaknesses of the models.  There are now 
many surveys of this literature. 
 This paper looks forward to identify promising 
areas of new research.  The paper lists five new frontiers.  It 
briefly discusses three – high frequency volatility models, 
large-scale multivariate ARCH models, and derivatives 
pricing models.  Two further frontiers are examined in 
more detail – application of ARCH models to the broad 
class of non-negative processes, and use of Least Squares 
Monte Carlo to examine non-linear properties of any model 
that can be simulated.  Using this methodology, the paper 
analyzes more general types of ARCH models, stochastic 
volatility models, long memory models and breaking 
volatility models.   The volatility of volatility is defined, 
estimated and compared with option implied volatilities.   
 
 
Keywords:  ARCH, GARCH, volatility, non-linear process, 
non-negative process, option pricing, stochastic volatility, 
long memory, Least Squares Monte Carlo, ACD, 
Multiplicative Error Model, MEM 
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 Who could imagine 20 years ago, the flowering of research and applications that 
would develop around the ARCH model?  It certainly was not an instant success.  Years 
went by before anyone except my students and I wrote a paper on ARCH.  But as 
applications shifted to financial markets, and as richer classes of models were developed, 
researchers saw how volatility models could be used to investigate the fundamental 
questions in finance.  How are assets priced and what is the tradeoff between risk and 
return?  ARCH models offered new tools for measuring risk, and its impact on return.   
They also provided new tools for pricing and hedging non-linear assets such as options. 
 This conference and this paper are designed to reflect on these developments and 
look forward to the next important areas of research.  In this paper I will give a rather 
brief idiosyncratic assessment of the important accomplishments of the last 20 years in 
volatility modeling.  Then I will point to five frontiers on which I think new 
developments can be expected in the next few years.  For two of these, I will give some 
new results to show the directions I see developing.  
  
 

I. WHAT WE HAVE LEARNED IN 20 YEARS 
 

The number of new models proposed, estimated and analyzed has been dramatic.  
The alphabet soup of volatility models continually amazes.  The most influential models 
were the first: the GARCH model of Bollerslev(1986), and the EGARCH of 
Nelson(1991).  Asymmetric models of Glosten, Jaganathan Runkle(1993) Rabemananjara 
and Zakoian(1993), Engle and Ng(1993) and power models such as Higgins and 
Bera(1992), Engle and Bollerslev(1986),  and Ding Granger and Engle(1993) joined 
models such as SWARCH, STARCH, QARCH and many more.  The linguistic 
culmination might be that of Figlewski(1996), the YAARCH model – an acronym for Yet 
Another ARCH model.    Coupled with these models was a sophisticated analysis of the 
stochastic process of data generated by such models as well as estimators of the unknown 
parameters.  Theorems for the autocorrelations, moments and stationarity and ergodicity 
of these processes have been developed for many of the important cases; see for example 
Nelson(1990), and Ling and McAleer(2002a,2002b).  Work continues and new models 
are continually under development, but this is a well-studied frontier.  The limiting 
distribution of the MLE for GARCH models waited for Lumsdaine(1996) and Lee and 
Hansen(1994) for rigorous treatments.  There are now a collection of survey articles that 
give a good appreciation of the scope of the research.  See for example,  Bollerslev, Chou 
and Kroner(1992), Bollerslev Engle and Nelson(1994), Bera and Higgins(1993),  and 
recent pedagogical articles by Engle(2001) and Engle and Patton(2001).  A very recent 
survey is Li, Ling and McAleer(2002) 

Another topic for ARCH models is their usefulness in trading options.  It was 
initially supposed that volatility models could give indications of mispricing in options 
markets leading to trading opportunities.  Early studies such as Engle, Kane and 
Noh(1994) suggested the profitability of such strategies.  More recent data fails to find 
evidence of significant trading opportunities, at least in the US index options market.  
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This is not surprising since GARCH models have a limited information set and are 
available to all traders today.  The same question is often asked in terms of forecast 
accuracy.  Do GARCH models out-forecast implied volatility models?  The answer is 
complex depending upon the statistical approach to forecast evaluation, but generally it is 
found that implied volatilities are more accurate forecasts of future volatility than are 
GARCH models.  See for example Granger and Poon(2001) for a survey. 

The theory of asset pricing is based upon the reward for bearing risk.  ARCH 
models have been developed to measure the price of risk.  The first such model was the 
univariate ARCH-M model of Engle, Lilien and Robins(1987).  Estimation of the CAPM 
began with Bollerslev, Engle and Wooldridge(1988) and has been extended and 
improved by a series of interesting papers including  McCurdy and Stengos(1992), Engel 
Frankel, Froot and Rodriguez(1995), and de Santis, Gerard and Hillion(1997).   

With the introduction of Value at Risk, a new role for ARCH models emerged.  A 
variety of studies examined the usefulness of volatility models in computing VaR and 
comparing these methods with the exponential smoothing approach favored by 
Riskmetrics.  See for example Christoffersen and Diebold(2000), Christoffersen, Hahn 
and Inoue(2001) and Alexander(1998).    GARCH methods proved successful but 
suffered if errors were assumed to be Gaussian.   

These chapters of research on ARCH models are full and may have reached the 
point of diminishing returns.  However, new directions are always available and these are 
the main focus of this paper. 

 
II. FIVE NEW FRONTIERS   

 
 Five new frontiers are identified below.  These are areas where substantial 
research can be expected over the next few years.  The problems are important, soluble, 
and already have some important new papers.  For two of the areas, I will give some new 
results suggesting a possible direction for future research.   
 
A.      HIGH FREQUENCY VOLATILITY MODELS 

The study of volatility models within the day is in its infancy yet is a natural 
extension of the daily models examined so widely.   Several alternative formulations 
have been introduced including Andersen and Bollerslev (1997) and Ghosh and 
Kroner(1995).  Such models focus on the time of day or “diurnal” effect and have the 
requirement that they be useful forecasting many days in the future.  These models 
have regularly spaced observations in calendar time but ultimately it will be desirable 
to find models based on irregularly spaced data as this is the inherent limit of high 
frequency data.  Engle(2000) calls such tick data “ultra high frequency” data and 
gives some models which indicate that the arrival rate of trades, spreads and other 
economic variables may be important variables for forecasting volatility at this 
frequency.  Such a model could give a continuous record of instantaneous volatility 
where events such as trades and quote revisions as well as time itself, modify the 
volatility estimate. 

