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Abstract

Using high-frequency data on Deutschemark and Yen returns against the dollar, we construct
model-free estimates of daily exchange rate volatility and correlation, covering an entire decade.  In
addition to being model-free, our estimates are also approximately free of measurement error under general
conditions, which we delineate.  Hence, for all practical purposes, we can treat the exchange rate volatilities
and correlations as observed rather than latent.  We do so, and we characterize their joint distribution, both
unconditionally and conditionally.  Noteworthy results include a simple normality-inducing volatility
transformation, high contemporaneous correlation across volatilities, high correlation between correlation
and volatilities, pronounced and highly persistent temporal variation in both volatilities and correlation,
clear evidence of long-memory dynamics in both volatilities and correlation, and remarkably precise scaling
laws under temporal aggregation.
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1. Introduction

It is now widely agreed that, although daily and monthly financial asset returns are approximately

unpredictable, return volatility is highly predictable, a phenomenon with sweeping implications for financial

economics and risk management (e.g., Bollerslev, Engle and Nelson, 1994). Of course, volatility is inherently

unobservable, and most of what we think we know about volatility has been learned either by fitting

parametric econometric models such as GARCH, by studying volatilities implied by options prices in

conjunction with specific option pricing models such as Black-Scholes, or by studying direct indicators of

volatility such as ex-post squared or absolute returns. But all of those approaches, valuable as they are, have

distinct weaknesses. For example, the existence of competing parametric volatility models with different

properties (e.g., GARCH versus stochastic volatility models) suggests misspecification; after all, at most one

of the models could be correct, and surely, none is strictly correct. Similarly, the well-known smiles and

smirks in volatilities implied by Black-Scholes prices for options written at different strikes provide evidence

of misspecification of the underlying model. Finally, direct indicators, such as ex-post squared returns, are

contaminated by measurement error, and Andersen and Bollerslev (1998a) document that the variance of the

“noise” typically is very large relative to the “signal.”

   In this paper, motivated by the drawbacks of the popular approaches, we provide new and complementary

measures of daily asset return volatility. The mechanics are straightforward: we estimate daily volatility by

summing high-frequency intraday squared returns. With sufficiently frequently sampled underlying returns,

the resulting volatility estimates are largely free of measurement error. Hence, for practical purposes we can

treat volatility as observed. We do so, and we proceed to examine its distribution directly, using much

simpler techniques than those required when volatility is latent.

   Our analysis is in the spirit of, and directly extends, the earlier contributions of French, Schwert and

Stambaugh (1987), Hsieh (1991), and Schwert (1989, 1990), and more recently Taylor and Xu (1997). We

progress, however, in a number of important ways. First, we provide rigorous theoretical underpinnings for

the volatility measures for the general case of a special semimartingale. Second, much of our analysis is

multivariate; we develop and examine measures not only of return variance but also of covariance. Finally,

our empirical work is based on a unique high-frequency dataset consisting of ten years of continuously-

recorded 5-minute returns on two major currencies. These high-frequency returns enable us to compute and

examine daily volatilities, which are of central concern in both academia and industry. In particular, the

persistent volatility fluctuations of interest in risk management, asset pricing, portfolio allocation,

forecasting, and analysis of market microstructure effects are very much present in daily returns.

   We proceed as follows. In Section 2 we provide a formal justification for our volatility measures.  Readers
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who are primarily interested in the empirical results may skip the technical details in Sections 2.1 and 2.2.  

In Section 3, we discuss the high-frequency Deutschemark - U.S. Dollar (DM/$) and Yen - U.S. Dollar

(Yen/$) returns that provide the basis for our empirical analysis, and we also detail the construction of our

realized daily variances and covariances. In Sections 4 and 5, we characterize the unconditional and

conditional distributions of the daily volatilities, including long-memory features. In Section 6, we explore

issues related to temporal aggregation and scaling in relation to long memory. Finally, we conclude in

Section 7 with a summary of our results and suggestions for future research.

2. Volatility Measurement: Theory

Here we develop the theoretical foundation for our realized volatility and covariance measures.  We

introduce the relevant concepts for the general semimartingale case, then detail how the measures may be

approximated directly from high-frequency return observations.  Finally, we explore the implications within

the more familiar settings of Itô processes and mixed jump-diffusions.

2.1  Realized Volatility and Covariance Measures when Returns Follow a Special Semimartingale

The most general specification of asset return processes of practical relevance for financial economics is the

special semimartigale.  It allows for a unique, canonical decomposition of the returns into a local martingale

and a predictable, integrable finite variation process.  Hence, the "drift" is identified and represents the

conditional mean of the instantaneous return; see Back (1991) for further discussion.

   Formally, let t0[0,T], öt be a F-field reflecting the information at time t, so that ös f öt for 0#s#t#T, and let

P denote a probability measure on (S,P,ö), where S represents the states of the world, so that ö / öT   is the

set of events that are distinguishable at the horizon T.  Also, the information filtration (öt )t0[0,T] satisfies the

“usual conditions,” i.e., it is P-complete and right continuous.  Any logarithmic price process, pk, and the

associated return over the t-period horizon is then given as

pk(t)  -  pk(0)   =   Mk(t) + Ak(t) , (1)

where Mk(0) = Ak(0) = 0, Mk is a local martingale, and Ak is a locally integrable and predictable process of

finite variation.  For full generality, we define pk to be inclusive of any cash receipts such as dividends and

coupons, but exclusive of required cash pay-outs associated with, for example, margin calls.

   The formulation in (1) includes Itô, jump and mixed jump-diffusion processes, and it does not require a

Markov assumption.  Without loss of generality, each component may be assumed cadlag (right-continuous

with left limits).  The corresponding caglad (left-continuous with right limits) process is then defined by pk-(t)

/ lims6t ,s<t  pk(s), identifying the jumps as

) pk(t)  /  pk(t) - pk-(t). (2)
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Because, by no arbitrage, jumps are not predictable, Mk contains the (compensated) jump part of pk along

with any infinite variation terms, while Ak has continuous paths.  Thus, the conditional mean of the return at

time t is given by the predictable "drift", Ak(t), and the innovation by the local martingale Mk(t).

   For any semimartingale X, the stochastic integral H @ X = {I0
t  H(s) dX(s)}t0[0,T] is defined for any caglad

integrand H (Protter, 1992, ch. 2), and may be extended to predictable processes H, i.e., H belonging to the

smallest F-algebra rendering all caglad processes measurable (Protter, ch. 4).  Moreover, for H @ X well

defined, the stochastic integral constitutes a semimartingale.  In particular, for any two semimartingales X

and Y, the quadratic variation process, [X,X] = ([X,X])t0[0,T], and the quadratic covariation process, [X,Y] =

([X,Y])t0[0,T], are well defined and given by

   [X,X]  =  X2 - 2 I X- dX ,     and    [X,Y]  =  XY - I X- dY - I Y- dX. (3)

These processes are not only semimartingales, but also of finite variation on [0,T].  The following properties

show that they may be interpreted as the realized cumulative instantaneous variability of X and the realized

cumulative instantaneous covariability between X and Y, respectively.