Continuous time models are ubiquitous in financial theory and derivative pricing.  
However most estimation of these models begins with equally observed prices and 
focuses on the mean process possibly with jumps.  Continuous time stochastic 
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volatility models, possibly with volatility jumps are a new class of models with 
interesting derivative implications. 

In addition to these models, there is now increasing interest in using intra-daily 
data to estimate better daily models.  Andersen Bollerslev Diebold and Labys(2001) 
for example build models based upon “realized volatility” and Andersen and 
Bollerslev(1998) use this measure to evaluate traditional GARCH specifications.   

 
B.    MULTIVARIATE MODELS 

Although the research on multivariate GARCH models has produced a wide 
variety of models and specifications, these have not yet been successful in financial 
applications as they have not been capable of generalization to large covariance 
matrices.  As computation becomes cheaper, and new parsimonious models are 
formulated, the potential for building ever larger time varying conditional covariance 
and correlation matrices increases.  Models such as the vec and BEKK model of 
Engle and Kroner(1995) have attractive properties as linear systems.  The constant 
conditional correlation (CCC) model of Bollerslev(1990) has the attraction of 
computational simplicity.  A new model called Dynamic Conditional Correlation 
(DCC)  by Engle(2002) combines some of these features to introduce a parsimonious 
correlation model to go with a conventional volatility model.  Engle and 
Sheppard(2001) estimate and test models of up to 100 assets.  Ledoit and Santa-
Clara(1998) combine bivariate models to form multivariate models in a way which 
can be greatly expanded. 

Correlation models can be estimated directly on intraday data.  However as the 
frequency increases, the asynchronicity of trades and returns leads to a serious 
underestimate of comovements.  This has been observed since Epps(1979) and the 
solutions of Scholes and Williams(1977) are widely employed in spite of both 
theoretical and empirical difficulties.  These are not appropriate for ultra high 
frequency data and new solutions must be found. 

 
C.    OPTIONS PRICING AND HEDGING 
 

The pricing of options when the underlying asset follows a GARCH model is a 
topic of future research.  Most approaches are based on simulation but the appropriate 
approach to risk neutralization must be investigated.  This was barely addressed in 
Engle and Mustafa(1992) when they simply simulated GARCH returns with the 
riskless rate as mean, calculating an “implied GARCH” model.  Duan(1995)(1997) in 
a series of papers has proposed a local risk neutralization which is based on the 
assumption that quadratic utility is a good local approximation to the representative 
agent’s risk preferences.  Engle and Rosenberg(2000) develop hedging parameters for 
GARCH models and Rosenberg and Engle(2001)  jointly estimate the pricing kernel 
and the empirical GARCH density.  This paper is in the line of several which use both 
options and underlying data to estimate both the risk neutral and objective densities 
with ever more complex time series properties in an attempt to understand the 
enormous skew in index options volatilities.   

An alternative strategy is the GARCH tree proposed by Richken and Trevor 
(1999) which adapts binomial tree methods for the path-dependence of GARCH 
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models.  These methods involve a variety of assumptions that must be examined 
empirically.  They are computationally much faster than the simulation estimators 
discussed above.   

 
 

III. MULTIPLICATIVE ERROR MODELS FOR MODELING 
 NON-NEGATIVE PROCESSES 

  
A.  INTRODUCTION 
 GARCH type models have been introduced for other variables.  Most notable is 
the Autoregressive Conditional Duration model ACD of Engle and Russell(1998) that 
surprisingly turns out to be isomorphic to the GARCH model.  In this section, I explore a 
much wider range of potential applications of GARCH type models for any non-negative 
time series process. 
 Frequently we seek to build models of time series that have non-negative 
elements.  Such series are generally common and are particularly common in finance.  
For example, one could model the volume of shares traded over a 10-minute period.  Or 
one might want to model the high price minus the low price over a time period, or the ask 
price minus the bid price, or the time between trades, or the number of trades in a period, 
or many other series.  There are two conventional approaches to this problem: the first is 
to ignore the non-negativity, and the second is to take logs.  We discuss the disadvantages 
of these approaches. 
 Consider a time series { }, 1,...,tx t T= , where 0tx ≥  for all t.  Suppose in addition 

that  

 ( )1 1,..., 0,  for all 0,   and for all t ξ ξ−< > >t tP x x x  (1) 

which says that the probability of observing zeros or near zeros in x is greater than zero.  
Let the conditional mean and variance of the process be defined as:  
 

 ( ) ( )2
1 1 1 1,..., , ,...,t t t t t tE x x x V x x xµ σ− −≡ ≡  (2) 

A linear model is given by  

 ( )2
1, ~ 0,t t t t t tx Dµ ε ε σ−= + ℑ  (3) 

It is clear that the distribution of the disturbances must be carefully specified.   Since the 
mean is positive and x is non-negative, the disturbances cannot be more negative than the 
mean.  Thus the range of the disturbance will be different for every observation.   The 
variance and other higher moments are unlikely to be constant.  Efficient estimation via 
Maximum Likelihood is going to be very difficult, although least squares will remain 
consistent. The probability of a near zero is given by 
 ( ) ( )1 1t t t t tP x Pξ ε ξ µ− −< = < −  

hence the error distribution must be discontinuous at tµ−  in order to satisfy (1). 

 The second conventional solution is to take logs.  The model might then be 
written as 
 ( )log ,t t tx m u= +  (4) 

where 



 6 

 ( ) ( )22,t t t tm u m u
t te E e e V eµ σ= = . (5) 

This solution will not work if there are any exact zeros in { }tx .  Sometimes a small 

constant is added to eliminate the zeroes.  However, this is more of a theoretical 
solution than a practical one since the finite sample estimates are typically heavily 
influenced by the size of this constant.  Furthermore, the assumption in (1) that 
observations very near zero are possible, requires that ( ) 0,  for all 0P u A A< − > > .  This 

is only true of very peculiar distributions.    
 Estimation of  (4) requires the specification of both m and u.  Clearly the relation 
between t and tm µ  depends upon the distribution of u.  Thus even one step forecasts 

require knowing the distribution of u. 
 
B.  THEORETICAL MODEL 
 
 The proposed model, which solves all these problems, is the multiplicative error 
model that could be abbreviated as MEM.  This model specifies an error that is multiplied 
times the mean.  The specification is 

 ( )2
t 1,  ~ 1,t t t t tx Dµ ε ε φ−= ℑ  (6) 

 
thereby automatically satisfying (2).  The range of the disturbance would naturally be 
from zero to infinity thereby satisfying (1).  If the disturbance is i.i.d.,  then the variance 
of x is proportional to the square of its mean.  This is a strong restriction but is not in 
conflict with other parts of the model.  If it is not i.i.d.  then a non-negative distribution 
with a unit mean and  time varying variance can be specified.  There are many 
candidates.  The residual in x is naturally measured as the proportional deviation from the 
estimated mean as the standardized residual, ˆ/t tx µ .  This would be homoskedastic 

although the additive residual ( )ˆ ˆ 1t t t tx µ µ ε− = − would not. 

 Vector models can be formulated in just the same way.  Let an arrow represent a 
column vector and let e  represent the Hadamard product of two matrices, which is  
element-by-element multiplication. 
 ( ) ( ) ( ),     and  ' ( ) ( )t t t t t t t t t tx V x V diag V diagµ ε µ µ ε µ ε µ= = =

r r rr r r r r re e  (7) 

Thus the positive definiteness of the covariance matrix is automatically guaranteed by the 
MEM structure.   
 Estimation of the MEM can typically proceed by maximum likelihood once the 
distribution of the disturbance has been specified.  A natural choice of distribution is the 
exponential as it has non-negative support.  An exponential random variable with mean 
one is called a unit exponential.  Assuming that the disturbance is a unit exponential, then 
the univariate log likelihood is simply 

 ( )( ) ( )1

( ) log
T

t
t

t t

x
L θ µ θ

µ θ=

 
= − − 

 
∑  (8) 

where theta represents the vector of parameters to be estimated.  The first order 
conditions for a maximum of this likelihood function are 
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 2
1

T
t t t

t t

L x µ µ
θ µ θ=

  ∂ − ∂
=   ∂ ∂  

∑  (9) 

By the law of iterated expectations, the expected value of the first order condition when 
evaluated at the true parameter value will be zero regardless of whether the density of x is 
truly unit exponential.  This implies that the log likelihood in (8) can be interpreted as a 
Quasi Likelihood function and that parameters that maximize this are QMLE.  
Application of the theorem originally given in White(1980) requires regularity conditions 
on the mean function and its determinants, and gives general expressions for the 
covariance matrix. 
 A fairly general class of mean functions can be entertained for this problem.  
Suppose the mean is linear in lagged x and in a kx1 vector of predetermined or weakly 
exogenous variables tz .  Then a (p,q) mean specification would be 

 
1 1

'
p q

t j t j j t j t
j j

x zµ ω α β µ γ− −
= =

= + + +∑ ∑  (10) 

The parameters of this model may be restricted to ensure positive means for all possible 
realizations, and to ensure stationary distributions for x.  If z are positive variables, then 
sufficient conditions for non-negativity are clearly that all parameters are positive.  
However these are not necessary.  See Nelson and Cao(1992) for an examination of 
sufficient conditions.  Sufficient conditions for the covariance stationarity of x from 
Bollerslev, Engle and Nelson(1994) are that z is covariance stationary and  

 
1 1

1.
p q

j j
j j

α β
= =

+ <∑ ∑  (11) 

 
 This result can be formalized from Engle and Russell(1998) based upon a theorem 
in Lee and Hansen(1994) for GARCH models.  In their case, x is the duration between 
successive events, but the theorem applies to any non-negative process.  In this theorem, 
the process is assumed to be a first order GARCH type model possibly with unit or 
explosive roots.   
 
Corollary to Lee and Hansen(1994) 

If 
 1) 1 0, 0 0 1 0 0, 1( )t t t t tE x xµ ω α β µ− − −≡ = + + ,  

 2) 

0,/   is   i) strictly stationary and ergodic

                            ii) nondegenerate

                            iii) has bounded conditional second moments

                            iv) s

t t txε µ≡

0 0 1up [ln( ) ] 0 . .t t tE a sβ α ε −+ ℑ <

 

 3) 0 0 0 0( , , ) is in the interior of θ ω α β≡ Θ  

 

 4) 
1

( ) log( )
T

t
t

t t

x
L θ µ

µ=

 
= − + 

 
∑   where  1   for  t 1

/(1 )  for t 1
t t t

t

xµ ω α βµ
µ ω β

−= + + >
= − =

 

Then: 
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a)  the maximizer of L will  be consistent and asymptotically normal with a 
covariance matrix given by the familiar robust standard errors as in Lee-Hansen, 
and 

b) the model can be estimated with GARCH software by taking x  as the 
dependent variable and setting the mean to zero. 
c) the robust standard errors of Bollerslev and Wooldridge(1996) coincide with 
those in Lee and Hansen 

 
From this corollary it is apparent that even mildly explosive models may be estimated 
consistently by QMLE.  From an examination of the mean specification in (10) it is 
apparent that the (p,q) version of this MEM model with exogenous variables can also be 

estimated using GARCH software by making ix  the dependent variable, specifying it 

to have zero mean and an error process assumed normal GARCH(p,q) with exogenous 
variables z.  The estimated “conditional variance” is then the conditional mean of x.  
Multi-step forecasts of x are computed simply by multi-step forecasts of the conditional 
variance. 
 The clear advantage of the exponential error assumption is that estimation is 
consistent regardless of the correctness of this distribution.  The disadvantage is that it is 
not fully efficient.  However, it is perfectly straight-forward to formulate more general 
likelihood functions which allow more flexible shapes of density function or time 
variation in higher moments of this density function. 
 
C.  EMPIRICAL MODELS 
 
 Several papers have already developed models based on the multiplicative error 
structure.  Of course the first to mention is the family of ARCH and GARCH models 
themselves.   The basic model common to all these processes1 and its square are  

 
2 2

t t t

t t t

r h

r h

ε

ε

=

=
 (12) 

In the squared version, the dependent variable is non-negative with mean h and a non-
negative multiplicative i.i.d.  error with unit mean.  This can be estimated directly by 
taking the absolute value of returns as the dependent variable of a GARCH model. 
 The second paper in this direction is the ACD model of Engle and Russell(1998) 
where the dependent variable is modeled as the time between events.  The model 
proposed is  

 

1 1

'

i i i

p q

i j i j j i j i
j j

x

x z

ψ ε

ψ ω α β ψ γ− −
= =

=

= + + +∑ ∑
 (13) 

 
 
essentially a GARCH(p,q) with exogenous variables for the square root of durations.   