   For a sequence of random partitions of [0,T], Jm,0 # Jm,1 # ..., such that supj$1(Jm,j+1 - Jm,j) 6 0,   Jm,0 6 0,  and 

supj$1 Jm,j 6 T  for  m 6 4  with probability one,

limm64 {  X
2(0)  +  Ej$1 [ X( tvJm,j ) - X( tvJm,j-1 ) ]

2 }   6   [X,X]t , (4)

and

limm64 {  X(0) Y(0)   +   Ej$1 [X( tvJm,j  ) - X( tvJm,j-1 )] [Y( tvJm,j ) - Y( tvJm,j-1 )] }   6   [X,Y]t  , (5)

where t v J / min(t,J), and the convergence is uniform in probability for any t 0 [0,T].  Moreover, [X,X] is a

monotone increasing process,

[X,Y]0   =  X0 Y0  ,        )[X,Y]  =  )X )Y ,    (6)

and for H and K  integrable w.r.t.  X and Y, respectively,

[H@X,K@Y]t   =   I0
t   H(s) K(s) d[X,Y]s  , (7)

for any t 0 [0,T].  Finally, if X and Y are locally square integrable local martingales so that conditional

variances and covariances are meaningful, then B = [X,Y] is the unique adapted, cadlag process with paths

of finite variation that satisfies the conditions in equation (6) and

X Y  -  B   =   X Y  -  [X,Y] (8)

is a local martingale.  Hence, [X,Y] is a measure of the realized covariability between X and Y, and the

covariance structure of  X and Y (letting X(0)=Y(0)=0) is given by  E( X(t)Y(t) )  =  E([X,Y]t ).

   For the special martingale pk in equation (1), the finite variation part has [Ak,Ak] = 0, so

[pk ,pk ]t    =    [Mk  , Mk ]t    =    [Mk
c , Mk

c ]t   +   E0#s#t ( )Mk(s) )2, (9)

where Mk has been decomposed into two local martingale components; a continuous term with infinite
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variation paths and a term representing the compensated jump part of the process.  Now, exploiting the

identical decomposition for any other logarithmic price process, pj , j … k, we have

[pk , pj ]t    =    [Mk , Mj ]t    =    [Mk
c , Mj

c ]t   +   E0#s#t  )Mk(s))Mj(s) . (10)

The formulas (9) and (10) define the realized volatility and realized covariance measures.

   It is worth emphasizing the generality of the semimartingale formulation.  It encompasses all processes

used within the standard arbitrage-free asset pricing literature.  Note, however, that it does rule out the

fractional Brownian motion, Bd(t), 0 < d < ½.  The latter is not a semimartingale and allows for arbitrage, as

shown by Maheswaran and Sims (1993) and Rogers (1997).  Formally, Bd(t) is given as an infinite moving

average (MA) of a standard Wiener process where the defining MA kernel has a singularity at zero.  This

feature is readily corrected by modifying the MA kernel at zero, thus generating a semimartingale that is

consistent with the no-arbitrage condition, while retaining the basic long-memory characteristics (Rogers,

1997, provides a concrete example).  However, it is arguably more relevant to allow for long-range

dependence in return volatility.  This may be done by positing a non-negative long-memory process for the

volatility, which does not generate an arbitrage unless derivative claims written on the volatility process are

traded.  For instance, the option pricing model in Comte and Renault (1998) is based on a fractionally

integrated log-volatility process, which violates the semimartingale property.  An alternative, and perhaps

preferable approach, is to modify the MA-kernel of the volatility process as suggested above, thus retaining

both the long-memory in the volatility process and the validity of the standard integration theory for

semimartingales.

2.2  Measurement of Realized Volatility and Realized Covariance

The local martingale formulation in (8) yields the key insight that the quadratic variation and covariation

associated with the price processes provide measures of cumulative instantaneous return variability and

covariability, respectively.  Moreover, (4) and (5) suggest that we may approximate these quantities directly

from high-frequency data.  In particular, the measures are invariant to the specification of the conditional

mean, since the squared mean return is an order of magnitude smaller than the squared return innovations.

   Specifically, let  rk,(m)(t) / pk(t) - pk(t-1/m), t = 1/m, 2/m, ... T, denote the discretely sampled returns

computed from m equally spaced observations per period.  For concreteness, we normalize the unit time

interval, or m = 1, to represent one trading day.  It follows then directly from equations (4) and (5), that

plimm64   Ei=1,..,mt  rk
2

,(m)(i/m)   =   [pk , pk ]t, , (11)

and

plimm64   Ei=1,..,mt  rk,(m)(i/m)  rj,(m)(i/m)   =   [pk , pj ]t  . (12)

Consequently, cumulative squares and cross-products of finely sampled high-frequency returns should
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provide a good approximation to the quadratic variation and covariation processes.  The identical procedure

may be used to approximate the corresponding h-period measures (t = h, 2h, ... T),

Fk
2

,(h)(t)    /    [pk , pk ]t  -  [pk , pk ]t-h , (13)

and

Fkj,(h)(t)    /    [pk , pj ]t   -   [pk , pj ]t-h  . (14)

These measures constitute time series of realized h-period volatilities and covariabilities.

   It is important to recognize that Fk
2

,(h)(t) and Fkj,(h)(t) are generally not measurable w.r.t. öt-h.  Thus, we

typically have  E[Fkj,(h)(t)*öt-h] … Fkj,(h)(t), simply because realizations differ from ex-ante expectations.  An Itô

process with constant volatility as is assumed for example in the Black-Scholes model, constitutes an

important exception, as in that case Fk
2

,(h)(t) / Fk
2 h.  However, in general, the volatility measures represent

realizations of variability and covariability rather than conditional variances and covariances.  Nonetheless,

Cov[rk,(h)(t),rj,(h)(t)*öt-h] = E[Fkj,(h)(t)*öt-h], so that the realized volatility measures do provide unbiased

estimates of the ex-ante conditional variances and covariances.