                                                
1 Although the dependent variable does not need to be signed, the lagged variables in the conditional 
variance can still include sign information if asymmetric models are sought. 
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 Manganelli(2000) has used multiplicative error models for volume in a 
transactions model of market microstructure.  He estimated models of returns, duration 
and volume as a trivariate system of equations and then examined impulse responses 
through this system.   
 Engle and Gallo(2001) and Chou(2001) estimated models on realized volatility 
and high low ranges to obtain new more efficient volatility estimators.  These models all 
had this form.   
 I will now present some illustrative results using realized volatilities of dollar/DM 
exchange rates from Andersen, Bollerslev, Diebold and Labys(2000).  They construct a 
series of daily variances from squaring and averaging 5 minute returns obtained from 
Olsen and associates for a period from 12/1986 to 4/1996.    For almost 10 years of daily 
data, we have a return and a “realized variance” and we want to use these to model 
volatilities.   
 The data show that the average of the squared returns is close to the average 
realized variance.  The squared return however has a much bigger range and a bigger 
standard deviation. 

TABLE 1. 
Sample: 12/02/1986 4/18/1996 

 R^2 V 

 Mean  0.4904  0.5287 
 Median  0.1501  0.3984 
 Maximum  12.441  5.2454 
 Minimum  0  0.0518 
 Std. Dev.  1.0140  0.4837 

 
 Estimation of a GARCH(1,1) model with robust standard errors gives the rather 
conventional results in Table 2. 

TABLE 2. 
Dependent Variable: R 

 Coefficient Std. Error z-Statistic Prob.  

C 0.007 0.003 2.386 0.017 
ARCH(1) 0.046 0.010 4.676 0.000 

GARCH(1) 0.940 0.012 75.55 0.000 

 
Introducing lagged realized variance, v(-1) into this equation produces the results in table 
3. 

TABLE 3. 
Dependent Variable: R 

 Coefficient Std. Error z-Statistic Prob.  

C 0.0122 0.0069 1.7525 0.0797 
ARCH(1) 0.0077 0.0144 0.5322 0.5946 

GARCH(1) 0.8698 0.0324 26.8602 0.0000 
V(-1) 0.0908 0.0293 3.1006 0.0019 

 
Realized variance does have explanatory power beyond past squared returns to predict 
squared returns.  In fact, lagged squared returns is no longer significant in this model.   
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 Now I will estimate a model for realized volatility which is the square root of 
realized variance.  Again, a GARCH(1,1) will be specified but in this case it should be 
recognized that this is a multiplicative error model with an exponential error assumption.  
Standard errors are computed using the Bollerslev-Wooldridge formulation. Two models 
are estimated; the second also includes past squared returns. 
 

TABLE 4. 
Dependent Variable: SQR(V) 

 Coefficient Std. Error z-Statistic Prob.  

C 0.0325 0.0075 4.3470 0.0000 
ARCH(1) 0.2860 0.0248 11.5519 0.0000 

GARCH(1) 0.6538 0.0307 21.2816 0.0000 
C 0.0304 0.0066 4.5854 0.0000 

ARCH(1) 0.2014 0.0228 8.8291 0.0000 
GARCH(1) 0.6912 0.0276 25.0348 0.0000 

R(-1)^2 0.0546 0.0081 6.7344 0.0000 

 
As can be seen the first equation is similar to a conventional GARCH model except that 
the coefficient on the arch term is much bigger and the coefficient on the garch term 
much smaller than usual.  This process is still highly persistent but is more volatile; it has 
a higher volatility of volatility.  This will be discussed in much detail later in this paper.   
In the second set of results, the previous squared return is introduced.  It has a small 
coefficient but a very small standard error2 and is quite significant in relation to the 
asymptotic normal distribution.  In fact, the coefficient is quite similar to that in Table 2.  
There is apparently information in the squared return that helps to predict realized 
volatility. 
 
 This estimator is potentially inefficient as it assumes an exponential density when 
another density could be better.  In fact the squared standardized residuals which in this 
case are estimates of the disturbances, have a mean of one but a mode which is close to 
one as well and a standard deviation which is .75, revealing under dispersion.  A plot is 
given in Figure 1.  A more flexible set of density functions for non-negative disturbances 
is the gamma density, which is a continuous version of a Chi Square.  Setting the mean to 
unity leaves one shape parameter in the density, which is the degrees of freedom/2 in a 
Chi Square.  The results are in Table 5 for both specifications.   These densities are 
strongly preferred over the exponential, which achieved a log likelihood of only -619.  A 
chi square of 7 degrees of freedom divided by 14, which is its mean, has a plot similar to 
that in Figure 1.  The significance of the squared returns is supported again with very 
similar coefficients and standard errors.   
 Many further extensions are possible including more flexible densities and time 
varying densities.  Preliminary efforts to estimate time varying gamma densities for this 
data set indicated that the assumption of i.i.d.  gamma was quite acceptable.  For other 
data, this may not be the case. 

                                                
2 Interestingly, when conventional standard errors are used, the t-statistic is only 1.  It is not clear why the 
robust standard errors are so much smaller. 
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 The potential applications of this set of statistical methods are enormous.  As 
experience grows with various types of data it will become clearer which densities will be 
most useful and how best to parameterize any changing density.  The forecast 
performance of such models can be investigated with both one step and many step 
forecasts.   
 

TABLE 5. 
 Coefficient Std. Error z-Statistic Prob.  

C 0.0325 0.0025 12.7904 0.0000 
ARCH(1) 0.2856 0.0129 22.0913 0.0000 

GARCH(1) 0.6541 0.0146 44.7447 0.0000 
DF/2 3.4768 0.0824 42.2075 0.0000 

Log likelihood 132.1059     Akaike info criterion -0.1046 
Avg. log likelihood 0.0539     Schwarz criterion -0.0951 
Number of Coefs. 4     Hannan-Quinn criter. -0.1012 

C 0.0303 0.0022 13.6604 0.0000 
ARCH(1) 0.2010 0.0140 14.3499 0.0000 

GARCH(1) 0.6918 0.0135 51.3626 0.0000 
R(-1)^2 0.0546 0.0071 7.7330 0.0000 
DF/2 3.5527 0.0828 42.8839 0.0000 

Log likelihood 160.9815     Akaike info criterion -0.1274 
Avg. log likelihood 0.0658     Schwarz criterion -0.1156 
Number of Coefs. 5.0000     Hannan-Quinn criter. -0.1231 
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FIGURE 1. 
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IV. SIMULATION METHODS FOR CONDITIONAL EXPECTATIONS 
 

A.  LEAST SQUARES MONTE CARLO 
 
 A common problem is calculating the expected value of some future outcome 
given state variables that we know today.  This expectation depends upon the stochastic 
process generating the data but only in the simplest cases are these expectations available 
analytically.  Examples of this problem in time series analysis are the expectation of a 
random variable many steps in the future when the process is non-linear or the 
expectation of a non-linear function of a random variable even when the process is linear.  
In finance, an example might be the payoff of an option as a function of today’s 
underlying price or in a more complex setting, the payoff of an option strategy that could 
include path dependent decisions, as a function of today’s state variables.  In the ARCH 
context, we would like to know the expectation of future volatility as a function of 
today’s information or perhaps the expectation of the log of future volatility. For risk 
management, we may want to know the expected value of a density function below a 
threshold or the probability of a joint tail event. 
 All these problems can be formulated as the following problem. 
 
 For a stochastic process   

 { } ( )1,... ~T Mr r F+ , (14) 

find 

 
( ) ( )

( )
1, , 1 2

, 1

,..., ,   where  , ,..., ,

, ,..., , 1,...,

T t k t T t t t T

j t j t t t M

E y z z y u r r r

z v r r r j k

+ + +

− −

=

= =
 (15) 

 A potential solution to this problem is a simulation of simulations, which is, 
unfortunately, unworkable.  This consists of simulating the process from time 1 to t and 
computing the z’s.  For each of these simulations, a set of future r’s is simulated and the 
resulting yT’s are averaged to estimate the expectation given the z’s.  Then the expected 
values of y given  z are tabulated, or approximated by a generous parameterization or a 
non-parametric regression.   If N replications are needed, this requires N2 simulations 
which is typically too time consuming.   
 The alternative strategy is Least Squares Monte Carlo as proposed by Longstaff 
and Schwartz(2001).  Their approach requires only N simulations and is thus 
computationally far more efficient.   They used the method to price American style 
options by simulation.  This has been thought to be impossible because it requires 
knowing the value of the option before the expiration point – hence the need for 
simulations of simulations.  Their method can be used to find the early exercise frontier 
for the options and then price these options.   
 The Least Squares Monte Carlo method estimates a cross sectional regression 
with each simulation being one observation with the dependent variable  yT .  The 
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independent variables are a non-parametric or generously parameterized function of the 
zj,t’s.  The result is a consistent estimate of (15) by the standard properties of ordinary 
least squares.  Since each observation is independent, then the efficiency of this 
estimation will depend upon the distribution of the errors.  If in addition 

 ( ) ( )2
1, , 1, ,,..., =s ,...,T t k t t k tV y z z z z  (16) 

where s is a known function, then weighted least squares will be the best linear unbiased 
estimator of this model. 
 This solution is closely related to the method of “reprojection” introduced by 
Gallant and Tauchen(1998)  to find properties of simulated series.  Their approach 
however initially constructs a very long time series and thus does not deal easily with 
overlapping observations.   
 
B.  ESTIMATING THE VOLATILITY OF VOLATILITY   
 
 To illustrate the problem we will define and estimate measures of the volatility of 
volatility that can be estimated for a wide range of conditional volatility models as well 
as stochastic volatility models and compared with implied volatilities.  Consider the 
volatility of a price process that follows geometric Brownian motion. 

 ( )2log / 2

dp pdt pdw

d p dt dw

µ σ

µ σ σ

= +

= − +
 (17) 

The volatility is generally measured by the standard deviation of logd p .  Even in more 
general diffusion processes, it is natural to measure the volatility as the unconditional 
standard deviation of logd p .  Now replace p with an instantaneous volatility called v, 
then the standard deviation of logd v  would be called the volatility of volatility or VoV. 
Similarly, v could be the realized volatility over a fixed time period, given in discrete 

time by   ( )2 2 2...T T k Tv r r−= + + .  Again VoV would be the standard deviation of logd v . 

 The same definition can be used for expected volatility.  If for example 2
/T tv is the 

forecast of the variance from time T-k to T, based on information at time t, then the VoV 
can be constructed for this volatility letting t increase while holding T fixed.  Again the 
definition gives VoV as the standard deviation of /log T td v , or in discrete time3: 

 ( ) ( ) ( )( )/ / 1 1log log log( logT t T t t T t TVoV V v v V E v E v− − = − ≈ −   (18) 

This measure depends on the conditional variances but is calculated unconditionally over 
all realizations.  A conditional version could also be examined.   
 A particular application of this formula is to implied volatilities, which, under 
some conditions, can be interpreted as the square root of a forecast of variance from 
today to the expiration of the option at T.  This measure can be constructed for any time 
series on implied volatilities; there may be minor issues associated with the rollover from 
one contract to another, as maturity will not be exactly constant.  Such a number can be 
compared with forecasts from GARCH or other volatility models.  However, it is not 
easy to calculate this value for most volatility models.   For example, the VIX implied 

                                                
3 This approximation is exact if the Jensen inequality terms cancel.  This will be true in a second order 
taylor expansion if the coefficient of variation is the same at t and t-1. 
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volatility series is approximately the 22-day Black Scholes at-the-money implied 
volatility of the S&P100 options.  The estimated VoV for the sample period of the 90’s as 
used below, is 
 

 ( )( )= − =log / ( 1) 0.060VIXVoV stdev VIX VIX t  

 
The standard error of an autoregression in log(VIX) is almost the same number.   
  