   Note also that there is generally no direct link between Fk
2
,(h)(t) and Fkj,(h)(t), and the conditional variance and

covariance at time t,  E[Fk
2

,(h)(t+h)*öt] and E[Fkj,(h)(t+h)*öt].  Hence, the volatility measures are primarily

tools for measuring realized volatilities, and not for forecasting, although they may be useful for that purpose

as well.  Specifically, if Tt,h denotes the F-algebra generated by the past realized variances and covariances,

{Fk
2

,(h)(t-ih)} and {Fkj,(h)(t-ih)} for all k,j and i=0,1, ... (t-h)/h, then, typically, E[Fk
2
,(h)(t+h)*öt]… 

E[Fk
2

,(h)(t+h)*Tt,h].  In particular, any parametric model allowing for an asymmetric relation between returns

and volatility, or simply auxiliary state variables in the volatility dynamics, will imply that optimal forecasts

should exploit information beyond Tt,h.  Nonetheless, because of the ex-ante unbiasedness, the ex-post

realizations, Fk
2

,(h)(t+ih)  and  Fkj,(h)(t+ih),  i=1,2, ..  (T-t)/h, still provide the appropriate benchmark for

volatility forecast evaluation.

   Lastly, note that, because no financial market literally provides continuously recorded transaction prices,

we cannot measure realized volatility via (11) and (12) without error.  Moreover, it is not necessarily

preferable to compute the measures from the highest possible frequency available, as bid-ask bounce, or

dealer spread positioning, tend to induce negative autocorrelation, in turn violating the semimartingale

assumption for ultra high-frequency returns.  Thus, as discussed further in Section 3, some experimentation

is required in practice to balance the pertinent microstructure biases against the accuracy of the continuous

record asymptotics.

2.3  The Integrated Volatility Measure for Itô Processes

Much finance theory assumes that logarithmic asset prices follow a diffusion,
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dpk(t)    =    µk(t) dt   +   Fk(t) dW(t) , (15)

where W(t) denotes a Wiener process.  Formally, in the terminology of the preceding section,

pk(t) - pk(0)   /   rk,(t)(t)    =    I0
t   µ k(s) ds   +   I0

t   Fk(s) dW(s) . (16)

which constitutes the canonical decomposition into a predictable, or "drift", term of finite variation, and a

local martingale, or "Wiener", term.  Since [W,W]t = t  a.s., it follows from equation (7) that

[pk , pk ]t    =    I0
t   Fk

2(s) ds    /    Fk
2

,t(t) . (17)

Equation (17) defines the so-called integrated volatility that is central to the option pricing in Hull and White

(1987), and further discussed  in Andersen and Bollerslev (1998a) and Barndorff-Nielsen and Shephard

(1998).  The result implies that rk,(t)(t) conditional on [pk, pk ]t, is normally distributed with variance I0
t

Fk
2(s) ds.

   This result extends directly to the multivariate setting.  Let W = (W1, ... , Wn) denote an n-dimensional

standard Brownian motion, and (öt)t0[0,T] refer to its completed natural filtration.  Then by martingale

representation (Protter, Theorem 4.42) any locally square integrable Itô price process may be written as

pk(t)  -  pk(0)    =    I 0
t   µ k(s) ds   +   Ei

n
=1 I 0

t   Fk,i(s) dWi(s) , (18)

so that in particular,

[pk , pk ]t    /    Fk
2

,(t)(t)    =    Ei
n

=1  I 0
t   Fk

2
,i(s)  ds (19)

and

[pk , pj ]t    /    Fkj,(t)(t)    =    Ei
n

=1  I 0
t   Fk,i(s)  Fj,i(s)  ds . (20)

The former provides a natural generalization of the scalar integrated volatility concept, while Fkj,(t)(t) is

denoted the integrated covariance.  As a special case, one may dedicate a few orthogonal Wiener

components to be common factors while others serve as idiosyncratic error terms, providing a continuous-

time analogue to the discrete-time latent factor volatility model in Diebold and Nerlove (1989).

   Of course, integrated volatilities are inherently unobservable.  Gallant, Hsu and Tauchen (1999) propose

an intriguing reprojection method for estimating the distribution of  Fk
2
,(h)(t) (see also Chernov and Ghysels,

1998), but it relies on specific parametric assumptions.  Motivated by (11) and (12) we, in contrast, take a

direct nonparametric approach to measuring the daily integrated volatility and covariance by summing

squares and cross-products of high-frequency intraday returns.  The resulting realized volatility and

covariance series allow us to characterize both the unconditional distribution and associated dynamic

features of return volatility by standard statistical procedures.

2.4  The Integrated Volatility Measure for Pure Jump Processes and mixed Jump-Diffusions

Special semimartingales of the pure jump variety have particularly simple quadratic variation and

covariation processes.  The process decomposes uniquely into a compensated local martingale jump
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component and a finite variation term with zero quadratic variation, i.e.,

pk(t)    =    pk(0)   +   Mk(t)   +   I0
t   µ k(s) ds . (21)

The innovations to Mk(t) are pure jumps, so that from (6)

[pk , pk ]t   =   E0# s#t  ( )Mk(s) )2. (22)

This result covers a variety of complex scenarios, including multiple jump components as in

Mk(t)    =    Ei=
J

1  E0#s#t  6k,i(s) )Nk,i(s)   -  I0
t   µ k(s) ds , (23)

where µ k(s) denotes the conditional mean of the overall jump process, )Nk,i(s) is an indicator for the

occurrence of a jump in the i'th component at time s, and the (random)  6k,i(s) determines the jump size. 

Hence, in this case

[pk  , pk ]t    =    E0#s#t ( )Mk(s) )2    =    Ei=
J

1  E0#s#t  6k
2
,i(s) )Nk,i(s). (24)

Moreover, the quadratic covariation of a pure jump process with any other semimartingale is governed

exclusively by their common jumps,

[pk  , pj ]t    =    E0#s#t  )Mk(s)  )Mj(s), (25)

which equals zero unless the processes exhibit contemporaneous jumps.

   Several authors (see for example Andersen, Benzoni and Lund, 1998, for evidence and references) argue

for the importance of including both time-varying volatility and jumps when modeling short-horizon returns,

as in

pk(t)   -   pk(0)    =    I0
t   µ k(s) ds   +   I0

t   Fk(s) dW(s)   +   E0#s#t  6k(s) )Nk(s). (26)

Again, the quadratic variation follows directly from equation (9),

[pk  , pk ]t    =    I0
t   Fk

2(s) ds   +   E0#s#t  6k
2(s) )Nk(s) . (27)

Extensions to a multivariate setting with an n-dimensional Brownian motion and multiple jump components

are straightforward, resulting in modifications along the lines of equations (18)-(20) and (23)-(25).

3. Volatility Measurement: Data

Our empirical analysis focuses on the bilateral DM/$ and Yen/$ spot exchange rates, which are particularly

attractive candidates for examination as they represent the two axes of the international financial system.

They also represent the most actively traded and quoted foreign currencies, and hence they permit the

construction of extremely accurate volatility measures. We first rationalize the use of underlying 5-minute

returns to construct daily realized volatilities, and then detail our treatment of weekend and other holiday

non-trading periods. Finally, we describe the actual construction of the realized volatility measures.