   To apply the least squares monte carlo method to estimation of the VoV for a 
process, estimate a cross sectional regression:   
 
 , , 1,( , ) ε−= +T i t i t i iy f r z  (19) 

where   

 

1/2

2
, ,

1

log
k

T i n t j
j

y r +
=

 
=  

 
∑  (20) 

 
is the log realized standard deviation of returns in the ith simulation.  This is the log 
volatility regression.  An alternative is the variance regression when logs are not taken.  
The regressors are returns at an intermediate time t and a set of variables based on 
information prior to time t. The fitted value is an estimate of the expectation of y made at 
time t.  A similar regression can be estimated with information only to time t-1.  Let this 
be  
 , 1,( ) ε−= +T i t i iy g z  (21) 

The difference between f and g is the improvement in forecast attributed to information 
on rt.  It is the vector of innovations and its standard deviation is the estimated VoV. 
 
 ˆ ˆf g

VoV σ
−

=  (22) 

 
 The plot of  f  against r  is interpreted as the News Impact Curve of Engle and 
Ng(1994) for the statistic yT.  Engle and Ng considered only the one step ahead 
conditional variance but this can be extended to many statistics.  Clearly the NIC will 
depend in general on the values of z, and therefore it is common to evaluate this plot at an 
average value of z although any values can be used. 
 The VoV in (22) is most easily calculated as the standard deviation of the 
difference between the residuals of (19) and (21).  To form an asymptotic confidence 
interval, let u be the squared difference between the two residuals.  Since each residual 
has mean zero and observations are independent, applying the central limit theorem and 
the delta method,   

 ( ) ( )1/2 1/2 2 20, /uN
N u VoV N VoVσ→∞− →  (23) 

where 2
uσ is the sample variance of u. 

 The regressors assume that the model and its parameters are known but only 
information up to time t or t-1 is observed.  The choice of regressors for (19) and (21) is 
simple in only a few special cases.  For all types of GARCH models, the innovation in 



 15 

the variance equation is the difference between the squared return and its conditional 
variance.  The expectation at time t-1 is based just upon the conditional variance at t.  For 
GARCH, all forecasts of variances are linear combinations of these two variables.  In the 
log volatility equation, it might be expected that logs of conditional variances and 
innovations will occur.  In general, this should be a non-parametric specification.  The 
parametric approximation follows some experimentation.  The results are only very 
slightly altered by a wide range of specifications. The following model was used for all 
conditional volatility models. 
 

( ) ( )σ α α α β β β ε= + + + + + + +2
1 2 3 1 2 3ˆlog / logT t t t t t t t ic r r r h h h h  (24) 

 
 

where ( )2 2 2
1ˆ ...T t t kr rσ + += + +  which will be positive with probability 1.  Typically the 

most important variables are ( )( )/ ,logt t tr h h , but for some models, others are also 

significant.      
 
C. APPLICATION TO GARCH(1,1_) 
 
 To examine the performance of this methodology as well as to estimate the 
previously incomputable VoV, a series of GARCH models was simulated.  The model is 
defined to be 
 2

1 1 1t t t th h hω α ε β− − −= + +  (25) 

 
The design parameters are given in Table 6.  There are some models with unusually high 
alphas and others with very low alpha but high persistence as measured by the sum of 
alpha and beta. 
 Horizons of one month (22 days) and one year (252 days) are considered with 
100000 simulations.  The log volatility equation is estimated for each of the 11 models to 
compute the volatility of volatility.  The volatility of volatility is given in Table 6 along 
with the standard errors of the estimates from (23). 
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TABLE 6. 

GARCH VOLATILITY OF VOLATILITY  
 

alpha beta Monthly 
VoV 

Std Err Annual 
VoV 

Std Err 

0.400 0.400 0.04977 0.00094 0.00812 0.00054 
0.300 0.600 0.06176 0.00073 0.01085 0.00113 
0.200 0.700 0.04584 0.00066 0.00553 0.00016 
0.100 0.800 0.02619 0.00029 0.00317 0.00004 
0.100 0.850 0.03674 0.00046 0.00531 0.00013 
0.100 0.870 0.04398 0.00044 0.00990 0.00017 
0.050 0.900 0.02010 0.00022 0.00253 0.00004 
0.050 0.940 0.02842 0.00030 0.01162 0.00014 
0.030 0.960 0.01849 0.00020 0.00791 0.00010 
0.020 0.970 0.01219 0.00013 0.00514 0.00007 
0.040 0.955 0.02545 0.00025 0.01395 0.00021 

 
It is interesting to note that at the monthly horizon, the values of volatility of volatility are 
largest for the models with larger α .  However at the annual horizon, the most persistent 
models generally are the most volatile.  The standard errors in all cases are quite small.  
The daily VoV’s of the monthly forecasts from the models we are accustomed to seeing, 
are well below the .06 for the option data. 
 
D. APPLICATION TO OTHER GARCH MODELS 
 
 The same approach can be applied to a wide range of GARCH models for which 
analytic results are not available.   In each case, the models have been estimated by 
maximum likelihood for a decade of S&P500 daily returns ending on August 2, 2001.  
The GARCH(1,1),  Component GARCH and symmetric EGARCH(1,1) are the first three 
models considered.  For these models, most analytical results are known4.  However for 
the remaining models, this is not true. 
 The first new model is the SQGARCH or square root garch model of Engle and 
Isao(2001).  This model parameterizes the volatility of volatility so that the variance of 
the variance is linear in the variance.  It is a discrete time analogue of square root 
diffusion models used by Cox Ingersoll and Ross(1085) , Heston(1993) and many others.  
The conditional variance equation is given by 

 
2

1/2
1 1t

t t t
t

r
h h h

h
ω β α+

 
= + + − 

 
 (26) 

It is easy to see that if the exponent on the innovation term is 1, it is simply a 
GARCH(1,1).  The estimated parameters are in Table 7. 