3.1  On the Use of 5-Minute Returns

   In practice, the inherent discreteness of actual securities prices renders continuous-time models poor
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approximations at very high sampling frequencies. Furthermore, high-frequency, or tick-by-tick, prices are

generally only available at unevenly-spaced discrete time points, so that calculation of evenly-spaced high-

frequency returns must necessarily rely on some form of interpolation involving the recorded prices around

the beginning and end of a given time interval. It is well known that this non-synchronous trading or

quotation effect may induce negative autocorrelation in the interpolated return series. Moreover, such biases

may be exacerbated in the multivariate context, if varying degrees of interpolation are employed in the

calculation of the different returns.

   The sampling frequency at which microstructure biases become a practical concern is largely an empirical

question. For the actively quoted and traded foreign exchange rates analyzed here, a sampling frequency of

288 times per day (5-minute returns) represents a reasonable compromise between the accuracy of the

theoretical approximations and the market microstructure considerations. That is, m=288 is high enough

such that our daily realized volatilities are largely free of measurement error (see the calculations in

Andersen and Bollerslev, 1998a), yet low enough such that microstructure biases are not a major concern.

(Methods for diagnosing and avoiding microstructure biases are developed in Andersen, Bollerslev, Diebold

and Labys, 1999a.)

3.2  Construction of 5-Minute DM/$ and Yen/$ Returns

   The two raw 5-minute DM/$ and Yen/$ return series were obtained from Olsen and Associates. The full

sample consists of continuously-recorded 5-minute returns from December 1, 1986 through November 30,

1996, or 3,653 days, for a total of 3,653·288 = 1,052,064 high-frequency return observations. As in Müller

et al. (1990) and Dacorogna et al. (1993), the construction of the returns utilizes all of the interbank FX

quotes that appeared on the Reuters screen during the sample period. Each quote consists of a bid and an ask

price together with a “time stamp” to the nearest second. After filtering the data for outliers and other

anomalies, the price at each 5-minute mark is obtained by linearly interpolating from the average of the log

bid and the log ask for the two closest ticks. The continuously-compounded returns are then simply the

change in these 5-minute average log bid and ask prices. Goodhart, Ito and Payne (1996) and Danielsson and

Payne (1999) find that the basic characteristics of 5-minute FX returns constructed from quotes closely

match those calculated from transactions prices (which are not generally available).

   It is well known that the activity in the foreign exchange market slows decidedly over the weekend and

certain holiday non-trading periods; see, e.g., Andersen and Bollerslev (1998b) and Müller et al. (1990). In

order not to confound the distributional characteristics of the various volatility measures by these largely

deterministic calendar effects, we explicitly excluded a number of days from the raw 5-minute return series.

Whenever we did so, we always cut from 21:05 GMT the night before to 21:00 GMT that evening, to keep
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the daily periodicity intact. This particular definition of a “day” was motivated by the ebb and flow in the

daily FX activity patterns documented in Bollerslev and Domowitz (1993). In addition to the thin weekend

trading period from Friday 21:05 GMT until Sunday 21:00 GMT, we removed several fixed holidays,

including Christmas (December 24 - 26), New Year’s (December 31 - January 2), and July Fourth. We also

cut the moving holidays of Good Friday, Easter Monday, Memorial Day, July Fourth (when it falls officially

on July 3), and Labor Day, as well as Thanksgiving and the day after. Although our cuts do not account for

all of the holiday market slowdowns, they capture the most important daily calendar effects.

   Finally, we deleted some of the returns contaminated by brief lapses in the Reuters data feed. This

problem, which occurred almost exclusively during the early part of the sample, manifested itself in the form

of sequences of zero or constant 5-minute returns in places where the missing quotes had been interpolated.

To remedy this, we simply removed the days containing the fifteen longest DM/$ zero runs, the fifteen

longest DM/$ constant runs, the fifteen longest Yen/$ zero runs, and the fifteen longest Yen/$ constant runs.

Because of the overlap among the four different sets of days defined by these criteria, we actually removed

only 51 days. All in all, we were left with 2,449 complete days, or 2,449·288 = 705,312 5-minute return

observations, for the construction of our daily realized variances and covariances.

3.3  Construction of DM/$ and Yen/$ Daily Realized Volatilities

   In order to define our daily volatility measures formally, we denote the time series of 5-minute DM/$ and

Yen/$ returns by )logD(288)(t) and )logY(288)(t), respectively, where t = 1/288, 2/288, ..., 2,449.  We then

form the corresponding 5-minute squared return and cross-product series ()logD(288)(t))
2, ()logY(288)(t))

2, and

)logY(288)(t)·)logD(288)(t). The statistical properties of the squared return series closely resemble those found

by Andersen and Bollerslev (1997a,b) with a much shorter one-year sample of 5-minute DM/$ returns.

Interestingly, the basic properties of the 5-minute cross-product series, )logY(288)(t)·)logD(288)(t), are similar.

In particular, all three series are highly persistent and display strong intraday calendar effects, the shape of

which is driven by the opening and closing of the different financial markets around the globe during the 24-

hour trading cycle.

   Now, following the results in equations (11) and (12), we construct our estimates of the daily variances and

covariances by summing the 288 5-minute observations within each day,

vardt   /   Ej=1,..,288  ()logD(288)(t-1+j/288))2 (28)

varyt   /   Ej=1,..,288  ()logY(288)(t-1+j/288))2 (29)

covt   /   Ej=1,..,288  )logD(288)(t-1+j/288)·)logY(288)(t-1+j/288), (30)

where t =
 1, 2, ..., T; here T = 2449. Our focus on the squared returns as a volatility measure, as opposed to

say the absolute returns, is motivated by the diffusion theoretic foundation in Section 2. Of course, squared
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returns also have the closest link to the variance-covariance structures and standard notions of risk employed

throughout the finance literature. However, in addition we shall also examine several alternative, but related,

measures of realized variation and covariation derived from the realized variances and covariances in

equations (28), (29) and (30), including realized standard deviations, stddt / vardt
1/2 and stdyt / varyt

1/2,

realized logarithmic standard deviations, lstddt / ½·log(vardt ) and lstdyt / ½·log(varyt ), and realized

correlations, corrt / covt /(stddt·stdyt ). In Section 4 we characterize the unconditional distribution of each of

these realized volatilities, and in section 5 we characterize their conditional distributions.

   In addition to daily volatilities, we also investigate the volatility of temporally aggregated returns. In

particular, let h$1 denote the length of the return horizon. We construct temporally aggregated realized

variances and covariances for h-day returns as

vardt,h   /   Ej=1,..,288·h  ( )logD(288)(t-h+j/288))2 (31)

varyt,h   /   Ej=1,..,288·h  ( )logY(288)(t-h+j/288))2 (32)

covt,h   /   Ej=1,..,288·h   )logD(288)(t-h+j/288) · )logY(288)(t-h+j/288), (33)

where t =
 h, 2h, ..., [T/h]·h. We obtain the corresponding h-day standard deviations, stddt,h and stdyt,h ,

logarithmic standard deviations, lstddt,h and lstdyt,h , and correlations, corrt,h by appropriately transforming

vardt,h, varyt,h and covt,h.  In Section 6 we analyze these temporally aggregated volatilities.

4. The Unconditional Distribution of Daily Realized FX Volatility

The unconditional distribution of volatility captures an important aspect of the return variance process, and

as such it has immediate implications for risk measurement and management, asset pricing, and portfolio

allocation. Here we provide a detailed characterization.

4.1  Univariate Unconditional Distributions

   In the first two columns of the first panel of Table 1 we show a standard menu of moments (mean,

variance, skewness, and kurtosis) summarizing the unconditional distributions of the daily realized variance

series, vardt and varyt , and in the top panel of Figure 1 we show kernel density estimates of the unconditional

distributions. It is evident that the distributions are very similar and extremely right skewed. Thus, although

the realized daily variances are constructed by summing 288 squared 5-minute returns, the strong

heteroskedasticity in intraday returns renders the normal distribution a poor approximation.

   The standard deviation of returns is measured on the same scale as the returns, and thus provides a more

readily interpretable measure of volatility than the variance. We present summary statistics and density

estimates for the two daily realized standard deviations, stddt and stdyt , in columns three and four of the first

panel of Table 1 and in the second panel of Figure 1. The distributions of the standard deviations are clearly
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non-normal, but the right skewness has been significantly reduced relative to the distributions of the

variances. The mean of each daily realized standard deviation is approximately 68 basis points.

   Interestingly, the distributions of the two daily realized logarithmic standard deviations, lstddt and lstdyt ,

displayed in columns five and six of the first panel of Table 1 and in the third panel of Figure 1, appear

symmetric. Moreover, normality is a much better approximation for the logarithmic standard deviations than

for the realized variances or standard deviations. This accords with the findings for monthly volatility

aggregates of daily equity index returns in French, Schwert and Stambaugh (1987), as well as the earlier

findings in Clark (1973) and Taylor (1986).

   Finally, we characterize the distribution of daily realized covariances and correlations, covt and corrt , in

the last two columns of the first panel of Table 1 and the bottom panel of Figure 1. The basic characteristic

of the unconditional distribution of the covariance is similar to that of the two daily variances -- it is

extremely right skewed and leptokurtic. Interestingly, however, the distribution of the realized correlation is

close to normal. The mean realized correlation is positive (0.43), which is not surprising, as it may arise from

common dependence on U.S. macroeconomic fundamentals. The standard deviation of realized correlation

(0.17) indicates significant variation of the correlation around its mean, which may be important for short-

term portfolio allocation and hedging decisions.

4.2  Multivariate Unconditional Distributions

   The univariate distributions characterized above do not address relationships that may exist among the

different measures of variation and covariation. Key financial and economic questions, for example, include

whether the individual volatilities such as lstddt and lstdyt move together, and whether they are positively

correlated with movements in correlation. Although such questions are difficult to answer using conventional

volatility models, they are relatively easy to address using our realized volatilities and correlations.

   The sample correlations in the first panel of Table 2, along with the lstddt-lstdyt scatterplot in the top panel

of Figure 2, indicate a strong positive association between the two exchange rate volatilities. Thus, not only

do the two exchange rates tend to move together, as indicated by the positive means for covt and corrt , but

their volatilities are also closely linked. This provides empirical justification for the use of multivariate

volatility models with a factor structure, as in Diebold and Nerlove (1989) and Bollerslev and Engle (1993).

   The correlation figures in Table 2 along with the corrt-lstddt  scatterplot in the second panel of Figure 2

also indicate a positive association between correlation and volatility. To quantify further this “volatility

effect” in correlation, we show in the top panel of Figure 3 kernel density estimates of corrt when both lstddt

and lstdyt are less than -0.46 (their median value, which happens to be the same for each) and when both

lstddt and lstdyt are greater than -0.46. Similarly, we show in the bottom panel of Figure 3 the estimated corrt
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densities conditional on the more extreme volatility situation in which both lstddt and lstdyt are less than -

0.87 (approximately the tenth percentile of each distribution) and when both lstddt and lstdyt are greater than

0.00 (approximately the ninetieth percentile of each distribution). In each case, the distribution of corrt 

conditional on being in the high volatility state is clearly shifted to the right. A similar correlation effect in

volatility has been documented for international equity returns by Solnik, Boucrelle and Le Fur (1996)

among others, while Ang and Bekaert (1999) have explored the optimal portfolio implications of such an

effect. Of course, given that the high-frequency returns are positively correlated, some separation is to be

expected (e.g., Ronn, 1998, and Forbes and Rigobon, 1999). However, the magnitude of the effect is

nonetheless noteworthy.

5. The Conditional Distribution of Daily Realized FX Volatility

The value of a derivative security such as an option is closely linked to the expected volatility of the

underlying asset until expiration. Hence improved volatility forecasts should, for example, lead to more

accurate option pricing. The conditional dependence in volatility forms the basis for such forecasts. This

feature is most easily identified in the daily realized correlations and logarithmic standard deviations which

are approximately unconditionally normally distributed. To conserve space, we focus on those three series.

   It is instructive first to consider the time series plots of the realized volatilities in Figure 4. The wide

fluctuations and strong persistence evident in each of the univariate lstddt and lstdyt series are of course

manifestations of the widely documented return volatility clustering. It is striking that the time series plot for

corrt shows equally pronounced persistence, with readily identifiable periods of high and low correlation.

   This visual impression is borne out by the highly significant Ljung-Box tests reported in the first row of the

first panel of Table 3. (The 0.001 critical value is 45.3.) The correlograms of lstddt , lstdyt and corrt in

Figure 5 further underscore the point. The autocorrelations of the logarithmic standard deviations begin

around 0.6 and decay very slowly to about 0.1 at a displacement of 100 days. Those of the realized daily

correlations decay even more slowly, reaching 0.31 at the 100-day displacement. Similar results based on

long series of daily absolute or squared returns from other markets have previously been obtained by a

number of authors, including Ding, Granger and Engle (1993). The slow decay in Figure 5 is particularly

noteworthy, however, in that the two realized daily volatility series span “only” ten years.