                                                
4 The log likelihood for these three models is :  -3741.492,  -3730.631, and -3737.322 respectively.  The 
symmetric EGARCH is the same as the conventional EGARCH but omits the term /r ht t . 
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TABLE 7. 
SQGARCH PARAMETERS 

 Coefficient Std. Error z-Statistic 
omega 0.008874 0.001596 5.560236 
alpha 0.041878 0.003685 11.36383 
beta 0.990080 0.001990 497.5850 
Log likelihood -3747.891 Akaike info criterion 2.562960 

 
 A second model is a non-linear GARCH model that is a hybrid between an 
integrated model and a mean reverting model.  This integrated model has no intercept and 
therefore will implode eventually as shown by Nelson(1990).   However if the variance 
gets too small, it converts to a mean reverting GARCH in a piecewise linear fashion.  
Thus it behaves like an integrated GARCH (or Riskmetrics style Exponentially weighted 
moving average model) for large conditional variances and like a conventional GARCH 
for small series.  The formula is: 

 ( ) ( )2
1t t t t t hh h r h h I δα γ δ+ <= + − + −  (27) 

where I is an indicator function.  Notice that it is an IGARCH for variances bigger than 
delta, and mean reverting below delta.  The estimated values are given in Table 8. 
 
 
 

TABLE 8. 
NON-LINEAR GARCH PARAMETERS 

 Coefficient Std. Error z-Statistic 
alpha 0.054196 0.004749 11.41158 
gamma 0.001208 0.001935 0.624299 
delta 3.194072 4.471226 0.714362 
Log likelihood -3741.520 Akaike info criterion 2.558606 

 
The daily variance of the S&P is about 1%.  The estimated value of delta is not very 
significant but is considerably above the mean variance indicating that the model is 
primarily mean reverting except for large volatilities. 
 Several existing models were also considered such as the power model of Engle 
and Bollerslev(1986) 
 1

p
t t th r hω α β+ = + +  (28) 

which has parameter estimates: 
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TABLE 9. 

ENGLE - BOLLERSLEV  POWER MODEL 
  

 coefficient std. err z-statistic 

omega 0.000587 0.002340 0.251006 

alpha 0.067071 0.009086 7.381861 

p 1.712818 0.117212 14.61294 

beta 0.941132 0.005546 169.7078 

Log likelihood -3739.091   

 
 

Notice that p is significantly below 2 by conventional criteria.  Consequently, no 
analytical formula for multi-step forecast can be found, even if a particular distributional 
assumption is made on the innovations.  This model might appear explosive since alpha 
and beta sum to more than unity, however that configuration implies explosive behavior 
only when p=2. 
 Ding, Granger and Engle(1993) proposed the Power ARCH or PARCH model.  In 
its symmetric form it is given by 
 
 2

1t t th r hγ γ γω α β+ = + +  (29) 

 
and the estimated parameters are in Table 10.  In this case the exponent applies to all the 
variables and is estimated at close to ½ suggesting a standard deviation style model. 
 
 

TABLE 10 
PARCH MODEL 

 coefficient std. err z-statistic 

omega 0.006680 0.001653 4.041563 

alpha 0.064930 0.005608 11.57887 

gamma 0.665636 0.082814 8.037719 

beta 0.941625 0.005211 180.704 

Log likelihood -3738.040   

 
 A model written entirely in square root form was proposed by Taylor(1986) and 
used by Schwert(1989).  It is defined by 
  

 1t t th r hω α β+ = + +  (30) 

 
and has parameter estimates given in Table 11. 
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TABLE 11 
TAYLOR-SCHWERT MODEL 

 coefficient std. err z-statistic 

omega 0.007678 0.001667 4.605529 

alpha 0.065232 0.005212 12.51587 

beta 0.942517 0.005104 184.6524 

Log likelihood -3739.032   

 
 
Notice that this fits slightly better than the conventional GARCH(1,1) for this data set. 
 These models can all be compared from the perspective of volatility of volatility 
since they can all be simulated.  Using the same strategy as employed for the 
GARCH(1,1) models, the following results are found. 
  
 

TABLE 12 
VOLATILITY OF VOLATILITY WITH GAUSSIAN SHOCKS 

 
 Monthly 

VoV 
Standard 

Error 
Annual 

VoV 
Standard 

Error 
GARCH(1,1)  0.01683  0.00058  0.00244  0.00017 

COMPONENT  0.02791  0.00056  0.01578  0.00056 
NL-GARCH  0.02570  0.00042  0.02102  0.00187 
SQ-GARCH  0.02448  0.00064  0.00944  0.00059 

TAYLOR/SCHWERT  0.03318  0.00047  0.01790  0.00055 
EB-POWER  0.02765  0.00057  0.01209  0.00067 

PARCH  0.03199  0.00051  0.01831  0.00051 
EGARCH  0.03191  0.00046  0.01264  0.00054 

 
TABLE 13. 

VOLATILITY OF VOLATILITY WITH NON-GAUSSIAN SHOCKS  
 

 Monthly  
t(6) 

Annual 
t(6) 

Monthly 
t(4) 

Annual 
t(4) 

Monthly 
Crashes 

Annual 
Crashes 

GARCH(1,1)  0.0299  0.0033  0.0316  0.0092  0.0364  0.0068 
COMPONENT  0.0427  0.0199  0.0437  0.0239  0.0513  0.0388 

NL-GARCH  0.0395  0.0213  0.0413  0.0275  0.0491  0.0447 
SQ-GARCH  0.0409  0.0140  0.0477  0.0194  0.0393  0.0176 

TAYLOR/SCHWERT  0.0409  0.0169  0.0374  0.0169  0.0472  0.0272 
EB-POWER  0.0422  0.0169  0.0451  0.0210  0.0440  0.0192 

PARCH  0.0423  0.0180  0.0403  0.0198  0.0494  0.0331 
EGARCH  0.0418  0.0163  0.0407  0.0187  0.0465  0.0183 
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 This wide range of GARCH type models have monthly VoV that range from .016 
to .033 per day.  These would correspond to annualized volatilities from 25 to 50%, 
although one might not want to annualize these in the conventional way since volatilities 
are mean reverting.  The most volatile models are the Taylor/Schwert, the PARCH and 
the EGARCH.  The annual volatilities are considerably lower ranging from .002 to .02.  
The largest VoV are the NLGARCH, the PARCH and Taylor/Schwert.   
 