   The findings of slow autocorrelation decay might indicate the presence of a unit root, as in the integrated

GARCH model of Engle and Bollerslev (1986). However, Dickey-Fuller tests with ten augmentation lags

soundly reject the unit root hypothesis for all the series, with test statistics ranging from -9.26 to -5.59, while

the 0.01 and 0.05 critical values are -2.86 and -3.43. Although unit roots are soundly rejected, the very slow
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autocorrelation decay coupled with the negative and slowly decaying estimated augmentation lag coefficients

in the Dickey-Fuller regressions still suggest that long-memory of a non unit-root variety is present. Hence

we now turn to an investigation of fractional integration in the daily realized volatilities.

   As noted by Granger and Joyeux (1980), a slow hyperbolic decay of the long-lag autocorrelations or,

equivalently, the log-linear explosion of the low-frequency spectrum, are distinguishing features of a

covariance stationary fractionally integrated, or I(d), process with 0 < d <½,. The low-frequency spectral

behavior also forms the basis for the log-periodogram regression procedure of Geweke and Porter-Hudak

(1983) and later refinements by Robinson (1994, 1995), Hurvich and Beltrao (1994) and Hurvich, Deo and

Brodsky (1998). In particular, let I(Tj ) denote the sample periodogram at the jth Fourier frequency, Tj =

2Bj/T, j = 1, 2, ..., [T/2]. The log-periodogram estimator of d is then based on the OLS regression,

log[ I(Tj ) ]   =   $0   +   $1 · log(Tj )   +   uj , (34)

where j = 1, 2, ..., m, and d̂ / -½·$̂1 . The least squares estimator of $1, and hence d̂, is asymptotically normal

and the corresponding standard error, B·(24·m)-½, depends only on the number of periodogram ordinates used.

Although the earlier proofs for consistency and asymptotic normality of the log-periodogram regression

estimator rely on normality, Deo and Hurvich (1998) and Robinson and Henry (1998) have recently shown

that these same properties extend to non-Gaussian, possibly heteroskedastic, time series as well. Of course,

the actual estimate of d depends upon the specific choice of m. While the theoretical standard error formula

suggests choosing a large value of m in order to obtain a small standard error, doing so may induce a bias,

because the relationship underlying equation (34) in general holds only for frequencies close to zero.

Following Taqqu and Teverovsky (1996), we therefore graphed and examined d̂ as a function of m, looking

for a “flat region” in which we are plagued neither by high variance (m “too small”) nor high bias (m “too

large”). Our subsequent choice of m = [ T
4/5 ], or m = 514, is  consistent with the optimal rate of O(T4/5)

established by Hurvich, Deo and Brodsky (1998).

   We present the estimates of d in the second row of the first panel of Table 3. The estimates for all eight

volatility series are highly statistically significant, and all are fairly close to the “typical value” of 0.4. These

estimates for d  are also directly in line with the estimates based on long time series of daily absolute and

squared returns from other markets reported by Granger, Ding and Spear (1997), as well as the findings

based on a much shorter one-year sample of intraday DM/$ returns reported in Andersen and Bollerslev

(1997b). The results therefore suggest that the standard continuous-time models applied in much of the

theoretical finance literature, in which the volatility is assumed to follow an Ornstein-Uhlenbeck (OU)

process, are misspecified. Our results are also constructive, however, in that they indicate that simple and

parsimonious long-memory models should accurately capture the long-lag autoregressive effects.
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6. The Effects of Temporal Aggregation

The analysis in the preceding sections focused exclusively on the distributional properties of daily realized

volatilities. However, many practical problems in asset pricing, portfolio allocation, and financial risk

management invariably involve longer horizons. Here we examine the distributional aspects of the

corresponding multi-day realized variances and correlations. As before, we begin with an analysis of

unconditional distributions, followed by an analysis of the dynamic dependence, including a detailed

examination of long-memory as it relates to temporal aggregation.

6.1  Univariate and Multivariate Unconditional Distributions

   The lower panels of Table 1 provide summary statistics for the univariate unconditional distributions for

the temporally aggregated volatility measures at weekly, bi-weekly, tri-weekly and monthly return horizons

(h = 5,  10, 15, and 20, respectively, corresponding to sample sizes of 489, 244, 163 and 122 days). By

construction, the means of the volatility series vardt,h , varyt,h , and covt,h grow at the constant rate h, while the

mean realized correlation, corrt,h , is largely invariant to the level of aggregation. Of significantly, the growth

of the variance of the realized variances and covariance adheres closely to h2d+1, where d denotes the order of

integration, a phenomenon that we discuss at length subsequently. Observe also that, even at the monthly

level, the unconditional distributions of vardt,h , varyt,h , and covt,h remain leptokurtic and highly rightward

skewed. The basic characteristics of sttdt,h and stdyt,h are similar, with the mean increasing at the rate h1/2. In

contrast to previously, however, the unconditional variances of lstddt,h and lstdyt,h now decrease with h, but

again at a rate linked to the fractional integration parameter, as we document below.

   Next, turning to the multivariate unconditional distributions, we display in the lower panels of Table 2 the

correlation matrices of all volatility measures for h = 5, 10, 15, and 20. While the correlation between the

different measures of volatility drops slightly under temporal aggregation, the strong positive association

between the volatilities so apparent at the one-day return horizon is largely preserved under temporal

aggregation. For instance, the correlation between lstddt,h and lstdyt,h ranges from a high of 0.604 at the daily

horizon to a low of 0.533 at the monthly horizon. Meanwhile, the volatility effect in correlation is reduced

somewhat under temporal aggregation; the sample correlation between lstddt,1 and corrt,1 equals 0.389,

whereas the correlation between lstddt,20 and corrt,20 is 0.245. Similarly, the correlation between lstdyt,h and

corrt,h drops from 0.294 for h = 1 to 0.115 for h = 20. Thus, while the long-horizon correlations are still

positively related to the overall level of volatility, the lower numerical values suggest that the benefits to

international diversification may be the greatest over longer investment horizons.

6.2  The Conditional Distribution: Dynamic Dependence, Fractional Integration and Scaling

   Andersen, Bollerslev and Lange (1999) have recently shown that, given the estimates typically obtained at
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the daily level, from a theoretical perspective the integrated volatility should remain strongly serially

correlated and highly predictable under temporal aggregation, even at the monthly level. The Ljung-Box

statistics for the realized volatilities presented in the lower panels of Table 3 provide strong empirical

confirmation.  Even at the monthly level, or h = 20, with only 122 observations, all of the test statistics are

highly significant. This contrasts with other sorts of evidence, which tends to show little or no significant

evidence of volatility clustering by the time one aggregates to monthly returns, as in Baillie and Bollerslev

(1989) and Christoffersen and Diebold (2000).

   The estimates for d in Section 4 all suggest that the realized daily volatilities are fractionally integrated.

The class of fractionally integrated models is self-similar, so that the degree of fractional integration should

be invariant to the sampling frequency; see, e.g., Beran (1994). This strong prediction is borne out by the

estimates for d at the different levels of temporal aggregation, given in the lower panels of Table 3. All of the

estimates are within two asymptotic standard errors of the average estimate of 0.391 obtained for the daily

series, and all are highly statistically significantly different from both zero and unity.

   Another implication of self-similarity concerns the variance of partial sums. In particular, let

[ xt ]h   /   Ej=1,..,h  xh·(t-1)+j , (35)

denote the h-fold partial sum process for xt , where t =
 1, 2, ..., [T/h].  Then, as discussed by, e.g., Beran

(1994) and Diebold and Lindner (1996), if xt is fractionally integrated, the partial sums obey a scaling law,

Var( [ xt ]h )   =   c·h2d+1. (36) 

  Of course, by definition [ vardt ]h / vardt,h and [ varyt ]h / varyt,h , so the variance of the realized volatilities

should grow at the rate h2d+1. This theoretical implication is remarkably consistent with the unconditional

sample variances and covariances in Table 1 for values of d around 0.35-0.40. Similar scaling laws for 

power transforms of absolute FX returns are reported in a series of papers initiated by Müller et al. (1990).

   The striking accuracy of our scaling laws carries over to the partial sums of the alternative volatility series.

The left panel of Figure 6 plots the logarithm of the sample variances of the partial sums for the realized

logarithmic standard deviations versus the logarithm of the aggregation level; i.e., log( Var([ lstddt]h )) and 

log(Var([ lstdyt ]h )) against log(h) for h =
 1, 2, ..., 30. The linear fits implied by equation (36) are validated.

Each of the slopes are very close to the theoretical value of 2d+1 implied by the log-periodogram estimates

for d, further solidifying the notion of long-memory volatility dependence. The estimated slopes in the top

and bottom panels are 1.780 and 1.728, respectively, corresponding to d values of 0.390 and 0.364.

   Because a non-linear function of a sum does not equal the sum of the non-linear function, it is not clear

whether lstddt,h and lstdyt,h will follow similar scaling laws. The estimates of d reported in Table 3 suggest

that they should. The corresponding plots for the logarithm of the h-day logarithmic standard deviations
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log(Var(lstddt,h)) and log(Var( lstdyt,h )) against log(h), for h =
 1, 2, ..., 30, in the right panel of Figure 6, lend

empirical support to this conjecture. Although the fits are not as perfect as those in Figure 8, the log-linear

approximations are still remarkably accurate. Interestingly, however, the lines are downward sloped.

   To understand why these slopes may be negative, assume that the returns are serially uncorrelated. The

variance of the temporally aggregated return should then be proportional to the length of the return interval,

that is, E( vart,h ) = b·h, where vart,h refers to the temporally aggregated variance as defined above. Also, by

the scaling law in (36), Var( vart,h ) = c·h2d+1. Furthermore, assume that the corresponding temporally

aggregated logarithmic standard deviations, lstdt,h / ½·log( vart,h ), are normally distributed across all

frequencies h with mean µh and variance Fh
2.  Note that these assumptions accord closely with the empirical

distributions summarized in Table 1. It then follows from the properties of the lognormal distribution that

E( vart,h )   =   exp( 2µh + 2Fh
2

 )   =   b·h         (37)

and

Var( vart,h )   =   exp( 4 µh ) exp( 4 Fh
2

 ) [ exp( 4 Fh
2
 ) - 1 ]   =   c · h

2d+1,         (38)

so that solving for the variance of the log standard deviation yields

Var( lstdt,h )   /   Fh
2   =   log( c·b-2·h2d-1 + 1 ).         (39)

With 2d-1 slightly negative, this explains why the sample variances of lstddt,h and lstdyt,h reported in Table 1

are decreasing with the level of temporal aggregation, h. Furthermore, by a log-linear approximation,

log[ Var( lstdt,h ) ]   .   a   +   (2d-1) · log( h ),         (40)

which provides a justification for the apparent scaling law behind the two plots in the right panel of Figure 6,

and the negative slopes of approximately  2d-1. The slopes in the top and bottom panels are -0.222 and -

0.270, respectively, and the implied d values of 0.389 and 0.365 are almost identical to the values implied by

the scaling law in equation (36) and the two left panels of Figure 6.

7. Summary and Concluding Remarks

We have provided a theoretical basis for measuring and analyzing time series of realized volatilities

constructed from high-frequency intraday returns. Utilizing a unique data set consisting of ten years of 5-

minute DM/$ and Yen/$ returns, we find that the distributions of realized daily variances, standard

deviations and covariances are skewed to the right and leptokurtic, but that the distributions of logarithmic

standard deviations and correlations are approximately Gaussian. Volatility movements, moreover, are

highly correlated across the two exchange rates, as would be implied by a factor structure induced by

common dependence on U.S. fundamentals. We also find that the correlation between the exchange rates (as

opposed to the correlation between their volatilities) increases with volatility, so that the benefits of portfolio
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diversification are reduced just when they are needed most. Finally, we confirm the wealth of existing

evidence of strong volatility clustering effects in daily returns. However, in contrast to earlier work, which

often indicates that volatility persistence decreases fairly quickly with the horizon, we find that even monthly

realized volatilities remain highly persistent. Nonetheless, realized volatilities do not have unit roots; instead,

they appear fractionally integrated and therefore very slowly mean-reverting. This finding is strengthened by

our analysis of temporally aggregated volatility series, which appear to be governed by remarkably accurate

scaling laws, as predicted by the structure of fractional integration.

   A key conceptual distinction between this paper and the earlier work on which we build -- Andersen and

Bollerslev (1998a) in particular -- is the recognition that realized volatility is usefully viewed as the object of

intrinsic interest, rather than simply a post-modeling device to be used for evaluating parametric volatility

models such as GARCH. As such, it is of interest to examine and model realized volatility directly. This

paper is a first step in that direction, providing a nonparametric characterization of both the unconditional

and conditional distributions of bivariate realized exchange rate volatility.