 Table 13 calculates the same measures when the simulated data are generated 
with non-Gaussian innovations.  Shocks are generated as t(6), t(4) and crash, where a 
crash innovation is standard Gaussian with probability .995 and Gaussian (-5,2) 
otherwise. The fatter tailed innovations increase the VoV but not dramatically.  If the 
implied volatility series VIX is a standard for the monthly volatility forecast, then all of 
these models are too smooth.  The VoV of the VIX is .06, which exceeds all of these 
cases.  Of course the VIX refers to the S&P100 which is more volatile than the S&P500, 
and it has variability attributable to time variation in risk premia and mispricing.  Either 
the multi-step forecasts of these models are insufficiently responsive to news, or options 
prices incorporate important additional sources of volatility.   
   

E. STOCHASTIC VOLATILITY MODELS 
 
 The techniques developed for the conditional volatility models can be extended to 
any volatility model that can be simulated.  In this section, we develop this approach and 
apply it to several types of stochastic volatility model.  Several recent surveys of this 
material should be examined by the interested reader:  The main difference, is that the 
past information set can no longer be summarized by a conditional variance, since this is 
no longer defined by the model.   Instead, a more general conditioning data set is 
introduced. 
 The natural generalization of equation (24) considers simply long lag distributions 
of absolute and squared returns.  Thus the equations that are estimated are: 

 ( )
50

2 2
1 2 3 1 2

1

ˆlog( )T t t t j t j j t j
j

c r r r r rσ α α α β β− −
=

= + + + + +∑  (31) 

and the parameters labeled alpha measure the impact of news. 
 Three stochastic processes are simulated.  The first is a conventional stochastic 
volatility process, the second is a “breaking volatility” model that has changes in 
volatilities at random times, and the third is a long memory stochastic volatility model.  
The generating equation for the SV model is  
 

 ( ) ( )
( )

1log log

, ~ (0, )

t t t

t t t

t t

r

v IN I

σ ε

σ µ ρ σ κν

ε
−

=

= + +  (32) 

 
as originally proposed by Taylor(1982) and later Nelson(1988).  When this model is 
estimated by Bayesian methods using the approach of Kim, Shephard & Chib (1998), the 
parameters are given by the middle column of table 14. 
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TABLE 14 
STOCHASTIC VOLATILITY PARAMETERS 

 
 
 
 
 
 
 
When the same model was estimated using Shephard’s Maximum Likelihood routine, 
almost identical parameters were obtained.  For a different sample period of the S&P, 
Jaquier, Poulson and Rossi(1994) (JPR) obtained similar parameter values given in the 
last column. 
 The “breaking volatility” model is also a type of stochastic volatility model since 
it models the volatility as a latent variable.  In this model, volatility is constant until a 
random event occurs.  At this time a new volatility is drawn from a fixed distribution.  
The process can be defined as: 
 

 
( )

( )

2
12   with probability 

exp   otherwise

, ~ (0, )

t t t

t
t

t

t t

r

p

IN I

σ ε

σ
σ

κν µ

ε ν

−

=

=  +
 (33) 

Two sets of parameters were used for this process based on a very casual matching of 
moments. 
  

TABLE 15 
BREAKING VOLATILITY PARAMETERS 

 
 
 
 
 
 
 
 
The third process is the Long Memory Stochastic Volatility model as proposed by Breidt, 
Crato and de Lima(1998) and studied by Hurvich and Deo(2001).   
 

PARAMETER KSC JPR 

Rho .987 .97 

Kappa .133 .15 

Mu -.0024 0.0 

PARAMETER BREAKING 
VOL I 

BREAKING 
VOL II 

p .99 .999 

Kappa 1 1 

Mu -.5 -.5 
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( )
( )
( )

β ε

κν

ε ν

=

− =

exp

1

, ~ (0, )

t t t

d

t t

t t

r u

B u

IN I

 (34) 

 
Parameter estimates used for this model are: 
 

TABLE 16 
LONG MEMORY STOCHASTIC VOLATILITY PARAMETERS 

 
 
 
 
 
 
 
 The results from estimating the VoV for these five models are tabulated in table 
18.   
 

TABLE 17 
VOV FOR STOCHASTIC VOLATILITY MODELS 
 Monthly VoV   Std Err Annual VoV Std Err 

Breaking Vol I  0.05300  0.00091  0.02054  0.00053 
Breaking  Vol II  0.02559  0.00093  0.02356  0.00035 
Stochastic Vol KSC  0.04315  0.00067  0.01535  0.00045 
Stochastic Vol JPR  0.04322  0.00082  0.00818  0.00037 
Long Memory SV  0.04797  0.00085  0.01743  0.00033 

 
 From these results it appears that all these models have moderately high volatility 
of volatility for long forecasts.  Presumably this is because the persistence is governed by 
a different parameter from the volatility of volatility.  A related point has been made by 
Carnero, Pena and Ruiz(2001) in the context of the stochastic volatility model.  The 
difficulty of estimation and forecasting for these models has made it impossible to 
observe this property before now.  The long memory models have the property that the 
long maturity VoV is high and rather closer to that of the shorter horizon.  The breaking 
volatility models are not systematically calibrated to the data and therefore it is not clear 
which is to be considered most representative of this class of models.  However, the more 
frequently breaking model does have the highest VoV of all the Gaussian models at the 
monthly horizon. 
 
 The use of the least squares Monte Carlo method can illuminate these and many 
other features of time series models.   In fact the applications of this general structure 
seem unlimited.  The forecast equation for these stochastic volatility models can be 
estimated, the expected payoff or utility from path dependent hedging strategies can be 
assessed, the structure of derivative prices can be analyzed, and many other tasks can be 

PARAMETER VALUE 

D .47 

Kappa .6 

Beta .4 
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rather simply evaluated, reducing the need to have analytically simple models in order to 
obtain closed form forecasting results.   
 
  V CONCLUSIONS 
 
 ARCH models have come a long way from 1982 to the present.  In some respects 
their very success has made it less interesting to continue research on volatility models.  
There is a sense in which this is a known body of econometrics.  In other ways, new 
horizons are opening all the time.  The five frontiers discussed in this paper are all fresh 
new areas of research with important applications and lots of room for both theoretical 
and empirical developments.  These five areas – high frequency volatility, high 
dimension correlation, derivative pricing, modeling non-negative processes, and 
analyzing conditional simulations by Least Squares Monte Carlo – could well occupy our 
research efforts for another decade, and would pay handsome dividends in terms of useful 
and reliable research and practitioner tools.  But probably, even brighter frontiers lie 
ahead and we can only await them with anticipation.   
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