   It will be of interest in future work to fit parametric models directly to the realized volatility, and in turn

use them for forecasting in specific financial contexts. In particular, our findings suggest that modeling

realized logarithmic daily standard deviations and correlations by a linear Gaussian multivariate long-

memory model, could result in important improvements in the accuracy of long-term volatility forecasts and

Value-at-Risk type calculations. This idea is pursued in Andersen, Bollerslev, Diebold and Labys (1999b).
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Table 1
Statistics Summarizing Unconditional Distributions of Realized DM/$ and Yen/$ Volatilities

______________________________________________________________________________

vardt,h varyt,h stddt,h stdyt,h lstddt,h lstdyt,h covt,h corrt,h

______________________________________________________________________________

 Daily, h=1
Mean 0.529 0.538 0.679 0.684 -0.449 -0.443 0.243  0.435
Variance 0.234 0.272 0.067 0.070  0.120  0.123 0.073  0.028
Skewness 3.711 5.576 1.681 1.867  0.345  0.264 3.784 -0.203
Kurtosis 24.09 66.75 7.781 10.38  3.263  3.525 25.25  2.722

 Weekly, h=5
Mean 2.646 2.692 1.555 1.566 0.399 0.405 1.217  0.449
Variance 3.292 3.690 0.228 0.240 0.084 0.083 0.957  0.022
Skewness 2.628 2.769 1.252 1.410 0.215 0.382 2.284 -0.176
Kurtosis 14.20 14.71 5.696 6.110 3.226 3.290 10.02  2.464

 Bi-Weekly, h=10
Mean 5.297 5.386 2.216 2.233 0.759 0.767 2.437  0.453
Variance 10.44 11.74 0.389 0.403 0.072 0.070 2.939  0.019
Skewness 1.968 2.462 1.063 1.291 0.232 0.380 1.904 -0.147
Kurtosis 7.939 11.98 4.500 5.602 3.032 3.225 7.849  2.243

 Tri-Weekly, h=15
Mean 7.937 8.075 2.717 2.744 0.964 0.977 3.651  0.455
Variance 22.33 22.77 0.560 0.546 0.069 0.064 5.857  0.018
Skewness 2.046 2.043 1.033 1.177 0.208 0.400 1.633 -0.132
Kurtosis 9.408 8.322 4.621 4.756 2.999 3.123 6.139  2.247

 Monthly, h=20
Mean 10.59 10.77 3.151 3.179 1.116 1.127 4.874  0.458
Variance 34.09 36.00 0.671 0.671 0.062 0.059 8.975  0.017
Skewness 1.561 1.750 0.906 1.078 0.295 0.452 1.369 -0.196
Kurtosis 5.768 6.528 3.632 4.069 2.686 2.898 4.436  2.196

______________________________________________________________________________



Table 2
Correlation Matrices of Realized DM/$ and Yen/$ Volatilities 

______________________________________________________________________________

varyt,h stddt,h stdyt,h lstddt,h lstdyt,h covt,h corrt,h

______________________________________________________________________________

Daily, h=1
vardt 0.539 0.961 0.552 0.860 0.512 0.806 0.341
varyt 1.000 0.546 0.945 0.514 0.825 0.757 0.234

 stddt   - 1.000 0.592 0.965 0.578 0.793 0.383
 stdyt   -   - 1.000 0.589 0.959 0.760 0.281
 lstddt   -   -   - 1.000 0.604 0.720 0.389
 lstdyt   -   -   -   - 1.000 0.684 0.294
 covt   -   -   -   -   - 1.000 0.590

Weekly, h=5
vardt,h 0.494 0.975 0.507 0.907 0.495 0.787 0.311
varyt,h 1.000 0.519 0.975 0.514 0.908 0.761 0.197
stddt,h   - 1.000 0.545 0.977 0.545 0.789 0.334
stdyt,h   -   - 1.000 0.555 0.977 0.757 0.220
lstddt,h   -   -   - 1.000 0.571 0.748 0.336
lstdyt,h   -   -   -   -  1.000 0.718 0.235
covt,h   -   -   -   -   - 1.000 0.617

Bi-weekly, h=10
vardt,h 0.500 0.983 0.503 0.931 0.490 0.776 0.274
varyt,h 1.000 0.516 0.980 0.514 0.923 0.772 0.170

 stddt,h   - 1.000 0.533 0.982 0.531 0.780 0.293
 stdyt,h   -   - 1.000 0.544 0.981 0.762 0.188
 lstddt,h    -   -   - 1.000 0.556 0.753 0.300

lstdyt,h      -   -   - 1.000 0.726 0.202
covt,h   -   -   -   -   - 1.000 0.609

Tri-weekly, h=15
vardt,h 0.498 0.982 0.505 0.931 0.497 0.775 0.255
varyt,h 1.000 0.522 0.984 0.525 0.939 0.763 0.146
stddt,h   - 1.000 0.538 0.983 0.539 0.787 0.277
stdyt,h   -   - 1.000 0.551 0.984 0.756 0.155
lstddt,h   -   -   - 1.000 0.564 0.765 0.285
lstdyt,h   -   -   -   - 1.000 0.727 0.162
covt,h   -   -   -   -   - 1.000 0.605

Monthly, h=20
vardt,h 0.479 0.988 0.484 0.952 0.479 0.764 0.227
varyt,h 1.000 0.501 0.988 0.509 0.953 0.747 0.109
stddt,h    - 1.000 0.512 0.988 0.511 0.775 0.241
stdyt,h    -   - 1.000 0.527 0.988 0.741 0.112
lstddt,h    -   -   - 1.000 0.533 0.763 0.245
lstdyt,h     -  -  - 1.000 0.719 0.115

 covt,h  -  -  -  -   - 1.000 0.596
______________________________________________________________________________



Table 3
Dynamic Dependency Measures for Realized DM/$ and Yen/$ Volatilities

______________________________________________________________________________

vardt,h varyt,h stddt,h stdyt,h lstddt,h lstdyt,h covt,h corrt,h

______________________________________________________________________________

Daily, h=1
LB 4539.3 3257.2 7213.7 5664.7 9220.7 6814.1 2855.2 12197

 d̂ 0.356 0.339 0.381 0.428 0.420 0.455 0.334 0.413

Weekly, h=5
LB 592.7 493.9 786.2 609.6 930.0 636.3 426.1 2743.3

 d̂ 0.457 0.429 0.446 0.473 0.485 0.496 0.368 0.519

Bi-weekly, h=10
LB 221.2 181.0 267.9 206.7 305.3 203.8 155.4 1155.6

 d̂ 0.511 0.490 0.470 0.501 0.515 0.507 0.436 0.494

Tri-weekly, h=15
LB 100.7 108.0 122.6 117.3 138.3 112.5 101.6 647.0

 d̂ 0.400 0.426 0.384 0.440 0.421 0.440 0.319 0.600

Monthly, h=20
LB 71.8 69.9 83.1 70.9 94.5 66.0 78.5 427.3
d̂ 0.455 0.488 0.440 0.509 0.496 0.479 0.439 0.630

_____________________________________________________________________________
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Distributions of Daily Realized Exchange Rate Volatilities and Correlations
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Bivariate Scatterplots of Realized Volatilities and Correlations
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Sample Autocorrelations of Realized Volatilities and Correlation
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